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Abstract 

This work presents a coupling between three multivariable analysis techniques (Principal 
Component Analysis (PCA), K-means and Kohonen Self-Organizing Map (KSOM)) applied 
to the acoustic emission data recorded on Glass Fiber-Reinforced Polymer (GFRP) composite 
materials in order to monitor and identify, in real-time, their damage mechanisms: matrix 
cracking, interfacial debonding, fiber breakage and delamination between layers. Two 
mechanical loadings were used during this study: a monotonic tensile test until the failure and 
a step-wise tensile test of 50 MPa each time (7 ramps and 6 levels of 4 min holding time). The 
first loading, applied to the specimens in pure epoxy resin, unidirectional (UD) [0]4 and [90]4 
GFRP, as well as the laminates [0/90]S, allowed to evaluate the acoustic signature of each 
damage mechanism and establish a physical learning basis. The obtained physical data were 
employed for the learning operation of the Kohonen map which will be used for the 
identification of the damage mechanisms according to the level of the applied loading in the 
gradual tensile test. Post-mortem inspections conducted on the fracture facies of tested 
specimens under SEM confirmed the relevance of this {multivariable statistical 
analysis/acoustic emission} coupling for the detection and identification of GFRP damage 
mechanisms. Thus, the results of this study showed the relevance to identifying the damage 
mechanisms generated in a GFRP material by using multivariable acoustic emission analysis 
and provided a real potential for damage identification that would be developed in composite 
structures, made with the same material, under in-service loadings. 

Keywords: Glass Fiber-Reinforced Polymer (GFRP); Acoustic Emission (AE); Damage 
mechanisms; Principal Component Analysis (PCA); K-means; Kohonen’s Self-Organizing 
Map (KSOM). 
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1. Introduction 

Polymer-matrix composite (PMC) materials present nowadays an exciting alternative to 
metallic materials conventionally used in industry [1–5]. PMCs bring many structural and 
functional advantages: mechanical resistance, lightness, electrical insulation and freedom of 
forms. Their growth is mainly linked to the transport industry development: aeronautics, 
aerospace, rail, naval and automotive. However, due to their heterogeneous, anisotropic and 
multilayer structure, their damage under mechanical stresses is a fairly complex phenomenon 
whose experimental characterization is far from being mastered despite the abundance of 
research works carried out on the subject for several years now [6–19]. In fact, the nature of 
the damage and the mechanisms behind its appearance and propagation are very different from 
those encountered in metallic materials. Likewise, inevitably, some defects can appear during 
the PMC manufacturing stage (lack of reinforcement, fiber misalignment, inclusions, 
porosities) and can have harmful consequences under service loadings [20–22]. Their shape, 
size, and distribution vary greatly depending on the PMC's nature and its manufacturing 
process. Under mechanical loading, four main damage mechanisms can occur in PMC 
materials: matrix cracking, interfacial debonding between fibers and matrix, fiber breakage and 
delamination between plies for the cross-ply laminated composites [5,6]. These damage modes 
are conditioned by the type of material architecture and the direction of applied mechanical 
stress. The damage begins at a microscopic scale, by the appearance of the matrix microcracks 
transverse to the stress direction, these microcracks propagate inside the material as the 
mechanical stress increases. They will generally be stopped by the fibers reinforcing the 
polymer matrix. At this level, several parameters are involved in the acceleration or slowing 
down of the damage process, such as the volume fraction, the reinforcement orientation, the 
ply thickness and mainly the stress direction. In fact, a high fraction of the fibers makes it 
possible to oppose the propagation of the microcracks if the fibers are oriented according to 
the loading direction. Also, a thin layer with a good inter-ply adhesion can increase the 
mechanical properties of the laminated composite. On the other hand, a mechanical stress 
perpendicular to the fiber orientation causes a gradual increase of the transverse microcracks 
and generates the pullout phenomenon of the fibers. The interfacial debonding occurs strongly 
if the bond quality between the fibers and their matrix is poor [6]. Thus, the transverse cracks 
can follow the interface path which, according to an energetic approach, is the easiest compared 
to that of fiber which has high mechanical properties. When the matrix cracks and fiber/matrix 
debonding propagate, the fibers become more and more the most loaded, they break one by 
one or packet by packet by resisting the loading and favoring a progressive rupture. The final 
failure of the PMC material is a combination and an accumulation of these various damage 
mechanisms [5]. 

Several non-destructive testing (NDT) techniques can be used to detect and quantify the PMC 
damage [23–25]. Acoustic emission (AE) is historically seen as one of the most effective 
methods to evaluate mechanical damage in PMC materials. It is defined as an energy release 
phenomenon in the form of transient elastic waves resulting from some local micro-
displacements internal to a material subjected to stress [26]. The emitted elastic waves are 
initially ultrasonic volume waves (longitudinal and transverse), but undergo mode conversions, 
depending on the geometry of the tested structure, to transform into Lamb waves in the case of 
thin samples such as laminate composite structures. AE method consists of detecting these 
waves in order to extract real-time information on the material damage [27]. The bibliography 
is very abundant regarding the use of the AE technique for the damage characterization of 
PMCs. The synthesis in the chronological order of most of these works separates the analysis 
into two parts concerning the data processing mode: single-parameter or multiparameter 
analysis [28]. Conventional single-parameter processing of AE data considers a single 
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parameter among several to describe an acoustic signature corresponding to a specific damage 
mechanism. The parameters that can be used are numerous (amplitude, duration, rise time, 
counts, frequency, energy, etc.), which can be extracted directly from the temporal signal or its 
frequency spectrum. Most single-parameter studies use amplitude as a discriminating 
parameter of the damage mechanisms [6,7,18,28–31]. The amplitude describing the acoustic 
signatures varies from one test to another and from one study to another depending on the 
studied material, the used sensors, their coupling condition, the system and the threshold 
acquisition, etc. Therefore, it is very difficult to make a comparison between all of these studies. 
Despite the diversity of the studied composite materials and the conducted mechanical 
characterization tests, the amplitude criterion accords significant values to the fiber breakage 
and low values to the matrix cracking. However, a single damage mechanism, such as matrix 
cracking, can produce a wide range of amplitude. Indeed, several studies like [29,30] present 
some overlap intervals between two damage mechanisms, which does not allow the correlation 
with certainty between the AE amplitude and a particular damage mode. To solve these 
problems, the multivariable or multiparameter analysis has major advantages and more 
credibility. The authors attempted to analyze several descriptors of the AE signals. The AE 
descriptors can be temporal, frequency, time-frequency, etc. [32]. Ely and Hill [33] showed in 
the case of graphite/epoxy composite that the signals having the high characteristics (large 
amplitude, high energy, high number of counts and long duration) result from the breaking of 
fibers, but those having the weaker characteristics (low amplitude, low energy, low number of 
counts and short duration) result from longitudinal matrix cracks. Barnes and Ramirez [34], 
testing carbon fiber reinforced pipes, used at the same time the amplitude of the AE signals and 
their duration to characterize the different damage modes. They found a long duration and a 
low or medium amplitude (in the order of 45 to 70 dB) for the delamination and debonding, 
and for the breaking of fibers a high amplitude and short duration. However, the authors state 
that a damage mechanism such as matrix cracking can occur with a wide variation of the AE 
signal parameters. Huguet and Godin [28,35] used a parametric analysis for the classification 
of AE signals obtained for glass fiber/polyester matrix and glass fiber/epoxy matrix. For 
instance, Huguet considered six descriptors: amplitude, rise time, duration, energy, number of 
counts and number of counts during the rise time. This multivariable analysis is carried out 
using k-means, k-nearest neighbors and Kohonen self-organizing map (neural network) 
algorithms, which allowed separation of four different signal types A, B, C and D. Type A 
signals, linked to matrix cracks, are characterized by an amplitude comprised between 50 and 
70 dB, a short duration, fairly slow rise time and relatively low energy. The signals type B have 
an amplitude between 70 and 100 dB, fairly short rise time and higher energies that are 
attributed to the interfacial debonding. Type C signals correspond to the fiber breakage, their 
rise and fall times are relatively short with fairly large amplitudes and energies. The fourth 
signal of type D describes fairly energetic signals, long durations, very slow rise time and 
covering a wide range of amplitude. Huguet attributes it to the delamination phenomenon 
between the plies of the studied PMC specimens. The choice of the most relevant descriptors 
to take into account for the classification can be made by visualization in Principal Component 
Analysis (PCA) diagram [32]. Marec et al. [32,36] used a Fuzzy C-Means (FCM) clustering 
associated with a principal component analysis. This last classification method is first applied 
to "simple" materials such as unidirectional (UD) composites. Then, more complex materials 
were studied: cross-ply composites, SMC (Sheet Molding Compound) composites and 
heterogeneous materials of polymer concrete type. The proposed classification method allows 
to take into account several parameters (number of counts at the peak, number of counts, energy 
and amplitude) that are used together in the same multidimensional analysis. 

The number of AE hits detected during a mechanical loading is very large and complicated to 
process especially when several damage mechanisms happened, so it is necessary to use data 
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classification algorithms: the classifiers. A classifier is a mathematical method able to distribute 
the data, described by several parameters, into a finite set of classes with well-identified 
boundaries. In the AE method case, a classifier must allow the creation of a set of separate 
classes containing similar data describing the same damage mechanism in PMC material. 
Commonly, two types of classification algorithms exist: supervised and unsupervised. 
Supervised classification requires prior knowledge of the number of classes that we have. 
However, unsupervised classification is generally chosen where the classes are not known a 
priori by the user. It is rather interesting to choose the unsupervised approach while assuming 
that the operator does not have any information beforehand on the number of classes 
corresponding to damage mechanisms occurring in the studied material. The most used 
unsupervised classifiers for damage mechanisms discrimination in PMC materials are the K-
means [28,35,37,38], K-Nearest-Neighbours [35,39], PCA [32,36,40] and the Kohonen self-
organizing map [28,35]. The choice of pertinent AE descriptors, as the input database of these 
classifiers, is far from being mastered especially when applied to heterogeneous and anisotropic 
materials such as PMCs. In the analyzed literature, different choices of relevant descriptors are 
possible and each author argued his choice according to the case of study. Huguet [28] chose 
six descriptors to perform the multivariable statistical analysis: rise time, number of counts, 
energy, duration, amplitude and number of counts during the rise; while explaining that these 
parameters are the most used in the classical AE analysis. Moevus et al. [41] calculated the 
correlation matrix which connects 18 parameters describing the acoustic activity and 
established groupings according to their correlation coefficient “r”. The determination of a 
threshold r=0.8 allowed the definition of the number of groups to be taken into account. It was 
chosen so as to select a subset of 8 parameters using a dendrogram representation. Each group 
of the most correlated entities is then described by only one of them because they provide the 
same acoustic information. However, the choice of threshold value remains questionable. 
Marec [36] selected the most relevant descriptors using the PCA method. It was carried out on 
the data obtained on a 45°UD Glass Fiber-Reinforced Polymer (GFRP) composite that was 
submitted to a tensile test. The descriptors were illustrated in the 2D plane corresponding to 
the two principal components with the highest variances. In this case of study, the number of 
counts at the peak, the number of counts, the energy and the amplitude gave a PCA with less 
overlap and were thus selected as the appropriate descriptors. 

The current study leads with the use of the AE method for detection and monitoring of the 
damage mechanisms of UD [0]4, [90]4 and cross-ply [0/90]S E-GFRP laminates subjected to 
various mechanical loads: monotonic tensile until failure and step-wise tensile test. The use of 
the multivariable analysis algorithms, in particular the coupling between PCA and K-means, 
will allow the elimination of redundant AE descriptors. Firstly, the objective will be to carry 
out some typical AE tests allowing us to identify the various damage mechanisms according to 
their acoustic signature. To do, simple specimens of a pure epoxy matrix, then UD GFRP 
samples at 90° and 0° were submitted to uniaxial tensile test to determine, respectively acoustic 
signatures of matrix cracking, interfacial debonding between fiber and matrix, fiber breakage. 
Cross-ply composites [0°/90°]S will be studied to identify the delamination signature. Then, it 
is possible to practice the labeling Kohonen map, which will allow the various AE events to be 
grouped on classes, each one corresponding to a damage type. Kohonen map can now be used 
to characterize the damage of a healthy laminated [0/90]S specimen under monotonic tensile 
test with successive holding stages. The obtained damage mechanisms classification will be 
validated with fractographic observations using Scanning Electron Microscopy (SEM). 

 

 



6 

 

2. Used unsupervised analysis methods 

Used data classification methods are mainly based on the concept of vectors and the calculation 
of the Euclidean distance. Once the pertinent descriptors are selected, experimental data is 
represented in the form of vectors forming a global matrix X of n rows and d columns (Eq. (1)). 
The n rows are the observation numbers and the d columns are the parameter numbers 
describing each observation. In order to homogenize all the data, it is interesting to transform 
them into reduced centered variables. Thus, each column of the matrix X has a zero mean and 
a standard deviation equal to unity (centering a variable consists of subtracting its mean from 
each of its initial values and reducing it consists of dividing all its values by its standard 
deviation). If ���  et ���  (j=1,d) are two observations (two vectors lines) of the input matrix X, 

the usual Euclidean distance ����� , ���� is calculated according to Eq. (2). 

 	 = ���
��� ��� … ������ ��� ⋯ ���⋮ ⋮ ⋮ ⋮��� ��� ⋯ �����

�� (1)  

 ����� , ���� = ������ − ������
���  (2)  

2.1. K-means method 

It is one of the most used classification algorithms due to its implementation simplicity. K-
means is an iterative method, with "mobile centers", which consists of partitioning data by the 
concept of minimizing intra-group variance [28]. The coordinates of the group centers are 
initialized randomly or manually. Then, each input vector ���  (i=1,n and j=1,d) is assigned to 

the nearest group, depending on the Euclidean distance (Eq. (2)) between the input entity ���  
and the group centers ��� (I=1,K with K is the number of groups and j=1,d). Then, by randomly 
changing the coordinates of the centers, the procedure is repeated until no change in the 
coordinates of the centers is reported, at this stage, the algorithm converges [32]. 

2.2. Principal component analysis (PCA) 

One of the major inherent difficulties of multidimensional statistics is the problem of data 
visualization. Indeed, as soon as there are more than three variables, it is more difficult to 
visualize them. On the other hand, some variables are generally correlated in the dataset 
because of redundancy in carried information, so the problem can be simplified by replacing 
the group of linked variables with a new variable. PCA is a quantitative method to achieve this 
simplification. This method generates a new set of variables, called principal components. Each 
principal component is a linear combination of the input variables (original variables forming 
the matrix X). Seen that all the principal components are orthogonal, there is no redundancy of 
information. Commonly, the sum of the variances of the first principal components exceeds 
80% of the total variance of the original data. 
The covariance matrix Cx of X can be calculated according to the Eq. (3) where t represents the 
transpose of the matrix and �� � its mathematical expectation. 

  ! = ��		"� (3) 
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The components of CX, denoted Ckl (k=1,d et l=1,d), represent the covariances between the 
variables xk et xl: 

 �# = ���
��#��#⋮��#��

�� , �$ = ���
��$��$⋮��$ ��

�� (4) 

As the covariance matrix is symmetric, an orthogonal basis can be calculated by finding its 
eigenvalues and eigenvectors. The eigenvectors ek and the corresponding eigenvalues λk are the 
solutions of the Eq. (5). 

  !%# = &#%#, ' = 1,2, …� (5) 

The eigenvalues obtained from Eq. (5) correspond to the variances of the principal components. 
An ordered orthogonal basis can be created with the first eigenvectors having the direction of 
the largest variances of the data. Thus, directions in which the data set has the most significant 
amounts of energy can be found. Instead of using all the eigenvectors of the covariance matrix, 
the data will be represented in terms of only a few basis vectors of the orthogonal basis. If *+ 
(d×Z) is the matrix having the first Z eigenvectors, by transforming the data X, Eq. (6) can be 
obtained representing the new coordinates of the n observations in the orthogonal coordinate 
system defined by the eigenvectors. 

 , = 	*+ (6) 

2.3. Kohonen self-organizing map (KSOM) 

Kohonen map is a neural network based on the same topological properties of the human brain 
known as a map of self-organizing entities. This type of network belongs to the category of 
unsupervised methods. The main characteristic of this algorithm is its ability to develop entities 
corresponding to the distributions of the input vectors and to organize them in a consistent and 
topological manner. KSOM is inspired by the human nervous system according to two 
fundamental points: 
- Knowledge is acquired through a learning process, 
- The weights of the connections between the neurons are used to memorize the knowledge. 
KSOM neurons are distributed in a single layer in which the neighborhood notion is of 
particular interest. There are three types of topology: a rectangular (Fig.1a), hexagonal (Fig.1b) 
and random (Fig.1c) map of neurons. Each neuron q has a weight vector Wq. The input vector ���  (i=1,n and j=1,d) of the matrix X, comprising n observations (n AE hits) described by d 

pertinent descriptors (d variables), is unique and common to all neurons of the network. 

 

Fig.1. Different topologies of KSOM: (a) rectangular, (b) hexagonal and (c) random 
topologies [42]  
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This unsupervised method requires a learning phase comprising the five following steps: 
(1) Initialization of the weight vectors Wq by assigning them the average values of the input 

database X (the averages of the columns of the matrix X), 
(2) Introduction of an input vector ���  at the input of the network, 
(3) Research of the winning neuron noted q*; it is the neuron whose weight vector Wq* is 

closest to the input vector ��� , by measuring the Euclidean distance using Eq. (2), 
(4) Adaptation of the weight of this winning neuron as well as those of its topological 

neighbors so that they are close to the input vector ���  according to Eq. (7), 

 
-./0 1 12 = -./02 1 34/5∗2 7��� −-./028 			:;	q ∈ 4/5∗2 -./0 1 12 = -./02				:;	q ∉ 4/5∗2 (7) 

N(q*) is the neighborhood of the winning neuron, 3 is the learning rate and t represents the 
iteration number. 
A rectangular topology of 10×10 neurons is shown in Fig. 2. Once the winning neuron (Home 
neuron) is selected, the neighborhood radius changes from 1 for "neighborhood 1" to 2 for 
"neighborhood 2" until it reaches 3 for "neighborhood 3". The neighborhood radius can be 
fixed during the learning phase, or increased at the start and then decreased depending on the 
number of iterations. 

 

Fig. 2. The neighborhood of a winning neuron in the case of rectangular topology [42]. 

(5) Repetition of the previous steps for all line vectors forming the global matrix X according 
to a certain number of iterations. 

A gain must be defined, balancing the learning with each passage of an input vector, which 
decreases as iterations. Learning ends when the weights converge (very close to the inputs 
vectors) or the gain becomes close to 0.  

After inputting all vectors, the neurons will be organized topologically so that nearby neurons 
correspond to similar input vectors. Once learning is complete, the map can be used to classify 
new data that was not used for the learning operation. 

3. Materials and experimental procedures 

3.1. Tested materials: pure epoxy resin, UD and cross-ply E-glass fibers/epoxy laminate 

specimens 

Four specimen types were manufactured in: (1) pure resin, (2) UD [90]4 E-glass fibers 
reinforced epoxy resin at 90° to the mechanical stress direction, (3) UD [0]4 E-glass fibers 
oriented at 0° in the epoxy matrix and (4) cross-ply [0/90]S composite laminates. 
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3.1.1. Pure resin specimens 

They were made from a resin/hardener mixture of the "EPOLAM 5015" type from AXSON. 
This epoxy resin, with a low viscosity of 0.2 Pa.s, allows a good impregnation of the fibrous 
reinforcement. The mixing proportions are presented in Table 1, according to the 
manufacturer's technical sheet. 

Table 1. Physical properties of the EPOLAM 5015 resin and hardener used for the 
manufacturing of the pure resin samples 

Physical properties 

 EPOLAM 5015 resin EPOLAM 5015 hardener 

Mixing ratio (weight) 100 30 
Aspect liquid liquid 
Color Light amber colorless 
Density at 25°C (g/cm3) 1.15 0.93 
Glass transition temperature (°C) 80 

The mixture was poured into an open mold having 290×290×3.5mm3 in dimensions and was 
kept for 24 hours at a temperature of 23°C. Once hardened, it was placed in an oven for 2 hours 
at 80°C and then demolded. The final polymerized product has a density of 1.10 g/cm3 and was 
used to produce the test samples (with 250×20×3.5mm3 in dimensions) for mechanical 
characterization (Fig. 3a). 

3.1.2. UD and cross-ply GFRP specimens 

The tested composite materials were two UD ([0]4 and [90]4) and one cross-ply [0/90]S 
laminates consisting of E-glass fibers and epoxy resin. The fiber volume fraction of the 
laminate composites was 54% as prepreg sheets with uncured epoxy. Heels were integrated to 
the plates before curing in order to create tensile test specimens, as shown in Fig. 3b. They 
were built by a twill tape 2/2, with ±45° oriented fibers, placed on the outer of the stack 
according to the ISO 527-5 standard [43]. A compression molding process (at 120 °C for 60 
min) was used in this study to obtain, as far as possible, planar plates with uniform thickness. 
All tensile specimens were cut from the same plate to reduce the variability of the material 
properties. Tensile specimen dimensions are shown in Fig. 3a (for resin pure), Fig. 3b (for UD 
and cross-ply laminates) and detailed in Table 2. 

 

Fig. 3. (a) Pure resin samples; (b) UD and cross-ply GFRP specimens. 

Table 2. Dimensions of the test specimens used for the mechanical characterization 

Symbols Designation Values (mm) 

L Total length 250 
L1 Distance between heels 150±1 
L2 Length of heels ≥ 50 
b Width 20±0.5 
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e Thickness of the specimen 3.5±0.2 
h1 Thickness of the heels 7.5 

 
3.2. Mechanical loadings and experimental device 

The first loading (loading (1) in Fig.4a) consists of a monotonic tensile test until failure. It is 
used for the generation of the desired damage mechanism, according to the type of tested 
sample, and thus identification of its acoustic signature. To do this, simple samples (pure resin 
and UD GFRP specimens), whose damage mechanisms are relatively easy to highlight, are 
firstly tested, then at the end the cross-ply [0/90]S samples. This method consists in identifying 
with a staggered manner the different AE signatures of the damage mechanisms. We start with 
the identification of the isolated matrix cracking in the tested pure resin specimens; their 
acoustic emission signals will be noted "A". In the UD [90]4 GFRP samples, a second acoustic 
signature will be identified and related to the fiber/matrix debonding (signals "B"). This second 
identification is possible by deduction since the matrix cracking signature is already known. 
The signature of the fiber breakage is identified on UD [0]4 specimens, where the fibers are 
oriented in the same direction of the mechanical stress, by separating it from the signals A and 
B. The signals corresponding to fibers rupture will be noted "C". Knowing the three signatures 
(A, B and C), the identification of the fourth one "D" linked to delamination between the plies 
of the laminate cross-ply [0/90]S samples finally becomes possible. This methodology is 
presented in the tree structure form in Fig.4b. 

  

(a) (c) 

 
(b) 

Fig.4. (a) Loading (1): monotonic tensile test; (b) The staggered identification of AE 
signatures using loading (1); (c) Loading (2): a step-wise static tensile test of 50 MPa loading 

ramps. 
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Since the identification of all signatures is achieved, now it is possible to practice the labeling 
of Kohonen’s map, which will allow grouping the various AE events according to classes, each 
corresponding to a damage type. After that, KSOM will be used to identify the damage 
mechanisms created in healthy cross-ply [0/90]S samples under tensile loading. As an 
application of this approach, the last samples were submitted to a step-wise tensile test of 50 
MPa loading ramps (7 ramps and 6 levels of 4 min holding time, (loading (2) in Fig.4c)) in 
order to identify created damage mechanisms during each stage of loading (2). Fig.5 
summarizes the adopted approach for the damage characterization during the two mechanical 
loadings (1) & (2). 

 

Fig.5. Adopted approach during the two mechanical loadings (1) & (2). 

These two mechanical loadings were performed at a cross-head speed of 0.5 mm/min using an 
electrical tensile machine (INSTRON 1185) with a load cell of 100kN (Fig.6). An 
extensometer with a gauge length of 10 mm is attached to the specimen surface to measure the 
elongation. Two AE sensors (Nano-30, 125-750 kHz, from Physical Acoustics Corporation-
MISTRAS Group), connected to a 40 dB pre-amplification, were coupled with silicone grease 
on the same face of the sample. They are symmetrically arranged from the center of the 
specimen length with a distance of 120 mm between them. Furthermore, these sensors are 
related to an AE acquisition and processing system (DiSP with 8 acquisition channels of 16 
bits [44]). 

 

Fig.6. Experimental device used for the AE tests during the two mechanical loadings. 

The acquisition threshold is determined when the specimen is clamped between the two jaws 
of the tensile machine and at zero stress. For each specimen type, the acquisition threshold was 



12 

 

increased step by step in such a way as to avoid the acquisition of any acoustic activity coming 
from the external environment outside of the test specimen (surrounding background noise). It 
turned out that a threshold of 34 dB was sufficient to avoid acquiring acoustic activity from 
outside the pure resin specimens. This threshold was a little higher for the UD and cross-ply 
GFRP specimens where their value was optimized and reached 38 dB. This difference in 
acquisition thresholds between the pure resin and composite specimens is due especially to the 
presence of heels on the composite specimens and their absence on the pure resin ones. Having 
heels on both sides of the composite specimens allows a slightly higher tightening at the two 
jaws level of the tensile machine and thus could generate an acoustic activity increasing the 
acquisition threshold at zero stress. The three time windows for AE signal measurement were 
chosen as follows: PDT = 50 µs (Peak Definition Time), HDT = 100 µs (Hit Definition Time) 
and HLT = 300 µs (Hit Lockout Time). 

3.3. Determination of the pertinent AE descriptors by coupling PCA and K-means methods 

In our case, the AE data can be represented by a matrix X of n×13 dimensions, where n is the 
number of hits, which depends on the type of tested sample and its acoustic emissivity. Each 
hit can be described with thirteen variables (or descriptors) defined in [44] as: rise time, counts 
to peak, counts, duration, amplitude, energy, absolute energy, average frequency, ASL 
(Average Signal Level), RMS (Root Mean Square), reverberation frequency, initiation 
frequency and signal strength. In principal component analysis (PCA), by retaining the first 
two (or three) principal components corresponding to the highest variances, the original data 
can be projected into a new 2 (or 3) dimensional space. Thus, the descriptors are correlated 
with these new axes of projection. Among the thirteen descriptors, several provide the same 
information. Partially, this can be explained by the mathematical relationships connecting some 
descriptors [44]. Beyond these direct connections, the most relevant descriptors would be 
objectively determined when applying simultaneously k-means and PCA algorithms on all 
thirteen variables. Two conditions are defined for a variable to be selected as a relevant 
descriptor: 
• 1st condition: the fact of deleting it results in a loss of information, which automatically 
changes the result of the classification by k-means. 
• 2nd condition: in the representation in principal components, the vector associated with a 
relevant variable must be distinct (length, direction) from the other vectors previously selected. 

In order to objectively apply the k-means algorithm for selecting the pertinent variables, Davies 
and Bouldin criterion, called DB, was used to define the number of classes existing in a dataset. 
DB criterion is defined by Eq. (8) where di and dj are the averages of the Euclidean distances 
within the class of groups i and j, respectively. Dij is the distance between the two groups i and 
j. 

 ?@ = 1A�BC��D�#
��� E�� 1 ��?�� F (8) 

The determination of the relevant descriptors is carried out from the AE data recorded on the 
UD [90]4 GFRP samples (this is the most unfavorable configuration for the propagation of the 
acoustic waves because the glass fibers are oriented perpendicular to the line connecting the 
two AE sensors). The number of classes K minimizing the calculated DB coefficient based on 
the data in each UD [90]4 sample is equal to 2, confirming the existence of two damage 
mechanisms for this configuration of the studied GFRP material (Fig.7a). Thus, the k-means 
algorithm is applied on the reduced centered experimental database, with a classes number 
equal to 2 and a maximum number of AE descriptors equal to 13. Fig.7b illustrates two clusters 
(classes) of the percentage of 98.75% and 1.25%, respectively. 
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(a) 

 

(b) 

Fig.7. (a) Evaluation of the DB coefficient; (b) k-means application on the experimental AE 
data recorded on a UD [90]4 sample. 

The thirteen variables are projected onto the first two principal components and are represented 
in Fig.8 in the form of vectors (blue, purple and green lines). The red dots are the original data 
of the input matrix X represented in this new two-dimensional coordinate system. 
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Fig.8. PCA visualization of the contributions of the 13 AE descriptors on the two first 
principal components: the first component has a variance of 42.15% and the second is of the 

variance of 20.14% compared to the total variance. 

 
When applying the two selection conditions of the relevant descriptors, delete of the variables 
{ASL, RMS, the reverberation frequency, the initiation frequency, the signal strength and the 
average frequency} did not modify the classification result obtained by k-means (98.75% and 
1.25%). Thus, the last result allows using of just 7 variables instead of 13. 
The PCA application based on the seven remaining descriptors (Fig.9) shows that the rise time 
and the number of counts to the peak are fairly correlated. They provided the same information 
on the AE data, so only one of them is sufficient; the rise time is chosen. The five remaining 
descriptors are placed in the same lower right part, which explains the existence of a correlation 
between them. Indeed, the number of counts and the duration are two descriptors close to each 
other (the number of counts is the number of exceeded thresholds during the duration of the 
hit); thus the number of counts is selected. Concerning the three remaining descriptors 
(amplitude, energy, absolute energy), only the energy removal did not change the classification 
result (condition 1). Thus, the PCA and k-means coupling allowed us to select rise time, 
number of counts, amplitude and absolute energy as being the four pertinent descriptors with 
the least possible recovery. This approach has been validated for all the studied GFRP samples. 
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Fig.9. PCA visualization of the contributions of the 7 remaining descriptors on the two first 
principal components: the first component has a variance of 63.86% and the second one has a 

variance of 17.90% compared to the total variance. 

 

4. Results and discussions 

4.1. Acoustic signatures identification during loading (1) 

4.1.1. Mechanical and acoustic coupling on the pure resin and UD configurations 

a. Pure resin samples 

Fig.10a illustrates the typical mechanical behavior in the monotonic tensile test until the failure 
of pure resin samples (curve in a continuous black line), coupled with the amplitude of their 
acoustic emission activity (blue dots). From 0.22% strain, the matrix cracking appears and it 
will lead to the sample rupture for a strain of 1.55%. The amplitude of the recorded acoustic 
emission is understood between 34 dB (acquisition threshold) and 50 dB. Fig.10b shows the 
hit waveform type "A" characterizing the matrix cracking from an acquisition threshold (red 
lines) set at 34 dB, which corresponds to a voltage of ±5 mV. The four relevant descriptors 
(rise time, number of counts, amplitude and absolute energy) selected in section 3.3, 
characterizing this signal type, are presented in Table 3 as average values over all of the 
recorded hits on five samples. 

Table 3. Average values of the recorded hits on five pure resin samples during loading (1) 
Rise time (µs) Counts Amplitude (dB) Absolute energy (aJ) 

6 5 41 12 
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(a) 

 
(b) 

Fig.10. (a) Mechanical tensile curve coupled with the amplitude of AE activity recorded on 
pure resin sample; (b) waveform of the “A” signal marking the matrix cracking. 

b. UD [90]4 GFRP samples 

Five monotonic tensile tests were conducted on the UD [90]4 GFRP specimens with monitoring 
of their acoustic emission. Fig.11 shows their typical tensile curve and the associated acoustic 
emission amplitude and number of cumulative counts. The dense and continuous acoustic 
activity started from a strain of 0.126%. The amplitude of the majority of the AE hits is between 
45 dB and 55 dB, and that very few hits have an amplitude greater than 60 dB. 
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Fig.11. Typical tensile curve and acoustic emission activity in a UD [90]4 GFRP specimen. 

The correlation between the AE amplitude and duration of the hits is shown in Fig.12a. Almost 
all of the events are concentrated in the same group except two of them (hits No. 2 and 99) 
which have a duration greater than 300 µs. This type of representation can give a priori 
information on the number of damage mechanisms developed in the material, here 2. This 
estimation is consistent with the fact that UD [90]4 composite could generate two damage 
mechanisms under uniaxial tensile stress, mainly matrix cracking and secondarily the 
interfacial debonding between fibers and matrix [28]. The weaker the fiber/matrix interface, 
the more the interfacial debonding mechanism becomes favored; this is closely related to the 
sizing, the manufacturing process, the material type and the applied mechanical stress. The 
obtained eigenvalues, following the PCA application on the four relevant descriptors of the AE 
data recorded on the UD [90]4 sample, are the variances of the principal components. Table 4 
presents these variances (λ), their percentages (λ%) and their cumulative percentages (λcum%). 
The first two eigenvalues cumulate more than 80% of the total variance; therefore, they alone 
are sufficient to describe all the data. Thus, Fig.12b illustrates, in the principal component basis 
{1st principal component, 2nd principal component}, the result of k-means classification 
applied on the reduced centered data with a number of classes K=2 minimizing the DB 
criterion. Thanks to this illustration, the two classes are easily distinguished with a contribution 
of 98.8% for the first one (red dots) and 1.2% for the second class corresponding to the two 
hits (N° 2 and 99, with two blue asterisks). 

Table 4. Eigenvalues λ of the principal components, their percentages (λ%) and their 
cumulative percentages (λcum %) 

Descriptors Rise 

time 

Counts Amplitude Absolute 

energy 

λ 2.5169 0.8786 0.3705 0.2341 
λ % 62.92 21.96 9.26 5.86 

λcum % 62.92 84.88 94.14 100 
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(a) 

 
(b) 

Fig.12. (a) Amplitude vs. duration, (b) PCA visualization of the k-means classification of the 
AE activity recorded on UD [90]4 GFRP samples. 

The averages of the pertinent parameters of the two obtained classes (class centers) are 
presented in Table 5. The values of the center of class 1 are quite similar to those previously 
identified on the pure resin sample describing matrix cracking. Thus, by deduction, the second 
class (class 2) describes the matrix/fiber debonding damage mechanism. 

Table 5. Mean values of the pertinent parameters of the two obtained classes on UD [90]4 PMC 
sample. 

 Rise time (µs) Counts Amplitude (dB) Absolute energy (aJ) 
Class 1 18 9 52 158 
Class 2 36 26 69 7023 

The appearance chronology of the AE hits (Fig.13a) shows that class 1 (matrix cracking) 
happens first, before class 2 (fiber/matrix debonding). Also, the matrix cracking continues to 
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appear until the sample breakage, while the fiber/matrix debonding is stopped before. The 
waveforms corresponding to the two last damage mechanisms that occurred in the UD [90]4 
GFRP samples are presented in Fig.13b. The signal types "B" corresponding to the fiber/matrix 
debonding have a longer duration and higher amplitude in comparison with the matrix cracking 
(see also Table 5). 

 
(a) 

 
(b) 

Fig.13. (a) Appearance chronology and (b) signal waveforms of the two damage mechanisms 
recorded on the UD [90]4 PMCs. 

c. UD [0]4 GFRP samples 

The typical tensile mechanical curve of the UD [0]4 composite samples with the associated AE 
amplitude is presented in Fig.14a. A quasi-linear mechanical behavior is shown in comparison 
with the previous samples UD [90]4 and pure resin. For UD [0]4, the fibers strongly support the 
parallel applied load. Concerning the acoustic emission activity, two regimes are globally 
observed. The first one is comprised between 40 and 70 dB, starting from a very low strain ε = 
0.035% and continuing with the same appearance density until the sample breakage. A second 
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regime (amplitude greater than 70 dB) starts from the strain ε = 0.55% with a weak density 
than the previous one and continues until the final rupture of the sample. The start stage of the 
second regime coincides with the first jump of the elongation, indicating probably the 
beginning of the fiber rupture. To better highlight this agreement between the strain jumps (the 
dropouts) and the fiber breakage, Fig.14b presents the cumulative released acoustic energy 
versus the mechanical strain. Four strain jumps are counted coinciding with four jumps in 
acoustic energy indicating the strong released energy when the fibers break. 

 

(a) 

 
(b) 

Fig.14. (a) Tensile curve with AE amplitude vs. strain; (b) Tensile curve with cumulative 
energy of the AE hits vs. strain obtained during a tensile test of UD [0]4 GFRP. 

Fig.15a shows the classification of the AE data, recorded on the UD [0]4 sample, by applying 
k-means in their principal component basis. Matrix cracking (class 1) represents 94% of the 
acoustic emission activity, while fiber breakage (class 3) contributes with just 6%. Indeed, this 
labeling of the two classes is confirmed by relying on the associated relevant parameters 
presented in Table 6, and a priori knowledge of the matrix cracking signature. The descriptors 
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of the fiber breakage are much more different than those observed for the matrix cracking and 
fiber/matrix debonding. 

 

(a) 

 
(b) 

Fig.15. (a) PCA visualization of the k-means classification result; (b) Appearance chronology 
of matrix cracking and fiber breakage within a UD [0]4 samples. 

Table 6. Average values of the pertinent parameters of the two obtained classes on UD [0]4 
GFRP sample. 

 Rise time (µs) Counts Amplitude (dB) Absolute energy (aJ) 
Class 1 14 13 54 336 
Class 3 15 162 78 797354 
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The appearance timeline of the AE hits, illustrated in Fig.15b, states that the matrix cracking 
occurs before the fiber breakage, knowing that the earliest fiber breakages correspond to blunt 
fibers. The two mechanisms continue to progress together until the final rupture of the sample. 
The typical waveforms corresponding to these two damage mechanisms are illustrated in Fig. 

16. The matrix cracking is characterized, as in the case of UD [90]4 samples, by its resonant 
waveform (signal "A") while the breaking of the fibers takes a rather impulse shape with high 
amplitude, long duration and a very short rise time (signal "C"). 

 
Fig. 16. Waveforms of the two damage mechanisms recorded on the UD [0]4 samples: matrix 

cracking (on the left) and fiber breakage (on the right). 

4.1.2. Mechanical and acoustic coupling on the cross-ply GFRP specimens 

Since the acoustic signatures of the three damage mechanisms are known, namely matrix 
cracking, fiber/matrix debonding and fiber breakage, the one corresponding to delamination 
appearing relatively easily in the laminated GFRPs can be identified by deduction. To achieve 
this, monotonic tensile tests were carried out on five cross-ply [0/90]S samples. Fig.17a shows 
the typical tensile curve of these samples with associated AE amplitude. The acoustic activity 
is very dense in this latter case compared to the previously studied UD samples. A remarkable 
strain jump happened at ε = 1.57% strain indicating the creation of strong damage in the 
material. In order to identify the acoustic signature of the fourth mechanism, which is 
delamination between the plies of the [0/90]S laminate, the k-means algorithm is applied to the 
recorded AE data while assuming that the number of classes is equal to 4. Fig.17b shows the 
result of this classification, where the contributions from classes 1, 2, 3 and 4 are respectively 
78.8%, 5.9%, 15% and 0.3%. The average values of the pertinent parameters of the four 
obtained classes are presented in Table 7. Based on these values as well as those previously 
determined for matrix cracking, fiber/matrix debonding and fiber breakage, class 4 is identified 
and associated to the delamination mechanism (0.3%). 

Table 7. Average values of the pertinent parameters of the four obtained classes on cross-ply 
[0/90]S GFRP sample. 

 Rise time (µs) Counts Amplitude (dB) Absolute energy (aJ) 

Class 1 11 5 45 52.23 
Class 2 74 32 57 94.69x103 
Class 3 22 46 71 220.5x103 
Class 4 83 780 99 9015x104 
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(a) 

 
(b) 

Fig.17. (a) Tensile curve with AE amplitude vs. strain; (b) k-means classification result of 
AE data recorded on a cross-ply [0/90]S specimen. 

Fig.18a shows the appearance chronology of the damage mechanisms, which is deducted from 
the evolution curves of the number of cumulative hits for each class. According to these curves, 
the order of appearance of the classes is as follows: class 1 (matrix cracking), class 2 
(fiber/matrix debonding), class 4 (delamination) and class 3 (fiber breakage). This chronology 
is logical and expected for this type of material (laminate [0/90]S), where the plies oriented at 
90° are the first damaged, hence the matrix cracking followed by fiber/matrix debonding and 
some blunt fiber breaks. Then, the delamination between the 0/90 plies occurs just before the 
ultimate fibers breakage leading to failure. The waveforms corresponding to these four damage 
mechanisms, appearing in the [0/90]S GFRP material during a monotonic tensile test, are 
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presented in Fig.18b. Delamination is characterized by a very resonant signal (type "D"), of 
long duration, high amplitude and a very slow decay time. 

 
(a) 

 

(b) 
Fig.18. (a) Appearance chronology and (b) signal waveforms of the four damage mechanisms 

recorded on the [0/90]S PMCs. 
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4.1.3. SEM observations 

The fracture surfaces of all pure resin, [0]4, [90]4 and cross-ply [0/90]S samples are inspected 
using SEM. Fig.19a shows the matrix cracks propagating throughout the thickness of the pure 
resin sample. On the [90]4 GFRP specimen, the fracture surface (Fig.19b) shows the matrix 
crack initiation around the porosities and its propagation along the fibers oriented at 90° against 
of mechanical loading direction. The existence of streaks at 90° marks the pull-out mechanism 
when the glass fibers are torn from the epoxy matrix. It is important to highlight, that even after 
the pull-out, the fibers remain coated with their matrix, this confirms the majority contribution 
of matrix cracking compared to interfacial debonding on the [90]4 material. Fractographic 
analysis of the cross-section of the UD [0]4 sample (Fig.19c) highlights the matrix cracks 
surrounding the rupture of glass fibers. Finally, the four damage mechanisms are coexisting 
within the [0/90]S specimen with a clear delamination appearance between the layers oriented 
at 0° and 90°. Therefore, the fractographic analysis validates the acoustic emission 
identification of all damage mechanisms occurring in the tested GFRP materials under tensile 
loading. 

 

Fig.19. SEM analysis conducted on the (a) pure resin, (b) [90]4, (c) [0]4 and (d) cross-ply 
[0/90]S fracture surfaces. 

4.2. Identification of the cross-ply GFRP damages according to the applied stress: 

application of KSOM during loading (2) 

The fact that the acoustic signatures of the four damage mechanisms, liable to appear in the 
[0/90]S laminated GFRP material under mechanical tensile stress, are now known, thus they 
can be used to characterize the overall damage of this material according to the level of the 
applied stresses. To achieve this, the [0/90]S samples are submitted to a step-wise tensile test 
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of 50 MPa loading ramps. The real applied mechanical loading (showing some unintended 
hooks/decreases of the applied stress due to occurred damage), as well as its associated acoustic 
emission activity, are presented in Fig.20a. In total, seven loading steps and six levels of 
holding at constant stress were applied. The acoustic emission activity begins from the start of 
the loading with low amplitudes concentrated between 38 dB and 50 dB. It becomes 
increasingly denser, where 90% of the AE activity is recorded during the two last loading steps, 
with the appearance of high acoustic amplitudes as the loading level increases. The number of 
the recorded hits during each loading shows the accentuation of the damage at the end of the 
mechanical test (see Fig.20a, Table 8). 

 
(a) 

 
(b) 

Fig.20. (a) Applied mechanical loading with its associated acoustic emission activity in terms 
of amplitude and percentage of recorded hits; (b) KSOM of 256 (16×16) neurons used for the 

classification of AE data recorded during mechanical loading (2) [42]. 

Table 8. Number of hits recorded during each loading step of the mechanical loading (2). 
Number of loading ramp° Number of hits “n” 

1 1846 
2 2518 
3 6550 

(a) 

nx4 
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4 7379 
5 13132 
6 29646 
7 50836 

The applied KSOM uses the "Neural network toolbox" module of Matlab® software (Fig.20b, 
[42]). This map has the advantage of being "objective" for the classification of AE data because 
it does not require any a priori indication of the number of classes to be obtained. The input 
data of the map are the “n” AE hits recorded during each loading step (Table 8) and described 
by the four pertinent descriptors (rise time, number of counts, amplitude and absolute energy) 
introduced in the reduced centered form. The choice of the map topology (number of neurons) 
has been empirically optimized since there is no specific rule to satisfy. The optimization 
consisted of increasing the number of neurons step by step until a stable classification result 
was obtained (increasing the number of neurons more than enough will only increase 
unnecessarily the computing time). The chosen map is flat with 256 neurons distributed 
according to a 16×16 rectangular grid (Fig.20b). Each neuron is represented by its coordinates 
i and j. At the output of the used KSOM, the classification result will be in the form of neural 
groupings illustrating the number of AE hits that have been allocated to each elected or winning 
neuron q* (so, these hits will be noted hits*). This classification requires three steps after the 
creation of the network: learning the neurons, labeling of the different zones of the map, and 
finally, the use of the map for the identification of the damage mechanisms generated during 
each loading step. 

4.2.1. Learning of neurons 

The learning task is described in section 2.3. Training data are extracted from the AE signals 
recorded during the mechanical loading (1) applied on the [0/90]S laminated samples. This 
dataset is injected into the map to initialize the weight vectors of the 256 neurons, so groupings 
of similar AE hits* are established. The result of this learning is shown in Fig.21. To identify 
the different zones of this learned map, the labeling stage must be conducted. 

 

Fig.21. Learning result of the KSOM using different AE data recorded on the [0/90]S samples 
during the mechanical loading (1). 

4.2.2. The labeling step 

It consists of assigning "labels", that is to say, names, to the different neural groupings obtained 
after the learning phase. For this, the results of the k-means classification illustrated in Fig.17b 
are exploited. The idea is to activate the Kohonen map by injecting the data of the classes 
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identified by k-means one by one. The principle and the results of this operation are shown in 
Fig.22. This labeling procedure made it unambiguously possible to "label" all areas of 
Kohonen’s map given by the learning operation. Thus, this self-organizing map can be used as 
a classifier of the AE data recorded during each loading step of the mechanical loading (2) 
applied to the laminated [0/90]S samples (Fig.20a). 
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Fig.22. The labeling of the self-organizing map from the AE data recorded during loading (1). 
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4.2.3. Identification of the damage mechanisms according to the applied stress 

To achieve this, the AE data corresponding to each loading ramp (7 in total, according to Table 

8) were injected into the previously learned map. The results of this identification are shown 
in Fig.23a-g. For the two first loadings in which the number of hits is 1846 and 2518, 
respectively (Table 8), Kohonen’s map reveals only the zone marking the matrix cracking 
(Fig.23a-b). From the third loading, Fig.23c, the matrix cracking, fibers/matrix debonding and 
the breakage of the fibers appear together on the map. The number of AE hits allocated to the 
fiber/matrix debonding is weak during loading 4 (Fig.23d). However, it is accentuated at the 
loading ramps 5 (Fig.23e) and 6 (Fig.23f). Finally, delamination was detected only in a small 
percentage during the three last loadings (Fig.23e, f and g). All in all, matrix cracking is the 
predominant mechanism, occurred in cross-ply [0/90]S GFRP samples, from the start of the test 
until the end. 
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Fig.23. Classification of the AE data recorded during loading (2), according to the applied 
stress and using the self-organizing map: (a) ramp 1 at 50MPa, (b) ramp 2 at 100MPa, (c) 

ramp 3 at 150MPa, (d) ramp 4 at 200MPa, (e) ramp 5 at 250MPa, (f) ramp 6 at 300MPa, (g) 
ramp 7 at 350MPa. 

 

5. Conclusions 

The first objective of this study was to identify separately the acoustic signature of the four 
damage mechanisms occurring in [0/90]S GFRP materials when submitted to tensile loading, 
namely matrix cracking, fiber/matrix debonding, delamination and rupture of fibers. Once the 
acoustic signatures were identified, they were exploited to practice learning and labeling 
Kohonen’s map, which in turn was used to characterize the damage of the laminate [0/90]S 
composite material under different loading conditions. 
Achieving the first objective has involved manufacturing of typical specimens in pure epoxy 
resin, UD [90]4, UD [0]4, and finally, in laminate [0/90]S to characterize respectively the matrix 
cracking, the fibers/matrix debonding, the fiber breakage and the delamination mechanisms. 
The separation between these different mechanisms was allowed by a k-means classification 
algorithm using four pertinent descriptors (rise time, number of counts, amplitude and absolute 
energy). This preliminary acoustic emission study was validated with the post-mortem SEM 
observations carried out on the rupture facies of all the tested samples.  
The obtained acoustic signatures were used subsequently to discriminate the damage 
mechanisms that occurred in the [0/90]S GFRP samples under a step-wise tensile test using 
Kohonen’s self-organizing map. 
All in all, the results of this study clearly showed the potential to use the acoustic emission 
technique for monitoring the damage occurring in composite materials during in-service 
loadings if their acoustic signatures had been characterized beforehand. 
 
6. Data availability 

The raw/processed data required to reproduce these findings cannot be shared at this time as 
the data also forms part of an ongoing study.  
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