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Abstract

This paper présents a backfitting-type method for estimating and forecasting a periodically correlated par-
tially linear model with exogeneous variables and heteroskedastic input noise, in the situation of hidden
periodicity. A rate of convergence of the estimator is given.
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1 Introduction

In this paper, we focus on partially linear models of the type

Xji = diXn—i ■ ■ • -H| ^pXn—p H- h(en) -|- cr(en)£n, n G IL. (1-1)
The parameter p > 1 is supposed known while the coefficients a,j as well as the functions b and a are

unknown. The sequence (en) is an unobserved System noise. The aim is to estimate the model in order to
predict from the observed set ((Xn, en), (Xn_i,e„_i),...) of past values available at date n.

The choice of the simple model (1.1) is made for convenience, and the algorithm presented below could easily
be adapted to the general case

P Q

Xn — ^ 'Q,jXn—j T ^ 'bj{pn—j) T ^(Cn> • • • (1-2)
3=1 3=0

During the last 20 years, partially linear autoregressive models such as (1.2) hâve gained attention, as being
a good compromise between linear models and purely non parametric ones. Such models, proposed in [7] to
represent the relationship between weather and electricity consumption are now widely used in the literature.
See for example [16] where a chapter is devoted to models including (1.2). The functions bj are expanded on
a suitable basis and the first coefficients of this expansion, together with the a/s, are estimated via a Least
Mean Square method as in [17]. With the same type of partially linear models, [8, 12] use wavelets in the
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estimation scheme. In [2], the bj s are treated as nuisance parameters. Let us also mention [13,14,15], devoted
to models including purely autoregressive ones, where some past values operate in a linear form and the others
in a functional one. These authors use an orthogonal sériés method, and propose a data based criterion to
détermine the truncation parameters. See also chapter 8 in [10], where models like

Xn+1 = f[Xn) T &Xn_1 H" (^{X^)En.
include linear and non linear autoregressive summands together with some volatility. The functional parts are
estimated via local linear estimators and gaussian limits for the renormalized errors are obtained.

Model (1.2) présents several advantages. Firstly, the additive form reduces the so-called curse of dimension-
ality. Secondly, linear autoregression is preserved when expressing the future values (Xn+h)h=1,... from the past
ones (Xn^h,en-h)h=o,...i which makes it easier, and in some sense cohérent, forecast at lags greater than 1.
Lastly, model (1.2) is specially well adapted to the situation where the output Xn is electricity consumption at
date n and the input en is the température at the same date, since it is well-known that the effect of température
on electricity sales is highly non-linear at extreme températures, while linearity of the autoregression seems to
be a reasonable assumption. Notice that, in practical situations, the température at date n is either measured or
forecasted by Météo-France. In both cases, the value of the exogeneous variable en is known. Accurate electrical
load forecasting is essential for power utilities. Electricité de France (EDF) performs a climatic correction. The
influence of a smoothed version of température on electric demand is widely reported.

2 Eléments of discussion

2.1 Backfitting
Backfitting methods, first proposed by [4], are usually recommended for additive models which involve several
explanatory variables, each having an unknown functional form. The method is well described in [10,18]. See
also [9, 22, 23] where the estimation algorithms use local polynomial régression and [21] based on projections
on polynomial spaces. The performances of backfitting procedures when autoregression is involved are less well
understood. In [29], for the non linear stationary autoregressive model with exogeneous variables

Xnm fl(Aji—î) T ^(cn) T £«>

the algorithm works in two steps: the first step builds a preliminary estimator of a et 6 by piecewise constant
functions. Then, from the obtained pseudo remainders, the second step builds kernel estimators of the same
functions. The author obtains the limit law for the estimation error.

In the présent paper, within the backfitting itérations, kernel-based statistics estimate the functional part
of the model.

2.2 Why use backfitting?
Return now to the model (1.2). If the period T of sn, when the input is en — sn+rjn (see hypothesis below),
was known, a simple estimation scheme would consist in splitting the data in T subsamples, each of them being
a trajectory of a stationary process. Then the parameter 9 = ..,ap) and the fonction b could be estimated
separately, the first one at the usual parametric rate, and the second one at the slower usual functional rate (see
[10, 27] for remarks on this question).

We try a backfitting scheme which présents the advantage of allowing the period to remain unknown, a
situation in which the above method is impracticable.

Moreover, we conjecture that this backfitting scheme still works even when the period shows slight variations.
This is indicated in a set of current simulations. This simultaions are not presented below since the theoretical
developments on this point are still in work.

As it will be shown in the sequel, the price to pay for using this backfitting procedure is a slower rate in the
estimation of 9.
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3 Estimation of the parametric and non parametric components
The aim is to estimate the functions b and a and the vector parameter

9 = t(ah...,ap).
Denoting

3— i) I ! ! ! Xk—p)i
the model can be written

Xn - l<i>J + b{en) + a(en)en. (3.3)
We choose a kernel K, and a smoothing parameter hn.
Starting from an initial value of 6 and a stopping rule, the itérative method consists of estimating 9 (resp.

b) by using an estimation of the residual calculated from the previous estimation of b (resp. 9).
• Initialisation. Fix the first value mW.

• Step 1. Estimate the fonction 6 by a kernel estimator based on the partial residuals

a»», (*-■*»■>) «.(«-«a
n ' ' V~\7l—1 7y l \Li=p+iKn{e-ei)

where

Ue):=K(±).
• Step 2. Update the estimation of 9 by a least mean squares estimator based on the new partial residuals

n

9® = Argmine ^ (xi-* W - (et))2
i=p+i

n—1

= s;1 £ MXi-WM)-"
!=>î>fl

with
n

Sn= (3.4)
'

lmp+1

Finally, the transition from step k- 1 to step k can be expressed as

,, s*, (*-'*#>-‘>) *.(«!«)
gf|Kn(e-ei)

(3.5)

= if‘ Ê -*!*§«<»•
l=p+1

(3.6)

• Chosing a stopping time k for the itérations, the variance a2(e) is then estimated via a kernel method
using the partial residuals based on the estimâtes 9n^ and bn~^

£:=!+i (fl*«?’ - ît%))2K„ (e - e,)
ân,k(e) ~ r-vn-1 U-) IYjl=p+l Kn (c ei)

(3.7)

As in the case of linear régression, estimating 9 and b does not require any estimation of cr, implying that àn^
is obtained at the end of the itérative scheme. See [10] for remarks on this so-called oracle effect.
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4 Main results

4.1 Hypothèses
We adopt the following basic hypothèses (H).

• /H\\ Periodicity. The exogeneous sequence (en) is the sum of a periodic deterministic sequence (sn) and
a bounded zero-mean strong white noise

(’n = Sn 1 Vu Vn (4.8)
• 'Hï- Whiteness of the System noise. (en) is an i.i.d sequence of zero-mean variables, and Var(en) = 1.
• Stability. The autoregressive dynamic is stable. In other words, the polynomial

does not vanish on the domain \z\ > 1.
• Independence of the inputs. The two sequences (e„) and (rjn) are independent.
• H5: On the distributions of input sequences. The distributions of ei and 771 both hâve a density. The

density / of r)1 is continuous and non-vanishing on the support [-mn, m^] of 7/1. The density g of e\ is C\
on K.

• Hq: On the moments. The noise gy has a finite moment of order v > 2

\u\vg(u)du < 00 (4.9)

• H7: On the fonctions. Let £ = uj=1[sj - mv, Sj + m^] dénoté the union of the T compact supports of the
variables Bj.

1. The function b is 7-Hôlderian on £, for some 0 < 7 < 1, which means that
\b{ei)~ b(e2)\

sup
eiyê2S£ IBM-Mi

< 00 (4.10)

2. The variance <r2(e) of the input noise is 71-Hôlderian on £, for some 0 < 71 < 1, and
inf a(e) > 0. (4.11)
eC£

• Us: On the kernel. The kernel K is lipschitzian, and satisfies

J K{u)du — 1
Keeping in mind the example of electricity consumption, hypothesis H\ allows some periodicity in the
random structure of the input sequence (en). Boundedness of the noise r?n (hypothèse U\) is useful
to get uniform convergence in Theorem 2 (without this condition, uniformity only holds on compact
sets) and hence to obtain results for the predictor. Hypothèse H5 assures that the denominators of the
kernel-type estimators of b and a are not asymptotically vanishing. Hypothèse H5 also allows to apply
a Fuk-Nagaev-type inequality for mixing sequences. The Hôlder exponents 7 and 71 in hypothesis H7
govern the convergence rate of the estimation scheme.
In what follows, we work with the periodically correlated (or cyclostationary) solution of (3.3) defined in
Section 7.1.
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4.2 Existence of S
The lemma below establishes that, almost surely, the matrix E„ = Yn=p+i </>J</>; appearing in (3.4) and used in
estimating the parameter 6 is invertible at least for large enough n.

Lemma 1. Under the hypothèses "Hi 2 3 4, the matrix En ftein# defined in (34), ns 00,
■■

I^ M - I £ E = J E :U‘>V'> + r«‘»l
V-T ■ .... x |®0 1 1=0 L

where
■ ^k = ^XkT+hXkT+l-1, • • • ,^fcT+i-(p-l))- (4-12)

and/wkere = E(<% ) and T® is the covariance matrix of <$.
'(n) The limit matrix M is regular.

The proof is in the Appendix.

4.3 Analysis of estimation errors

We first focus on the estimation errors

and 6M(e) = i,(e)-i(‘-D(e).
From (3.3),

WÊ

E

S"1 E +
l~p ! !

^lôn 1} + b(e) - b(et) - a(ei)ei) Kn (e - e;)-p+i

Ei-p-i Xn (e — 1

(413)

(414)

(4.15)

Thanks to the linearity of hn ^(e) with respect to 9n , this leads to the linear recursive équation

+ + (4.16)
where

U - s;1 j Ej=P+i m'im
\1T4t 1 Ej=p+1 Kn (et g e,j) J

R{1) = *1 ^ ^ E=p+1 (Hej) - Kei) + cr(ej)ej) Kn (e; -
l=p+1 E=P+1 Xrt (fi; — Êj )

n

H K Sn1 É
isp+1

(4.17)

(4.18)

(4.19)



60

4.4 Convergence results

Considering (4.16), we first prove that, as n oo, the matrix operator An converges to a strictly shrinking
matrix A. See Lemma 8 in the Appendix. As emphazised in [4] this is the key resuit implying that Ôn^ stabilizes
as k increases. Then we prove that the remainder term tends to zéro (see Lemma 6 and 7 in the
Appendix). This implies that the stabilizing value in turn vanishes when n -A oo. Ail this leads to the
main resuit, whose detailed proof is in the Appendix.

Theorem 2. With the assumptions of Section 4-1, if the smoothing parameter is such that, as n -> oo hn ~

n^1 (lnn)^2, and if fa g] - 1,0[ is linked with the parameter v in (4-9) by

v(l A fa) Ü2,

there exists /? e]0, 1[ such that

||&fc)-0||2
suPee£ \bn\e) - Ke)

= on + Oa.s.(K) + Oa.s.(flk)

and

SUP l<^Ue) - ^(e)
e££

Oa.s. + Oa+WrM]) + Oa.,.{Pk)

where the Q(.)’s are uniform with respect to k and n.

(4.20)

(4.21)

We see that the convergence rate of k(e) cannot exceed the rate of the other parameters and can even be
slower when b(e) is smoother than cr(e). The equality (4.21) is proved in the Appendix.

As a resuit, an optimal order of the rate is obtained by chosing suitable values for fa and fa.

Corollary 3. Under the same hypothèses, if hn
(4 e]0, 1[ such that

||0?}-0||2
supets Iin\e) - b(é)\

1 1
~ (ln n/n)27+1, and provided that v > 2 + B, there exists

and

(I min{7,-y'}ln 77 \ 27+l

) +Oa.s.(Pk)n J

It is clear that, provided /J is not too close to 1, the convergence of the term (ik to zéro is fast. In other
1

words, stabilisation of the itérations is easily obtained while convergence of (^)27+1 to zéro requires large
sample size. More precisely, taking k = k(n) > CTnn gives

1

Corollary 4. Under the same hypothèses as in Corollary 3 and with hn ~ (ln n/n) 2'1'+1, if the recursive scheme
stops after k(n) > CTnn itérations

and

suPe££ l^nS(n))(e) - f>(e)J J , “ V n /

SUPl^,fc(n)(e)-^(e)
e££

Oa.s.
27+1

n
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Remark 1. With the above remark in minci, it is interesting to note that, when the autoregression is close to
the instability domain, the value of in Corollary 3 can approach 1. In such situations, a large number of
itérations is needed before the stabilisation of the itérative scheme. For example consider the particular model

Xn jj OjXu-\ jjj b(en) H- 6n

where the sequence (en) is i.i.d. From Lemma 8, the limit matrix of An in (4.17) is

I E(X„)2 1

bei E(*„)2 + <7(0)k, 1 + jg,'
where a(0) - c2/(l - a2) and E(Xn) = c'/(1 a). Hence,

A — ——si 4 1 if a -4 1.
1 + C^l+a

Gonsequently, the itérative scheme can be very slow if a is close to 1. On the opposite, when a is close to -1,
the itérations stabilize very quickly.

4.5 Improvement of the rate for smooth functions b
As well-known in functional estimation, a smoother b induces, with some extra conditions on the kernel K, a
better rate of convergence of the estimators.

Corollary 5. If the function b is Ci for some integer l > 1 and if the kernel satisfies

JekK{e)de = 0 (4.22)
J K(e)de = 1 (4.23)

(i) if the smoothing parameter is such that, as n -4 oo, hn ~ n^(lnn)^2 there exists fi e]0,1[ such that

11*1“-«fc =

SUP |&ifc)(e) - Ke)\ ^ Oa.s. + °(hn) + °a.s.{Pk)

(U) if hn ~ (lnn/n)5^ the rate of the two first terms is optimal and becomes

/lnrA5^
Ua.s. [ J I\n J

The proof, based on the fact that, using (4.22), J(b(vhn + e) - b(e))K(v)f(vhn + e)dv = O(h^), is omitted.

5 Forecasting intervals
The natural predictor for Xn+i,

E(An+i|en-|-i, en,T,., ei, Xn,Xi) — ton~id + 6(en+1)
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can be evaluated via the estimâtes of 9 and b based on the observations up to time n with a stopping rule as in
Çorollary 4. In other words, we propose with notations of Corollary 4, the predictor

It should be clear that, under the conditions of Corollary 3,

AnJjj ~ ^-n+l C

*n,fc(n)(e"+l) ^£l’
and, consequently, building a prédiction interval requires an estimation of the noise’s quantité fonction Q(t).
The inverse of Q can be consistently estimated by

based on the set of rétroactive prédictions Xj+1>n = t(j)j+i§n^n'>'> + tbn^\ej+1), j < n - 1. which use the
estimâtes available at time n.

Summarizing, for Xn+i we obtain the prédiction interval at asymptotic level a

j^n+1 — ^n,k(n)(en+l)Qn{a) > -^n+1 + ^n,fc(n)(en+l)Qn(0:)|
6 Simulation examples: results and comments
Let us mention some questions of interest when performing the data simulations part.
• Question 1. What is the influence of a single irregular point of the fonction b on the estimation at the regular
points?
• Question 2. The.results are proved when both k -» oo and n -> oo. Could we use a simplified procedure base
on one itération k =\ 1 of the inner loop? Do we actually get benefit from the itération process? Remember we
do not use any preliminary estimator. From a practical point of view, can we get any information linking the
stochastic process dependencies to a good value of kl
• Question 3. When the EDF engineers estimate a model, the question of the sample size n is a récurrent
one. A sample could be said to be large when either its cost is high or when the distance of the statistic
distribution (computed with n observations) to its limit distribution is small. From this point of view, Théo-
rem 2 and Corollaries 4 and 5 provide unsatisfactory bounds since the constants in the r.h.s are, as often, missing.

The simulations below can be viewed as an attempt to answer some of these questions.
Three type of autoregressions are chosen, two of order one and one of order 4.

1. An AR1 process with a positive coefficient

Aji+i = 0.7Xn + b(en) + cr(en)en+i (6-24)

2. An AR1 process with a négative coefficient

AV-i = -0.7An + b(e.n) + a(en)£n+i (6.25)

3. An AR4 process

Xn+i = a\Xn + ^An-i + tt:Wn-2 + û4A„-3 + b(en) + a(en)en+i (6.26)
where the roots of the characteristic polynomial are ±0.5 and 0.5 ± 0.25.
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The functions b and a are the same in ail examples

b(e) = VTë[, cr(e) = l + ^.
The input white noise en has a standard gaussian distribution, and the exogeneous en = sn + r]n where sn is a
6-periodic sequence with so = -1.2, si = 3.1, s2 = 1.80, S3 = -2.51, ; S4 = -3.2, S5 — -0.25 and where the
noise rjn is i.i.d. with marginal distribution uniform on [-3,+3].

6.1 Three examples
For each of the three models (6.24), (6.25) and (6.26), a trajectory of size n = 5000 is simulated and the
estimations of the parameter 9 and of the functional parameter b are carried over through a number k of
itérations varying from 1 to 50. Having reached the last itération, the estimation of a2 is then calculated. The
kernel K is the gaussian kernel and the smoothing parameters hn and h'n, used in the estimations of b and cr,
are

H = 1.5S'en~1/2 and h!n = OTSSen-1/3 (6.27)
where Se is the empirical standard déviation of the ej’s.

The results are depicted in Figures 1, 2 and 3. The upper-left graphie shows the function b(é) = ^J\ë\,
its estimate after 50 itérations together with the cloud of partial residuals used to calculate the estimate (see
formula (3.5)). The upper-right graphie shows b and the évolution of its estimations as k varies from 1
to 50. The lower-left graphie shows the évolution of the estimator of the AR parameter 9 as a function of the
number k of itérations, and the lower-right one présents the standard déviation a(é) and its final estimation.

6.1.1 Model (6.24)
Four main effects are noticeable.

• As the number of itérations increases, the estimâtes of b and of 9 improve.

• The itérations stabilize very slowly. This is not surprising since the value of the parameter 9 = 0.7 is close
to 1 (see Remark 1 just after Corollary 4).

• As expected, for fixed k, the convergence of (e) is far worse in the neighbourhood of e = 0, discontinuity
point of b'. This effect is even still visible for the estimator of a(e) (lower-right graphie), despite the
smoothness of this function at this point.

6.1.2 Model (6.25)

Compared with the first example, there are only two différences
• The itérations stabilize quickly (4 itérations are enough), due to the fact that 9 = -0.7 is close to -1,

• But the obtained limit value of is not very close to the true value, meaning that in this case, more
observations are needed for a good estimation. However, the estimate of a(e) seems quite good.

6.1.3 Model (6.26)
In this example 9 has 4 components. They are indicated, in the lower-left graphie, by 4 horizontal lines. The
stabilisation point of the itérations is between those obtained in the two other examples (40 itérations are
enough), perhaps due to the présence of the positive root 0.5. The sample size is large enough to get good
estimations. It seems that the order of the autoregression, at least for moderate orders, has no significant effect
on the quality of the method.
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6.2 Evolution of the estimation errors as functions of the sample size
In the two last sections, we take model (6.25) and we simulate sample paths for sizes going from 200 to 10000.
For each sample path, the estimations of the three parameters 9, b and a2 and of the distribution of the noise
are computed, based on k = 20 itérations. Then the estimation errors are calculated. Except for the error on
9, we compute three sorts of errors, based on L\, L2 and Lx. nonns:

• For the functional parameters b and <7, denoting by d the length of the domain of e, we choose

R I
which satisfy Ni < N2 < Nœ

• For the noise distribution, we compute the total variation, the Hellinger and the Kolmogorov distances.

Moreover, in order to reduce fluctuations, we simulate fifty independent trajectories for each sample size, and
compute the average of the errors obtained from these trajectories.

The averaged errors are presented in Figures 4 and 5 which show, from top to bottom and left to right, the
error on 9, 6, <7, and on the noise distribution (three curves in each of the three last graphies, corresponding to
different distances). The abscissa is the sample size n.

Figure 4 présents clearly the fact that the convergence to zéro of ail the errors becomes very slow when n
is larger than 2000, meaning that the asymptotic speed (ln n/n)1/4 is reached. Errors seem to quickly decrease
for small sizes.

Figure 5 is a log log set of graphies. The (nearly!) straight lines represent cQnn/n)1/4 for ffve values of c.
Except for the error on the noise distribution, which decreases faster, the theoretical bound n-1'4 (see Corollary
4 with 7 = 1/2) looks exact.

6.3 Stopping rule for the itérations
We chose to stop the backfitting itérations when the estimations are stabilized: namely, after the first k such
that

max {||0« - SMll|j{b{nk) - è^)} < HT3
Let us dénoté by k(n) the obtained stopping point. As pointed out in Corollary 4, k(n) should be of order lnn,
hence hardly varying in the domain n < 1000.

For each model, and each sample size n, ffve independent trajectories are simulated. This is illustrated in
Figure 6, for the three models (6.24), (6.25), (6.26). The sample size varies between 100 and 1000. There are
three groups of 5 pieeewise linear lines. Model (6.25) is represented by the lines in the lower part of the graphie.
For this model, the stopping point is almost constantly equal to 7 and 8. Models (6.26) (darkest lines) and
(6.24) occupy the upper part. This illustrâtes the asymptotic theory and the observations in Figures 1, 2 and 3.
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bhatîe) and b{e), pcints=Partial Residuals

Estimation of ÂR param. Estimation of sigma(e)

Figure 1: Estimation results for model (6.24). The trajectory length is n — 5000 and k = 50 itérations are

performed. The upper-right figure shows the évolution of Uk\é) for k = 1 : 50. The lower-left figure présents
the évolution of the estimator of 6 for k = 1: 50. The itérations stabilize very slowly, but the size of the sample
is enough to obtain good estimation. The lower-right figure présents the estimator of cr(e) for k = 50.
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Estimation of b(e) Itérations of bhat(e), K= 50

bhatja) and fos). p©ints=Partial Resterais

Estimation of AR param,

Figure 2: Estimation results for model (6.25). Few itérations are needed, but the size sample seems to be too
small to obtain a good estimation of 9. Nevertheless, the estimation of the fonctions looks satisfactory.
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Estimation of b(e) Itérations of bhat(e). K= 50

t
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-6 -4 -2 0 2 4 6

bhat(e) and b(e), pointe=Partisl Hssi-âtals
e

EsttmaHon of AR panam. Estimation of sigma(e)

-- — *■*

l/
'i -

1

| Q-

h ;—r i— i r ' dfj
0 10 20 30 40 50 ' -6 -4 -2 0 2 4 6

Itération e

Figure 3: Estimation results for modél (6.26). The coordinates of 9 are the horizontal lines on the lower-left
figure. The itérations converge slowly (40 itérations), and the estimations are rather good.
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teta estimation error ; K= 20 b estimation error ; K= 20

200<=n <=10000 200<= n <=10000

sigma estimation error ; K= 20

20Ü<= n <=10000

eps dïstrib estimation error ; K= 20

Figure 4: Estimation error as a fonction of the length n of the trajectory. The model is (6.25). From top
to bottom and left to right: errors on the estimation of 9, b, cr, and the distance between the estimated
distribution of the noise and the Gaussian distribution. In abscissa, the two first values are 200 and 500. Then,
the lag remains equal to 500. In graphies 2 and 3, the positions of the three curves are conform to inequalities
Ni < < Nœ. For the lower-right figure, the distances are (top to bottom) are Total-Variation, Hellinger
and Kolmogorov-Smirnov distances.
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iog(dïst(sigma est error) ; K= 20

6 7 8 9

log(«).200<*n <=10000

log(dist(eps distrïb est. error)) ; K= 20

logtnJ.MOo n <=10000

Figure 5: For model (6.25), the graphies présent, in log-log coordinates, the error in estimating the parameters
9 (top-left), b (top-right) and a (bottom-left) and the distance between the estimated distribution of the noise
and the Gaussian distribution (bottom-right). The straight lines (almost straight, because of the term lnn)
show the curves c(ln n/n)1/4 for several values of c.
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Selected k on max distjerror teta),dist(error b); levels=( 0.1 % 0.1 %)

Figure 6: Value of k(n) as a fonction of the sample size n for the three models (6.24) (the 5 upper lines), (6.25)
(the 5 lowest nearly constant lines) and (6.26) (the 5 intermediate lines).
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7 Appendix: Proofs7.1Preliminaries about the process (Xn) and its covariances
We consider the solution of (1.1) defined by the MAœ expansion

Xn — ^ y ) “I” 71 G Z (7.28)
j>0

where the geometrically vanishing sequence (<?j) is defined by

I { =

Since the sequence sn is T-periodic, and rjn is i.i.d., the T-dimensional vector sequence Zk =4 (XkT> • • •, ^(/c+ijt-i)
is a strictly stationary process, each coordinate being the sum of T linear scalar processes based on T indepen-
dent white noises. In other words, the process (Xn) is periodically correlated (see for example [20] for a review
on periodically correlated time sériés).

Hereafter, the stationarity of Zk is the key for proving convergence results via ergodic theorem.7.2Proof of Lemma 1

The proof consists in separating the sequence (</>*,) into the T stationary and ergodic subsequences {(</>j^)\l =
0,..., T - 1} defined in (4.12) and using the ergodic theorem. Details are omitted.

To check regularity of the limit M, consider the vector sequences (^fc) and (f>j/) built from

Yn ~~ ^ j)^n—j
H

exactly as (ék) and (àf’) are built from (Xn). Similarly, consider the sequences (ip'k) and (V’Jjf ) built from
y;; = Y,j>of)Men-j)- Denoting by the covariance matrix of and noticing that the sequences (^)
and (ipfk j are orthogonal,

Hence, if M is singular, the same holds for Y4J0 ® • Tins in turn implies that there exists (ci, —, cp)
such that, for every k,

ClSk -\ h CpSk-p+i =as 0 (7.29)
where Sk = Yk +... + Yk-r+i is the sum of the Y's over a period of the input en. Now, it is clear that Sk is a

stationary ARMA process having the représentation

T-1

Sk = CLlSk-l + • • • + ÜpSk-p+l + 2J a(ek-j)£k-ji
,?'=o

where, from (4.11), the variance of the noise is not zéro. This contradicts (7.29).7.3Proof of Theorem 2

Most proofs below are classical in the field of kernel functional estimation. This is why some details are omitted.
The reader can refer to [3], [10] or [11] for complété developments.
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7.3.1 Convergence of R$ and Rdefined in (4.18) and (4.19)
Lemma 6. Under the assumptions and if the smoothing parameter hn is such that hn -v n3' (ln n)s'2
with some Pi < 0 we hâve

Proof. Given the convergence of En/n to a regular matrix, it is enough to prove the wanted resuit for

1 A E”=p+1 (ô(ej) - KeÙ + o-(ej)ej) Kn (ei - e,-)
»4ï. E“=p+1Jfn(e,-e,)

We prove the uniform convergence

I £J=P+1 (Kej) - Ke) + a(ei)£j) Kn (e-e,-)
SUP — 7T~, l

e ' £j=p+1 Kn (6 ej)

(7.30)

(7.31)

The resuit will then follow from the fact that, thanks to the ergodic theorem applied to each subsequence
)fc> (& = 0,..., T — 1), the arithmetic mean n_1 Yjp+ialmost surely converges. □

In order to prove (7.31) we only consider

EjLp-i (%)| h(e)) Kn (e -ej) -Jin £^p+i (%) - 6(e)) (e - e,-)
E^iU^) _i_E;=p+1^(e-ej) •

The treatment of the other part in (7.30) is simpler since E(a(ej)ejKn (e - ef)) — 0 for every j.
• Consider first the numerator of (7.32) conveniently splitted in two parts: a variance terni and a bias term

WjB = Jj- è (6(ei) ~ bie))Kn (e - ej) - E9H - 6(e))Kn (e -Hn"
i=P+i

^(e) = — ^ E[((6(ej)-6(e))üfB(e-ej)].
71

j^p+i

For the so-called variance term iVi(e), the basic tool is the exponential inequality

P < 2c il V£e]o,3<52M, (7.33)

which holds for every set (Ui,Un) of independent zero-mean variables such that \Uj\ < d and E[Uj) < b2
(j — 1,... ,n). This inequality is easily deduced from Bernstein’s one as noticed in [19], page 17.

Looking at the independent sequence

Uj = t*1 ((%) - Ke))Kn{ej
"n

■

B
c

hn

firstly, since b and K) are bounded, it is clear that
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and secondly

Wj) < ¥ (b(u)-b(e))2K2
u- e

b>n
2 H

f(u)du

= — / (b{vhn + e) f6(e)) A' (v)/(u/in + e)dt> <
J

Applying inequality (7.33) with d — ô2 = c/hn we obtain
nhne\

P{\Nx(e)\>e)<'2e gg 0<e<l
and then

< 2e 4ci||a||P
A suitable choice of £q yields summability of the r.h.s. and finally, by Borel Cantelli Lemma

Ni(é) = Oa

We now turn to the bias term A^e). Prom (4.10),

N2{e) - Hf {b(u) - b(e))K f(u)du

= [(b(vhn + e) - b(e))K(v)f(vhn + e)dv = 0(hl).

We hâve thus proved that

JVi(e) + N2(é): = 4~ 3 fe)|KePV,(e-ej)n in
i=P+i '

= Oa,s.

The same rate for supe([Wi(e) + A^e)!) is obtained by covering the domain of e by well chosen intervals and
using Lipschitz propertyof the kernel. See [3] and [11] among others for the details.

• A similar treatment leads to

sup
ee£

£"=p+i A» (e - e,-)
nh„ T

This, together with the fact that infee£ /(e) > 0, leads to

E"=p+1 (%);- b(ei)) Kn (e; - e,-)
sup

I

< sup
e££

Ej=p+i Kniei-ej)
Ej=p+i (Kei) - b(e)) Kn (e - e, )

Ej=p+i Kn (e ej)
= On

and the proof of the convergence of is over.
Let us now consider the convergence of

(7.34)

nhr.
+ o(K)
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Lemma 7. Under the assumptions 7^1,2,3,47

R®=oa.s.(nJ) V7>ll/2
Proof. The vector sequence is a martingale différence sequence since E(efe) = 0 and since «foe* and
£k are independent. Moreover,

E(||0fccr(efc)£fcl||:®<T2]E (6(efc)2) E(||4|||)-
where E(||^|||) and E (6(efc)2) are periodic. Hence, for every f > 1/2

KHElflB §L—p>—■
implying, from theorem 3.3.1 of [28],

n

IStfl
p+i

Finally, the convergence of E„/n leads to the conclusion. D

7.3.2 Convergence of the matrix coefficient An defined in (7.45)

We prove the convergence of 4n, the matrix coefficient of 9n ^ in (4.16).
Lemma 8. Under the assumptions Hir. S)

(if As n fé m,

An
l A E"=*H-iVjK»(ej-ej)\

*•(«-*> j
M' -1 £ (0L,(i)

61=0

/(» - 5j)/(u - Sj)
E£o/(«-*)

du =: 4

where M is defined in Lemma 1.
(n) Moreover ||A„ -14|| = 0as + 0(h?n).

Proof. We consider first

Rn(e) :=
E"=ynV#»(e-e;)

EJ=P+1 Kn (e - Êj)

Ej=p+i i>jKn(e e,)
nhn

E"=p+i Kn(e-ej)
nhn

The denominator has been already treated in the proof of Lemma 6 (see (7.34)), so we focus on the numerator
and successively show that

sup
EjWfi tfaKn (e ~ Zj) - E^(fjKn (e -ej))

nhn
(7.35)

then, with (jyj defined in (4.12),

sup
e££

E“=p+1i(e - e,-)) Sf,-1 yi/(e -S
nhn ■ (7.36)
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The proof of (7.36) uses f K(e)de = 1. The details are omitted. The proof of (7.35) follows the ïines of the
proof of (7.31), the différence coming from the fact that the (fjKn{ej - e))*, are not independent. In fact, they
are weakly dépendent in so far as, conditionally to the exogeneous sequence, they are mixing.

Lemma 9.

(i) For every e € S and every h, the vector sequence is, conditionally to the sequence (e;;)j =: E,
geometrically a-mixing.

(ii) This property holds uniformly with respect to E: there exists a constant C and a G 0,1[ su ch that, aE(n)
being the conditional mixing sequence,..

al<(n) < Can Vh.

Proof. Consider for example the first coordinate K(^F^)Xj-1 of the vector sequence. Conditionally to E, the
sequence is deterministic, and it is enough to consider the sequence Xj which has the same conditional
mixing coefficients as if(^y^)Xj_i. From (7.28)

Xu
y 9jb{&n-j) T gj(j{en-j)en-j

I j_>o
is a linear time sériés based on the noise 6(ey) + a{ej)ej, where b(ej) and cr(ej) are deterministic trend and
variance, while £j is i.i.d.. This white noise has a conditional density g j and a finite conditional moment
of order B Hence,

e(|X„Hë') <oo
Then, applying Theorem 2.1 of [5] (see also [1]) the autoregressive sequence Xn is (conditionnai^) geometrically
strong mixing.

The reader is referred to [6] for définitions and properties of mixing sequences. Hereafter we need to replace
inequality (7.33) by the following one, a direct conséquence (see Rio’s remark on page 87) of theorem 6.2 in [24]:
Lemma 10. Let (Vf) be a strong mixing sequence of centered random variables such that for some 0 < a < 1
and v>2,

a(n)mcan, Vn and M := sup E|Vy < oo.
j

Dénoté s2 « Yli<j,k<n |Cov(Vj,I4)|. F°r any r > 1 and A > 0 and for ail a > 0,

P En
j=i

> 4A < 4 1 +
A2 -r/2

n ! r \ {a+ty/la+v)
+ Cr(x)

where C is a constant depending on a and on M.

This inequality applies, conditionally to E, to

Vj = <fjKn (ejj| ef) - E(^M (e - ef), j>p +1.
For this sequence Vj, the conditional variance s2 satisfies

s2 *= 0{nhn)
where the O is uniform with respect to E. Indeed,

( Var£(Vj) < c\hn

[ |CovE(^,VO|<C,a*fHUCa^i| if \j-l\>ôn

(7.37)

(7.38)
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For the last bound, the reader can refer to [6]. The two first ones are directly obtained. The functions b and
a being bounded, the constant terni in each r.h.s. above does not dépend on E. Taking then 6n « l/(hnhxn)
easily leads to (7.38).

Now, (7.37) leads to

PE I J (e - ej) - E(Vj/4. (e - ej))| > 4A I < 4(1 +
cA22 \ “r/2

mhr,

n /7*\ (a+l)y/(o+i/)

Hi
and then, if lnn = o(rn

E”SÎ,+i %Kn (e - ej) JEffyKn (e - ej))
nhr.

I cAnlnnA n ( r< 4(1 + —^—) + Ci.-

> An
nh

(o+l)i//(a+i/)

cAq ln n fl
< 4e~ 32 + C\—

r

16rn ) ‘r \X()^/nhnlnn,
' B \ (a+l)i//(a+i/)

\Q\Jnhn lnn/

Now, if hn ~ ln vP2 with > -1, rn = (lnn)^ we get, for n large enough,

£“,„+! %Kn (e - e,) - E(V#„ (e - e,))
nhn

■S
nh

< 4n cA° + ^n1 (1+^M4>(lnn

for some fo. Now, the constant C2 in (7.39) does not dépend on E, implying that

ÜIBIlffil ®(t(t)jKn{e ej))
nhv

\ (a+l)*'

> Aqi nh

< 4n~cX° + C2n1 (1+ft)2(a+w(ln ra)^3.
Select Ajj > l/c. Then, thanks to the inequality v( 1 + ft) we obtain, for a large enough,

V4rTcA» + C'2n1_^1+^1^a+>1') (lnn)^3 < 00

So we hâve proved that, for fixed e,

EUlVn (e - e,) - E(V#n (e“ei)) =0
■

(7.39)
(7.40)

The same speed is obtained for the sup-norm.
Prom (7.35), (7.36) and (7.34) it follows that, with

B(e) :=
£j:o‘/(e-Sj)
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implying in turn

sup i2n(cj'f- -R(e) = Oa nhr
+ Oa.s.iK)

An — n£n ^ ' 0!-Rn(^/)
l=p+l

l .JL I 1 n
= ^n1- y MËmmmœ Y HHn ^ n /

2=p+l 2-prl

= 0,,. | ,/=- J +0„.,K)+nS;1- £ M|
In (7.42), the last sum is splitted in T sums

- Y " Y ~ S 4°^(si + 7fcr+/)>
T— 1

^ ?i

2=p+l
n, ,

2=0 kT+l<n

(7.41)

(7.42)

which almost surely converges to

■ +>»>))
1

2=0
J]m(0-S(-R(s2 + 7o))
2=0

T-l

ÿ £ /*(,)VÜ)J
B

/(« - sj)f(v - sô
Eto1 f(V - Si

Moreover, this convergence rate, being the rate in the law of large numbers for i.i.d sequences, is faster than
the first two ternis in (7.42). This, together with (7.42) and the almost sure convergence of nE”1, leads to the
desired resuit. Lemma 8 is proved.

□

Lemma 8, together with Lemma 11 below, shows that the passage (4.16) from step k-1 to step A: is a fixed
point itération, at least for n large enough.

Lemma IL There exists ko > 1 such that

sup
i

<i. (7.43)

Moreover, ko - 1 when p = 1.

Proof. For the sake of simplicity, we take T = 2. The general case only brings more complicated formulas.
Denoting

s = r(1) + r(2),
where the T^s are defined in Lemma 1, and

ajl = f(y-’Mv->l)M
Ei=of(V~Si)

A = [S + pluo + iApi] (“ooMoMo + + <*oi(moMi + MiMo)) ■ (7.44)
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We then apply a popular matrix inversion formula:

H ..t.. , HH _ [s1+a4mo] B _ ^1 Vi[s+wo+wj « - i+.„l|s+rfwp^-rp^
[S + mÎMi]-1 Mo

_ S'ô’Vo
i Vi

Mo

where

This leads to

and finally to

rn , t , t .'if1 P + MiMij Mo
_ B| Mo[s + wo + wi] » - l+«w,(s + (1<ltt,l-V1:;=IÏ^V

/Si = 5 + MoMo fit Sq — S -f MiMi-

= -—,° — («ooVo + «01V1) + -—'-1 ~ï— («nVi + «oi(Mo)l + Vo50 Mo l + Vi^i Mi

/t I S0 VoMo | Mi Mi•A = «oo :—:;—nj b«n
1 + ‘moiSq Vo 1 + Vi^i Mi

I 50 MoMi , MÎMo
+ «oi I t— H ï—

Vl + VoSo Mo 1 + tMi,S'i Mi
= «oo^oo + «nSii + «oi ('S'oi + Sio)

where the last line defines the îfgfs.
It is easily checked that

c2 — tl i il a _ g g . — ï O
11 _ ï ii„ c-i -1 5i -f Mj«j Mj

K 2 J! 3 / Sjk = l3jksjk ifkmmm

Clearly, 0 < fljj < 1. Moreover,

i + Vj^Mj
™ i

because the first factor is less than 1/2, and

£8i = Vtis+rfw]-1»=v ( s-115, 11 »î+^fcS1 vfc
■Il Vfc <i.

î+Vfc-W Vfc

As otji 6 [0,1] for every j, l, it results that

jj|| — «oo^oo + «n^ii + «oiH^oi + j|!
where for every j, l. \a^} \ < PjiOtjj, whence

Ak — «oo^oo + «n^Afii + Oq^(Moi + Mio)

where for every j,l, < (l3Ji)k~1ajti. Lemma 11 is proved.

(7.45)
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It remains to prove (4.21), the rate of convergence of the error on the standard déviation. The estimation
error crn>k(e) is

dn,k(e) = â„,fc(e)-V(e)

En-mp+1 Xi- t Â.qW _ ^_1) -a2(e) ]Kn(e-ei)

EÜi ^(c-c)
■ (cr2(ei)ef - a2(e)) Kn (e - ej)

—1
+ Rn,k{è) (7.46)

where, from the first part of the theorem,

Rn,k (('WÊK)a.s.
'hl 71

nh„
+ Oa.,.M) + 0*.,.(Pk)-

Now, since the variables <72(e/)e2 - a2(e) are independent and centered, the first term in (7.46) can be treated
exactly as was (7.32), leading to

E^p+i (g2(e0^ ~ a2(e)) Kn (e- et)
—

= On + Oc.,.(hi)

and the proof of (4.21) is completed.
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