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MULTIPLE PARETO INDEX REGRESSION WITH
APPLICATION TO LARGE CLAIM COSTS

By EUN JUNG KIM

In insurance and reinsurance, an important interest is mode!-
ing extreme claim costs. For this motivation, Pareto distributions
hâve been successfully applied in extreme value analysis. Under a

single-parameter Pareto distribution of a response variable, we pro-
pose a new approach to estimate the Pareto index. We assume that
the Pareto index is an unspecified function that dépends on multiple
indices induced by covariates, which constitutes ’a single-parameter
Pareto index régression in multiple-index model’. We obtain the pa-
rameter estimators by using an approximate maximum likelihood es-
timation (aMLE) method where the likelihood function for the Expo-
nential distribution approximates the corresponding function of the
Pareto distribution through the log-transformation of the response
variable. The number of indices is determined by a cross-validation
technique. We show our approach by a simulation argument and its
application to claim cost data, and discuss its practical performance.

1. Introduction. In insurance and reinsurance, modeling extreme claim
costs is an important issue (e.g. Hogg and Klugman (1984)). Such modeling
helps actuaries to identify the characteristics of high-risk groups, predict ex-
treme risks, and adjust insurance premium policies of this class for balancing
the premiums and the indemnities.

Due to their simplicity, the classical Pareto distributions hâve been a pop-
ular parametric modeling tool in claim cost analysis. Arnold (1983) provides
an overview of the variants, properties and inferences of Pareto distributions.
Parameter estimation of these distributions is traditionally performed by us-

ing maximum likelihood estimation or moment methods. Various estimation
techniques, including these traditional ones, are presented and are compared
to each other for risk premium pricing in an automobile insurance portfolio
by Rytgaard (1990). Other estimation techniques such as robust estima-
tion methods, a comparison between them via measures of goodness-of-fit,
as well as their applications to real data are also found in Brazaukas and
Serfling (2003). However, in these studies, large claim costs are modeled
in the absence of covariates which play a prominent rôle in identifying the

Keywords and phrases: Extreme claim cost analysis, Single-parameter Pareto, Pareto
index régression, Multiple-index model, Approximate maximum likelihood estimation
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characteristics of high-risk groups. Because of the heterogeneity of an insur-
ance company’s portfolio, it is important to take covariate information into
account in claim analysis. A natural approach to measuring the impact of
covariates on the response variable is to use régression models, e.g,, general-
ized linear models (McCullagh and Nelder,(1989)). There is a rich literature
on actuarial applications. For example, Renshaw (1994) use the generalized
linear models in the presence of covariates to model the influence of covari-
ates on the average claim frequency and claim costs for premium pricing.
This has been a classical modeling tool for premium pricing. Our interest
also lies in using a régression model where the impact of covariates on large
claim costs is taken into account. In this paper, we propose a new approach
to estimating the parameter of a single-parameter Pareto distribution, where
the parameter is called the Pareto index and it is taken to be a function of
covariates. The model is a Pareto-index régression model which is based
on semiparametric extension of the standard generalized linear régression
model.

Recently, statistical techniques for dealing with large claim costs hâve
been developed using extreme value theory (e.g. Beirlant et al. (2004)). In
particular, an important resuit in this theory is of interest in large claim
analysis. This focuses on the distribution of data exceeding a threshold,
which is referred to the Generalized Pareto distribution. Some examples
of actuarial applications can be found in Rootzén and Tajvidi (1997) and
McNeil (1997). However, in their studies, large claim costs are modeled in
the absence of covariates. The approach we propose in this paper would be
extended to the Generalized Pareto distribution.

A single-parameter Pareto distribution belongs to the exponential fam-
ily. To identify the characteristics of high-risk groups, the generalized linear
model can be used, where we link the Pareto index to covariates through
some specified function. This can be extended so that the Pareto index is an

unspecifîed function of the covariates. However, nonparametric estimations
encounter the problem of the so-called ‘curse of dimensionality’ when the
sample size is small but has many covariates. In practice, the sample size
which can be used for claim cost analysis is often limited. Hence, it would be
interesting if we could decrease the number of the covariates without losing
ail the information in the covariates. Therefore, as a compromise between
the parametric and nonparametric approaches, the semiparametric approach
is an appealing alternative. Assuming that the Pareto index function is un-

specified, but has a spécifie structure which is that some multiple indices are
induced by covariates and are related to the index function, we introduce
a ‘single-parameter Pareto index régression in multiple-index model’. The
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main idea of the model is not only that ail the relevant information provided
by covariates is included in some multiple linear combinations of covariates,
but also that the indices détermine high-risk groups in some nonparametric
way. In the literature, multiple-index models are introduced by Ichimura
and Li (1991) and investigated by many researchers as one of the dimension
réduction techniques (Li (1991), Cook (1994), Hristache et al. (2001), Xia et
al. (2002)) to overcome the disadvantage of nonparametric approaches. One
of the dimension techniques proposed by Xia et al. (2002) will be used to es-
timate the Pareto index. This procedure is called ‘refined minimum average
variance estimation (rMAYE)’.

Our estimation procedure is based on maximum likelihood estimation.
The single-parameter Pareto distribution is related to the Exponential dis-
tribution through the log-transformation of the response variable. We can

approximate the likelihood function for the Pareto distribution by that of
the standard Exponential distribution. For the maximization to work, we
need to estimate the Pareto index and use this to replace the unspecified
Pareto index function in the approximate likelihood function of the Expo-
nential distribution. This idea is similar to one of Klein and Spady (1993),
who propose replacing an unspecified link function with a nonparametric
estimator in the likelihood function of the binomial distribution in the case

of a binary régression model to define a semiparametric maximum likelihood
estimator of the parameter. For the replacement of the unspecified Pareto
index function, we first estimate the conditional mean function by using a

nonparametric method. Then, from the équation of the relationship between
the conditional mean function and the Pareto index under a single-parameter
Pareto distribution, we compute the estimator of the Pareto index. The es-
timator of multiple indices is the solution of this maximization problem. We
call this procedure ‘approximate maximum likelihood estimation (aMLE)’.

The paper is organized as follows. In Section 2, we présent a Pareto index
régression model and explain both rMAVE and aMLE methods. Section 3
describes some issues for our implémentation and lists the steps of the algo-
rithm for the aMLE method. In Section 4, a simulation study is presented
to show the practical performance of our approach. Section 5 focuses on the
application of our approach to extreme claim costs using real data. Section
6 concludes with some suggestions for future work.

2. Pareto index régression model and estimation procedure.

2.1. The single-parameter Pareto model. Let Yi, ...,Yn be i.i.d. copies of
a random variable Y G T where ^ C I and let Ai, ...,Xn be i.i.d. copies
of a random vector of covariates, X where X G X C R . Yi represents the
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ith response of interest, which is associated with the vector of covariates
Xi. In addition, Fy\x{y I x) — < y \ X = x) dénotés the cumulative
distribution function (c.d.f.) of Y given X = x. If Y is Pareto-distributed
with the parameter a(x) and a fixed value ymin (=. 1 given X = x, we obtain

(2.1) 1 -;FYVi(y | x) =

where a(-) is a positive parameter. Usually, a(-) is called the Pareto index.
It is directly related to the probability of Y > y given X = x as well as the
conditional mean with the condition a{x) > 1,

(2.2) m(x) = E[Y\X = x] =
a(x) — 1

We are interested in estimating the Pareto index a(x) where a(x) is taken
as a function of covariates X. In the parametric GLM framework, we con-
sider the régression model using a log-link function : a(x) = exp(/3'x) where

= (c, /3i, ...,/3^)/ is a {d + 1) - dimensional vector of the régression coef-
ficients. Despite the simplicity of the model, there is one known drawback
in GLM. The link function is unknown in practice although it is treated as
known. An alternative procedure to this is the fully nonparametric proce-
dure: First, we estimate the conditional mean function by using a nonpara-
metric method. Secondly, we replace m(x) by its estimator rh(x) in (2.2).
Finally, we calculate a(x) in (2.2). However, the nonparametric procedures
suffer from the well-known problem of the curse of dimensionality when
d 1= dim(X) is high. Thus, our interest lies in adding a dimension réduction
assumption to a nonparametric estimation procedure, such that a(x) is an
unknown function but has a spécifie structure. More precisely, assuming that
p > 1, but much smaller than d and that /3q, •••, Pq G exists and imposing
that the norm of a parameter vector (3q for any i G {1, ...,p} is equal to one
and that any two different vectors /3q and /330 for i ^ j are orthogonal we
propose the following semiparametric multiple-index régression model,

a(x) — g{B'0x)

where g : MP -4 R. A convenient way to formulate these hypothèses is to
introduce the dx p orthogonal matrix Bq — (/3q, ..., (3q), i.e. B'0Bo = Idp. In
fact, the idea behind this model is based on another assumption about the
existence of B which satisfies the following équivalence for the conditional
mean of Y given X = x,

(2.3) E[Y\X = x] = E[Y\B'0X = B'0x\
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where B'0Bq = Idp is imposed for identifiability reasons (Ichimura and Lee,
1991). Letting ÉÉ$(u| dénoté the conditional mean of Y given B'0X = u, we
obtain

(2.4) aBo(B'0x) = ¥.[Y\B’0X = B’0x]
where and aBo : Rp —>■ R. Therefore, from Equation (2.2), the function g
becomes explicit, so the Pareto index a(x) can be formulated in the following
way,

(2.5) a(x) =
aBo (BqX)

aBo(B'0x) - 1
with c*b0(-) > 1. These kinds of assumptions hâve been considered in the
literature of the so-called dimension réduction techniques which consider
particularly the problem of estimating a space spanned by the columns of
Bq, e.g. see in Li (1991), Cook (1994), Hristache et al. (2001) and Xia et al.
(2002).

2.2. Estimation procedures. In the following, we briefly describe an adap-
tive dimension réduction technique based on the semiparametric models pro-

posed by Xia et al. (2002), which is called ‘refined minimum average variance
estimation (rMAVE)’. Using this procedure, we can estimate the conditional
mean aBo as well as the matrix of multiple indices Bq and use them to es-
timate the Pareto index a. In the next section, we propose a new approach
based on the maximum likelihood estimation (MLE) procedure. In the last
section, a cross validation technique is proposed to select the number of
indices.

2.2.1. Refined Minimum Average Variance Estimation. Let us assume
that the number of multiple indices p is known. To estimate B, we note that
since E[(Y — m(X))2] = Inf^E[(Y — h(X))2] and (2.4), we obtain

(2.6) E[(Y - aBo(B'0X)Ÿ] = InfE[(y - h(X)f]
h

In addition, let û:b(u) dénoté the conditional mean of Y given B'X H u for
ail matrix B which satisfies B'B — Idp. This allows us to deduce aBo = aB
and from (2.6), we get

E[(Y - aBo(B'0X)f] = Inf E[(Y - aB(B'X)f ]B

Xia et al. (2002) observe that this is also équivalent to Inf#E[E{(Y —

aB(B'X))2 | B'X}] according to a property of conditional expectation which
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is the one relating to double conditional expectations, i.e., E[E(A | M)] =
E[A]. In fact, E{(V — olb{B'X))2 I B'X} is the conditional variance of Y
given B'X = u, which is denoted by cr2B(B'X). Hence, an estimator of Bq can
be obtained through minimizing the expectation of the conditional variance
of Y given B'X = u in the following way

(2.7) rmnE{a%(BfX)} subject to B'B = Idp

This procedure is named ‘minimum average variance estimation (MAVE)’.
If olb was known, the following empirical criterion based on {xi,yi) for i =
1 would replace (2.7),

n n

(2.8$iin ~ aB(B'xj))2w(xj,Xi)} subject to B'B Ml/VLB —j '
i=1 3=1

where w(xj,X{) is a weight function which dépends on the distance between
Xi and Xj. However, we do not know as in practice. Therefore, Xia et al.
(2002) propose using the following approximation by using the first order
Talyor expansion of as(B'xj) at B'xi

yj ~ aB(B'xj) « yj - ai- b^B'^j - x^)

with a^H as (B'Xi) and bi being the gradient of as calculated at B'xi. The
estimators {di,bi} of ai and bi for i = 1, ...,n are obtained by minimizing

n

(2‘9)
aeR beRP■r b'B'(xÆxi)}2w(xj> xi]

3=1

Therefore, plugging the estimators {di,bi} for i — 1 ,...,n into (2.8), we
obtain an estimator B of Bq in the following way,

n n

(2.10) B= argmin Y](y\yMai-b'iB'{xj - xi)\2w(xj,xi)}
B:B'B=idp ^

The MAVE method consists of using (2.9) and (2.10). We start by estimating
ai and bi for i = 1, ...,n in (2.9) using a preliminary estimator of Bq, then
we plug these estimators of both ai and bi into (2.10) to estimate Bq. Once
the estimator of Bq is obtained, we re-estimate ai and bi. Then, we repeat
the two estimation processes until the algorithm converges.
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In the process of the above estimation, Xia et al. (2002) suggest using the
two weight functions w(xj,Xi). Initially, a d-dimensional kernel weight func-
tion (a) which does not rely on B is chosen, so that we can easily implement
both (2.9) and (2.10),

(a) w(xj,Xi) = — , Kh(u) = j^K(~)
^2 Kh{xs - Xi)
s=1

with K being a kernel function on M.d and its associated bandwidth h going
to zéro when n —» oo and w(xj,Xi) = 1. Another choice is a kernel
weight function (b) which relies on B. More specifically, using an estimator
B, we define a kernel weight function in the reduced space,

(6) w(xj:Xi) Kh(B'(xj -x^)
n ’

J2Kh(B’(xs-xt))
S=1

Kh(u) hP yh'

with K being a kernel function on W. The idea is that when an initial
estimator B is available, it is possible to get a more improved estimator
through using B to measure the distance between Xj and Xi in the reduced
space while iterating (2.9) and (2.10). The last itération provides the final
estimators B and dg. Xia et al. (2002) call this procedure ‘refined minimum
average variance estimation (rMAVE)’.

Estimation of a

To estimate the Pareto index a, it sufhces to use B and a^ obtained from
the rMAVE method in (2.5) and calculate a(x) in the following way,

LX l I xv

âfè(B'x) — 1
We impose that «g is bigger than 1, since the conditional mean exists if the
Pareto index is bigger than 1 when Y given X — x follows a single-parameter
Pareto distribution.

2.2.2. Approximate Maximum Likelihood Estimation. Our approach is
based on the maximum likelihood estimation (MLE) procedure. The single-
parameter Pareto distribution is related to the Exponential distribution
through the log-transformation of a response variable: If Yi,... ,Yn follows
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the Pareto distribution as (2.1), then lnYï,... ,lnY^ are independent, iden-
tically exponentially distributed with the parameter a(x). Let f(z \ x) be
the probability density function (p.d.f.) of Zi — lnF* conditional on Xi sîfàx.
For z > 0 and a(x) > 0,

(2.11) f(z | x) = a(x)exp~a^z

Using the définition of the multiple-index régression model in (2.5) for a(x)
in the p.d.f. of Zi in (2.11), let us define the log-likelihood function Ln for
the Pareto index a(x) as follows

(2.12) Ln{B, a)
i=1

\na(B'xi) — a(B'xi)zi

If a was known, the estimator of Bq would be the solution of maximizing Ln
with respect to B, as it works within the parametric framework. However,
within our framework it does not work because we assume only the spécifie
structure of the function a in (2.5) but a is unknown. A natural idea is
to apply the plug-in method to our log-likelihood function (2.12): we first
estimate a, then we substitute a for a, and then finally we maximize the
estimated version Ln(B,a) with respect to B.

Estimation of a: and B

In our régression model, the Pareto index a is unknown, since a relies on
the unknown function as- To estimate a, we need to estimate as- Let a(u)
dénoté the conditional density of Y given B'X lu for ail matrix which satis-
fies B'B .= Ip. From Equation (2.5), we deduce a : u —>■ ag(u)/{ob(u) S 1},
for ail ueF. Let us define the Pareto index using as,

(2.13) H = 1 + * ,OtB\B'x) — 1

Recalling that the conditional mean exists if the Pareto index a > 1, under
the assumption that Y given X = x follows a single-parameter Pareto dis-
tribution, we impose that o# > 1. In the définition (2.13), olb can be used
to define the Pareto index. In addition, note that the Pareto index converges
to oo when a# —> 1, while the Pareto index is doser to 1 when as —^ oo

A natural idea about how to define the estimator of a is to use the estima-
tor of as in (2.13) in order to compute the estimator of a. Hence, we propose
to use kernel smoothing to estimate as- Either the Nadaraya-Watson (1964)
or local polynomial estimation method (Fan and Gijbels, 1995) can be used.
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Let us define the standard Nadaraya-Watson (NW) estimator of ob(u) at
the point u = (ui, ...,up)' G Rp,

(2.14)

with

Nb(u)

Db(u)

<*b(u) - ^ Db(u) ± 0wmm

1
yv 1 ^ ^ - «l) - Up)

n f-f hi • • • hpJ=i y
hi

j «1

hr m

ty î ggp-%)n ^ h\- ■ ■ hv
j=i

/ii hr

where if is a kernel function on Rp and /ii,...,hp are its associated band-
width sequence that goes to zéro when n —y oo. For the sake of simplicity, we
take a product kernel for K, i.e., K(u) = nf=i K*(ui) where K* is an uni-
variate kernel function. Also, we use the same bandwidth sequence hi,..., hp
which satisfies hi oc n 2x2+p at the different index number p. The optimal
bandwidth obtained by minimizing the asymptotic mean integrated squared

i

error (AMISE) is well-known as h = Cn 2xk+p where C is a constant and k
is the number of dérivatives required for as- In our setting, we assume that
olb is twice continuously différentiable. Once the estimator as in (2-14) is
obtained, we use this estimator to define an estimator of a,

(2.i5) +

Next, plugging this estimator into (2.12), we obtain an estimated version of
Lnt

■ 1
(2.16) Ln(B, «) = -V

n z—■j
i— 1

\na(B'xi) — a(B'xi)\nyi rn(B'nXi,c)

where rn(u,c) is a trimming function, c is a strictly positive constant and
Bn is a preliminary estimator of Bq. This function is commonly used to
ensure that the denominators in as are bounded away from zéro. Given
that the estimator Bn is obtained, we take Tn(B'nXi, c) gg ^B, x.^>c. Such
a trimming function is considered an approximation of the idéal trimming
function 1U(-) where A = {u : Db0Xu) > c,u G W} and Db0{-) is the
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density of B'0x and c > 0 (See Delecroix et al. (2006)). As a conséquence,
let us define the approximate maximum likelihood estimator of Bq,

(2.17) B= argmax Ln(B,a)
B:n'B-Idv

The estimation procedure consists of the nonparametric estimation (2.14)
and (2.15) as well as the parametric estimation (2.17). The maximization
can be accomplished through any numerical optimization procedure.

2.2.3. Détermination of the nurnber of indices. An essential question
arising from the multiple-index framework is how to select the nurnber of in-
dices. The estimation procedures described in both Section 2.2.1. and Section
2.2.2. can be accomplished only provided a fixedpli, 2,... (the single-index
case can be included), although p is unknown. However, this implies that,
for a given p, the performance of each procedure can be measured through
the estimation errors such as, for example the sum of residues squared.
Since we assume that there is the d x p orthogonal matrix Bq satisfying
^[Y\XM K[Y\BqX], we expect the estimation error to be the lowest when
p is chosen correctly. Therefore, we propose determining the p by using the
cross-validation technique which restricts that of Xia et al. who include a

spécial case p = 0 where Y and X are independent (See Xia et al. (2002),
page 369). Using, for each fixed p, the estimator B obtained from each pro-
cedure to the computation of the estimators as and d, we then use these
estimators to compute the sum of residues squared. The index nurnber p is
determined in either of the following ways,

(2.18)
n

p = argmin V(pi - as(B'xi))2
i<P<d

n

or p = argmin y. (Vi
i<P<d M

a(B'xi)
a(B'xi) S

As we already mentioned, the so-called curse of dimensionality in nonpara-
metric kernel smoothing approaches cannot be avoided, when the nurnber
of covariates p is high and the sample size is insufîîcient for reaching some
level of the performance of the estimator. Accordingly, instead of comparing
the residual sums for 1 < p < d, we compare them for p = 1, 2,3, or up to
p A 4 at the highest in practice.

3. Implemented algorithm for the aMLE method. For the aMLE
method, some technical issues for the implémentation as well as the steps of
the algorithm will be presented below. However, concerning the implemented
algorithm for the rMAYE, see in Xia et al. (2002) for details. Moreover, the
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rMAVE algorithm in Matlab is available in Xia’s website. To focus on the
needs of this paper, we rewrote the original program using SAS®/IML codes
and combined it with the process of estimation of the Pareto index. They
were integrated into a new program which includes the algorithms for the
aMLE method as well as the maximum likelihood estimation method in the

generalized linear model.

3.1. Practical considérations. Initialization of B For our numeri-
cal optimization, we need to specify an arbitrary initial matrix of B —

(/31,..., (3P) which satisfies B'B Idp for a fixed p = 1,2,... respectively.
However, in practice, if the initial matrix selected is outside the neighbor-
hood of the real B, the algorithm can either require many itérations to
converge or simply fail to converge. For this reason, we set our initial matrix
to a reliable preliminary estimator Bn obtained from a simple procedure, e.g.
average dérivative estimation (Hardie et al., 1989). Note that this estimator
can be also used for the trimming rn in (2.16).

Boundary problem of a Let us recall that we impose that a# > 1,
since a > 1. For this, we introduce a set M = {u : ob0;(u) > 1} to
control the boundary problem of ab and modify rn into rn(B'nXi,c) =

1(ôB„(s;xj)>c)n(5B„(B^i)>i) Provided a preliminary estimator Bn. This be-
cornes équivalent to approximating the indicator function of the set A P) M.
However, note that since w n does not matter in practice but

usually it is required to prove some theoretical properties of the nonpara-
metric régression estimator (See Delecroix et al. (2006)), one often takes
tDBn{B'nxi)>c) = 1- Accordingly, we use the trimming T*(B'nXi) =
in practice.

Constraints on B While a solution is being searched in (2.17), the
maximization is subject to the identification constraints on the d xp matrix
B. For the p columns of B, the number of required constraints is - ^ 1 +p.
To reduce some of the computation time in finding a solution satisfying ail
the constraints, we propose to restrict the number of constraints to -^ 1
which is the required number for the orthogonality condition on any two
different vectors /3q and (3q, for i ^ j. Therefore, the maximization becomes
subject to fewer constraints than in (2.17), that is,

B* = argmax Ln(B,à)

where B* — (/3£, ...,/?*). Each vector /3* can be normalized by dividing it by
its norm. As a conséquence, we hâve B — ((3i, ...,/3p) where /% = Wm&\.



3.2. Description of implemented algorithm. With practical considéra-
tions mentioned in Section 3.1, for a fixed p, the algorithm for estimating a
and Bq through an approximate maximum likelihood method is summarized
as follows.

Step 0. (Initialization) Obtain a preliminary estimator Bn. For the coher-
ence of notations thereafter, let B^ be the initial matrix for B. Set l ij 0
and Bn.

Step 1. Obtain an estimator ait by the leave-one-out version of the NW
11 ' Bq) ’

method.

Step 2. Compute an estimator d+> by using the estimator from Step 1.
Step 3. Obtain in the following way,

B*n+jx = argmax L*(ü,a®)

where

i=i L
K(B+l)) = ~ŸJ

with respect to B.
Step 4. Normalize the vectors, /3*(/+1)/|/3*n+1)|, i = 1 , ...,p and update

Step 5. Set 1 = 1 + 1 and go to Step 1 until convergence is attained.

4. Simulation study.

4.1. Assessment of the performance of the estimator of multiple indices.
A natural way to evaluate the accuracy of the estimator of multiple indices
is to measure the distance between the true matrix Bq and each estimator
B. Let us introduce a simple measurement of the distance denoted by

A (B, B0)ltr{(B - B0)(B I B0)'}/d

where d is the row number of both Bq and B. However, there is a discrepancy
in the calculation, since the size of B differs from that of Bq. The column
number of B varies from 1 to 3 or up to 4, while the column number of
Bq denoted by pq is a fixed constant, i.e., pq = 2 for the simulated model
below. To remedy this problem, we suggest that when p < po, we add as
many zéro column vectors to B as necessary to define a new matrix B*,
which includes B as well as the added zéro column vectors. The size of B*
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becomes the same as the size of Bq. The idea is that B* is regarded as a
matrix of a transformation application in M?°, but B* only takes the values
in the p-dimensional vector subspace of RPo. Hence, we can complément B
with zéro column vectors to define B*. When p > po, we complément Bq in
the same way to define Bq of the same size as of B. As a conséquence, we
propose a new measurement of the distance between B and its estimator B
in the following way

A(B*,B0) = ti{(B" - B0)(B* - Bo)'}/d, iîp<p0
A(B, BS) = tr{(B-B*0)(B-BS)'}/d, iip>p0

where B* and Bq are the complemented matrices of B and Bq, respectively.

4.2. Simulated example. We conducted a simulation study to show the
performance of our procedure with the finite samples of size n = 100 and
n * 200. For the sake of simplicity, we used a normal product kernel K(u) =
B— where K*(u) = exp(i-x2/2)/^/(27r) is the classical Gaussian
kernel. In addition, the fixed bandwidth was set at hn » Cn~WÊ-4:+p^ where
C is a constant, p = dim(JB/X) and the sample size n. In other words,
hn = 0.75 x 100 was chosen at C — 0.75 and the index number p — 2 in
the sample of size n — 100. For an initial matrix B(q\, we used an estimator
Bn obtained from the refined minimum variance estimation method (Xia et
al., 2002).

We considered five independent covariates: Two binary variables X\ and
X2 were simulated from 1o.2JV(o,i)<o and lo.5A/'(o,i)<o> tfirss continuous vari-
ables Xq, X4 and X5 were simulated from the uniform distribution on the
interval [—1,1] and let X = (Xi, X2, X3, X4, X5)'. Assuming that two in-
dices are needed to capture ail the relevant information contained in X, we
considered the double-index régression model,

(4.1) a(B^X) = g(X'ti,X%)
where = (1,1,1,1,0)72, = (1,-1,1,-1,0)72 and B0 = The
variable Y was generated from the Pareto distribution with the parameter a
which is equal to the régression function a(B'0X) in (2.19) and the minimum
value of Y which is fixed at one. We specified a double-index régression
function g : R2 —> R, that is

g(h,t2) =| h | +3^ + 1

Our estimator BaMLE was compared with the other semiparametric esti-
mator BrMAVE which was obtained using the refined minimum variance
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estimation method (rMAVE) at the different number of indices. We report
the mean of estimation errors over 1,000 simulations from samples of size
100 and 200 in Table 1. The accuracy of each estimator was evaluated by
measuring the distance A(B, Bq) where po = 2 and 1 < p < 3, which is
defined in Section 4.1.

Table 1
^

Mean (Standard déviation) of estimation errors, A(B,Bç>)
N = 1,000 Number of indices (p) n — 100 n =|200

pmi 0.43279 (0.14522) 0.42466 (0.14147)
jdtm Av tj P |2 0.31351 (0.20133) 0.27909 (0.20661)

P |3 0.40867 (0.17828) 0.39230 (0.17516)
P = 1 0.44297 (0.16057) 0.43550 (0.16815)

jgaM JLJtS P = 2 0.11381 (0.06544) 0.09250 (0.05028)
p = 3 0.29791 (0.05060) 0.28654 (0.04521)

When p = 1, there is a slight différence in the mean and standard devi-
ation of the estimation errors between the above two estimators, whereas
when p = 2 or p = 3, the mean and standard déviation of our estimator
of BaMLE are much smaller than êrMAVE. Thus, the aMLE estimator per-
forms better when more than one index exist. However, both estimators tend
to behave similarly. The mean of estimation errors is the lowest when p — 2.
It is followed by the mean of estimation errors when p — 3 and then when
p s» 1.

We notice that as shown in Table 1, we could not compare the performance
of our estimator with that of the estimator obtained from a parametric model
such as the generalized linear model (GLM) for single index, i.e., p = 1. They
are not comparable because under the semiparametric model assumption,
we do not estimate the coefficient for the intercept of the vector (1 ,W),
which we do hâve to estimate within the GLM framework.

However, in contrast, our estimator aaMLE was compared not only with
the other semiparmetric estimator arMAVE when p — 1,2,3, but also with
the GLM estimator âGLM when p = 1. For this, we measured the perfor-
mance of the estimator of the Pareto idex as0 by computing the average of
the squared estimation errors n-1E”_1(S(H/æ) — ot(B'x))2 over 1,000 simula-
tions from samples of size 100 and 200. The computation results are reported
in Table 2 and Table 3.

Overall, either semiparametric estimator outperform àGLM, although the
performance of the GLM procedure is improved when the sample size in-
creases. The estimator ofrMAVE outperforms slightly âaMLE, when p = 1
and n — 100. In the other cases, the aMLE method performs much better
than the rMAVE method. As expected concerning the choice of the index
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Table 2

Comparison for single index, p — 1
N - 1,000, Number of indices (p) n — 100 n |g 200

aglmol P = 1 2.05482 (0.80366) 1.66843 (0.32451)
~ rM AV PJ
a
1 aMLE
a

P» 1
P = 1

1.41686 (0.37040)
1.43387 (0.45106)

1.39051 (0.30004)
1.38655 (0.39187)

Table 3

Comparison for multiple indices, p > 2
N = 1,000 Number of indices (p) n fl 100 n = 200

-rMAVE U
a P = 2

P = 3
1.05040 (0.39238)
1.06849 (0.40664)

0.90359 (0.35394)
0.91110 (0.31945)

‘M aM LK
a pm2

P 1 3
0.99112 (0.36465)
1.02147 (0.37667)

0.82150 (0.27126)
0.85893 (0.26171)

number, both rMAVE and aMLE methods show the smallest average of the
squared estimation errors when p = 2. The number of indices are chosen
correctly, i.e. p = 2.

Fig 1: Graphical comparison by using plots of(a(B'Xi), a(B'Xi)) where true Pareto
index a(B'Xi) (y-axis) against estimated Pareto index a(B'Xf) (x-axis) and the
45-degree reference Unes at different sample sizes, (a) n = 100, (b) n = 200

Furthermore, the graphical comparison between the true and estimated
estimators is depicted in Figure 1, The left and right panels in Figure 1
are scatter plots of the true Pareto index (æ-axis) against the estimated
Pareto index (y-axis) at different sample sizes 100 (a) and 200 (b) where the
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estimated Pareto index is the estimator aaMLE at p — 2. In the diagram
above, we can see that when the true Pareto index is well fitted by the
estimated Pareto index, points closely follow a 45-degree reference line. The
estimated indices (coefficients of X) used in (a) and (b) is summarized in
Table 4.

Figure 1 shows that the estimated Pareto index obtained from the aMLE
method fits quite well the true Pareto index, since most of the points are ap-

proximately distributed around the 45-degree reference lines except for some

points in both panels. Also, it indicates that when sample size increases, the
points clearly tend to concentrate along the 45-degree reference line.

B0

B(a)

B{b)

Table 4

Comparison for two indices used in (a) and (b)
True and estimated indices (coefficients of X) X(B, Bo)

0.5000 0.5000 0.5000 0.5000 0.00005 '
0.5000 -0.5000 0.5000 jj-0.5000 0.0000) 0.00000*

/0.2336 0.5969 0.5104 0.5648 -0.09785
y0.6634 -0.4191 0.3822 -0.0939 0.4789 J
/0.3224 0.5578 0.4297 0.6147 0.1495 Y
V0.4755 -0.2411 0.6843 -0.4681 -0.1681/

0.1071189

0.041241

5. Application to automobile insurance. We now illustrate our
method using automobile insurance data from the SAS Enterprise Miner
database, which is available on the companion website to the book by De
Jong and Heller (2008). This data set was used in various studies, ranging
from classifying the risks in the SAS Enterprise Miner to modeling the claim
frequency in Yip and Yau (2004). 2,746 out of 10,303 people had car acci-
dents between 1993 and 1999. There is some incomplète information for 153
people, so that we concentrate on 2,593 out of 2,746 cases.

To check the practical performance of our estimator in forecasting, we
divide this data set into two sets. One set is that 1,981 people had car
accidents between 1993 and 1997, and this is used for estimation. The other
is that 612 people had accidents between 1998 and 1999, and that is used for
forecasting. Using the first data set, we display the histogram of claim costs
in tens of thousands in Figure 2. There is a big decrease in the frequency of
daims between claim costs of 6,000 and 10,000 for claim costs.

The aim of the analysis is to examine how the conditional density of large
claim costs is related to a few linear combinations of people’s information.
For this, we take 0.8 in tens of thousands as a fixed threshold to define large
claim costs of our data set. We focus on 208 people whose claim costs are

superior to 0.8 in tens of thousands. From this data set, we let the variable
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Fig 2: Claims costs from automobile insurance in tens of thousands

Y be claim costs which are more than 8 (in thousands) and the vector X
constitute the following five covariates: if there are any children in a car when
the insured drives (yes:l, no:0), the area where the insured lives (urban: 1,
rurabO), how many years the insured has worked at their current job, the
value of the car (in thousands), the travel time between home and work of
the insured (in minutes).

For the nonparametric part, a product kernel K{u) = nf=i K*iui) is used
where K*(u) is the classical Gaussian kernel. The fixed bandwidth was set at
hn = where C — 1, index number p — dim(5'X) and the sample
size n. For an initial matrix B(0), we used an estimator Bn obtained from
the refined minimum variance estimation method. Using the cross-validation
technique, we présent our results at the different number of indices in Table
5 and Table 6.

When p = 1, the two semiparametric approaches outperform the paramet-
rie approach in Table 5. When we compare the two semiparametric methods,
the mean of the errors obtained from rMAVE method is lower than from
aMLE method. However, as soon as the number of indices increases (p > 2)
in Table 6, the mean of the errors is improved much more than in the case

p = 1 in Table 5. Overall, aMLE method outperforms rMAVE method at
each number of indices. As regards the choice of the index number, the mean
of the errors obtained from both rMAVE and aMLE methods is the lowest
when p = 4. The four index régression model using aMLE method performs
the best among ail the proposed models using different methods.
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Table 5

Comparison for single index, p — 1
Method Number of indices (p) Mean of estimation errors

GLM P = 1 6.3831594
rMAVE pli 2.0758689

aMLE p|l 2.4478090

Table 6

Comparison for multiple indices, p > 2
Method Number of indices (p) Mean of estimation errors

rMAVE P = 2 0.3852293

p = 3 0.0797080

p = 4 0.0546581

aMLE P | 2 0.3505817

P = 3 0.0756347

p = 4 0.0501537

To assess whether our method is useful for prédiction, we conducted a

supplementary study using a validation data set where claim costs occurred
between 1998 and 1999. A natural way is to compare the reaf claim costs
in the validation set with its predicted costs by using the above estimation
results in a training data set where car accidents occurred between 1993
and 1997. For this, we examined the results from the GLM and four index
régression models using rMAVE and aMLE methods. For example, we first
computed BaMLE by using aMLE method in a training set, that is

^aMLE

/—0.081437
0.2109254
0.2175798

0.9443702

\ 0.0985009

0.4668623
0.4000173
0.2392426
-0.180302
0.7295751

-0.249259
-0.335481
0.8952371
-0.154056
0.0118052

0.7074869 \
0.1694367
0.2732129
0.0258089

-0.628842/

and we then used it to estimate the claim costs in a validation set. To
measure the performance, we computed the prédiction errors which are cal-
culated as the mean of residues squares, nfEf—i(yi — a^(B'xi))2 for each
model. In Table 7, the results are reported for the four samples which are
obtained using different fixed thresholds s (s = 2,4,6,8) in thousands. Here,
the thresholds are interpreted as the levels of excessive claim costs, which
do not rely on the characteristics of X (or people’s information).

Clearly, the prédiction errors from the four index régression models are
much lower than from GLM. When we compare the two semiparametric
approaches, aMLE method tends to outperform rMAVE method more and
more as the threshold increases.
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Table 7

Prédiction errors at different thresholds s = 2,4,6,8 in thousands
(Y—the claim costs in thousand, n=sample size of the validation set)

Method Y > 2 (n = 513) Y > 4 (n = 316) SoCMCOA Y > 8 (n = 58)
GLM 25.174654 8.6264527 8.388384 8.9756044

rMAVE 0.0777016 0.0276495 0.0030006 0.0000323

aMLE 0.0748298 0.0267066 0.0020292 0.0000309

6. Conclusion and future work. In this paper, we introduced a new

semiparametric procedure for estimating a single-parameter Pareto index
model with a > 1 under the multiple-index régression assumption. Then,
we studied the practical performance of our procedure, although we still do
not know the theoretical properties of our estimators. Our approach was well
adapted to analyze large claim costs and gave good results compared to the
parametric and the other semiparametric (rMAVE) approaches. In practical
applications, our model may be a useful alternative to both the classical
parametric models or single-index models. The model relies on more flexible
assumptions about the Pareto index than parametric models do. Further-
more, multiple indices tend to capture the relevant information carried by
covariates better than a single index does throughout our simulation study.
We believe that multiple-index régression models become a more efficient
tool in the analysis where there are many covariates.

Although the current work concerns the use of semiparametic régression
models in practice, it would be of interest to explore the theoretical behav-
ior of our estimators. For practical purposes, it would be useful to try to
incorporate a method for automatically selecting bandwidths of kernel es-
timators into our procedure. To extract only the extreme values from the
sample and use the effective sample which is composed of the extracted val-
ues for estimation, a method of selecting a threshold which détermines the
effective sample would also be incorporated. Another possible direction for
further work would be to extend our approach to the Generalized Pareto
(GP) distribution which is defined as,

F (y) = 1 - (1 iîk^O
-- 1 —exp(—^), if k = 0

with a shape parameter k and a scale parameter a (a > 0) (See e.g. Davison
and Smith (1990)). If k < 0, y > 0 and if k > 0, 0 < y < a/k. In the case
where k < 0, GP distribution is heavy-tailed. We may introduce a positive
parameter denoted by a = —1/k and call it the Generalized Pareto (GP)
index. This GP index would be linked to covariates via a semiparametric
multiple-index régression function.
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