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Abstract—The level of autonomy of our vehicles is rapidly
increasing. However, the acceptance of fully Autonomous Vehicles
(AVs) depends on the confidence in their ability to operate
safely in an uncontrolled environment. Hence, experts and non-
experts must have a rigorous method along with adequate tools
that can support their exigencies and safety specifications. This
paper presents a Domain-Specific Modeling Language (DSML)
for defining formal rules and generating flaw-less artefacts, which
enables the application of a Safety Analysis of Violations and
Inconsistencies (SAVI). The validity of the approach is illustrated
on a Renault use case implementation with formal safety goals
for autonomous vehicles. Our approach allows designers to detect
violation ambiguities and rule inconsistencies on real or simulated
scenarios.

Index Terms—Autonomous vehicles, safety rules, model-based
system engineering, formal methods, requirement engineering,
model development and verification, test and simulation.

Almost every mode of transportation is becoming au-
tonomous. The main difficult hurdle in the autonomous domain
is to guarantee that systems and software components are safe.
The automotive industry is investing a lot in deploying self-
driving systems in transportation technologies. It is necessary
to overcome these challenges before having big fleets of cars
on our roads. To avoid the rejection from the public opinion,
we need to get them involved in the adoption of safety deci-
sions. Operational safety defined in the ISO 26262 standard
[1] implies having a design for the safety component that deals
with all unsafe situations. The safety of intended functionality
(SOTIF) approach that extends ISO 26262, is defined in
ISOPAR 21448.1. SOTIF is concerned with failure causes
related to system performance limitations and predictable
misuse of the system. Performance limitations or insufficiency
of the implemented functions are due to technical limitations
such as sensor performance and noise. They can also be
due to limitations of the algorithm such as object detection
failures and limitations of actuator technology. Safety experts
started to use traditional manual approaches to enforce safety
decisions [2]. There is a threat of using these approaches, as
safety experts’ analyses depend on their experiences. Some-
times safety rules are not well formalized and usually are
not reusable in the future. In addition, classical exhaustive
verification techniques cannot guarantee that the system is safe

because of the high degree of uncertainty in the environment.
These test-based approaches also lead to a system complexity
where time and cost are not under control [3]. Using the
Model-Based System Engineering (MBSE) approach to assess
software safety, enables formalization, improves reuse of the
software, and helps to address safety analysis [4]. Model-
driven approaches also address the complexity with a model-
centric methodology that exploits domain models rather than
documents. The use of Domain-Specific Modeling Language
(DSML) enables fast prototyping of those behaviors by using a
metamodeling structure. [5]. Endowed with formal semantics
it brings a possibility to verify before generating a conforming
code.
In this paper, we propose a DSML to verify the safety of
Autonomous Vehicles (AVs). Monitors are generated to ensure
the functional safety. We apply the study to real scenarios
where we visualize many types of breaches.

This paper is organized as follows. Section I presents rel-
evant background information. Section II presents the DSML
proposed. We begin by detailing the language development
and presenting the user process where he is informed of the
procedure to deploy this language. The last part of this section
describes our Safety Analysis of Violations and Inconsisten-
cies (SAVI) on Renault use case. Finally, section III concludes
and discusses future directions.

I. BACKGROUND

The design of safety-critical systems involves people with
different expertise. All DSML users, whatever their domain
of expertise, must correctly evaluate the architecture and
understand the impact of their decisions on safety. On the
other hand, safety experts also need solutions to ensure a good
coverage in the considered safety scenarios and use cases.
Fortunately, DSML bridge the gap by translating artefacts from
one domain to another, and maintaining a full synchronization
with safety models [6]. The certification of the generation pro-
cess from models to deployed artefacts ensures that designers
can safely focus on models, less on implementation details,
and therefore reduce development time. Thus, it improves the
efficiency of the testing process, almost reduced to integration,
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Fig. 1: Three-way views of the approach

as only safe artefacts are produced. Generated artefacts will
then be used by engineers to provide a verification failure
assessment.
Many approaches use the Model-Based System Engineering
(MBSE) approach to provide a verification failure assess-
ment. A safe autonomous vehicle trajectory DSML consists
of driving a vehicle through a set of known waypoints by
connecting motions in a sequence [6]. This work provides
always a safe trajectory and creates a motion navigator for the
autonomous car. Unfortunately, their domain is not applicable
if the trajectory is already planned. It also does not provide to
the user the alerts and the measures to take during an unsafe
scenario, and does not know the original cause of the violation.
An intelligible model is done to guarantee safety [7], but it is
parametric and depends on environmental conditions. Sensor
uncertainty dilemma has been handled using probabilistic
models with formal specifications [8]. A rule-based strategy
was also designed to evaluate sensors’ dependability [9]. Yet,
the main problem of autonomous driving systems perception is
still not explored. In this paper, we give the user the capability
to add parameters and specifications relying on the sensors
and the environment, to examine ambiguities. Furthermore, a
SceML study was carried out [10] to create a graphical model
to generate new scenarios or test existing ones using Machine
Learning. They facilitate the scenario creation process, but
not the formal description of safety rules. This is why we
apply formal semantics to this approach that allows specifying,
designing, and analyzing the system. Mathematical reasoning
can improve software reliability and dependability and is
essential when developing complex software systems.

We develop an abstract model expressive enough to support
safety analyses. We rely on the GeMoC framework [11]
as it integrates a set of languages and tools based on the
Eclipse Modeling Framework (EMF) to ease the definition
of new DSMLs with inherent concurrency [12]. Additional
components may be included to achieve artefact generation,
such as correct syntactical code generation [13].

II. A DOMAIN-SPECIFIC MODELING LANGUAGE FOR THE
SAFETY OF AUTONOMOUS VEHICLES

We have developed a Domain-Specific Modeling Language
(DSML) to verify the safety of Autonomous Vehicles (AVs).
To ensure the acceptability of this language, we need to
support the specification of the formal safety rules and the
environment. An automatic generation of a monitoring system
assists the interpreter by triggering alarms and possible
recover maneuvers. Those monitors are expected to enable
the user to detect inconsistencies and violations between
rules and priorities. After performing a Safety Analysis of
Violations and Inconsistencies (SAVI), the user can modify
the rules and repeat the same cycle to ensure the correctness
of the autonomous behavior.

We present three perspectives of our approach as seen in
Fig. 1. First, from a language engineer perspective in section
II-A, we describe necessary steps to implement the Exten-
sible Platform for Safety Analysis of Autonomous Vehicles
(EPSAAV) in [14]. EPSAAV is our DSML specified in our
previous study where we detailed our metamodel and concrete
syntax to auto-generate monitors. Second, we introduce gen-
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eral steps for user perspective in section II-B. In this section,
we detail how the user should use our approach and what he
needs to do to perform a safety assessment. The third point of
view describes Renault’s use case in section II-C to test the
approach and validate a SAVI in section II-C4.

A. Language Development

One of the main objectives of our language is to empower
designers and experts with formal and yet practical solutions to
describe the environment, the expected behavior, and the safety
rules for the car under design. This is described in sections
II-A1 and II-A2.
The second objective is to support the automatic generation
of : (a) a human-readable document describing the rules
and libraries used, and (b) monitors that allow the user to
adapt output data of the simulator used with our safety rules.
The violation of safety rules triggers alarms through these
monitors. Section II-A3 details this part.
The third objective described in section II-A4, is to test, verify
and identify inconsistencies. Sometimes a rule can lead to
similar or contradictory behavior to another one. To avoid this,
an inconsistency study must be conducted.
We use the open-source Gemoc tool [11] as it covers all
aspects of a DSML development; from abstract and concrete
syntax definition to semantics and operations. Gemoc is easy
to integrate with all those technologies. It integrates solutions
to ease the code generation and includes solutions to describe
concurrent behaviors [12].

1) Abstract syntax: contains a graphical description of
the metamodel. We use Eclipse Modeling Framework (EMF)
technology. EMF is a framework and code generation facility
that defines the model and generates implementation classes.
EMF unifies the three important technologies: Java, XML, and
UML. EMF model is the common high-level representation
that glues them all together. The metamodel describes the
classes and the relationships of the environment. For example,
Fig.2 describes the abstract part of the rule-based planner,
where goals are specified and composed of conditions referred
to alerts and actions. The goals could be filtered either by
role or by expression. The RuleBasedPlanner refers to a
Scene that captures the perception capability of the vehicle.
Rules are combined with logical operators. It is also important
to prioritize rules in the case where several of them can
be simultaneously triggered with contradictory behavior (e.g.
break hard vs. maintain speed). The notion of SelectByGoal
allows executing goals either in parallel or sequentially. Once
the abstract syntax is specified, we build a concrete syntax.

2) Concrete syntax: defines the concrete terms that should
be used by designers and the grammatical rules to bind them.
We use Xtext technology to provide a concrete textual syntax
to our language. In our language, we create Xtext files for
some of the classes as defined in Fig.3. We get a separate
description for the scene, actions and alerts, parameters and
properties, and goals and priorities. The extensions defined for
each class serve to create new files and libraries.

3) Auto-generation of a human-readable document and
monitors: which enables safety engineers to easily integrate
them with the chosen simulator and adapt the auto-generated
code to check violations and consistencies described in section
II-A4. We use Xtend technology to give the operational
semantics and assign a behavior to each of the declarations
of our DSL. We generate a readable document that gave
the engineer the possibility to validate and communicate his
choice. Usually, this document is the main artefact used
by safety engineers. Here, the document can be generated
when the model is updated. We also generate code that eases
interfacing with the output of the simulator and checking the
violations. The code enables the user to analyze and identify
rule consistencies.

4) Establishing satisfiability to avoid inconsistencies:
using SAT Solver. SAT Solvers have been used in many
practical applications. We expect to enable safety engineers
to create a resilient and safe driver monitoring system
that checks safety rules defined previously and investigates
inconsistencies, possibly assigning priorities to sort them out.
The SAT problem is a decision problem, which, given a
propositional logic formula, determines whether there is an
assignment of the variables that makes the formula true [15].
This will test rule inconsistencies, and verify solutions for
all the rules. All logic operations for rules specification are
translated to specific forms of coding. The task comprises of
testing the rules with specific formulas by auto-generating
specific checks for each rule.

B. User Process

The user has three tasks to analyze and guarantee safety in
real or simulated scenarios, as seen in Fig. 4. First, he must
describe the environment (scene, parameters, and properties),
the behaviors (alarms and actions), and the security rules with
priorities. Fig.5 is an example of rules (also called goals) in-
troduced on the user interface. We define a RuleBasedPlanner
named rbp, referring to a scene defined in another file where
we introduce the capacity of ego’s perception using another
syntax. Two properties (prop1 and prop2) were previously
defined having different states in Fig.6. Libraries of actions and
alerts were also created. Conditions are put together through
logical expressions.

Safety engineers assign every goal to a type that is either
a priority or a constraint. If a goal has a priority on another,
the second one should not be executed if the first one is true.
If a goal has a goal type as a constraint, both are executed
in parallel. This priority-constraint categorization helps the
engineer choose which rule should be accomplished before
or at the same time as another one. It implies a hierarchy of
priorities between all the rules. In Fig.7, we show an example
of two contradictory actions triggered at the same time. Goal 1
consists of having three conditions : (1) following the PV, (2)
respecting speed threshold, and (3) respecting safety distance
of 2 s. The first goal leads to a light acceleration, contrary to
the second goal that generates emergency braking. It consists
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Fig. 2: RuleBasedPlanner Abstract metamodel

Fig. 3: Concrete Xtext Files in our metamodel

Fig. 4: User process to use the approach

of respecting a Time To Collision (TTC) for every Vehicle
Road User (VRU), e.g. pedestrians. In this case, emergency
braking has a strong priority over light acceleration, and this

priority needs to be carefully defined within the priority-
constraint sorting.

When the environment definition is finalized, we execute
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Fig. 5: Formal Rules using logical expressions described by
the user.

Fig. 6: Properties and states using formal syntax defined by
the user.

Fig. 7: Case where emergency braking should have a stronger
priority over light acceleration.

an automatic generation of monitors and a human-readable
document. The main interest of this framework is to give
the engineer the ability to define all the rules that he thinks
should be triggered. It also gives him the ability to track rule
modifications. In case of changes, the tool has the potential
to generate a new code according to the specified rules. It
is a generic tool for flexible rules that can be used not only
for safety domains but also for security and failure domains.
Depending on those rules, a specific code is then generated
related to those formal rules. The document legibly describes
the rules and libraries, so it helps to communicate the accuracy
and completeness of those rules. The monitors allow the user
to adapt perception data with safety rules and investigate rule
inconsistencies. For the generated Java code, we feed it to the
SAT Solver to test inconsistencies and modify safety rules.
For the code compatible with the simulator used, the user has

to take the generated monitors and plug them into real or
simulated scenarios such as Webots [16], Carla [17]. . .
Then, an adaptation of our input data with the output data
of the simulator is necessary to test, verify and identify rule
violations using formal languages. This part is further detailed
in our Renault use case in section II-C where we detect
ambiguities in rules that may lead to violations.

C. Renault Use Case

To apply operational safety on the trajectories of self-
driving cars, we will need the elementary data necessary for
the system, such as rules and libraries. We translate scenarios,
their risks and the measures to be taken, to formal rules
describing lateral and longitudinal control. The EPSAAV
tool facilitates this formalization process and improves
communication between the engineers. We proceed to an
auto-generation of a human-readable document and monitors,
that will be helpful to acheive a SAVI.

1) Formal Goals Description: we introduced five scenarios
in our use case as shown in Fig.10 that deal with risks of
no/insufficient or unexpected braking, no lateral correction,
and unexpected lane change. We take a scenario that describes
the case where the Ego vehicle (EV) is having a problem
detecting lines and/or Preceding Vehicle (PV) in Fig.8a. The
risk we have is a lateral collision with the Side Vehicle, or
Straddling Vehicle (SC). In case of a line or PV loss, the
system shall maintain the EV in the lane using the remaining
information. If the line disappears more than t6 seconds, the
system must trigger an Emergency Operation (EOP1). Fig.8b
formalizes this scenario by creating a goal that contains one
condition to avoid the risks and to trigger behaviors. Goals
can have multiple conditions. For each condition (WHEN),
there is logical expressivity that constitutes the syntax.

2) Generation of documents and monitors: using the
EPSAAV tool, we generate a readable document that gave
the engineer the possibility to validate and communicate his
choice. We also generate (a) C code which eases interfacing
with the output of the simulator and checks the violations,
and (b) Java code which enables the user to analyze and study
rules incoherences. The C code is compatible with Renault’s
simulator called ”FusionRunner”. We chose ”FusionRunner”
among all simulators for many reasons: (1) it executes
perception’s algorithm and sensors fusion data of Renault, (2)
it runs driving data on open roads and many other real-life or
simulated scenarios, and (3) it provides practical information
(such as data sensor, data fusion, TTC, PT, Autonomous
Emergency Braking (AEB), Adaptive Cruise Control (ACC),
...). We integrate this code into the perception algorithm and
then adapt the safety functions by feeding the simulator’s
output to the input of the generated code.
The auto-generation consists of: (1) translating all the
environment defined to functions compatible with Renault’s
language, (2) filling the functions needed to test rules
according to defined thresholds, properties, and parameters
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(a) Lateral control scenario: no lane/PV
detection case.

(b) rule specification formalized for this use-case scenario.

Fig. 8: Formalizing scenario to goal containing one condition and using logical expressiveness in case of a no lane/PV
detection scenario.

Fig. 9: Five formal rules introduced in our Renault Use Case
with parallel and sequential executions.

Fig. 10: Five scenarios violations introduced in Renault’s use
case.

given in the beginning, and (3) creating a function that treats
all goals and conditions in priority or parallel, depending
on the goal type. We took the C auto-generated code and
implemented it into the ”FusionRunner”.

3) Interfacing the auto-generated C code with Renault’s
simulator: Fig.11, Fig.12, and Fig.13 constitute the windows
output to better visualize violations defined in the rule-based
planner. In Fig.11, we can visualize a real-time video in the
Fusion Context View and the sketch of this video in the
Fusion Display. In Fig.12, and Fig.13, we can see all the
binary states’ properties, five goals with their conditions,
actions, and alerts triggered in the SAFETYCHECKER
window output. We store, at each slot, the parameters’ values
from fusion data. The windows output helps us inspect

Fig. 11: Fusion Control View and Fusion Display windows at
step 4217.

Fig. 12: SAFETYCHECKER Window for safety analysis of
violations that shows the parameters, the goals with the alerts
and actions triggered at step 4217.

violations and ambiguities in the goals declaration.
The results in the following section indicate that it is possible
to reuse the model defined to verify safety in the automotive
industry. It also shows the benefits and efficiency of using
our DSML. In addition, it makes safety exploration easier
for engineers, therefore improving the quality of their surveys.

4) Safety Analysis of Violations and Inconsistencies (SAVI):
an ambiguity is presented in a violation that occurred in Fig.12
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Fig. 13: SAFETYCHECKER Window for safety analysis of
violations that shows the properties binary states at step 4217.

at step 4217. This violation is assigned to the goal2 cond1
presented in 8b. The EOP1 is triggered according to this
goal when the PV disappeared more than a threshold. This
is ambiguity because if we look at the Context View in Fig.11
at that step, we can see that there is no PV, and it is not logical
to trigger an EOP1.

We propose a modification for the safety rule to erase this
ambiguity by adding a condition on the stability for the line
detection as shown in Fig.14. To study rule inconsistencies,

Fig. 14: Modification in the rule expression to erase ambiguity.

the generated Java code fed to the SAT Solver will help us
verify all solutions for all the conditions and goals. This work
is still in process. By that, we will be achieving a SAVI.

III. CONCLUSION AND PERSPECTIVES

This paper introduces a methodological proposal for using
the MBSE approach in the automotive safety field. We de-
scribe the language development viewpoint where we talked
about the abstract and concrete parts, the auto-generation of
monitors and documents, and the SAT solver to study the
inconsistency. We detail the user process tasks. The user
has to specify requirements formally using EPSAAV to help
him generate what he needs for safety analysis. We also
show code generation that the user needs to link with the
simulator’s perception data. In our use case, we generated C

code and tested and visualized goals to demonstrate that this
approach is feasible. We show a goal’s ambiguity, and the
notifications triggered to the user. We propose a modification
to delete an uncertain violation. If we could find all violation
ambiguities and analyze inconsistencies, we can assure that
all specifications are realizable and complete. We can apply
this generic tool to test rules other than safety domains,
such as security or failure domains. Ethic people can apply
this framework to two different sets of rules. They can then
select what is the best set of generated monitors. For future
work, we will auto-generate java code for the SAT Solver.
The SAT problems will help check rule inconsistencies and
achieve SAVI analysis. We will also test rules on more real-
life scenarios and analyze their output on more use-cases.
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