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Abstract: This paper describes different Rasch models for longitudinal
data. An overview of marginal maximum likelihood (MML) estimation and
conditional maximum likelihood (CML) estimation is presented. The as-
sumptions implied in these models are discussed and two important aspects:
invariance of item parameters over time and local independence across time
that are identified. Several tests of these assumptions are proposed in the
MML and the CML inference frame.

1. Introduction

Studying Patient Reported Outcomes (PRO’s) often involve latent variables
and Item Response Theory (IRT) models [1] are often used for modeling. Many
applications involving PRO’s are in longitudinal settings, where patients are
followed over time. This calls for the use of longitudinal latent variable models
yielding complex data structures where within-subject dependency should be
taken into account in the statistical modeling. While solutions to address the
issue of longitudinal data [2] hâve been proposed and evaluated, further investi-
gation is warranted when latent variables are involved. Modeling of ordinal data
with random effects has a long tradition in item response theory and some of
the earliest descriptions of ordinal random effects régression models are found
in the psychometric literature [3]. Latent variable models for multivariate longi-
tudinal ordinal responses hâve been studied by many authors [4, 5]. The models
include correlated error terms to accommoda,te longitudinal data and impose a
structure on the latent variables. Another way of accounting for the dependence
across time points arising from using the same question is by fitting item-specific
random effects to account for corrélations between time points. This is an ex-
tension of testlet theory [6] to longitudinal designs. Both of these approaches
rely on distributional assumptions about the latent variables that are not easily
tested. One way of avoiding this problem is to take advantage of Rasch models
[7, 8] where conditional estimation can be carried out without problematic dis-
tributional assumptions. Ways of testing the assumptions of longitudinal IRT
models and an investigation of the possibilities of using conditional rather than
marginal approaches to longitudinal IRT will be discussed.

2. The Rasch model

The dichotomous Rasch model [7, 8] is the simplest IRT model. It describes the
responses to manifest items Xi,... ,Xi measuring a latent variable 6. In the
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Rasch measurement model some important requirements should be met:

(i) 9 G R.

(ii) 9 i->- E{Xi\9) is increasing for ail items i.

(iii) Pr{X\ = kJ...,Xi — xj\ 9) — IPr(Xi — Xi\0) for ail 9 G R.

(iv) Pr(Xi — Xi\Y, 0) = P(Xi — Xi\9) for ail items i and ail exogenous variables Y.

These are referred to as (i) unidimensionality, (ii) monotonicity, (iii) local inde-
pendence and (iv) no differential item functioning (DIF). The response proba-
bility for item i for a given 9 is modeled as

Pr(Xi m Xi\6) =
exp(xj(0 - A))
1 + exp(0 - fc) 0 = i,...,/) (2.1)

where /3 = (Pi)i=i,...j is a vector of scalars, often called item locations, that
describe the items and 9 is a scalar describing the person responding. It is clear
that this way of modeling the probabilities automatically implies (i), (ii) and
(iv).
For a sample of persons v = 1,N we assume that there is one value 9V, for
each person and observe a response vector Xv = (Xvi)imi,...,/- By (2.1) and the
assumption of local independence we obtain

/

~[{Pr(Xvi=xvi\6v) (2.2)
i=1

exp(9vxv. - J2i Pixvi) /2 3x
nU(l + exp(^ - [%))

and see that xv_ = Yit=i xvi is sufficient for 9V. The entire data matrix is denoted
by V = (.Xvi).

Pr(Xv = xv\9v) =

2.1. Identifiability

From (2.1) it is clear that the model is not identified since for any k > 0 the
parameters 9* — 9+k, and (3* = /3^+k lead to the same probabilities. Restrictions
are thus needed, e.g. by fixing item or person means. Typically the restriction
X^=i A = 0 is used, but the choice of restriction does not change the model.



111

2.2. Item parameter estimation

Estimating item parameters jointly with the person parameters #1,..., On using
the likelihood function

N

L(fi,eu...,0N) = ' JJ Prfÿ,, = *„ |0„)
v—1

exP(Et, Ovxv. ~ Et Pix-i)
nf=i Uha + exp(^ - Pi))

leads to inconsistent estimators [9] and for this reason marginal or conditional
estimation is used.

2.2.1. Marginal maximum likelihood (MML) estimation

Assuming that the latent variable 0 is normally distributed with mean p and
variance a2, the marginal probability of a response vector can be written as
an intégral Pr(Xv = •) = J Pr(Xv — ■\6)(p(^z^)d6: where cp is the standard
normal density. This yields the marginal likelihood function

^M(/d,Ai,cr) / Pr(Xv =xv\0)ip(^ -Jd6. (2.4)
v=i J a

Restrictions are also needed here: if item parameters are restricted p and a can
be estimated. Alternatively p can be set to zéro so that a and ail item param-
eters can be estimated.
The likelihood équations derived from (2.4) can not be solved explicitly and
estimation calls for numerical methods. More specifically, both intégral approx-
imation techniques and optimization algorithms are needed.
Several choices hâve been described extensively in the literature. Intégral ap-

proximations of the Adaptive Quadrature type, with different choices of inter-
polating functions, are widely used [10], [11]. An example is the Gauss-Hermite
Quadrature method which is the default in the NLMIXED procedure in SAS.
Other options are Monte Carlo methods which cornes in various different ver-
sions. In general these methods are particularly useful for higher dimensional
intégrais.
For optimization of the likelihood function a common choice is the Newton-
Raphson algorithm which is also the default in NLMIXED.
If the distribution of 9 is correctly specified ML estimâtes of item parameters
are consistent [13]. If the distribution is not normal then marginal ML estimâtes
are not consistent. Justification of the distributional assumptions of the latent
variable is a recurrenct issue in random effects models and other distrutions
than the normal could be considered.
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This model can be extended by imposing a linear structure

~e1 ' ei

— YeVe +

9n_ _6jv_

given by a design matrix Y $ with one row for each person and a vector [ei ... ejv]T ~
MVN{0,a2IN) of residuals. This extention allows for the mean of the latent
distribution to vary between different person groups. Models with this struc-
ture are often called latent régression models and hâve been discussed by many
authors starting with [3].

2.2.2. Conditional maximum likelihood (CML) estimation

The sum Rv — Xv>^mY2^^Xvi of item responses is sufficient for 6V the possible
values being r — 0,1The distribution of the stochastic variable Rv is
given by the probabilities

Pr(Rv = r\0v) ^ Pr(Xv = x\9v)
xeAr

computed by summation over the set Ar = {x : xi — r} of ail response
vectors with sum r. Inserting (2.2) yields

Pr(Rv = r\9v)
7r exp(r9v)

lit (1 + exp(0„ -B (2.6)

where
i

lr • • • ,Pl) = ^2 eXP(~^2^iXi) (2'7)
i= 1

are symmetrical polynomials. Again summation is over ail vectors x with sum r.
Due to the sufficiency item parameters can be estimated using the conditional
distribution of the responses given the scores. The conditional probability of the
vector of item responses given the sum 77 = xv, is

Pr(XV Xy\Ry rv) =
exP(~ J2j=1 PiXvi)

Tr-y
(2.8)

that does not dépend on 0V. The conditional likelihood function is the product
Le {fl) = nf=i Pr(Xy =xv\ Xv, = xy.) that can be written

Lc{fl)
exp(- ■ mm

IM I Nr
1 lr

(2.9)

where x.i — Y2 )Li xvi are the item margins and Nr = ^{v\xv, = r} dénotés the
number of persons with score r = 1,...,/. Maximizing this likelihood yields
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item parameter estimâtes which are conditionally consistent [14]. Restrictions
are needed in order to ensure that the model is identified. Latent régression
models imposing a structure like (2.5) hâve also been discussed in the conditional
inference frame [15].

2.3. Model control

It is essential that the model fits the data in order for the results to be crédible
and a number of tests of the Rasch model hâve been proposed [16].

3. Longitudinal design

Now a longitudinal design is considered. Let Xva dénoté the response given by
person v to item i at time t and let the vector 6V = {Ovt)t=i,...,T contain the
values of the latent variable for person v across the time points t = 1,... , T.
Let (3n dénoté the location of item i at time t and let P — (Pu)i=i,...,i-,t=i,
The discussion of identifiability applies for the longitudinal case as well: if per-
son parameters and item parameters are allowed to vary freely over time the
model will not be identified and it will be impossible to distinguish changes in
person locations from changes in item locations. This is intuitively clear as it is
impossible to measure change with a measurement instrument that changes.
The situation T = 2 is by far the most frequently described in the literature.

4. Linear logistic test model

The linear logistic test model [17] is one of the earliest extensions of the dichoto-
mous Rasch model to longitudinal designs. In the original formulation the model
considers the same items observed for the same individuals at two different time

points and imposes the model structure

exp(xvit(9v - pit))
1 + exp(^ - pit) (4.1)

thus specifying constant person locations and a change in item locations across
time. If the item locations change by the same amount across items

Pi2 — Pu + S for ail i = 1,..., / (4.2)

then this change can be interpreted as an average change in person locations.
Conditional maximum likelihood estimation was originally proposed for the lin-
ear logistic test model, but marginal estimation is also feasible. It should be
noted that the linear logistic test model does not model change at the individ-
ual person level, but rather at the item level. Specifying the linear structure
(4.2) on the item parameters makes it possible to estimate the common change
ô that can be interpreted as change in the average person location. This has
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since become standard in IRT. When each item is the resuit of a systematic
combination of two or more factors like different item content, different situa-
tions, different time points or different modes of administration (e.g. téléphoné
interview versus pen and paper questionnaire) a linear structure

Pu

Pu

P12

P12

= Y^p (4.3)

given by a design matrix Yp and a vector fjp of parameters is imposed. This
is called facets models [18]. Specifying a change in the average person location
Pi2 m Pu + à can be done choosing

"1 0 . . 0 1 'Pi li'
0 1 . . 0 1

and r]p =
Pi Pi

0 0 . . 1 1 _0 5
_

5. The multivariate Rasch model

For the longitudinal design a general model for the response Xva of person v to
item i at time t is given by the probabilities

exp(xvit(Ovt - Pu))
1 + exp(6vt - pit) (5.1)

As mentioned previously the model will not be identified if both person pa-
rameters and item parameters are allowed to vary freely over time and it will
be impossible to distinguish changes in person locations from changes in item
locations. The model (5.1) is thus too general and we will consider spécial cases.
Andersens longitudinal Rasch model [19] assumes time-invariant item parame-
ters

Pvi^Xyit y)
exp(xvit{6vt - Pi))

1 + exp(0wt - ÿ) (5.2)

Andersen used this model for individuals who respond to the same items at two
time points, combining the values of the latent variable at the two time points
in a two-dimensional latent density and estimating the corrélation coefficient.
This quantifies the change over time at the population level, but it is, however,
important to notice that (5.2) is a model for change at individual level. The con-
ditional independence assumptions and the parametric structure of the model
is illustrated in Figure 1.

By imposing structure similar to (2.5) on the person parameters group level
effects, rather than individual change can be estimated.
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Fig 1. Graphical représentation of the conditional independence assumptions and the para-
metric structure (time invariant item parameters) of the Andersen model (5.2).

Xv\\ XV2\ Xvi2 Xv22

XV32

XV42

5.1. Estimation

Conditional as well as marginal maximum likelihood estimation is feasible in
the model (5.1). The general likelihood for an incomplète design can be written
using indicator functions Ava taking the value one if person v has responded to
item i at time t and the value zéro otherwise

N T i

■ = nnn
^ v^SqI t—1 i= 1

NT I T

= exp(^ Y. -Y.Y. CiA)K0,5)_1
U = 1 t=l i=l t=l

where 0 is the matrix of item parameters, 9 = (9vt)v=i,...,N;t=i,...,T is the
matrix of person parameters, Rvt = Yli=i AvitXvit are person scores, Cu =

Avitxva are item margins and

N t i

km=n n ih1+
v—l t=1 i= 1

a normalizing constant. If an item i is not administered to any persons at a time
point t the corresponding parameter (3it can not be estimated. The model can
be extended by imposing structure on the matrix

exp{xvit(9vt - Pu)) vit
1 + exp(9vt - 0it)

■011 . 9\t

9NI ■ ■ ■ 9nt

Imposing structure on the matrix 0 in a manner similar to (4.3) is also feasible.
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Assuming that the latent vector Owm ($1,9t)T is multivariate normal with
mean vector Ji and covariance matrix E, the marginal probability of a response
vector can be computed by intégration using the multivariate marginal likelihood
function

Lm{/3,Ix, S)
I T

exp(— ^2 ^2 fjptPit) (5.4)
i= 1 t=1

N r T _ ]

[ / exçÇ^Rvtet)Kx,(fi,9)~1‘PTi,i:<fiW
V= 1 1

where Kv(f3,9) = JlLi IIi=i(4 + exp(0t - /3it))Avit and is the density of
the multivariate normal distribution.

Again we need to make use of numerical methods for intégral approximation
and optimization of the likelihood [10], [11].5.1.2.Conditional maximum likelihood (CML) estimation

From (5.3) it is clear that when Ava » 1 persons scores Rvt = xv,t are sufhcient
for the person parameters and conditioning them out yields a multidimensional
conditional likelihood function

mm exp(— ë'Li zLi Pux.it]
IIr=l[7'(t)-\Nr (5.5)

x.it = xvit are the item margins at time t, 7r = 'JriPit, • • •, Pit) and
Nrt = §{v\xV't = r} is the number of persons with score r at time t.

5.2.Identifyability

For each time point restrictions like those discussed in earlier sections are needed,
but requiring invariance of item parameters across time points is also necessary.
In the general formulation (5.1) the item set is not assumed to be constant
across time as some items can be missing for ail subjects at a given time point.5.3.Model control

It is essential that the model fits the data in order for the results to be cred-
ible. Testing the fit of the Rasch model at each time point can be done using
a wide range of tests proposed [16]. However, in the multivariate Rasch model
additional tests of fit should be carried out in order to check the assumptions
of invariant item parameters and local independence across time points as illus-
trated in Figure 1. Henceforth, assume that Ava = 1 for ail persons v, items i
and time points t.



117

6. Testing assumptions of the longitudinal Rasch model

In this section tests of two assumptions are discussed: invariance of the item
parameter over time and local independence across time points. Violations of
these assumptions are illustrated in Figure 2.

Fig 2. Violation of two model assumptions in (5.2): item parameters are not time invariant
(pu 7^ P12 ) and there is local dependence across time points [LD],

[LD]

Xvii Xv2l Xvi2 Xv22

6.1. Testing invariance of item parameters over time

As mentioned previously the model (5.3) has too many parameters in the sense
that changes in person locations cannot be distinguished from changes in item
locations. However, the assumptions of invariant item parameters and invariant
person locations are not interchangeable. The response to a few items may
hâve changed across time, but if responses to remaining items are essentially
unchanged, the conclusion could be that changes are due to a change in the
item locations rather than in the location of the persons. We consider the null
hypothesis of time invariant item parameters

H0:Pit=Pi,---,Plt=Pl for ail

and test it against a specified alternative

Ha,a '• At*|p Pi for ail i ÿP a and ail 1=1,..., T
in the MML and the CML inference frame. Let

Po
Pi ■■■ Pi

Pi •■■ Pi

and PA,a U

Pi

'al

■

Pl

PaT

Pi.
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For the CML inference frame tests against a general alternative are also consid-
ered.

6.1.1. Testing invariance of item parameters over time in the MML inference
frame

In the MML inference frame the null hypothesis of time invariant item param-
eters can be tested against a specified alternative Ha,a where a represent one
item for which invariance is violated. This can be done using likelihood ratio
tests based on the multivariate marginal likelihood function. Under the null it
becomes

Lo(Po, Ab S) = exp(-i|r^Ci.A)
i=l

N
r T _

Il / exp(^flt,tst)ü:(^0,5)-1Wj,E (ë)dô
v=l t=i

where Ci. = Cit and under the alternative it is
T

LA,a(fiA,a^ S) = exP(~ ^Ci-^ ~
i^a t= 1

N „ T

n / exp(E
V=1 t=î

The above expressions looks quite complicated but are in fact just parametric
multinomial distributions for which estimation is well-described. To realize this
remember that the likelihood is simply a product of marginal probabilities of
the observed I xT response matrices. Hence, under the null it can be rewritten

L0(/30,/qE)
N

n pr(*v
v=l

n fV(x=s;/50)M'
xS{0,l}J><T

where the second product is taken over possible response matrices and M= —

tj{u : xv « x} is the number of persons with response matrix x. This is pro-
portional to the density of the vector (M=)=er0 u/xt which has a parametric
multinomial distribution with probabilities depending on the parameters /30, JL
and E. Likewise the likelihood under the alternative has a parametric multino-
mi al with parameters /3A ai and See also [12].
Since these are nested models the logarithm of the likelihood ratio test statistic
is XT_i-distributed, see [12] section 6e.3. This can be extended to alternatives

Ha,ia ■ Pu = Pi for ail i fi IA

given by subsets Ia C {1,...,/}.
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6.1.2. Testing invariance of item parameters over time in the CML inference
frame I

Under the null (5.5) is

■■ =
exp(|Ei=i P&a)
U

where x,i, = Y2t=î x-it and Nr, == Ylt= î and under the alternative it is

LA,a{^A,à)
exp(- EEa A®.*. - Et=l Patx.at)

nlnSs(t,c mi

where 7r = 7r{Pi, • • •, /?at5 • • •, A), for £ = 1,..., T. Since these are nested
models the logarithm of the likelihood ratio test statistics are xf^-distributed
[20]. This can be extended to alternatives

Ha,ia : Pu — Pi for ail i fila and ail t — 1, ...,T

given by subsets Ia C

6.1.3. Testing invariance of item parameters over time in the CML inference
frame II: CML test based on Crossing

A conditional likelihood ratio test of Hq : Pu = Pi against the alternative
Ha,{i,...,i} where Pu ^ Pw for ail i and t 7^ t' is illustrated for T = 2. The test
can be carried out by (i) randomly dividing respondents into two equally sized
groups G = 1,2, (ii) Crossing over in such a way that for half the respondents we
consider item responses from time 1 and for the other half item responses from
time 2. In this way two data sets consisting of responses from two different time
points are obtained (cf. Figure 3) and since there is only one observation per
individual in each data set the potential problems of local dependence across
time is overcome.

Fig 3. Illustration of the Crossing utilized in the conditional test of item parameter invariance.
The two data matrices in panel (ii) are used for the conditional likelihood ratio test.

1
2

2

(i) (ii)

*11 ••• */l X11 XI 1

Using conditional likelihood ratio tests to test for DIF with respect to G in
each of the two new data sets is a way of testing whether the items work in the
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same way at the two timepoints. In other words testing whether item parameters
are time invariant.
Let the random variable G with P{Gwk 1) = P (G « 2) = | represent the
allocation g(v) G {1, 2} of persons v = 1, —J;X into two groups. The likelihood
under Ho and derived for the data set where responses for person v
are those observed at time g(v). Dérivations for the other data set are identical.
Thus, for v = 1,..., iV and i — 1we consider response vectors X/ =

with response probabilities given by

P(Xvig(v) xvig(v)\@v)
®XP il^vig{y)iPv Pi')')

1 + exp(0v - /3i) (6.1)

Conditioning on the scores Fti9^ = X^i==i XVig(v) we obtain the conditional prob-
abilities that do not dépend on 6V and the conditional likelihood under the null
is

U>{P)
exp(— Z^Ll ELi PiXvig{v))

9
1 lussl

(6.2)

where C\9) = J2v=i xvig{v) and = ${v\ J2*= i xvi9(v) = r} are item margins
and observed score distribution in the data set resulting from Crossing. This like-
lihood is similar to (2.9). Under the alternative define scores Vv = Y^i=i xvii
for respondents in the first group, that is v G g~l( 1) and scores xVi2
for respondents in the second group v G g-1 (2). Furthermore define item mar-

gins = Y,v&g-'{i)xvii and = J2v€g~1(2)xvi2- The likelihood can be
written

I Ht exp(- |B Ci1]Pn) exp(- Y!i=1 cf}A2)La{P) = ff |1 l'uE<7~1 (1) 1 Iwgg _1 (2)
(6.3)

This is also a likelihood similar to (2.9) and since (6.3) and (6.2) are nested
H0 can be tested against the alternative and the logarithm of the likelihood
ratio test statistic is %j_-rdistributed [20].

This can be extended to the situation T > 2 by dividing respondents into T
groups using a map g : N} —y {1,..., T}.

6.1.4 ■ Testing invariance of item parameters over time in the CML inference
frame III: test based on estimated person locations

In the Rasch model the person locations can be estimated consistently using
any item subset of items /o C {1and this can be used as the basis for
evaluating invariance of item parameters over time. Consider the CML estimâtes
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(fin)i=i,...,i estimated using ail data at t jfc|l and CML estimâtes (fii2)i=i,...,i
estimated using ail data at t — 2. Divide items into two disjoint subsets I\ and
I2 and compare maximum likelihood estimâtes (9V)V-based on the sub-
set of the data (Xvn)v=iand the subset of item parameters (fin
to maximum likelihood estimâtes (9y)v=i,...,N based on the subset of the data
(XVii)v=i,...,N;iei2 and the subset of item parameters (fii2)iei2- If item param-
eters are invariant then no systematic différences should be apparent. A way of
evaluating would be to inspect a scatter plot of (9V,9*)V=- More than one
random division of items into disjoint subsets can be considered.

6.2. Modeling items that are not invariant over time

If an item parameter fii0 is not invariant over time this can modeled in an
incomplète design where items 1with item parameters fi\,..., fij are used
at time t = 1 and at times t = 2,..., T item io is replaced by a new item with
item parameter fii0t- This is illustrated in Figure 4 where item 2 is not invariant
and is at time 2 regarded as a new item, item 4. A construction like this is
sometimes referred to as Virtual items.

Fig 4. Graphical représentation of the extension to incomplète designs of the Andersen model
(5.2).

Xvll Xvi2 XV42

6.3. Testing local dependence across time points

The assumption of local independence across time points in the model (5.2) may
not be valid e.g. when respondents remember their previous response to an item.
Tests of this assumption can be formulated in the MML and the CML inference
frame. We consider the hypothesis of local independence of items across time
points

T

Hq : Pr(Xvn — xvii)... fXyi'jp — xVit\9v) = ^ Pr(Xvit xvn\9vi)
t= 1

and test it against a specified alternative where, for an item io, XVi01,..., Xvi0T
are not conditionally independent.
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Fig 5. Andersen model (5.2) as a Graphical Rasch model: scores Rvi and Rv2 separate items
at time one from items at time two. Dashed Unes indicate that items are not conditionally
independent given their sum.

p

6.3.1. Testing local dependence across time points in the MML inference frame

The likelihood (5.3) can be tested against the extensions

NT T

La.îo (b, 6, £12) = exp(^ - CiolCio2Çi2)Ki0 CM)-1
v=l t=1 t=^-

where responses to item io at t = 1 and t = 2 are not independent. Here KM (/3,6)
is a normalizing constant. Again these are parametric multinomial distributions
and the logarithm of the likelihood ratio test statistic is xï distributed. This
test can performed for any item i0 and can easily be extended to the situation
with several items and several time points.

6.3.2. Testing local dependence across time points in the CML inference frame
I: Graphical Rasch model tests

Graphical Rasch models [21] are latent structure models where measurement
models with properties that are similar to those of ordinary Rasch models are
embedded in multivariate structural frameworks consisting of chain graph mod-
els [22]. Since items at each time point fit the Rasch model the raw scores Rv\
and RV2 are sufficient for 9V1 and 0V2, respectively. Adding the scores to the
graphical représentation yields a graphical Rasch model (Figure 5).

A conséquence is that Xvn T XVi2\Rvi and Xvn T XVi2\RV2 for ail items
and these assumptions can be tested using the Mantel-Haenszel test for each
item pair stratifying by either Rv 1 or Rv2.
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6.4• Overcoming local dependence across time points

If the data fits a Rasch model at each time local dependence across time points
can be overcome by choosing disjoint sets of items for each time point, e.g. choos-
ing Xvu,XV2i, • • • and XV22, ^u42> • • • since this yields a model where results are
not confounded by LD. This model can be used for estimating (^1)^=1,...,^ and
(0V2)v=i,...,n on the same scale.

7. Discussion

Latent variable models for multivariate longitudinal ordinal responses often rely
on distributional assumptions about the latent variables that are not easily
tested. One way of avoiding this problem is to use Rasch models [7, 8] where
conditional estimation can be carried out without problematic distributional
assumptions. Assumptions about invariance of the measurement instrument over
time are also made and this paper discussed how to test the assumptions of
longitudinal IRT models and investigated the possibilities of using conditional
rather than marginal approaches. A recent application in clinical trials [23]
stresses that ’Inferences made using IRT are only valid when the model fits
the data’, and tests a multidimensional model for dichotomized items using
Lagrange multiplier tests [24]. However the spécifie types of misfit discussed in
this paper are not addressed.

Ail the methods proposed here can be generalized to ordinal polytomous
items and the methods proposed for the MML inference frame also apply for
2PL models.

The multivariate Rasch models discussed here is a spécial case of random
coeffients multinomial logit model [25]. This model is formulated in an MML
inference frame and include correlated error terms to accommodate longitudinal
data and impose a structure on the latent variables, e.g. an autoregressive model.
Other models include the multidimensional Rasch model for learning and change
[26] that is similar to the Andersen model (5.2), but the person locations are
parametrized in terms of the initial level and changes.

The methods proposed for the MML inference frame can be incorporated
in SAS using proc NLMIXED [27, 28] and conditional approaches can also be
implemented in SAS [29]. The R package eRm [30] for fitting Rasch models
using CML handles spécial cases of longitudinal data like the linear logistic test
model.
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