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Abstract
This paper presents a backfitting-type method for estimating and forecasting a periodically correlated par-
tially linear model with exogeneous variables and heteroskedastic input noise, in the situation of hidden
periodicity. A rate of convergence of the estimator is given.

keywords: a-mixing, additive models, autoregressive models, eyclostationarity, backfitting, electricity con-
sumption, forecasting interval, semiparametric regression smoothing.

1 Introduction
In this paper, we focus on partially linear models of the type
Xa :'Q'IXHAI‘--+(1p)(-u—p+b(€1l)+glerrkn- neZ (L1)

The parameter p > 1 is supposed known while the coefficients a; as well as the functions b and o are
unknown. The sequence (z,) is an unobserved system noise. The aim is to estimate the model in order to
predict X1, from the observed set ((X,,,e,). (X,—1,€,-1),...) of past values available at date n.

The choice of the simple model (1.1) is made for convenience, and the algorithm presented below could easily
be adapted to the general case

P 4q
X =Z“JXH—J+Zbﬂ’(’:n—])+”(fn ----- f'nw,’)fn» (1.2)
=1

=0

During the last 20 years, partially linear autoregressive models such as (1.2) have gained actention, as heing
a good compromise between linear models and purely non parametric ones. Such models, proposed in [7] to
represent the relationship between weather and electricity consumption are now widely used in the literature.
See for example [16] where a chapter is devoted to models including (1.2). The functions b; are expanded on
a suitable basis and the first coefficients of this expansion, together with the s, are estimated via a Least
Mean Square method as in [17]. With the same type of partially linear models, [8, 12] use wavelets in the
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estimation scheme. In [2], the b;'s are treated as nuisance parameters. Let us also mention [13, 14, 15, devoted
to models including purely autoregressive ones, where some past values operate in a linear form and the others
in a functional one. These authors use an orthogonal series method, and propose a data based criterion to
determine the truncation parameters. See also chapter 8 in [10], where models like

XnJr] = f(Xn) +aXn—1 + U(Xn)fn.

include linear and non linear antoregressive summands together with some volatility. The functional parts are
estimated via local linear estimators and gaussian limits for the renormalized errors are obtained.

Model (1.2) presents several advantages. Firstly, the additive form reduces the so-called curse of dimension-
ality. Secondly, linear autoregression is preserved when expressing the future values (X,,1)p=1, . from the past
ones (X p,en—p)n=o._., which makes it easier, and in some sense coherent, forecast at lags greater than 1.
Lastly, model (1.2) is specially well adapted to the situation where the output X, is electricity consumption at
date n and the input e,, is the temperature at the same date, since it is well-known that the effect of temperature
on electricity sales is highly non-linear at extreme temperatures, while linearity of the autoregression seems to
be a reasonable assumption. Notice that, in practical situations, the temperature at date n is either measured or
forecasted by Météo-France. In both cases, the value of the exogeneous variable e,, is known. Accurate electrical
load forecasting is essential for power utilities. Electricité de France (EDF) performs a climatic correction. The
influence of a smoothed version of temperature on electric demand is widely reported.

2 Elements of discussion

2.1 Backfitting

Backfitting methods, first proposed by [4], are usually recommended for additive models which involve several
explanatory variables, each having an unknown functional form. The method is well described in [10, 18]. See
also [9, 22, 23] where the estimation algorithms use local polynomial regression and [21] based on projections
on polynomial spaces. The performances of backfitting procedures when autoregression is involved are less well
understood. In [29], for the non linear stationary autoregressive model with exogeneous variables

Xn =o(Xp—1) +blen) + €ny

the algorithm works in two steps: the first step builds a preliminary estimator of a et b by piecewise constant
functions. Then, from the obtained pseudo remainders, the second step builds kernel estimators of the same
functions. The anthor obtains the limit law for the estimation error.

In the present paper, within the backfitting iterations, kernel-based statistics estimate the functional part
of the model.

2.2 Why use backfitting?

Return now to the model (1.2). If the period T of s,,, when the input is e,, = s,, +1, (see hypothesis #; below),
was known, a simple estimation scheme would consist in splitting the data in T subsamples, each of them being
a trajectory of a stationary process. Then the parameter 6 = (ay, ..., a,) and the function b could be estimated
separately, the first one at the usual parametric rate, and the second one at the slower usual functional rate (see
[10, 27] for remarks on this question).

We try a backfitting scheme which presents the advantage of allowing the period to remain unknown, a
situation in which the above method is impracticable.

Moreover, we conjecture that this backfitting scheme still works even when the period shows slight variations.
This is indicated in a set of current simulations. This simultaions are not presented below since the theoretical
developments on this point are still in work.

As it will be shown in the sequel, the price to pay for using this backfitting procedure is a slower rate in the
estimation of 6.
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3 Estimation of the parametric and non parametric components

The aim is to estimate the functions b and o and the vector parameter
I on

Denoting
do="(KpgmsXpap);
the model can be written
X = 0.0 + ble,) + alen)en. (3.3)
We choose a kernel K, and a smoothing parameter f,,.
Starting from an initial value of # and a stopping rule, the iterative method consists of estimating ff (resp.
b) by using an estimation of the residual caleulated from the previous estimation of b (resp. 8).

o Initialisation. Fix the first value 0(!)

e Step 1. Estimate the function b by a kernel estimator based on the partial residuals

X -t K, (e—e
= = ”“(,,’1 H)feleel
Z! ptl i '7 “,}

o Step 2. Update the estimation of @ by a least mean squares estimator based on the new partial residuals

where

n
éf?] = Argming Z (X) =" — anE,l}{rq))z
{=p+1

n—1

= 'Y ek -b(e))

l=p+1

with

n

n= Y din (34)

I=p+1

Finally, the transition from step k — 1 to step k can be expressed as

b (Xt = @(5”"“”) Kale—e)
Z;i )’11+1 (e—e)

i = £ Z au(X; - BV ey). (3.6)

[=p+1

B(e)

o Chosing a stopping time k for the iterations, the variance a®(e) is then estimated via a kernel method

using the partial residuals based on the estimates %) and piE=1)

2
E:?;+l( Gﬁwfbﬁ 1”(”) Kn(r—wd
n—1
Z! p+| —e)

As in the case of linear regression, estimating 6 and b does not require any estimation of o, implying that o, ,
is obtained at the end of the iterative scheme. See [10] for remarks on this so-called oracle effect.

Jnk{( =

(3.7)
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4 Main results

4.1 Hypotheses
We adopt the following basic hypotheses (#).

¢ H;: Periodicity. The exogeneous sequence (e, ) is the sum of a periodic deterministic sequence (s, ) and
a bounded zero-mean strong white noise

en=5+"m ¥n (4.8)

Hy: Whiteness of the system noise. (g,,) is an 1.i.d sequence of zero-mean variables, and Var(s,) = 1.

o M3: Stability. The autoregressive dynamic is stable. In other words, the polynomial
P
Alz) = 2P - Zajzp J
j=1

does not vanish on the domain |z| > 1.

Ha: Independence of the inputs. The two sequences (g,,) and (1) are independent.

Hs: On the distributions of input sequences. The distributions of £, and n; both have a density. The
density f of g is continuous and non-vanishing on the support [—my,, m,| of n;. The density g of & is €}
on R.

Hg: On the moments. The noise £, has a finite moment of order v > 2

/|-u\"g(u}d1t <00 (4.9)

H7: On the functions. Let £ = U:f':l[.s =My, 8; +my| denote the union of the T’ compact supports of the
variables ¢;.

1. The function b is y-Hélderian on &, for some 0 < v < 1, which means that

sup oer) - blea)| <0 (4.10)

e1,62€E ‘(Jl - ﬁ2|.!
2. The variance o*(¢) of the input noise is v;-Holderian on £, for some 0 < 7; < 1, and

inf afe ; 4.11
:Esﬁ(c)>0 (4.11)

Hs: On the kernel. The kernel A is lipschitzian, and satisfies

/ K{u)du=1

Keeping in mind the example of electricity consumption, hypothesis H; allows some periodicity in the
random structure of the input sequence (e,). Boundedness of the noise 7, (hypothese #;) is useful
to get uniform convergence in Theorem 2 (without this condition, uniformity only holds on compact
sets) and hence to obtain results for the predictor. Hypothese H; assures that the denominators of the
kernel-type estimators of b and o are not asymptotically vanishing. Hypothese Hs also allows to apply
a Fuk-Nagaev-type inequality for mixing sequences. The Holder exponents v and ) in hypothesis Hz
govern the convergence rate of the estimation scheme.

In what follows, we work with the periodically correlated (or cyclostationary) solution of (3.3) defined in
Section 7.1.
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4.2 Existence of é,(lk)

The lemma below establishes that, almost surely, the matrix ¥, E;':p o 1y appearing in (3.4) and used in

estimating the parameter fl is invertible at least for large enough n.

Lemma 1. Under the hypotheses Hy 3.4, the matriz £, being defined in (3.4), as n — o,

(i)

T

{ B

B Dz .,(1 (

_7_ L% e Z (Q“Jr l}) Z [!I(I)FIA(I)+F{J):|
1:0

where :
O = (Xt Xkrstotse - Xkt (p-1))-

and where pV) = IE(gbl(,U) and I is the covariance matriz of r;;f,”.
(it) The limit matriz M is regular.

The proof is in the Appendix.

4.3 Analysis of estimation errors

We first focus on the estimation errors

00 =041 and BV (e) = ble) — b e).

From (3.3),
T BEE Z o (Bf,]H;(f’ﬁ)Jrﬂff’i)fﬁ)
I=p+1
oy o D e w!““+h() l(:)—ﬂ(v} ) Kafe—e)
i €
ZF pt1 ("!}

Thanks to the linearity of B&* 7”(&) with respect to éff*]}, this leads to the linear recursive equation

80 = 4,0%-D 4+ RM 4 R
where
n n I’ r
Al = 3 Z C’J;Efipﬂ "6, Kn (61— €;)
' ¢ i=pt1 E;;p_l Kn (Fi - {"j]

n Z;’ il (b{CJ}*[({J;)‘\‘ (f‘j)\‘jj)]\':i(‘q! 7(‘_,‘)
g Z pJ_il‘.,,(r' )

e =

n

R = 7! Z daler)e

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)



4.4  Convergence results

Considering (4.16), we first prove that, as n — oo, the matrix operator 4, converges to a strictly shrinking
matrix A. See Lemma 8 in the Appendix. As emphazised in [4] this is the key result implying that éﬂ") stabilizes
as k increases. Then we prove that the remainder term RV + R,{,Z) tends to zero (see Lemma 6 and 7 in the

Appendix). This implies that the stabilizing value 6% in turn vanishes when n — co. All this leads to the
main result, whose detailed proof is in the Appendix.

Theorem 2. With the assumptions of Section 4.1, if the smoothing parameter is such that, as n — 00 hy, ~
nf1(Inn)%, and if B €] - 1,0[ is linked with the parameter v in (4.9) by

v(l+58)>2,
there exists 3 €]0.1] such that
165 0] Inn ’ "
Ak = Oa.s. e +Ou..~;. "u +Ou.5. t 4.20
sup.ce [bn” () = ble)| nihy e ey
and
%) 2 Inn min{7,7'} k
sup |a;, 1(e) — a*(e)] = Ou.s. oy + Op.s (AU I Oy . (8Y) (4.21)
eeé Ty,

where the 0(.) s are uniform with respect to k and n.

We see that the convergence rate of 62 , (¢) cannot exceed the rate of the other parameters and can even be
slower when b(e) is smoother than a(e). The equality (4.21) is proved in the Appendix.
As a result, an optimal order of the rate is obtained by chosing suitable values for f; and f.

Corollary 3. Under the same hypotheses, if hy ~ (In n/n)ﬂl*—l. and provided that v > 2 + %', there exists
8 E](]. l[ such that

309 _ g1 £
|6z (f(kl) } =0 (M) gl Oa‘s.(ﬁk)
SUP.eg [bn (€) — be)| n
and
| '""n"-f'f’)

. : nn) 2t .
sup Mii(() G GZ(G)I = Ou,s. (_ R Ou.s.(ﬁgn
ek n

It is clear that, provided 8 is not too close to 1, the convergence of the term 8¥ to zero is fast. In other

J
Inn) 25 irae s
- )T to zero requires large

words, stabilisation of the iterations is easily obtained while convergence of (
sample size. More precisely, taking k = k(n) > C'lnn gives

1
Corollary 4. Under the same hypotheses as in Corollary 3 and with hy, ~ (Inn/n) =77, if the recursive scheme
stops after k(n) > Clnn iterations

supeee b (¢) - ble)| L w

and

3 52 )
sup ‘Ju.k(u](r') -0
eEd

'
=
Il
S
s
o
- ‘ E
S
"
¥
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Remark 1. With the above remark in mind, it is interesting to note that, when the autoregression is close to
the instability domain, the value of # in Corollary 3 can approach 1. In such situations, a large number of
iterations is needed before the stabilisation of the iterative scheme. For example consider the particular model

X=X,y +b(en) +er

where the sequence (e, ) is i..d. From Lemma 8, the limit matrix of A, in (4.17) is

Je BRSPS
CTEE 00 140y

where a(0) = ¢2/(1 - a®) and E(X,,) = ¢ /(1 - a). Hence,
L
1+(1 a

14a

=1 if a—1

Consequently, the iterative scheme can be very slow if @ is close to 1. On the opposite, when a is close to ~1,
the iterations stabilize very quickly.
4.5 Improvement of the rate for smooth functions b

As well-known in functional estimation, a smoother b induces, with some extra conditions on the kernel K, a
better rate of convergence of the estimators.

Corollary 5. If the function b is Cy for some integer £ > 1 and if the kernel satisfies

[ Ke)de = 0 Ykel,... [ (4.22)
/ K(e)de = 1 (4.23)

(i) if the smoothing parameter is such that, as n — oc, hy ~n® (Inn)™ there exists # €]0, 1] such that

1859 61l

Il

1 :
m,( fj+ow)+m\ww

nh,

sup [ (e) — b(e)| :(aﬁ(‘“q+owm+m&wﬂ
eef

(it) if hy ~ (Inn/ n)ﬁ the rate of the two first terms is optimal and becomes

o ()
n

The proof, based on the fact that, using (4.22), [(b(vhy, + ) — b(e)) K (v) f (vhy, + €)dv = O(RY), is omitted.

5 Forecasting intervals
The natural predictor for X, 1,

]E(XnJrl |Cn+l Ty e e XIJ = "‘(?'Bn-flg = b(ﬁ'n+[}
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can be evaluated via the estimates of § and b based on the observations up to time n with a stopping rule as in
Corollary 4. In other words, we propose with notations of Corollary 4. the predictor

‘\A'HH - t®1x+lé£1k(n)) i 651k(n))(€n+1)-
It should be clear that, under the conditions of Corollary 3,

Xn+l = Xn+1 L
TRt —E],
Uﬂ_k(n)(ﬁmzfl)

and, consequently, building a prediction interval requires an estimation of the noise’s quantile function Q(t).
The inverse of () can be consistently estimated by

=

A 1%

=1

= 0L et
TR || Satis St
I=L {65 e

based on the set of retroactive predictions X4 1, = 654105 + 5™ (e;41), j < n = 1. which use the
i i b
estimates available at time n.
Summarizing, for X,,+, we obtain the prediction interval at asymptotic level a

f‘%nﬂ 0,.1. (n) ((n I)Q (a), n+l+ff K(n }(f'n+l)Qu(ﬂ)]

6 Simulation examples: results and comments

Let us mention some questions of interest when performing the data simulations part.

¢ Question 1. What is the influence of a single irregular point of the function b on the estimation at the regular
points?

¢ Question 2. The results are proved when both k — oo and n — oc. Could we use a simplified procedure base
on one iteration k = 1 of the inner loop? Do we actually get benefit from the iteration process? Remember we
do not use any preliminary estimator. From a practical point of view, can we get any information linking the
stochastic process dependencies to a good value of k7

o Question 3. When the EDF engineers estimate a model, the question of the sample size n is a recurrent
one. A sample could be said to be large when either its cost is high or when the distance of the statistic
distribution (computed with n observations) to its limit distribution is small. From this point of view, Theo-
rem 2 and Corollaries 4 and 5 provide unsatisfactory bounds since the constants in the r.h.s are, as often, missing.

The simulations below can be viewed as an attempt to answer some of these questions.
Three type of autoregressions are chosen, two of order one and one of order 4

1. An ARI process with a positive coefficient
Xnp1 =0.7X, + b(rl’lj a5 g({fn)fnﬂ (624)
2. An ARI process with a negative coefficient

1\”4; — LA+ h(()n) +U( n }5 +1 (625)

3. An AR4 process
X’n-{-] = '\,n + ”2-‘(7)71 o ﬂ:an:z + ”-JXH—I] + b(fn) 2 ‘g(crl)frﬂ+1 (626)

where the roots of the characteristic polynomial are £0.5 and 0.5 £ 0.25.
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The functions b and o are the same in all examples

2

. g

ble) = /el ole) =1+ —.

=V, ol)=1+5

The input white noise &, has a standard gaussian distribution, and the exogeneous e, = s, + 1, where s, is a

6-periodic sequence with 59 = —1.2, s; = 3.1, s2 = 1.80, 53 = =2.51,; 84 = —3.2, 85 = —0.25 and where the
noise 1, is i.i.d. with marginal distribution uniform on [-3,+3|.

6.1 Three examples

For each of the three models (6.24), (6.25) and (6.26), a trajectory of size n = 5000 is simulated and the
estimations of the parameter § and of the functional parameter b are carried over through a number k of
iterations varying from 1 to 50. Having reached the last iteration, the estimation of a® is then caleulated. The
kernel K is the gaussian kernel and the smoothing parameters h,, and k!, used in the estimations of b and @,
are

hy =158n7 1 and B, =0.155.0°1 (6.27)

where S, is the empirical standard deviation of the ;.

The results are depicted in Figures 1, 2 and 3. The upper-left graphic shows the function b(e) = \/’ﬂ
its estimate after 50 iterations together with the cloud of partial residuals used to calculate the estimate (see
formula (3.5)). The upper-right graphic shows b and the evolution of its estimations i) as k varies from 1
to 50. The lower-left graphic shows the evolution of the estimator of the AR parameter # as a function of the
number k of iterations, and the lower-right one presents the standard deviation a(¢) and its final estimation.

6.1.1 Model (6.24)
Four main effects are noticeable.
o As the number of iterations increases, the estimates of b and of # improve.

o The iterations stabilize very slowly, This is not surprising since the value of the parameter # = 0.7 is close
to 1 (see Remark 1 just after Corollary 4).

o Asexpected, for fixed k, the convergence of 1’)5-,”(5) is far worse in the neighbourhood of e = (), discontinuity
point of b'. This effect is even still visible for the estimator of a(e) (lower-right graphic), despite the
smoothness of this function at this point.

6.1.2 Model (6.25)

Compared with the first example, there are only two differences

o The iterations stabilize quickly (4 iterations are enough), due to the fact that § = 0.7 is close to —1,

o But the obtained limit value of 65" is not very close to the true value, meaning that in this case, more
observations are needed for a good estimation. However, the estimate of o(e) seems quite good.

6.1.3 Model (6.26)

In this example # has 4 components. They are indicated, in the lower-left graphic, by 4 horizontal lines. The
stabilisation point of the iterations is between those obtained in the two other examples (40 iterations are
enough), perhaps due to the presence of the positive root 0.5. The sample size is large enough to get good
estimations. It seems that the order of the autoregression, at least for moderate orders, has no significant effect
on the quality of the method.
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6.2 Evolution of the estimation errors as functions of the sample size

In the two last sections, we take model (6.25) and we simulate sample paths for sizes going from 200 to 10000.
For each sample path, the estimations of the three parameters , b and o and of the distribution of the noise
are computed, based on £ = 20 iterations. Then the estimation errors are calculated. Except for the error on
6. we compute three sorts of errors. based on Ly, Ly and L. norms:

o For the functional parameters b and g, denoting by d the length of the domain of e, we choose

: L
Ni(h) = —/ |h(e)lde,  Nay(h) = /h?(e)de and Ny (h) = Va||h||
Vi
which satisfy Ny < Ny < N
e For the noise distribution, we compute the total variation, the Hellinger and the Kolmogorov distances.

Moreover, in order to reduce fluctuations, we simulate fifty independent trajectories for each sample size, and
compute the average of the errors obtained from these trajectories.

The averaged errors are presented in Figures 4 and 5 which show, from top to bottom and left to right, the
error on f, b, @, and on the noise distribution (three curves in each of the three last graphics, corresponding to
different distances). The abscissa is the sample size n.

Figure 4 presents clearly the fact that the convergence to zero of all the errors becomes very slow when n
is larger than 2000, meaning that the asymptotic speed (Inn/n)'/* is reached. Errors seem to quickly decrease
for small sizes.

Figure 5 is a log log set of graphics. The (nearly!) straight lines represent ¢(lnn/n)** for five values of c.
Except for the error on the noise distribution, which decreases faster, the theoretical hound n="/* (see Corollary
4 with v = 1/2) looks exact.

1/4

6.3 Stopping rule for the iterations

We chose to stop the backfitting iterations when the estimations are stabilized: namely, after the first k such
that

max {08 - 6, Ny o) - b)) < 1072

Let us denote by k(n) the obtained stopping point. As pointed out in Corollary 4, k(n) should be of order Inn,
hence hardly varying in the domain n < 1000.

For each model. and each sample size n, five independent trajectories are simulated. This is illustrated in
Figure 6, for the three models (6.24), (6.25), (6.26). The sample size varies between 100 and 1000. There are
three groups of 5 piecewise linear lines. Model (6.25) is represented by the lines in the lower part of the graphic.
For this model, the stopping point is almost constantly equal to 7 and 8. Models (6.26) (darkest lines) and
(6.24) occupy the upper part. This illustrates the asymptotic theory and the observations in Figures 1, 2 and 3.
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Estimation of b(e) Iterations of bhat(e), K= 50

bhat

bhatie) and bie), points=Partisl Resijusly
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Figure 1: Estimation results for model (6.24). The trajectory length is n = 5000 and k = 50 iterations are
performed. The upper-right figure shows the evolution of b*)(e) for k = 1:50. The lower-left figure presents
the evolution of the estimator of # for k = 1 : 50. The iterations stabilize verv slowly, but the size of the sample
is enough to obtain good estimation. The lower-right figure presents the estimator of o(e) for k = 50.
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Estimation of ble) Iterations of bhat{e), K= 50
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Figure 2: Estimation results for model (6.25). Few iterations are needed, but the size sample seems to be too
small to obtain a good estimation of §. Nevertheless. the estimation of the functions looks satisfactory.
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Estimation of b(e) lterations of bhat(e}, K= 50

bhat

o4
T T T T T T T
£ -4 2 ] : 4 e 8 4 2 Q 2 4 )
bhats) and bia) ::l-Ps=Fs':|s\ Residuals
Estimation of AR param. Estimation of sigmate)
) — o]
o |
Q -
a1/
o
L =
a 2 b
E N\ /
o s
o 4
o
ad .
a & -
o
R \L
- ; . . : . PR N W R SR LT
0 10 20 0 40 50 2 = 2 ] 2 i 5
ltesation &

Figure 3: Estimation results for model (6.26). The coordinates of # are the horizontal lines on the lower-left
figure. The iterations converge slowly (40 iterations), and the estimations are rather good.
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Figure 4: Estimation error as a function of the length n of the trajectory. The model is (6.25). From top
to bottom and left to right: errors on the estimation of 8, b, o, and the distance between the estimated
distribution of the noise and the Gaussian distribution. In abscissa, the two first values are 200 and 500. Then,
the lag remains equal to 500. In graphics 2 and 3, the positions of the three curves are conform to inequalities
N; < Ny < N.. For the lower-right figure, the distances are (top to bottom) are Total-Variation, Hellinger
and Kolmogorov-Smirnov distances.
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Figure 5: For model (6.25), the graphics present, in log-log coordinates, the error in estimating the parameters
8 (top-left), b (top-right) and o (bottom-left) and the distance between the estimated distribution of the noise
and the Gaussian distribution (bottom-right). The straight lines (almost straight, because of the term Inn)
show the curves c(lnn/n)/* for several values of c.
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Figure 6: Value of k(n) as a function of the sample size n for the three models (6.24) (the 5 upper lines), (6.25)
(the 5 lowest nearly constant lines) and (6.26) (the 5 intermediate lines).
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7 Appendix: Proofs

7.1 Preliminaries about the process (X, ) and its covariances

We consider the solution of (1.1) defined by the M A, expansion

Xo=) giblens)+giolenjlen nEL (7.28)
i=0

where the geometrically vanishing sequence (g;) is defined by

i}
R O
I—az—ii— 0P '

320

Since the sequence s,, is T-periodic, and 1, isi.i.d., the T-dimensional vector sequence Z = * ('XA.T ...... Xtka1)7—1 }
is a strictly stationary process, each coordinate being the sum of T linear scalar processes based on T indepen-
dent white noises. In other words, the process (X, ) is periodically correlated (see for example [20] for a review
on periodically correlated time series).

Hereafter, the stationarity of Z; is the key for proving convergence results via ergodic theorem.

7.2 Proof of Lemma 1

The proof consists in separating the sequence (¢;) into the T stationary and ergodic subsequences {(fl;‘.”]!i =
0,...,T =1} defined in (4.12) and using the ergodic theorem. Details are omitted.

To check regularity of the limit M, consider the vector sequences (1) and (rﬁ‘,”] built from
g Y 1 k

}/;r = Zy.jﬁ(('n—ﬁfn—;

j20

exactly as (¢¢) and (q‘}g)) are built from (X, ). Similarly, consider the sequences (i) and [z,':_[“) built from
e Z_jzo g;b(eq—;). Denoting by ") the covariance matrix of (c'ﬁ“], and noticing that the sequences (i)
and (1) are orthogonal,

() — ) +E( (m m)

Hence, if M is singular, the same holds for z ‘Ul E (L"f,“’u'f,“). This in turn implies that there exists (... .. ey
such that, for every k,
€1 Sl\‘ S ‘:-'pbri\‘ p+l as 0 lTwN)]

where S = Y + ...+ Yi_7.1 18 the sum of the Y's over a period of the input e,,. Now, it is clear that S). is a
stationary ARMA process having the representation
B = (1_],5',‘._1 +... +”FSA~7:,,+1 At Z ﬂ'{f ’«'*J):h’f*_r‘
j=0

where, from (4.11), the variance of the noise is not zero. This contradicts (7.29).

7.3 Proof of Theorem 2

Most proofs below are classical in the field of kernel functional estimation. This is why some details are omitted.
The reader can refer to (3], [10] or [11] for complete developments.
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7.3.1 Convergence of R, and R\’ defined in (4.18) and (4.19)

Lemma 6. Under the assumptions H, . g. and if the smoothing parameter hy, is such that hy, ~ n™(Inn)?

with some 3, < 0 we have
1
R =0, (,! “”) +O(k])
nhy

Proof. Given the convergence of ¥, /n to a regular matrix, it is enough to prove the wanted result for

(ej) = ble) + ale;)e;) Kn (€1 — €;)
= j ;JH s J
Z EJ o Knlei— ) '

I ptl

(7.30)
We prove the uniform convergence

j=pi1 (ble;) —ble) + ole;)e;) Kn (e =€) \/m
2 j=p+1 Kn (e —€5) ‘ =0as. ( nhn) +0(hz)- (7.31)

The result will then follow from the fact that, thanks to the ergodic theorem applied to each subsequence
(c}k N, (k=0,...,T - 1), the arithmetic mean n~" zs .1 & almost surely converges. ]

In order to prove (7.31) we only consider

Eiepr (b)) e Knle—¢5) _ g iy (0es) — ble)) K e~ ;) 132)
ZJ’ O ) Eilt_HE;=p+1 K (e—¢)) . .

The treatment of the other part in (7.30) is simpler since E(a(e;)e; K, (e —e;)) = 0 for every j.
o Consider first the numerator of (7.32) conveniently splitted in two parts: a variance term and a bias term

e

Ni(e) = — Z (be;) — ble)) K (e — e;) — E[((ble;) — ble)) Ky (e — €;)]

and

1
Nyfe) = — Y. El((b(e;) — be))Kn (e~ e5)].
For the so-called variance term Ny (e), the basic tool is the exponential inequality

P ( 2:1’:1 b’l

n
which holds for every set (Ui, ..., U,) of independent zero-mean variables such that |U;| < d and IE(Uf) < 8
= e n). This inequality is easily deduced from Bernstein’s one as noticed in [19], page 17.
Looking at the independent sequence

IA

> 5) %47 Ve €)0,38%/d], (7.33)

1

Ui=—
! hrr

((ble;) — ble)) Knle; — €) — E((b(e;) — b(e)) Knle; — ))),

firstly, since b and K are bounded, it is clear that

151 £




and secondly

E(U3)

as

% f (b(u) - ble)) 2 K> (ih’—’) f(u)du

= }i (b(vh, +€) — b(r)]zl\'g(:r)f(z‘h,, +e)dv < I(—

In In
Applying inequality (7.33) with d = §% = ¢/h,, we obtain

nn,a2
P(INi(e)] >e) €273 0<e<]

and then

B Inn _fgnn
75 (lﬂ‘i(l’” > &y ) < 2 e,
nhy,

A suitable choice of 2y yields summability of the r.h.s. and finally, by Borel Cantelli Lemma

[Inn
Nile) =0, ;
'\'I(F) (::.... ( H!?”)

We now turn to the bias term Na(e). From (4.10),

Nafe) = %/.(b(u)‘b(c)}l((”T_i)j'(u)du.

In

|

/(b(-r'h,, +¢e) — be)) K (v) f(vhy, + e)dv = O(h] ).

We have thus proved that

!. n
Nife) + Mole) = —— Y (bles) - ble) K (e~ ¢;)
i j=pt+l

Hne

= Ou..&. @ +()(
V nhy,

The same rate for sup, ([N (e) + Na(e)|) is obtained by covering the domain of e by well chosen intervals and
using Lipschitz property of the kernel. See [3] and [11] among others for the details.
o A similar treatment leads to

LA (7.34)

Lj=pi1 Kn e —e5) B Yo fle=s)
T

sup
nh,

el

This, together with the fact that inf,c¢ f(e) > 0, leads to

Z:i'=p+1 (ble;) = ble)) Ky (e = (f):
Yimps1 Enler—¢;) |

Lizpn bleg) D Knle=e)))_ ( V ]“f_”) +0(R)
nh,,

sup
l

< sup
eeé

E‘T,‘:[ﬁ! I\‘v” (f:’ i (JJ.]

. s
and the proof of the convergence of Ri, Vs over.
. 2
Let us now consider the convergence of RSJ L
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Lemma 7. Under the assumptions Hy 234,
Rsf) =045 (0") Vy>-1/2

Proof. The vector sequence ¢po(ey ey is a martingale difference sequence since E(g) = 0 and since ¢per and
£y are independent. Moreover,

E(|léxo(en)exll3) = o°E (blex)?) E(lox]13).
where E(||64/[3) and E (b(ex)?) are periodic. Hence, for every > 1/2

ZM(&

2

implying, from theorem 3.3.1 of [28],

n

n P E(i)ka(ek)sk S
ptl

Finally, the convergence of ¥, /n leads to the conclusion. 8|
7.3.2 Convergence of the matrix coefficient A, defined in (7.45)

We prove the convergence of A,,, the matrix coefficient of 99“71) in (4.16).

Lemma 8. Under the assumptions Hi g,

(1) Asn = oo,
¢J (el )
A (ﬁ J P+l
= 20 e
a.s. flu— 5 S[)
2 MY 0y ;)/ e du=iA
;;zn ;F nlf = 51)

where M 1is defined in Lemma 1.
(ii) Moreover [ Ay — All = 0y (, / H) +O(h]).

Proof. We consider first

Bl i Knle—ej)
- —
o) oo it Gnle—) S P
n prl m = :
Yipr1 Knle—e5) Ly K +:lf"(" &)

The denominator has been already treated in the proof of Lemma 6 (see (7.34)), so we focus on the numerator
and successively show that
Li=pt1 $iKn (e~ ¢)) ~ E('0;Kn (e~ ¢;))| _ O Inn (735)
a.8. nh'n 3
(1) :
Tiopn BUg Kale—e)) T W f(e — 1)

nh,
nh,,

sup
e€f

then, with Q{_” defined in (4.12),

sup = O(hl) (7.36)

eef




s

The proof of (7.36) uses [ K(e)de = 1. The details are omitted. The proof of (7.35) follows the lines of the
proof of (7.31). the difference coming from the fact that the (o;K,(e; — €)); are not independent. In fact. they
are weakly dependent in so far as, conditionally to the exogeneous sequence, they are mixing.

Lemma 9.

(i) For everye € & and every h, the vector sequence (¢; I\'[%))J i, conditionally to the sequence (¢;); =: E,
geometrically a-mizing.

(ii) This property holds uniformly with respect to B: there exists a constant C and o €]0, 1] such that, o (n)
being the conditional mizing sequence,

(I'E(Il) <Ca" Vn

Proof. Consider for example the first coordinate K(=—)X;_; of the vector sequence. Conditionally to E. the
sequence K'(“-=) is deterministic, and it is enough to consider the sequence X; which has the same conditional

mixing (oefﬁumlts as I\(! =5) Xy From (7.28)

Xn= zgjb((n—j] i fJ'_JU[.('w—jJ‘En—J

J20

is a linear time series based on the noise ble;) + ale;)s;. where ble;) and o(e;) are deterministic trend and
u—ble;)
3

variance, while ¢ is ii.d.. This white noise has a conditional density ¢ ( ) and a finite conditional moment

of order v. Hence.

b

@h

Then, applying Theorem 2.1 of [5] (see also [1]) the autoregressive sequence X, is (conditionnally) geometrically
strong mixing. 0

)<

The reader is referred to [6] for definitions and properties of mixing sequences. Hereafter we need to replace
inequality (7.33) by the following one, a direct consequence (see Rio’s remark on page 87) of theorem 6.2 in [24];

Lemma 10. Let (V;) be a strong mizing sequence of centered random variables such that for some 0 < o < 1
and v > 2,
aln) <ca”, Yo and M :=supE|V;|” < oc.
i

Denole 82 = Yicjnen (Cov(Vi Vi)l For anyr>1 and X > 0 and for all a > 0,

X on —r/2 .
A ' n ¢y fletl)v/{a+r)

Vil>4) | €41+ — ll (_) o

ZJ> = ( ME) +(r 3 (7.37)

i=1 il

where C s a constant depending on a and on M.
This inequality applies, conditionally to E, to
=" K, (e —e;) —E('0; K, (e~ I el e
For this sequence V. the conditional variance s2 satisfies
5% = O(nh,) (7.38)

where the O is uniform with respect to E. Indeed,

Jar (L,) < crhy,

]' | <(2h if ‘}_”ghn
Km (v, mgcmwmﬂzcw41ﬁLpn>m
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For the last bound, the reader can refer to [6]. The two first ones are directly obtained. The functions b and
o being bounded, the constant term in each r.h.s. above does not depend on E. Taking then §, = 1/(h, Inn)
easily leads to (7.38).

Now, (7.37) leads to

n o /2
E by 1r ; A2 T
P (JZ ﬁbjh'u(eEj)E(t¢jKrl(E—ej))>4)\) = 4(1+mhn)

j=p+1

( ) (a+1)v/(a+v)
3 .

PE ( S )‘(] ln_n)
thy

( C)\g hilﬂ,) "nf2 ( - (a+1)v/(atv)
16r;, Aovnh, Inn
n

(:A'*’ In n r (a+1)v/(a+v)
< de” e —s
B ¥ T (Ammh lnn)

Now, if h, ~n Inn® with 4, > —1, r, = (Inn)? we get, for n large enough,

PE‘( Er_p'*'l (pJI\ (B - CJ‘} —]E(i(bjf(n (E - Bj)) & AU hi_ﬂ)
nhy
(at1)y

nhy,
< N 4 Con!~HPVIEES (1o ) (7.39)

G =

and then, if Inn = o(r,)

Limpt1 05K (e — &) — E(9; K (e —¢)))

nhy

for some f3. Now, the constant Cy in (7.39) does not depend on E, implying that

P(ELNJ%KAwwa—mwma&—m)>% Eﬁ)
nhy
atl)y

nhy,
< -l i i (1+61)2N+y, (In n)B
Select AF > 1/c. Then, thanks to the inequality v(1 + ;) we obtain, for a large enough,

Y N 4 Cont TSRS (Inn)f < oo
So we have proved that, for fixed e,

Sk e~ 6) - B(oKale=e)) o ( [m
- a.s. nh .

The same speed is obtained for the sup-norm.
From (7.35), (7.36) and (7.34) it follows that, with

YD e —s)
o e e
5 Zj;olf )




17

= |
sup Rn(e}—R(e)lzoﬂ_&( ?:;1”) Ous.(2) (741)
implying in turn
An i nz;]l z 'p!Ru(e!)
n!=p+1
1 &, . 4l & -
= 18~ ) dlRale) - Rle) +08;"~ ) aufi(e)
l=p+1 I=p+1
Inn 1= -~
= My E Ve s R(er). 7.42
Ou‘s. ( -n.hn) +Oa.s.(hn)+nzn n (ng!IQ({{) (" )

In (7.42), the last sum is splitted in T sums

% Z Z Z Rist + mers1),

I=p+1 kTH(n

which almost surely converges to

T-1 T-1
I (1) N )
?!Zﬁ(qj ) E(R(si+m)) = gn E(R(s +m))
LS oo [ Loz sitto=a),,
Tl
11 0 Lizo flv—3i)

Moreover, this convergence rate, being the rate in the law of large numbers for i.i.d sequences, is faster than
the first two terms in (7.42). This, together with (7.42) and the almost sure convergence of n¥), !, leads to the
desired result. Lemma 8 is proved.

O

Lemma 8, together with Lemma 11 below, shows that the passage (4.16) from step k — 1 to step k is a fixed
point iteration, at least for n large enough.

Lemma 11. There exists kg > 1 such that

[| AFow

o vl

S

(7.43)

Moreover, kg =1 when p=1.

Proof. For the sake of simplicity, we take T' = 2. The general case only brings more complicated formulas,
Denoting
§ =1 4 7@

]fufsj zfs;)h
flv—s) )

g =l 5
il = [.5 + .ll-é.”n + ,U‘;‘H]} (u[m,uf,j!u - (mﬂ.’lm + agy (pbpe + ;I‘Lllu}) : (7.44)

where the I'7)s are defined in Lemma 1, and
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We then apply a popular matrix inversion formula:

= S+ popo] 8
S+ pppo + gy lul [ 0 _ 1
| ] L S+ phsol M 14+ M
= S+ pip] o Sl
S+ ubpo + ] o = 8+ __ %
S ] L+ polS + pipol i 14 oSy po
where
Si=S+ppua et So=8+pim.
This leads to ] 1
Sy o : ; St ,
e e (L MO L o it
1+‘ﬁ950'1,ug { 00 Ho T G LLJ) 1+t#13;1”1 ( 11 #1 T 0gy .uo)
and finally to
A So'wbwo - Si'uhm

00 = 11 fu
L+imeSy e 1+ S m

S—l t S—] 0
G (xol( (:P'O’_Li aF 1#15“3 )
1+ tuoSy o 14+ 4uS; m
= agoSon + anSu + o (So + S1) (7.45)
where the last line defines the Sj’s.
It is easily checked that
¢ -1
1S5 Hi .
§ = — L~ 8,=8;;S; ji=12
Ji 1“#:‘5,-_1#1‘ ii = BiiSip J
t, o-1
S5 :
& = — -Sik = BinSik J#EK

1+ tp85 s
Clearly, 0 < 3;; < 1. Moreover,

¢ ~1
v HiS; B =
1Bik) € g/t s < 1

1+ 'uij‘luj

because the first factor is less than 1/2, and

N . S—i t‘ S—]
Y i i&) |

(.l.-S-I-1 -_11<=t<(s =
1S+ g ] ™ o = Ci TN,

(M g
L4t pe M=t pey

As ajyy € [0,1] for every j, 1, it results that
A2 = oD 8o + ol 811 + a2 (So1 + Sho)
where for every [, |a;?!)| < B, whence
A* = oo + oMy + 0l Moy + Mio)

where for every j,{, |a£ﬁ)\ < (#j1)" . Lemma 11 is proved. O
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It remains to prove (4.21), the rate of convergence of the error on the standard deviation. The estimation
error oy, 1(e) is

Fnple) = Gnile) —a(e)
gt (X b _ k=) 2
1 p+l 1 —" il n (e!)) —o(e) | Knle e
E! p+] ( 81)
n-1 e )
- o(e)er —o°(e)) K, (e— g
= ZI—P+1 ( EJ? i ( )) ’( f) i Rn.k(e) (7_1[”
i=p+1 K (€= @)
where, from the first part of the theorem,
Inn

Rn.k(e) = Ou‘s. ( ) 3 Oa.s.(h?l) gk Oa..ﬁ.(fjk}~

nhy,

Now, since the variables o2(¢; )7 — a*(¢) are independent and centered, the first term in (7.46) can be treated
exactly as was (7.32), leading to

Tiep (o(e)et =0 ( ))1‘“(”"”) =0y, (\/H) +0s (K))
Zi —p+1 Bn (e —€1) i

and the proof of (4.21) is completed.
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