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Abstract: Dampers in semi-active suspension systems may be subject to various types of
damper faults, e.g., oil leakage and electrical issues, that need to be estimated for diagnosis and
isolation purposes. A new method to design the so-called multi-objective grid-based Lipschitz
Nonlinear Parameter Varying (NLPV) Proportional Integral (PI) observer is here developed for
damper fault estimation, where the fault is the loss of efficiency of the damper modeled as a
slow-varying input. While the damper nonlinearity is bounded by the Lipschitz condition, the
H∞ and generalized H2 conditions are used to minimize the effects of the input disturbance and
the measurement noise, respectively, on the estimation error. Moreover, the observer is designed
with Linear Matrix Inequalities (LMIs) formed and solved in a grid-based manner (considering
a parameter-dependent Lyapunov function) to reduce the level of conservatism. Analyses in the
frequency domain using Bode plots as well as in the time domain using realistic simulations
illustrate the effectiveness of the proposed observer.

Keywords: PI observer, Nonlinear Parameter Varying (NLPV), gridding, fault estimation,
semi-active suspension.

1. INTRODUCTION

In vehicles, the suspension system is a core part connecting
the wheel and the chassis, serving both road holding
and driving comfort enhancing purposes by mitigating
the excitations transmitted from the road to the chassis
where passengers sit (Savaresi et al., 2010; Poussot-Vassal
et al., 2012). Among the different types of suspensions
(passive, semi-active, and active), the semi-active (SA) one
is widely studied and applied since it provides an efficient
trade-off between performance and energy consumption
(Poussot-Vassal et al., 2012). More particularly, in Electro-
Rheological (ER) suspensions considered in this study, an
electric field, driven by an applied voltage signal, adjusts
the viscosity of the ER fluid in the damper’s chamber,
thus controlling the damper force. However, this system
could be subject to various types of faults (Hernández-
Alcántara et al., 2016; Morato et al., 2020), as from the
most to the least common, oil leakage (the loss of oil
from the damper cylinder), electrical issues in the circuit
providing the electric/magnetic field to drive the damper,
and physical deformation of the cylinder. These faults lead
to the loss of damper efficiency; therefore, fault diagnosis
and estimation are indeed crucial issues for reliability.

Many studies have been conducted on fault detection and
estimation in various systems. In particular, several fault

estimation filters are proposed in (Varga and Ossmann,
2014; Vanek et al., 2014; Rodrigues et al., 2013; Chen
et al., 2016) with applications mainly in transports and
machines. Among all possible methods, the Proportional
Integral (PI) observer is of high interest given that the
fault is slow-varying and can then be modeled as an
additional state (Do et al., 2018; Guzman et al., 2021).
Such a method has been considered for input estimation
purposes, such as in (Yamamoto et al., 2019) for driver
torque estimation in electric power steering. However,
while several methods do exist for damper force (not fault)
estimation (Pham et al., 2019; Pham et al., 2019; Do
et al., 2020; Tran et al., 2021), and more recently (Pham
et al., 2021) with a nonlinear observer or (Tudon-Martinez
et al., 2021) with a Linear Parameter Varying (LPV) filter,
only few do tackle the fault estimation problem. Let us
cite (Morato et al., 2019) where an LPV polytopic fault
detection observer has been proposed.

In this paper, we consider the problem of estimating slow-
varying additive faults in dampers, where the lost damper
force is modeled as an external input. Our objective is fault
estimation using a Nonlinear Parameter Varying (NLPV)
PI observer, with the following contributions:

• The only assumption on the fault dynamics (which
should be unknown) is that it is slow-varying, which
is the most basic one so as not to narrow the scope



of this study. This assumption can be justified for the
considered kind of fault (damper loss of efficiency),
which is not abrupt faults;

• The only considered measurements are accelerations
of the sprung and unsprung masses measured using
accelerometers, which have advantages over deflection
sensors, e.g., low cost and ease of installation;

• A new method to handle the damper nonlinearity is
proposed. Indeed, since the PWM control input is
actually known and bounded in practice, considering
the nonlinear dynamics of the damper force’s con-
trolled part as seen later in (2) is more realistic than
bounding and calculating the force as a scheduling
parameter as in (Morato et al., 2019). Moreover, the
influence of the system’s nonlinearity on the esti-
mation error is bounded by the Lipschitz condition,
thus decreasing the level of conservatism compared to
(Tran et al., 2021) where that disturbance is merely
considered bounded by a given constant;

• The H∞ and generalized H2 (gH2) conditions are
used to bound the effects of the input disturbance
and the measurement noise, respectively, on the esti-
mation error. Indeed, the former minimizes the effects
of the disturbance in the whole frequency range, while
the latter is more suited for handling white noise com-
ing from sensors (Tran et al., 2021). Besides, speeding
up convergence via pole placement is necessary in PI
observers. The S-procedure (Boyd et al., 1994) is used
to combine all said objectives into a single framework;

• The grid-based method is considered here for LMI
solving and gain scheduling, where the perfectly
known scheduling parameter is the PWM control
input. Compared to the polytopic approach, gridding
is less conservative, thanks to the use of a parameter-
dependent Lyapunov function (associated with robust
stability) rather than a constant one (associated with
quadratic stability that is harder to satisfy).

This paper is organized as follows. In Section 2, the
considered system and the associated model are presented.
In Section 3, the observer design problem is described and
solved. The synthesis results and analyses are presented in
Section 4. Some realistic simulation results are detailed in
Section 5. Finally, the conclusion is drawn in Section 6.

2. SYSTEM DESCRIPTION AND MODELING

2.1 The Semi-active Suspension

The suspension system is studied by considering the
quarter-car model consisting of the sprung and unsprung
masses (ms and mus) as illustrated in Figure 1 (Savaresi
et al., 2010). Applying Newton’s law of motion, we obtain{

msz̈s = −Fs − Fd

musz̈us = Fs + Fd − Ft.
(1)

The spring force is Fs = kszdef where zdef = zs − zus is
the suspension deflection and żdef the deflection velocity;
the tire force is Ft = kt(zus − zr). The dynamics of the
damper force Fd are expressed as (Pham et al., 2019)

Fd = k0zdef + c0żdef︸ ︷︷ ︸
Fpassive

+Fer

Ḟer =
−1

τ
Fer +

fc
τ

· u · tanh (k1zdef + c1żdef ) ,

(2)

Fig. 1. The quarter-car model.

where Fer is the controlled part of the damper force; c0,
c1, k0, k1, fc, and τ are constant parameters; u ∈ [0, 1] is
the duty cycle of the PWM control input signal.

2.2 Faulty System Modeling

Consider now that the ER damper is subject to one of the
two most common types of fault which are oil leakage from
the cylinder and electrical issues (Morato et al., 2020). Any
of these faults will lead to a loss in the damper force. As
a result, the faulty damper force is written as

Ff = Fd − f, (3)

where f is the damper fault (representing a loss of force).
The objective of this paper is to estimate the additive fault
f in the presence of unknown inputs (with the damper
force either known or independently estimated as a linear
combination of the states (Tran et al., 2021)).

Defining the state as x = (zs − zus żs zus − zr żus Fer)
⊤
,

we can write the system in (1)-(2)-(3) as the following
NLPV state-space representation (Pham et al., 2021)

Σ(ρ) :

{
ẋ = Ax+B(ρ)Φ(x) + E1f +D1ωr

y = Cx+ E2f +D2ωn,
(4)

where the measured output vector y is (z̈s z̈us)
⊤ ∈ R2

(accelerations) assuming some measurement noises ωn;
the input disturbance is ωr = żr. The known scheduling
parameter is ρ = u ∈ [ρ, ρ] (the minimum and maximum
PWM values). In (4), Φ(x) = tanh (k1zdef + c1żdef ) :=
tanh(Γx) with Γ = (k1 c1 0 −c1 0). Note that Φ(x) is
Lipschitz, i.e.,

∥Φ(x)− Φ(x̂)∥ ≤ ∥Γ(x− x̂)∥,∀x, x̂. (5)



The faulty system matrices are (with k = ks + k0):

A =


0 1 0 −1 0
−k

ms

−c0

ms

0
c0

ms

−1

ms
0 0 0 1 0
k

mus

c0

mus

−kt

mus

−c0

mus

1

mus

0 0 0 0
−1

τ

 , B(ρ) =


0

0

0

0

fc
ρ

τ

 , E1 =


0
1

ms
0
−1

mus
0

 ,

E2 =

( 1

ms−1

mus

)
, D1 =


0

0

−1

0

0

 , C =



−k

ms

k

mus−c0

ms

c0

mus

0
−kt

mus
c0

ms

−c0

mus−1

ms

1

mus



⊤

, D2 =

(
10

−2

10
−3

)
.

In this work, the model parameter values used for simula-
tions are those in (Pham et al., 2019).

3. OBSERVER DESIGN METHOD

In this Section, the observer design problem is formulated
and the design method is detailed.

3.1 Problem Formulation

Consider the NLPV system (4). Let us suppose the lack of
knowledge on the dynamics of the fault. Assumption 1 is
thus made, which is standard in fault or input estimation
methods such as (Morato et al., 2019; Yamamoto et al.,
2015).

Assumption 1. The fault is slow-varying, i.e., ḟ ≃ 0.

Following Assumption 1, denoting the extended state as

xe = (x f)
⊤
, we derive the extended NLPV state-space

representation as{
ẋe = Aexe +Be(ρ)Φ(x) +D1eωr

y = Cexe +D2ωn,
(6)

where Ae =

(
A E1

0 0

)
, Be(ρ) =

(
B(ρ)
0

)
, D1e =

(
D1

0

)
,

and Ce = (C E2).

Let us consider the NLPV PI observer

O(ρ) :

{
˙̂x = Ax̂+B(ρ)Φ(x̂) + E1f̂ + Lp(ρ)(y − Cex̂e)
˙̂
f = Li(ρ)(y − Cex̂e),

(7)

where x̂ and f̂ are the estimates of x and f . Denote

e = xe − x̂e (where x̂e =
(
x̂ f̂
)⊤

) as the estimation error

where x̂e is the estimate of xe and ef = f − f̂ as the
estimation output. We denote also x − x̂ = Cxe where
Cx = (I 05×1). Subtracting (7) from (4) and using (6), we
obtain the error system{
ė = (Ae − L(ρ)Ce)e+Be(ρ)∆Φ +D1eωr − L(ρ)D2ωn

ef = Cfe,

(8)

where ∆Φ = Φ(x)−Φ(x̂) satisfies (5), L(ρ) = (Lp(ρ) Li(ρ))
⊤

is the observer gain to be found, and Cf = (01×5 1).

While the term ∆Φ is bounded by the Lipschitz condition
(5), the multi-objective (H∞/gH2) NLPV PI observer
design problem is to find L(ρ) such that

• The error system (8) is asymptotically stable for
ωr(t) = 0 and ωn(t) = 0;

• ∥ef (t)∥2 < γ∞∥ωr(t)∥2 for ωr(t) ̸= 0 and ∥ef (t)∥∞ <
γ2∥ωn(t)∥2 for ωn(t) ̸= 0;

• The poles of the system (8) are sufficiently fast to
ensure the time-domain efficiency of the observer.

The multi-objective problem will be solved considering
the combined performance index αγ∞ + (1 − α)γ2 to
be minimized given α ∈ [0, 1]. Note that when (8) is
asymptotically stable, the error e tends to 0 since ∆Φ
vanishes as x̂ approaches x. Note also that the gH2

condition is used here for the noise attenuation objective.

3.2 Grid-based Design of the NLPV PI Observer

A parameter-dependent Lyapunov function is considered
here to tackle the stability proof of the estimation error;
therefore, the following assumption is needed for the
scheduling parameter derivative.

Assumption 2. The scheduling parameter’s derivative is
bounded, i.e., |ρ̇| ≤ ν.

The observer is then designed using Theorem 1.

Theorem 1. Under Assumption 2, the observer design
problem is solved if, given a constant α ∈ [0, 1] and a decay
rate constraint β ≥ 0, there exist X(ρ) = X⊤(ρ) > 0,
Y (ρ), and ϵl > 0 minimizing αγ∞+(1−α)γ2 and satisfying
for all ρ, the set of LMIsΩ(ρ) + C⊤

f Cf X(ρ)Be(ρ) X(ρ)D1e

B⊤
e (ρ)X(ρ) −ϵlI 0
D⊤

1eX(ρ) 0 −γ2
∞I

 < 0, Ω(ρ) X(ρ)Be(ρ) Y (ρ)D2

B⊤
e (ρ)X(ρ) −ϵlI 0
D⊤

2 Y
⊤(ρ) 0 −I

 < 0,(
X(ρ) C⊤

f

Cf γ2
2I

)
> 0,

(9)

where Ω(ρ) = A⊤
e X(ρ) +X(ρ)Ae +C⊤

e Y ⊤(ρ) + Y (ρ)Ce ±
ν ∂X(ρ)

∂ρ + 2βX(ρ) + ϵlC
⊤
x Γ⊤ΓCx. Then, the observer gain

is found as L(ρ) = −X−1(ρ)Y (ρ).

Note that the decay rate constraint with β is used here to
enhance the dynamical performances of the estimation.

Proof 1. Consider the parameter-dependent Lyapunov func-
tion candidate V (e, ρ) = e⊤X(ρ)e where X(ρ) = X⊤(ρ) >

0. Denote η1 = (e ∆Φ ωr)
⊤

and η2 = (e ∆Φ ωn)
⊤
.

Choosing a decay rate bound of β for the error e, we derive

V̇ (e, ρ) + 2βV (e, ρ)

= ė⊤X(ρ)e+ e⊤X(ρ)ė+ e⊤
(
ρ̇
∂X(ρ)

∂ρ

)
e+ 2βe⊤X(ρ)e

= e⊤
[
(Ae − L(ρ)Ce)

⊤X(ρ) +X(ρ)(Ae − L(ρ)Ce)(ρ)

+ρ̇
∂X(ρ)

∂ρ
+ 2βX(ρ)

]
e+ e⊤X(ρ)Be(ρ)∆Φ

+∆Φ⊤B⊤
e (ρ)X(ρ)e+ e⊤X(ρ)D1eωr + ω⊤

r D
⊤
1eX(ρ)e

−e⊤X(ρ)L(ρ)D2ωn − ω⊤
n D

⊤
2 L

⊤(ρ)X(ρ)e.
(10)

Here, we consider ωr and ωn as unknown external inputs.
Using the superposition theorem and introducing the
variable Y (ρ) = −X(ρ)L(ρ), we consider first ωn = 0 and
then ωr = 0, and separate the H∞ and gH2 problems as



V̇1(e, ρ)

= e⊤
[
(Ae − L(ρ)Ce)

⊤X(ρ) +X(ρ)(Ae − L(ρ)Ce)(ρ)

+ρ̇
∂X(ρ)

∂ρ
+ 2βX(ρ)

]
e+ e⊤X(ρ)Be(ρ)∆Φ

+∆Φ⊤B⊤
e (ρ)X(ρ)e+ e⊤X(ρ)D1eωr + ω⊤

r D
⊤
1eX(ρ)e

= η⊤1

 Ω1(ρ) X(ρ)Be(ρ) X(ρ)D1e

B⊤
e (ρ)X(ρ) 0 0
D⊤

1eX(ρ) 0 0


︸ ︷︷ ︸

Q1(ρ)

η1,

V̇2(e, ρ)

= e⊤
[
(Ae − L(ρ)Ce)

⊤X(ρ) +X(ρ)(Ae − L(ρ)Ce)(ρ)

+ρ̇
∂X(ρ)

∂ρ
+ 2βX(ρ)

]
e+ e⊤X(ρ)Be(ρ)∆Φ

+∆Φ⊤B⊤
e (ρ)X(ρ)e+ e⊤Y (ρ)D2ωn + ω⊤

n D
⊤
2 Y

⊤(ρ)e

= η⊤2

 Ω1(ρ) X(ρ)Be(ρ) Y (ρ)D2

B⊤
e (ρ)X(ρ) 0 0
D⊤

2 Y
⊤(ρ) 0 0


︸ ︷︷ ︸

Q2(ρ)

η2,

(11)
where Ω1(ρ) = A⊤

e X(ρ)+X(ρ)Ae+C⊤
e Y ⊤(ρ)+Y (ρ)Ce+

ρ̇∂X(ρ)
∂ρ + 2βX(ρ). Then, the Lipschitz condition (5) gives

∆Φ⊤∆Φ ≤ e⊤C⊤
x Γ⊤ΓCxe.

This condition (independent of ωr and ωn) is rewritten as

η⊤1 Q3η1 ≤ 0, η⊤2 Q3η2 ≤ 0, (12)

where Q3 =

−C⊤
x Γ⊤ΓCx 0 0
0 I 0
0 0 0

. Next, let us define the

following terms

J1 = e⊤f ef − γ2
∞ω⊤

r ωr = η⊤1

C⊤
f Cf 0 0
0 0 0
0 0 −γ2

∞I


︸ ︷︷ ︸

Q4

η1,

J2 = −ω⊤
n ωn = η⊤2

(
0 0 0
0 0 0
0 0 −I

)
η2 := η⊤2 Q5η2,

J3(ρ) = γ2
2e

⊤X(ρ)e− e⊤f ef = e⊤ (γ2
2X(ρ)− C⊤

f Cf )︸ ︷︷ ︸
Q6(ρ)

e.

The H∞ and gH2 conditions give (as (8) is strictly proper)
V̇1(e, ρ) + J1 < 0

V̇2(e, ρ) + J2 < 0

J3(ρ) > 0.

(13)

When the S-procedure (Boyd et al., 1994) is applied to

the constraints (12) and conditions (13), V̇1(e, ρ) < 0 and

V̇2(e, ρ) < 0 if there exists a scalar ϵl > 0 s.t.
V̇1(e, ρ)− ϵlη

⊤
1 Q3η1 + J1 < 0

V̇2(e, ρ)− ϵlη
⊤
2 Q3η2 + J2 < 0

J3(ρ) > 0

⇐⇒


η⊤1 (Q1(ρ)− ϵlQ3 +Q4)η1 < 0

η⊤2 (Q2(ρ)− ϵlQ3 +Q5)η2 < 0

e⊤Q6(ρ)e > 0

⇐⇒


Q1(ρ)− ϵlQ3 +Q4 < 0

Q2(ρ)− ϵlQ3 +Q5 < 0

Q6(ρ) > 0,

which is equivalent toΩ2(ρ) + C⊤
f Cf X(ρ)Be(ρ) X(ρ)D1e

B⊤
e (ρ)X(ρ) −ϵlI 0
D⊤

1eX(ρ) 0 −γ2
∞I

 < 0, Ω2(ρ) X(ρ)Be(ρ) Y (ρ)D2

B⊤
e (ρ)X(ρ) −ϵlI 0
D⊤

2 Y
⊤(ρ) 0 −I

 < 0,

γ2
2X(ρ)− C⊤

f Cf > 0,

(14)

where Ω2(ρ) = Ω1(ρ)+ ϵlC
⊤
x Γ⊤ΓCx. Then, Schur’s lemma

is applied to the third condition in (14). Under Assumption
2, (14) is satisfied if and only if (9) is satisfied (Wu, 1995).
Last, (13) ensures the H∞/gH2 performance:

∥ef (t)∥22 < γ2
∞∥ωr(t)∥22,

∥ef (t)∥2∞ < γ2
2∥ωn(t)∥22.

The proof is completed. □

Remark 1. In the case the error system (8) has no external

inputs, by guaranteeing V̇1(e, ρ) < 0 and V̇2(e, ρ) < 0, we

get V̇ (e, ρ) + 2βV (e, ρ) < 0 for the quadratic Lyapunov
function candidate, thus imposing a decay rate of faster
than β for the estimation error, i.e., a time constant of
shorter than 1

β (if β > 0). This use of pole placement to

speed up the convergence rate is crucial in PI observers
for estimating slow-varying inputs, as seen in (Yamamoto

et al., 2015). As V (e, ρ) > 0, that implies V̇ (e, ρ) < 0,
which guarantees the asymptotic stability of the error (as
X(ρ) has strictly positive bounds with ρ ∈ [ρ, ρ]).

The LMIs formed in (9) must be satisfied for an infinite
number of values of ρ. Therefore, these inequalities are here
solved in a grid-based manner (Wu, 1995), i.e., satisfied at
a set of frozen values belonging to a gridded domain of
ρ, together with Assumption 2. Moreover, since gridding
is used here for LMI solving, the asymptotic stability of
the error associated with the obtained solution must be
re-checked using a much denser grid (Wu, 1995).

4. OBSERVER SYNTHESIS RESULTS

The observer is designed for the suspension considering:

• X(ρ) = X0+ρX1 so
∂X(ρ)
∂ρ = X1, and Y (ρ) = Y0+ρY1

(note that more complex forms can indeed be chosen);
• Ten grid points with ρ evenly spaced in [ρ, ρ] where

ρ = 0.1 and ρ = 0.5 for safety purposes (recall ρ = u);
• β = 8 for an efficient convergence rate;

• ν = 1000 s−1, while
ρ−ρ

Ts
= 80 s−1 with Ts = 0.005 s

the experiment sampling time (Pham et al., 2019).

With CVX (Grant and Boyd, 2014) and the SDPT3 solver,
one obtained solution is such that γ∞ = 0.9 and γ2 = 0.87.

Remark 2. The fault has been normalized for observer
design purposes.

4.1 Analysis of the Unknown Inputs’ Effects

To evaluate the influence of unknown inputs, Bode dia-
grams of the error systems (

ef
wr

and
ef
wn

), frozen at the grid
points, are shown in Figure 2. This shows a satisfactory
attenuation level of below -65 dB for any input disturbance
and -80 dB for the measurement noise in high frequencies.
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Fig. 2. Bode plots (
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and
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wn

) of the frozen error systems.

4.2 Analysis of the Nonlinearity’s Effects

The effects of the disturbance caused by the nonlinearity
∆Φ on the error are illustrated in the frozen Bode plots in
Figure 3. Attenuation is well achieved, especially in low
to middle frequency ranges where this term acts. This
emphasizes the interest and efficiency of the proposed
NLPV observer design method (handling the nonlinearity
through the Lipschitz condition).
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Fig. 3. Bode plots (
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∆Φ ) of the frozen error systems.

5. OBSERVER APPLICATION RESULTS

The observer is implemented as in Figure 4.

Σ(ρ)
z̈s, z̈us

żr
u

O(ρ)

y

f̂

ρ

f
+ ωn

Fig. 4. Implementation of the observer.

5.1 Validation Scheme

Even though the fault (lost damper force) is modeled as
an input in order to apply the PI observer, it is not a real
input, and hence its variation in time should be similar to

the damper force itself. The way we propose to validate
the scheme (either in simulations or experiments) is:

• Conduct one test with a nominal (faultless) case;
• Conduct the faulty case where the fault (lost force)

that is a portion of the faultless damper force is
subtracted from the damper force.

5.2 Simulation Results

In this simulation scenario lasting 20 seconds, we use:

• An ISO road profile of type C;
• A skyhook controller that gives the PWM signal;
• Measurement noise with zero mean and unit variance.

The road profile is shown in Figure 5.
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Fig. 5. The road profile used for simulation.

Figure 6 shows the resulting measurements (accelerations).
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Fig. 6. Measured sprung (left) and unsprung mass accel-
erations (right).

Fault estimation results are shown in Figure 7. It can
be observed that only practical convergence is achieved
because Assumption 1 is not strictly respected in practice.
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Fig. 7. Estimated lost damper force.



6. CONCLUSION

This paper proposes an NLPV PI observer for fault estima-
tion in the SA suspension, with the most basic assumption
on the fault dynamics (slow-varying). This observer is
obtained by forming and solving LMIs in a grid-based
manner to lower conservatism, where the Lipschitz con-
dition is used to bound the nonlinearity in the system,
while the H∞ and gH2 conditions are used to treat the in-
put disturbance and the measurement noise, respectively.
Evaluation and analysis in both the frequency domain
using Bode plots and the time domain using simulations
illustrate the method’s effectiveness.

In the future, more advanced fault estimation methods,
e.g., the descriptor form observer (which does not require
Assumption 1), will be developed based on this work.
Experimental validation is currently being investigated.
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