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In this paper, we address the problem of solving infinite-dimensional harmonic algebraic Lyapunov and Riccati equations up to an arbitrary small error. This question is of major practical importance for analysis and stabilization of periodic systems including tracking of periodic trajectories. We first give a closed form of a Floquet factorization in the general setting of L 2 matrix functions and study the spectral properties of infinite-dimensional harmonic matrices and their truncated version. This spectral study allows us to propose a generic and numerically efficient algorithm to solve infinite-dimensional harmonic algebraic Lyapunov equations up to an arbitrary small error. We combine this algorithm with the Kleinman algorithm to solve infinite-dimensional harmonic Riccati equations and we apply the proposed results to the design of a harmonic LQ control with periodic trajectory tracking.

I. INTRODUCTION

Harmonic modelling and control is a topic of theoretical and practical interest for many application domains such as energy management (including AC-DC and AC-AC power converters) or embedded systems to mention few. In a recent paper [START_REF] Blin | Necessary and Sufficient Conditions for Harmonic Control in Continuous Time[END_REF], a complete and rigorous mathematical framework for harmonic modelling and control has been proposed. Basically, the harmonic modelling of a periodic system leads to an equivalent time invariant model but of infinite dimension. The states of this model (also called phasors) are the coefficients obtained using a sliding Fourier decomposition. One of the main results of [START_REF] Blin | Necessary and Sufficient Conditions for Harmonic Control in Continuous Time[END_REF] establishes a strict equivalence between these two models and provides tools that allow to reconstruct time trajectories from harmonic ones. In this framework, the analysis and harmonic control design are considerably simplified as any available method for time-invariant systems can be a priori applied. For example, algebraic Lyapunov and Riccati equations [START_REF] Blin | Necessary and Sufficient Conditions for Harmonic Control in Continuous Time[END_REF], [START_REF] Zhou | Derivation and Solution of Harmonic Riccati Equations via Contraction Mapping Theorem[END_REF] can be used to design a periodic state feedback for linear time periodic (LTP) systems.

The main difficulty in applying available time invariant techniques is related to the infinite dimension nature of the obtained harmonic time invariant model. The associated infinitedimensional harmonic state matrix is formed by the sum of a (block) Toeplitz matrix and a diagonal matrix. There is a huge literature concerning the study of infinite-dimensional Toeplitz matrices [START_REF] Beam | The asymptotic spectra of banded toeplitz and quasi-toeplitz matrices[END_REF], [START_REF] Bini | On functions of quasi-Toeplitz matrices[END_REF], [START_REF] Felice | Eigenvalues and quasieigenvalues of banded Toeplitz matrices: some properties and applications[END_REF], [START_REF] Gohberg | Classes of Linear Operators[END_REF], [START_REF] Gutièrrez-Gutièrrez | Block Toeplitz matrices: Asymptotic results and applications[END_REF], [17], [START_REF] Robol | Rational Krylov and ADI iteration for infinite size quasi-Toeplitz matrix equations[END_REF], [START_REF] Schmidt | The Toeplitz matrices of an arbitrary Laurent polynomial[END_REF]. However, only few results concern harmonic state space matrices [START_REF] Bolzern | The periodic Lyapunov equation[END_REF], [START_REF] Farkas | Periodic motions[END_REF], [START_REF] Kabamba | Monodromy eigenvalue assignment in linear periodic systems[END_REF], [START_REF] Wereley | Analysis and control of linear periodically time-varying systems[END_REF]- [START_REF] Zhou | Harmonic Lyapunov equations in continuous-time periodic systems: solutions and properties[END_REF]. Most of the results dedicated to harmonic dynamical systems are based on a Floquet Factorization [START_REF] Floquet | Sur les équations linéaires a coefficients périodiques[END_REF], [START_REF] Montagnier | The control of linear time-periodic systems using Floquet Lyapunov theory[END_REF], [START_REF] Sinha | Liapunov-Floquet transformation: Computation and applications to periodic systems[END_REF], [START_REF] Wereley | Analysis and control of linear periodically time-varying systems[END_REF], [START_REF] Zhou | Spectral characteristics and eigenvalues computation of the harmonic state operators in continuoustime periodic systems[END_REF]. Floquet Factorization is an existence result and, as such, it is not constructive [START_REF] Farkas | Periodic motions[END_REF], [START_REF] Floquet | Sur les équations linéaires a coefficients périodiques[END_REF]. This is why Floquet Factorization based methods are mainly dedicated to analysis and it is very difficult to extend them to control design. As a consequence, solving infinite-dimensional harmonic algebraic Lyapunov and Riccati equations is a very challenging problem [START_REF] Zhou | Harmonic Lyapunov equations in continuous-time periodic systems: solutions and properties[END_REF], [START_REF] Zhou | Periodic Lyapunov equation based approaches to the stabilization of continuous-time periodic linear systems[END_REF].

The main objective of our paper is to propose efficient algorithms with low computational burden and of interest for both analysis and control design. We first provide a simple and closed form formula to determine a Floquet factorization in the general case of periodic and L 2 matrix functions. As the proposed Floquet Factorization leads to a Jordan normal form representation of the harmonic state operator, it also solves the associated eigenvalue problem. This new result allows us to perform a detailed spectral analysis of the harmonic state space matrix and its truncated version. In particular, it is shown that the harmonic state space matrix is an unbounded operator on 2 with a discrete spectrum and that a truncation of a Hurwitz harmonic matrix may never be Hurwitz, regardless of the truncation order. To our knowledge, this is the first time that such a phenomenon is highlighted. It has a major impact in deriving tools for analysis and harmonic control design. As a consequence, if we consider a Hurwitz infinite-dimensional harmonic matrix, there may be no positive definite solution to the associated truncated harmonic Lyapunov equation whatever the considered truncation order. To overcome this difficulty, we use Lyapunov symbolic equations associated to harmonic Lyapunov equations to provide an efficient algorithm that allows to recover the solution of the infinite-dimensional harmonic Lyapunov equation up to an arbitrarily small error. We extend this result to solve infinite-dimensional harmonic Riccati equations and provide a Kleinman's like algorithm [START_REF] Kleinman | On an iterative technique for Riccati equation computations[END_REF] in the harmonic framework. This generic result is made possible by the fact that we do not use a Floquet factorization to solve a harmonic Lyapunov equation at each step. To demonstrate that our results can be used for control design, we treat the problem of periodic trajectories tracking using a harmonic linear quadratic control as an illustrative example.

The paper is organized as follows. We first give some mathematical preliminaries in the next section before stating in section III the problem we are interested in. In section IV, we provide a complete and simple characterization of a Floquet factorization in the general case of L 2 matrix functions and analyze the spectral properties of the harmonic state space operator and its truncated version. The main contribution of our paper is detailed in section V where an efficient algorithm to solve up to an arbitrarily small error infinite dimensional harmonic Lyapunov equations is derived. This algorithm is extended to infinite dimensional harmonic Riccati equations in section VI. We illustrate the results of this paper in section VII where a design of an harmonic LQ control for a 2-dimensional LTP system is proposed. Section VIII is dedicated to the conclusions.

Notations: The transpose of a matrix A is denoted A ′ and A * denotes the complex conjugate transpose A * = Ā′ . The ndimensional identity matrix is denoted Id n . The infinite identity matrix is denoted I. The n × n matrix of ones is denoted 1 n,n . The flip matrix J m is the (2m + 1) × (2m + 1) matrix having 1 on the anti-diagonal and zeros elsewhere. The product ⋅ refers to the Hadamard product (known also as element-byelement multiplication). A⊗B is the Kronecker product of two matrices A and B. L p (resp. p ) denotes the Lebesgues spaces of p-integrable functions (resp. p-summable sequences) for 1 ≤ p ≤ ∞. L p loc is the set of locally p-integrable functions i.e. on any compact set. The notation f (t) = g(t) a.e. means almost everywhere in t or for almost every t. We denote by col(X) the vectorization of a matrix X, formed by stacking the columns of X into a single column vector. We use σ + to denote the largest singular value. To simplify the notations,

L p ([a, b]) or L p will be often used instead of L p ([a, b], C n ). For example, x ∈ L 2 ([a, b]) means x ∈ L 2 ([a, b], C n ).

II. MATHEMATICAL PRELIMINARIES

We first start be recalling the definition of the sliding Fourier decomposition over a window of length T and the so-called "Coincidence Condition" introduced in [START_REF] Blin | Necessary and Sufficient Conditions for Harmonic Control in Continuous Time[END_REF].

Definition 1: The sliding Fourier decomposition over a window of length

T from L 2 loc (R, C n ) to L ∞ loc (R, 2 (C n )) is defined by: X ∶= F(x)
where the time-varying infinite sequence X is defined by:

t ↦ X(t) ∶= (F(x 1 )(t), ⋯, F(x n )(t))
and where for i ∶= 1, ⋯, n, the vector

F(x i ) ∶= (⋯, X i,-1 , X i,0 , X i,1 , ⋯), has infinite components X i,k , k ∈ Z satisfying: X i,k (t) ∶= 1 T ∫ t t-T x i (τ )e -jωkτ dτ. The vector X k ∶= (X 1,k , ⋯, X n,k ) is called the k-th phasor of X.
Definition 2: We say that X belongs to H if X is an absolutely continuous function (i.e X ∈ C a (R, 2 (C n )) and fulfills for any k the following condition: Ẋk (t) = Ẋ0 (t)e -jωkt a.e. Similarly to the Riesz-Fisher theorem which establishes a oneto-one correspondence between the spaces L 2 and 2 , the following "Coincidence Condition" establishes a one-to-one correspondence between the space L 2 loc and the space H. Theorem 1 (Coincidence Condition [START_REF] Blin | Necessary and Sufficient Conditions for Harmonic Control in Continuous Time[END_REF]):

For a given X ∈ L ∞ loc (R, 2 (C n )), there exists a representative x ∈ L 2 loc (R, C n ) of X, i.e. X = F(x), if and only if X belongs to H.
In the sequel, we provide some mathematical preliminaries related to block Toeplitz matrices and operator norms. These preliminaries are adaptations to our setting of some mathematical results borrowed from [START_REF] Bini | On functions of quasi-Toeplitz matrices[END_REF], [START_REF] Bini | Quasi-Toeplitz matrix arithmetic: a MATLAB toolbox[END_REF], [START_REF] Bottcher | Spectral properties of banded Toeplitz matrices[END_REF], [START_REF] Felice | Eigenvalues and quasieigenvalues of banded Toeplitz matrices: some properties and applications[END_REF], [START_REF] Gutièrrez-Gutièrrez | Block Toeplitz matrices: Asymptotic results and applications[END_REF], [START_REF] Massei | Solving Rank-Structured Sylvester and Lyapunov Equations[END_REF], [17], [START_REF] Robol | Rational Krylov and ADI iteration for infinite size quasi-Toeplitz matrix equations[END_REF].

A. Finite and infinite Toeplitz and block Toeplitz matrices

Consider a T -periodic L 2 ([0 T ], C) signal a, its associated Toeplitz matrix T (a) T (a) ∶= (t ij ), i, j ∈ Z such that t ij ∶= a i-j
and its symbol (Laurent series) a(z) = ∑ +∞ k=-∞ a k z k where a k , k ∈ Z, are the phasors of a(⋅). Define the semi-infinite Toeplitz matrix

T s (a) ∶= (t ij ), i, j ∈ Z + such that t ij ∶= a i-j
and let a + (z) ∶= ∑ k>0 a k z k and a -(z) ∶= ∑ k>0 a -k z -k . We associate with a + (z) and a -(z) the following semi-infinite Hankel matrices

H(a + ) ∶= (h + ij ), i, j ∈ Z + * , h + ij ∶= a i+j-1 , H(a -) ∶= (h - ij ), i, j ∈ Z + * , h - ij ∶= a -i-j+1
Given a symbol a(z) and m ∈ Z + , we denote by T m (a), the (2m+1)×(2m+1) leading principal submatrices of T (a). We denote also by H (p,q) (a), for p, q > 0, the (2p + 1) × (2q + 1) Hankel matrix obtained selecting the first (2p + 1) rows and (2q + 1) columns of H(a). For clarity purpose, we provide in Fig. 1 a block decomposition of an infinite Toeplitz matrix T (a) to illustrate how the matrices defined above appear. This block decomposition will be useful in the sequel. 

A ∶= ⎛ ⎜ ⎜ ⎜ ⎝ A 11 A 12 ⋯ A 1n A 21 A 22 ⋮ ⋮ ⋱ ⋮ A n1 ⋯ ⋯ A nn ⎞ ⎟ ⎟ ⎟ ⎠
where the infinite matrices A ij ∶= T (a ij ), i, j ∶= 1, ⋯, n, are the Toeplitz transformations of the entries a ij (t) of the matrix A(t):

T (a ij ) ∶= ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⋱ ⋮ ⋰ a ij,0 a ij,-1 a ij,-2 ⋯ a ij,1 a ij,0 a ij,-1 ⋯ a ij,2 a ij,1 a ij,0 ⋰ ⋮ ⋱ ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ , with a ij,k ∶= 1 T ∫ t t-T a ij (τ )e -jωkτ dτ .
In the sequel, to avoid confusions, for any T -periodic matrix function A ∈ L 2 , we denote by A ∶= F(A) its Fourier decomposition and by A ∶= T (A) its Toeplitz transformation. The m-truncation of the n × n block Toeplitz matrix A is defined by the m-truncation T (a ij ) m of all its entries (i, j). The symbol matrix A(z) associated to a n × n block Toeplitz matrix is given by:

A(z) ∶= ⎛ ⎜ ⎜ ⎜ ⎝ a 11 (z) a 12 (z) ⋯ a 1n (z) a 21 (z) a 22 (z) ⋮ ⋮ ⋱ ⋮ a n1 (z) ⋯ a nn (z) ⎞ ⎟ ⎟ ⎟ ⎠ . (1) 
The n × n block Hankel matrices H(A + ), H(A -) are also defined respectively by

H(A + ) ij ∶= H(a + ij ) and H(A -) ij ∶= H(a - ij ) for i, j ∶= 1, ⋯, n.
In the same way, their subprincipal submatrices H(A + ) (p,q) , H(A -) (p,q) for p, q > 0 are obtained by considering the subprincipal submatrices of the entries H(a + ij ) (p,q) and H(a - ij ) (p,q) for i, j ∶= 1, ⋯, n. Theorem 2: Let A(z), B(z) be two symbol matrices and C(z) ∶= A(z)B(z). Then,

T s (A)T s (B) = T s (C) -H(A + )H(B -) (2) 
and

T m (A)T m (B) = T m (C) -H (m,η) (A + )H (η,m) (B -) -J n,m H (m,η) (A -)H (η,m) (B + )J n,m , (3) 
where J n,m ∶= Id n ⊗ J m and η is such that 2η ≥ min d o (A(z), B(z)) Proof: A classical result states that the product of two infinite Toeplitz matrices is a Toeplitz matrix. This means that for two symbols a(z) and b(z

) with c(z) ∶= a(z)b(z), we have T (c) = T (a)T (b). The formula T m (a)T m (b) = T m (c) - H (m,η) (a + )H (η,m) (b -) -J m H (m,η) (a -)H (η,m) (b + )J m , where 2η ≥ min(d o (a(z), d o (b(z))
, is directly obtained by applying to each Toeplitz matrix T (a), T (b) and T (c) the block decomposition of Fig. 1. If the degrees of a(z) and b(z) are unknown or infinite then η can be set to +∞. For the n×n block Toeplitz case, the result is obtained by considering the entries (i, j), i, j = 1, ⋯, n of the block matrix product:

(T m (A)T m (B)) ij = n k=1 T m (a ik )T m (b kj )
and decomposing each term of the sum, that is: where c ijk (z) ∶= a ik (z)b kj (z). The results follows for (3) and also for (2) using similar steps from the symbol formula T s (a)T s (b) = T s (c) -H(a + )H(b -) (see [START_REF] Bottcher | Spectral properties of banded Toeplitz matrices[END_REF]). An illustration of the above theorem is given in Fig. 2 for n ∶= 1 with a(z) and b(z) Laurent polynomials of degree much less than m so that T m (a) and

(T m (A)T m (B)) ij = n k=1 (T m (c ijk ) -H (m,η) (a + ik )H (η,m) (b - kj ) -J m (H (m,η) (a - ik )H (η,m) (b + kj )J η )
T m (b) are banded. If a(z) ∶= ∑ k i=-k a i z i and b(z) ∶= ∑ k i=-k b i z i with k much smaller than m, then the matrices E + ∶= H m (a + )H m (b -) and E -∶= J m H m (a -)H m (b + )J m have disjoint
supports located in the upper leftmost corner and in the lower rightmost corner, respectively. As a consequence, T m (a)T m (b) can be represented as the sum of the Toeplitz matrix associated with c(z) and two correcting terms E + and E -.

We end these preliminaries on block Toeplitz matrices by defining what we call letf and right truncations and two results given without proofs as they follow from the block decomposition of Fig. 1.

Definition 4: The left m-truncation (resp. right m-truncation) of a n × n block Toeplitz infinite matrix A is given by:

A m + ∶= ⎛ ⎜ ⎜ ⎜ ⎝ A 11 m + A 12 m + ⋯ A 1n m + A 21 m + A 22 m + ⋮ ⋮ ⋱ ⋮ A n1 m + ⋯ A n(n-1) m + Ann m + ⎞ ⎟ ⎟ ⎟ ⎠
(resp. A m -) where A ij m + , i, j ∶= 1, ⋯, n are obtained by suppressing in the infinite matrices A ij all the columns and lines having an index strictly smaller than -m (respectively strictly greater than m). Finally, the m-truncation is obtained by applying successively a left and a right m-truncations.

Proposition 1: Let a(z) be a symbol and x ∶= (x k ) k∈Z an infinite vector of complex numbers. Define the m-truncation of x by x m ∶= (x -m , ⋯, x m ) and consider the semiinfinite vectors x + m ∶= (x m+1 , x m+2 , ⋯) and x - m ∶= (⋯, x -m-2 , x -m-1 ). Let x be the infinite vector given by x ∶= (⋯, 0, x m , 0, ⋯). Then, the following relations hold true:

T (a)x = ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ J ∞ H (∞,m) (a -) T m (a) H (∞,m) (a + )J m ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ x m (4) T m (a)x m = (T (a)x) m -H (m,∞) (a + )J ∞ x - m -J m H (m,∞) (a -)x + m (5)
The next proposition is a generalization of Proposition 1 to the case of n × n block Toeplitz matrices.

Proposition 2: Let A(z) be a n × n symbol matrix and x ∶= (x 1 , ⋯, x n ) a vector whose components x i are infinite sequences x i ∶= (⋯, x i,-1 , x i,0 , x i,1 , ⋯). Define x m ∶= (x 1 m , ⋯, x n m ) the m-truncation of x where for i ∶= 1, ⋯, n, x i m ∶= (x i,-m , ⋯, x i,m ). Define also the semi infinite vectors x i + m ∶= (x i,m+1 , x i,m+2 , ⋯) and x i m ∶= (⋯, x i,-m-2 , x i,-m-1 ). Set x ∶= (x 1 , x2 , ⋯, xn ) with xi ∶= (⋯, 0, x i m , 0, ⋯) for any i ∶= 1, ⋯, n. Then, we have:

(T (A)x) i = n j=1 T (a ij )x j
where T (a ij )x j is given by (4) and

T m (A)x m = n j=1 (T (a ij )x j ) m -H (m,∞) (a + ij )J ∞ x j - m -J m H (m,∞) (a - ij )x j + m

B. Operator norms

We provide here some results concerning operator norms to be used in the sequel. Recall that the norm of an operator M from p to q is given by

M p , q ∶= sup X p =1 M X q .
This operator norm is sub-multiplicative i.e. if M ∶ p → q and N ∶ q → r then N M p , r ≤ M p , q N q , r . If p = q, we use the notation: M p ∶= M p , p .

Definition 5: Consider a vector x(t) ∈ L 2 ([0 T ], C n ) and define X ∶= F(x) with its symbol X(z). The 2 -norm of X(z) is given by:

X(z) 2 ∶= X 2 where X 2 ∶= ∑ k∈Z X k 2 1 2 . Theorem 3: Let A(t) ∈ L 2 ([0 T ], C n×m ). Then, A ∶= T (A) is a bounded operator on 2 if and only if A ∈ L ∞ ([0 T ], C n×m )
. Moreover, we have:

1) the operator norm induced by the 2 -norm satisfies:

A(z) 2 = A 2 = A L ∞
2) the operator norm of the semi infinite Toeplitz matrix satisfies: T s (A) 2 = A 2 3) the operator norm of the Hankel operators H(A + ), H(A -) satisfies:

H(A -) 2 ≤ A L ∞ and H(A + ) 2 ≤ A L ∞ 4
) the operator norm related to the left and right m-truncations satisfies: [START_REF] Gohberg | Classes of Linear Operators[END_REF]. Proposition 3: Let P (⋅) be a matrix function in L ∞ ([0 T ], C n×n ). Define P ∶= F(P ) and P ∶= T (P ). If col(P) 2 ≤ then P 2 ≤ .

A m + 2 = A m -2 = A 2 = A(t) L ∞ Proof: See Part V p.p. 562-574 of
Proof: Using Riesz-Fisher Theorem, we have:

col(P) 2 = col(P ) L 2 = ( n i,j=1 P ij 2 L 2 ) 1 2 = P F
where P (t) F stands for the Frobenius norm. As P ∈ L ∞ ([0 T ], C n×n ), Hölder's inequality implies

P x ∈ L 2 ([0 T ], C n ) for any x ∈ L 2 ([0 T ], C n ).
Thus, the result follows from the following relations between operator norms:

P 2 = sup X 2 =1 (< PX, PX > 2 ) 1 2 = sup x L 2 =1 (< P x, P x) > L 2 ) 1 2
≤ (trace(P * P )) 1 2 = P F where < ⋅, ⋅ > stands for the scalar product.

III. PROBLEM STATEMENT

To formulate the problem we are interested in, we need to recall some key results from [START_REF] Blin | Necessary and Sufficient Conditions for Harmonic Control in Continuous Time[END_REF]. Under the "Coincidene Condition" of Theorem 1, it is established in [START_REF] Blin | Necessary and Sufficient Conditions for Harmonic Control in Continuous Time[END_REF] that any periodic system having solutions in Carathéodory sense can be transformed by a sliding Fourier decomposition into a time invariant system. For instance, consider T -periodic functions A(⋅) and B(⋅) respectively of class L 2 ([0 T ], R n×n ) and L ∞ ([0 T ], R n×mu ) and let the linear time periodic system:

ẋ(t) = A(t)x(t) + B(t)u(t) x(0) ∶= x 0 (6) 
If, x is a solution associated to the control u ∈ L 2 loc (R, R mu ) of the linear time periodic system (6) then, X ∶= F(x) is a solution of the linear time invariant system:

Ẋ(t) = (A -N )X(t) + BU (t), X(0) ∶= F(x)(0) (7)
where A ∶= T (A), B ∶= T (B) and

N ∶= Id n ⊗ diag(jωk, k ∈ Z) (8) 
Reciprocally, if X ∈ H is a solution of ( 7) with U ∈ H, then its representative x (i.e. X = F(x)) is a solution of (6). Moreover, for any k ∈ Z, the phasors

X k ∈ C 1 (R, C n ) and Ẋ ∈ C 0 (R, ∞ (C n )).
As the solution x is unique for the initial condition x 0 , X is also unique for the initial condition X(0) ∶= F(x)(0). In addition, it is proved in [START_REF] Blin | Necessary and Sufficient Conditions for Harmonic Control in Continuous Time[END_REF] that one can reconstuct time trajectories from harmonic ones, that is:

x(t) = F -1 (X)(t) ∶= +∞ p=-∞ X p (t)e jωpt + T 2 Ẋ0 (t) (9) 
where

X k = (X 1,k , ⋯, X n,k ) for any k ∈ Z.
In the same way, a strict equivalence between a periodic differential Lyapunov equation and its associated harmonic algebraic Lyapunov equation is also proved [START_REF] Blin | Necessary and Sufficient Conditions for Harmonic Control in Continuous Time[END_REF]. Namely, let Q ∈ L ∞ ([0 T ]) be a T -periodic symmetric and positive definite matrix function. P is the unique T -periodic symmetric positive definite solution of the periodic differential Lyapunov equation:

Ṗ (t) + A ′ (t)P (t) + P (t)A(t) + Q(t) = 0,
if and only if P ∶= T (P ) is the unique hermitian and positive definite solution of the harmonic algebraic Lyapunov equation:

P(A -N ) + (A -N ) * P + Q = 0, (10) 
where Q ∶= T (Q) is hermitian positive definite and A ∶= T (A). Moreover, P is a bounded operator on 2 and P is an absolutely continuous function. These results are of great interest. Solving an algebraic Lyapunov equation rather than a periodic differential Lyapunov equation is worthwile for analysis and control design provided coping with the infinite dimension nature of equation [START_REF] Floquet | Sur les équations linéaires a coefficients périodiques[END_REF]. The main difficulty is related to the diagonal matrix N defined by [START_REF] Farkas | Periodic motions[END_REF] which is not a Toeplitz matrix nor a compact operator. Hence, the harmonic algebraic Lyapunov equation ( 10) cannot be expressed as a simple product of symbols as in the classical Toeplitz case [START_REF] Robol | Rational Krylov and ADI iteration for infinite size quasi-Toeplitz matrix equations[END_REF]. In [START_REF] Zhou | Harmonic Lyapunov equations in continuous-time periodic systems: solutions and properties[END_REF], [START_REF] Zhou | Periodic Lyapunov equation based approaches to the stabilization of continuous-time periodic linear systems[END_REF], the authors propose to use a Floquet factorization but the determination of this Floquet factorization is not so simple [START_REF] Kabamba | Monodromy eigenvalue assignment in linear periodic systems[END_REF], [START_REF] Sinha | Liapunov-Floquet transformation: Computation and applications to periodic systems[END_REF], [START_REF] Zhou | Classification and characteristics of Floquet factorizations in linear continuous-time periodic systems[END_REF]. Furthermore, for control design purpose, it would not be appropriate to proceed this way since the input matrix remains a full matrix with no particular and usefull structure in the harmonic domain.

The main objective of our paper is to show how the solution of the infinite-dimensional HLE (10) can be obtained from a finite dimensional problem up to an arbitrary error. As we will see, this is a practical result that avoids the computation of a Floquet factorization and reduces significantly the computation burden. We also extend our result to harmonic Riccati equations encountered in periodic optimal control. To this end, the characterization of the spectrum of the harmonic state operator (A -N ) is of major importance and plays a key role in the derivation of the main contributions of our paper.

IV. SPECTRAL PROPERTIES OF (A -N )

In this section, we provide a simple closed form formula for a Floquet factorization, characterize the spectrum of the harmonic state operator (A -N ) and study the spectral properties of its truncated version. As noticed before, the harmonic state matrix (A -N ) is not Toeplitz because of N . This term has an important impact on the spectral properties of (A -N ). For instance, we know that the spectrum of a Toeplitz matrix A is continuous [START_REF] Beam | The asymptotic spectra of banded toeplitz and quasi-toeplitz matrices[END_REF], [17], [START_REF] Schmidt | The Toeplitz matrices of an arbitrary Laurent polynomial[END_REF] and bounded when A(z) belongs to 2 . However, we will see in the sequel that the spectrum of (A -N ) is unbounded and discrete. We will also explain how this spectrum behaves when applying a m-truncation (A m -N m ).

A. A closed form formula for a Floquet factorization and spectral properties of (A -N )

Recall that the Floquet theorem [START_REF] Farkas | Periodic motions[END_REF], [START_REF] Zhou | Harmonic Lyapunov equations in continuous-time periodic systems: solutions and properties[END_REF] states that for dynamical systems

ẋ(t) = A(t)x(t) (11) 
with A(t) piecewise continuous and T -periodic, the state transition matrix Φ(t, 0) has a Floquet factorization Φ(t, 0) = W (t)e Qt , where Q is a constant matrix and W (t) is continuous in t, nonsingular and T -periodic in t. Moreover, the state transformation z(t) ∶= W (t) -1 x(t) leads to a LTI system:

ż(t) = Qz(t)
and the harmonic system associated to [START_REF] Gohberg | Classes of Linear Operators[END_REF]:

Ẋ = (A -N )x becomes : Ż = (Q -N )Z with Z ∶= F(z) and Q ∶= I ⊗ Q.
Unfortunately, this result is an existence result and, as such, it is not constructive. One may find algorithms to determine W (t) and Q as those proposed in [START_REF] Castelli | Rigorous numerics in Floquet theory: computing stable and unstable bundles of periodic orbits[END_REF] and [START_REF] Zhou | Classification and characteristics of Floquet factorizations in linear continuous-time periodic systems[END_REF]. Here, we show that a more simple characterization of a Floquet factorization can be obtained with Q in a Jordan normal form and W (t) easily determined as the solution of an initial value problem with explicit initial conditions. Moreover, our result is given with the assumption that the T -periodic matrix function A belongs to L 2 which is more general than existing results. When A ∈ L 2 ([0 T ], R n×n ), the initial value problem defined by [START_REF] Gohberg | Classes of Linear Operators[END_REF] and x(0) ∶= x 0 admits an unique solution in the Carathéodory sense. We can define n linearly independent fundamental solutions denoted x (i) (t) having e i as initial conditions. As a consequence, the Wronski matrix

Φ(t, 0) = [x (1) (t), ⋯, x (n) (t)] (12) 
is the state transition matrix and for any time t, x(t) = Φ(t, 0)x 0 is solution of the initial value problem. Moreover, Φ(t, 0) is non singular, absolutely continuous and therefore almost everywhere differentiable. This is important to characterize the eigenvalues and eigenvectors of the harmonic operator (A -N ) as shown in the next Theorem for the case when Φ(T, 0) is non defective. Theorem 4: Assume that the T -periodic function A(t) belongs to L 2 ([0 T ]) and that Φ(T, 0) is non defective. Let µ and φ be respectively an eigenvalue and an associated eigenvector of Φ(T, 0). Then, λ and V are an eigenvalue and an eigenvector of (A -N )

(A -N )V = λV if and only if v ∶= F -1 (V ) is a T -periodic solution in the Carathéodory sense of the initial value problem v(t) = (A(t) -λId n )v(t) v(0) ∶= φ (13) 
where λ ∶= 1 T log(µ) (not necessarily its principal value). Proof: Applying Theorem 4 in [START_REF] Blin | Necessary and Sufficient Conditions for Harmonic Control in Continuous Time[END_REF], it follows that a solution of ( 13) is a solution of

V = (A -N -λI)V (14) 
where V =∶ F(v) and reciprocally (provided V is a trajectory of ( 14) that belongs to H, see Definition 2). If v is T -periodic then V = 0. Thus, λ and V are necessarily an eigenvalue and an eigenvector of (A -N ). Reciprocally, if λ and V are an eigenvalue and an eigenvector of (A-N ) this means that V = 0 in [START_REF] Kleinman | On an iterative technique for Riccati equation computations[END_REF]. As V is constant, it belongs trivially to H. Hence, V admits an absolutely continuous and T -periodic representative v that satisfies (13) a.e. Now, consider an eigenvalue µ and an associated eigenvector φ of Φ(T, 0), then Φ(T, 0)φ = µφ.

Notice that µ cannot be equal to zero since Φ(T, 0) is not singular. Define λ ∶= 1 T log(µ) (not necessarily as the principal value of log(µ)), then we have:

φ = R(T, 0)φ (15) 
with R(T, 0) ∶= e -λT Φ(T, 0). Moreover, as Φ(t, 0) is a.e. differentiable, we can write:

Φ(t, 0) = A(t)Φ(t, 0) a.e.
Let R(t, 0) ∶= e -λt Φ(t, 0). We have:

Ṙ(t, 0) = -λe -λt Φ(t, 0) + e -λt Φ(t, 0) (16) = (A(t) -λId n )R(t, 0) a.e. (17) 
Hence, R(t, 0) is the state transition matrix of the linear system [START_REF] Kabamba | Monodromy eigenvalue assignment in linear periodic systems[END_REF]. We conclude from ( 15) that the solution of the initial value problem ( 13) defined by such a λ and φ is T -periodic.

To generalize this result to the case where Φ(T, 0) is defective, let us consider a Jordan normal form of the matrix Φ(T, 0) and assume that (µ 1 , ⋯, µ n ) and

P Φ ∶= [φ 1 , ⋯, φ n ] (18) 
are respectively the eigenvalues and the matrix formed by the generalized eigenvectors of Φ(T, 0). To ease the presentation, we assume without loss of generality that

P -1 Φ Φ(T, 0)P Φ = ⎛ ⎜ ⎜ ⎜ ⎝ µ 1 0 0 0 µ ⋱ 0 0 0 ⋱ 1 0 0 0 µ ⎞ ⎟ ⎟ ⎟ ⎠ with φ i ∈ Ker(Φ(T, 0) -µId) i , for i ∶= 1, ⋯, n.
Theorem 5: Consider λ ∶= 1 T log(µ) (not necessarily the principal value) and let V 0 ∶= 0 and v 0 ∶= 0. For i ∶= 1, ..., n, V i is a generalized eigenvector associated to λ

(A -N )V i+1 = λV i+1 + 1 T µ V i (19) if and only if v i ∶= F -1 (V i ) is a T -periodic solution in
Carathéodory sense of the initial value problem:

vi (t) = (A(t) -λId n )v i (t) - 1 T µ v i-1 (t), v i (0) ∶= φ i (20)
where φ i are provided by [START_REF] Riedinger | Harmonic pole placement[END_REF]. Proof: The strict equivalence between ( 19) and ( 20) is obtained following similar steps as in the proof of Theorem 4. For i ∶= 1, as φ 1 is an eigenvector of Φ(T, 0), the result is already proved (Theorem 4) and v 1 (t) ∶= R(t, 0)v 1 (0) with R(t, 0) ∶= e -λt Φ(t, 0) and Φ given by [START_REF] Gutièrrez-Gutièrrez | Block Toeplitz matrices: Asymptotic results and applications[END_REF]. For i ∶= 2, the solution

v 2 (t) = R(t, 0)v 2 (0) - t T µ v 1 (t)
is directly obtained from the formula:

v 2 (t) = R(t, 0)v 2 (0) - 1 T µ t 0 R(t, s)v 1 (s)ds.
As R(T, 0) = µ -1 Φ(T, 0), it follows that:

v 1 (T ) + µv 2 (T ) = Φ(T, 0)v 2 (0)
where

v 1 (T ) = v 1 (0). Thus if v 2 (0) ∶= φ 2 then it follows that v 2 (T ) = v 2 (0) which proves that v 2 (t) is T -periodic.
Now, assume that this property holds recursively until the index i -1 and:

v i-1 (t) = R(t, 0)v i-1 (0) - t T µ v i-2 (t)
then, as

v i (t) = R(t, 0)v i (0) - 1 T µ t 0 R(t, s)v i-1 (s)ds,
it is straightforward to show that:

v i (t) = R(t, 0)v i (0) - t T µ v i-1 (t).
Thus, following the same reasoning as before, the conclusion on the periodicity of v i follows by setting v i (0) ∶= φ i .

We are now in position to give a closed form formula for a Floquet Factorization.

Theorem 6: Assume that the T -periodic function A(t) belongs to L 2 ([0 T ]) and let Φ(T, 0) is given by [START_REF] Gutièrrez-Gutièrrez | Block Toeplitz matrices: Asymptotic results and applications[END_REF]. Consider for i ∶= 1, ⋯, n, the eigenvalues µ i and the generalized eigenvectors φ i of Φ(T, 0) and set λ i to the principal value of 1 T log(µ i ). Consider for each λ i , the solution v i of the initial value problem with v i (0) ∶= φ i , provided by Theorem 4 (or 5 if Φ(T, 0) is defective).

Then, a Floquet factorization is determined by W (t) ∶= [v 1 (t), ⋯, v n (t)] and Q ∶= Λ where Λ is a Jordan normal form given by, for i ∶= 1, ⋯, n, Λ(i, i) ∶= λ i , Λ(i, i + 1) ∶= 0 or 1 T µi and zeros elsewhere. Moreover, the T -periodic and absolutely continuous matrices W and W -1 satisfy:

Ẇ (t) = A(t)W (t) -W (t)Λ a.e. ( 21 
) Ẇ -1 (t) = -W -1 (t)A(t) + ΛW -1 (t) a.e. ( 22 
)
and the operator W ∶= T (W ) is bounded on 2 , invertible and satisfies the eigenvalue problem:

W -1 (A -N )W = Λ ⊗ I -N (23) 
In addition, taking z(t) ∶= W -1 (t)x(t) transforms the LTP system ẋ = A(t)x into the LTI system ż = Λz a.e.

(24) Proof: For i ∶= 1, ⋯, n, consider for λ i the principal value of 1 T log(µ i ) only and let the T -periodic vectors v i determined using Theorem 4 (or Theorem 5 if Φ(T, 0) is defective) with V i ∶= F(v i ). Denote by

A k ∶= ⎛ ⎜ ⎜ ⎜ ⎝ A 11,k A 12,k ⋯ A 1n,k A 21,k A 22,k ⋮ ⋱ ⋮ A n1,k ⋯ ⋯ A nn,k ⎞ ⎟ ⎟ ⎟ ⎠
the kth phasors of A and V i,k the kth phasors of V i . We have for any k:

p∈Z A k-p V i+1,p -jωkV i+1,k = λ i V i+1,k + s i V i,k
with s i ∶= 1 T µi or 0. Thus, a m-shift in the components of V i , V i+1 leads to:

p∈Z A k-p V i+1,p+m -jωkV i+1,k+m = (λ + jωm)V i+1,k+m + s i V i,k+m
which means that the m-shifted vector is also a generalized eigenvector associated to λ i + jωm (and not to λ i ). It follows that T (v i ) is the set of all generalized eigenvectors associated to all values of 1 T log(µ i ) defined modulo jω.

Now, set W ∶= [v 1 , ⋯, v n ].
Obviously, W (t) satisfies [START_REF] Schmidt | The Toeplitz matrices of an arbitrary Laurent polynomial[END_REF]. As W (t) is a T -periodic and absolutely continuous matrix function, W ∶= T (W ) = [T (v 1 ), ⋯, T (v n )] is a constant and bounded operator on 2 (see Theorem 3). Furthermore, using similar steps as in the proof of ( [4], Theorem 5), the n × n block Toeplitz matrix W satisfies :

(A -N )W = W(Λ ⊗ I -N ).
As W solves the eigenvalue problem for all admissible eigenvalues and is invertible, the same holds true for W (t). Since W -1 (A -N ) = (Λ ⊗ I -N )W -1 , using similar steps as in the proof of ( [4], Theorem 5), it is straightforward to establish that the absolutely continuous matrix function W -1 ∶= T -1 (W -1 ) satisfies [START_REF] Wereley | Analysis and control of linear periodically time-varying systems[END_REF].

Finally, let x be a solution of ẋ = A(t)x in Carathéodory sense and set z(t) ∶= W -1 (t)x(t). From [START_REF] Wereley | Analysis and control of linear periodically time-varying systems[END_REF] we have:

ż(t) = Ẇ -1 (t)x(t) + W -1 (t) ẋ(t) a.e.
= Λz(t) a.e.

Corollary 1: (A -N ) is non-defective if and only if Φ(T, 0) is non-defective

Proof: As z(t) = e Λt z 0 and as z(t

) ∶= W -1 (t)x(t) = W -1 (t)Φ(t, 0)W (0)z 0 , it follows that e Λt = W -1 (t)Φ(t, 0)W (0). For t ∶= T since W is T -periodic, we have W (0) = W (T ) and e ΛT = W -1 (T )Φ(T, 0)W (T ). (25) 
Now if (A -N ) is non-defective, the eigenvalue problem corresponding to ( 23) is determined by a diagonal matrix Λ.

Thus, e ΛT is diagonal and we conclude from (25) that Φ(T, 0) is non defective. Reciprocally, if Φ(T, 0) is non-defective, Theorem 6 leads to [START_REF] Zhou | Spectral characteristics and eigenvalues computation of the harmonic state operators in continuoustime periodic systems[END_REF] with Λ diagonal.

The previous Theorem provides a simple characterization of a Floquet factorization which is of interest for analysis purpose. The fact that the input harmonic matrix remains a full matrix when applying a Floquet factorization makes this approach difficult to apply to design stabilizing state feedback control laws for example. Our choice is to push further the spectral analysis of the operator (A -N ) and analyze the impact of a m-truncation on the spectrum of (A m -N m ) in order to provide efficient algorithms that can also be used for harmonic control design. We start by the following corollary which states that the spectrum of (A -N ) is unbounded and discrete.

Corollary 2: Assume that (A -N ) is non-defective. The spectrum of (A -N ) is given by the unbounded and discrete set

σ(A -N ) ∶= {λ p + jωk ∶ k ∈ Z, p ∶= 1, ⋯, n}
where λ p , p ∶= 1, ⋯, n are not necessarily distinct eigenvalues.

Proof: Consider the unbounded diagonal operator D ∶= (Λ ⊗ I -N ). As the point spectrum σ ps ∶= {λ p + jωk ∶ k ∈ Z, p = 1, ⋯, n} has no cluster points, it is a closed set and σ ps ⊂ σ(D). Denote by D j the j-th entry of the diagonal of D and e j the jth vector of the basis. If ζ ∉ σ ps , then S defined by Se j ∶= 1 ζ-Dj e j for any j ∈ Z is a bounded (diagonal) operator on 2 whose inverse is ζI -D. Thus, ζ ∉ σ(D) and σ(D) = σ sp .

The result of Corollary 2 holds also when (A -N ) is defective. This can be established by defining J ∶= (J ⊗I -N ) with J a Jordan normal form and showing that ζI -J is invertible for any ζ ∉ σ ps . The invertibility of ζI -J is proved recursively on the n × n blocks of ζI -J noticing that each of these blocks is diagonal and using the matrix formula

A B 0 C -1 = A -1 -A -1 BC -1 0 C -1 .
We discuss the properties of the inverse of (A -N ) in the following corollary.

Corollary 3: Λ is invertible if and only if the operator (A-N ) is invertible. Moreover, (A -N ) -1 is bounded on 2 and

σ + = (A -N ) -1 2 where σ + ∶= sup{ (λ p + jωk) -1 ∶ k ∈ Z, p = 1, ⋯, n}.
Proof: The result follows from the above theorem and noticing that the 2 operator norm corresponds to the maximun singular value.

Remark 1: As shown in [START_REF] Blin | Necessary and Sufficient Conditions for Harmonic Control in Continuous Time[END_REF], if x is the solution de ẋ = A(t)x then X ∶= F(x) ∈ C 0 (R, 2 ) and we have (A -N )X(t) ∉ p , for any 1 < p < +∞ and (A -N )X(t) ∈ ∞ . Clearly, (A -N ) is not a bounded operator on l 2 while its inverse (if it exists) is bounded.

B. Spectrum analysis of (

A m -N m )
Here, we explain how the spectrum of (A m -N m ) is modified w.r.t. the spectrum of (A -N ) when performing a m-truncation on (A -N ). From now, we assume that the T -periodic matrix function A(t) belongs to L ∞ (R, R n×n ) or equivalently A is a bounded operator on 2 . This will help us in providing algorithms with guarantees at an arbitrarily small error when a m-truncation is applied. For simplicity reasons, we provide the results when the operator (A -N ) is non-defective but the results hold true in general.

Theorem 7: Assume that A(t) ∈ L ∞ ([0 T ]) and (A -N ) is non-defective. Denote by σ ∶= {λ p + jωk ∶ k ∈ Z, p ∶= 1, ⋯, n} the spectrum of (A -N ). Let (A m + -N m + ) be a left m-truncation of (A -N ) according to Definition 4 and assume that it is non defective, with an eigenvalues set denoted by Λ m + .

1) For > 0, there exists an index j 0 such that for any eigenvalue

λ ∈ Λ + 1 (m) ∶= {λ p + jωk ∶ k ∈ Z, k ≤ m + 1 - j 0 , p ∶= 1, ⋯, n} ⊂ σ: (A m + -N m + -λI m + )V m + 2 < ( 26 
)
where V m + is the left m-truncation of the eigenvector associated to λ.

2) The set Λ m + can be approximated by the union of

Λ + 1 (m) and Λ + 2 (m) that is Λ m + ≈ Λ + 1 (m) ∪ Λ + 2 (m) where Λ + 2 (m) is a finite subset of Λ m + .
Moreover, any eigenvalue λ m+1 which belongs to the set Λ + 2 (m + 1) is obtained by the relation: λ m+1 = λ m + jω where λ m belongs to Λ + 2 (m). Proof: It is sufficient to prove the theorem for n ∶= 1. Indeed, as the difficulties are related to infinite Toeplitz matrices, if the result is established for n ∶= 1, the same result holds for any finite n using ad hoc formula and Proposition 2. Consider W given by [START_REF] Zhou | Spectral characteristics and eigenvalues computation of the harmonic state operators in continuoustime periodic systems[END_REF]. When n ∶= 1, the set of eigenvalues is given by {λ + jωk ∶ k ∈ Z, } for a given λ and the matrix W reduces to W ∶= V = T (v) with phasors denoted by V . Applying a left m-truncation and using Theorem 2, we have:

(A m + -N m + )V m + -V m + (λI -N m + ) = E + where E + ∶= -H(A + )H(V -).
For j ∶= 1, 2, ⋯, the jth column of E + is provided by E + (j) ∶= -H(A + )V - j where V - j ∶= (V -j , V -j-1 , ⋯, ). Using Theorem 3, we have:

E + (j) 2 ≤ H(A + ) 2 V - j 2 ≤ A(t) L ∞ V - j 2 .
Therefore, for a given > 0, there always exists an index j 0 such that E + (j) 2 ≤ for j ≥ j 0 since V - j 2 → 0 when j → +∞ which establishes [START_REF] Zhou | Derivation and Solution of Harmonic Riccati Equations via Contraction Mapping Theorem[END_REF]. The remaining j 0 -1 eigenvalues form a finite subset

Λ + 2 (m) of Λ m + . Thus, if λ 2 ∈ Λ + 2 (m
) is an eigenvalue associated to its semi-infinite eigenvector V λ2 , it follows that:

(A m + -N m + )V λ2 = λ 2 V λ2
and it is straightforward to show that

(A (m+1) + -N (m+1) + )V λ2 = (λ 2 + jω)V λ2 .
Therefore, any eigenvalue of the set Λ + 2 (m + 1) is obtained from λ 2 ∈ Λ + 2 (m) by adding jω and the associated semiinfinite eigenvector is obtained by shifting V λ2 .

Theorem 8: Assume that the matrix A(t) ∈ L ∞ ([0 T ]) and that (A -N ) is non-defective with σ ∶= {λ p + jωk ∶ k ∈ Z, p ∶= 1, ⋯, n} its spectrum. Assume that the m-truncation (A m -N m ) is non-defective with its eigenvalues set denoted by Λ m .

For > 0, there exists a m 0 such that for m ≥ m 0 : 1) there exists an index j 0 such that for any eigenvalue λ 1 ∈ Λ 1 (m) defined by the subset {λ p + jωk ∶ k ≤ j 0 , p ∶= 1, ⋯, n} of σ, the following relation is satisfied:

(A m -N m -λ 1 I m )V 1 m 2 < (27) 
where V 1 m is the m-truncation of the eigenvector associated to λ 1 . 2) for any eigenvalue

λ 2 ∈ Λ 2 (m + ) or in Λ 2 (m -) ∶= Λ2 (m + ) with Λ 2 (m +
) defined in Theorem 7, the following relation is satisfied:

(A m -N m -λ 2 I m )V 2 m 2 <
where V 2 m is the m-truncation of the eigenvector associated to λ 2 . Then, the set Λ m can be approximated by the union of the sets Λ 1 (m), Λ - 2 (m) and Λ + 2 (m) that is:

Λ m ≈ Λ 1 (m) ∪ Λ - 2 (m) ∪ Λ + 2 ( 
m). Proof: As before, the proof is given for n ∶= 1. The right truncation leads to a symmetric result of Theorem 7 for which Λ - 2 (m) = Λ+ 2 (m). In case both right and left m-truncations are perfomed, applying Theorem 2 to (23) leads to :

(A m -N m )V m -V m (λI m -N m ) = -E m where E m ∶= E + m + E - m and E + m ∶= H (m,η) (A + )H (η,m) (V -) E - m ∶= J m H (m,η) (A -)H (η,m) (V + )J m . Notice that E - m (i, j
) is simply obtained from E + m (i, j) by a central symmetry of index (m + 1, m + 1). As in the previous proof, for j ∶= 1, 2, ⋯, the 2 norm of the jth column of

E + satisfies E + (j) 2 ≤ A(t) L ∞ V - j 2
and for a given > 0, there exists an index j 0 < m (provided that m is chosen sufficiently large) such that for any j ≥ j 0

E + (j) 2 ≤ 2.
By symmetry, the 2 -norm of the columns of E - m is less than 2 for j ≤ 2(m + 1)j 0 . Thus, it follows that the 2 -norm of the columns of E - m + E - m is less than for j such that j 0 ≤ j ≤ 2(m+1)-j 0 . Consequently, Equation ( 27) is satisfied. Now it remains to show that the elements of Λ + 2 (m) and Λ - 2 (m) are eigenvalues of (A m -N m ) up to an arbitrary small error. If λ 2 ∈ Λ + 2 (m) is an eigenvalue associated to an eigenvector V 2 , it follows that:

(A m + -N m + )V 2 = λ 2 V 2 . ( 28 
)
If a right m-truncation is applied on (28), then [START_REF] Bolzern | The periodic Lyapunov equation[END_REF] in Proposition 1) and V 2 + m ∶= (V 2m+1 , V 2m+2 , ⋯). As before, we have:

(A m -N m )V 2 m -λ 2 V 2 m = E 2 where E 2 ∶= -J m H (m,∞) (A -)V 2 + m (see
E 2 2 ≤ A(t) L ∞ V 2 + m 2 .
Hence, there always exists a m 0 such that for m ≥ m 0 , E 2 2 ≤ since V 2 + m 2 → 0 when m → +∞. This completes the proof.

Corollary 4: Assume that the matrix A(t) ∈ L ∞ ([0 T ]). If (A -N ) is invertible, there exists a m 0 > 0 such that for any m ≥ m 0 , the matrix

(A m -N m ) is invertible. Moreover, (A m -N m ) -1
2 is uniformly bounded i.e. sup m≥m0 (A m -N m ) -1 2 < +∞. Proof: As lim m→+∞ min(Λ + 2 (m)) = +∞, and as (A -N ) is invertible, for sufficiently large m, (A m -N m ) is not singular and the eigenvalues of (A m -N m ) -1 are uniformly bounded by sup{

(λ p -jωk) -1 ∶ k ∈ Z, p ∶= 1, ⋯, n}. Thus, (A m -N m ) -1
2 is uniformly bounded.

C. Example

Consider the following 2 × 2 block Toeplitz matrix

A ∶= A 11 A 12 A 21 A 22
where the Toeplitz matrices A ij are characterized by a 11 ∶= (0.5, 0.6j, -1, 0.6 + j, 0.5) with the underlined terms corresponding to the index 0.

a
a 22 ∶= (-1.3 -1.8j, 1.4 -1.6j, -2, 1.4 + 1.6j, -1.3 + 1.8j) -5 -4 -3 -2 -1 0 1 2 3 
The eigenvalues of (A m -N m ) are depicted in Fig. 3 for m ∶= 20 (green circles) and m ∶= 40 (red stars). We clearly observe the sets Λ 1 (m), Λ - 2 (m) and Λ + 2 (m). Notice that Λ 1 (m) is defined by two eigenvalues (as expected) satisfying R(λ 1 ) ≈ -0.3 and R(λ 2 ) ≈ -2.7 as shown by the alignment of the eigenvalues along these vertical axes. Thus, (A -N ) is Hurwitz while (A m -N m ) is never Hurwitz for all m since Λ - 2 (m) and Λ + 2 (m) have eigenvalues with positive real parts. As mentioned, we see that the set Λ + 2 (40) is obtained from the set Λ + 2 (20) by a translation of jω20 (ω ∶= 1). This example illustrates the fact that having (A -N ) Hurwitz, if we try to solve a Lyapunov equation with a truncated version (A m -N m ), the solution would never be positive definite whatever m. This motivates the following section devoted to solving harmonic Lyapunov equations.

V. SOLVING HARMONIC LYAPUNOV EQUATION

Taking benefit from the spectral analysis of the previous section, the objective here is to study how the infinite dimensional harmonic Lyapunov equation ( 10) can be solved in a practice without invoking a Floquet factorization. The following proposition introduces the symbol Lyapunov equation.

Proposition 4: Assume that A(t) ∈ L ∞ ([0 T ]). The symbol harmonic Lyapunov equation is given by

A(z) ′ P (z) + P (z)A(z) + (1 n,n ⊗ N (z)) ⋅ P (z) + Q(z) = 0
(29) where the symbol matrices A(z), Q(z), P (z) are given by (1) and where N (z) ∶= ∑ +∞ k=-∞ jωkz k . Proof: Consider the harmonic Lyapunov equation [START_REF] Floquet | Sur les équations linéaires a coefficients périodiques[END_REF]. It is straightforward to show that the product -N * P -PN = N P-PN is formed by n×n blocks of Toeplitz matrices whose symbols for i, j ∶= 1, ⋯, n, are given by the Hadamard product N (z) ⋅ P ij (z) where P ij (z) refers to the symbol associated the entry (i, j) of the matrix P (t). Consequently, the symbol associated to N P -PN is

(1 n,n ⊗ N (z)) ⋅ P (z)
where N (z) ∶= ∑ +∞ k=-∞ jωkz k . Replacing the Toeplitz matrix by its symbol and noticing that the symbols associated to A * are given by the transpose of A(z) ends the proof.

Looking at the previous symbol Lyapunov equation, we see that it is not possible to factorize P (z) to obtain a solution. In the next theorem, we show that if we try to solve a truncated version of [START_REF] Floquet | Sur les équations linéaires a coefficients périodiques[END_REF], the resulting solution is not Toeplitz. As this Toeplitz property is required for the infinite dimension case, an important practical consequence is the fact that the time counterpart P (t) does not exist and cannot be reconstructed using [START_REF] Felice | Eigenvalues and quasieigenvalues of banded Toeplitz matrices: some properties and applications[END_REF]. For a better understanding, we show in the following theorem that the solution P m obtained by solving the truncated harmonic Lyapunov equation differs from the solution of the infinite-dimensional harmonic Lyapunov equation by a correcting term ∆P m .

Theorem 9: Consider finite dimension Toeplitz matrices A m ∶= T m (A) and Q m ∶= T m (Q). The solution P m of the Lyapunov equation

(A m -N m ) * P m + P m (A m -N m ) + Q m = 0 (30)
is given by P m ∶= P m + ∆P m where P m ∶= T m (P ) with P (z) solution of (29) and ∆P m satisfies:

(A m -N m ) * ∆P m + ∆P m (A m -N m ) = E + + E - with E + ∶= H (m,η) (A + )H (η,m) (P -) + H (m,η) (P + )H (η,m) (A -) E -∶= J n,m (H (m,η) (A -)H m (P + ) + H (m,η) (P -)H (η,m) (A + ))J n,m
and 2η ≥ min d o (A(z), P (z)).

Proof: The proof is obvious from Theorem 2 and noticing that -N * m P m -P m N m does not give rise to a correction term since N is a diagonal matrix. In practice, it is not clear how the Toeplitz part P m of P m can be extracted since the symbol P (z) is implicitly given by (29). In fact, it can be shown that this linear problem is rank deficient and has infinitely many solutions. Thus, our aim is to prove that P can be determined up to an arbitrary small error. The necessity to determine P up to an arbitrary small error instead of P m is crucial to prove stability of (A -N ). This is due to the fact that the matrix (A m -N m ) would never be Hurwitz for any m when (A -N ) is Hurwitz.

Theorem 10: Assume that (A-N ) is invertible. The phasor P ∶= F(P ) associated to the solution P ∶= T (P ) of the infinite-dimensional harmonic Lyapunov equation ( 10) is given by:

col(P) ∶= -(Id n ⊗ (A -N ) * + Id n ○ A * ) -1 col(Q) (31)
where

Idn ○ A ∶= ⎛ ⎜ ⎜ ⎝ Idn ⊗ A 11 Idn ⊗ A 12 ⋯ Idn ⊗ A 1n Idn ⊗ A 21 Idn ⊗ A 22 ⋮ ⋮ ⋱ ⋮ Idn ⊗ A n1 ⋯ ⋯ Idn ⊗ Ann ⎞ ⎟ ⎟ ⎠ (32)
with N given by ( 8) and where the matrix Q ∶= F(Q).

Proof: Applying the well known formula (Id n ⊗A+B ′ ⊗ Id m )col(X) = col(C) associated to the Sylvester equation AX + XB = C to the case of the symbol Lyapunov equation (29), one gets:

(Id n ⊗ A(z) ′ + A(z) ′ ⊗ Id n )col(P (z)) + (1 n 2 ,1 ⊗ N (z)) ⋅ col(P (z)) = -col(Q(z)) Notice that col((1 n,n ⊗ N (z)) ⋅ P (z)) = col(1 n,n ⊗ N (z)) ⋅ col(P (z)) = (1 n 2 ,1 ⊗N (z))⋅col(P (z)).
Observe that the i-th lines, i = 1, ⋯, n 2 , of this multi-polynomial equation is given by:

n 2 j=1 M ij (z)P j (z) + N (z) ⋅ P i (z) = -Q i (z)
where P j (z), j ∶= 1, ⋯, n 2 refers to the components of col(P (z)) and where the terms M ij (z) ∶= (Id n ⊗ A(z) ′ + A(z) ′ ⊗ Id n ) ij are determined from the expansions:

Idn ⊗ A(z) ′ = ⎛ ⎜ ⎜ ⎜ ⎝ A ′ (z) 0 0 0 0 A ′ (z) 0 0 0 0 ⋱ 0 0 0 0 A ′ (z) ⎞ ⎟ ⎟ ⎟ ⎠ ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ n times
with A(z) provided by [START_REF] Beam | The asymptotic spectra of banded toeplitz and quasi-toeplitz matrices[END_REF] and

A(z) ′ ⊗Idn = ⎛ ⎜ ⎜ ⎝ A 11 (z)Idn A 21 (z)Idn ⋯ A n1 (z)Idn A 12 (z)Idn A 22 (z)Idn ⋮ ⋱ ⋮ A 1n (z)Idn ⋯ ⋯ Ann(z)Idn ⎞ ⎟ ⎟ ⎠ . Recall that N ∶= Id n ⊗ diag(jωk, k ∈ Z). The symbol (1 n 2 ,1 ⊗ N (z)
) has coefficients corresponding to the matrix Id n ⊗ N = -Id n ⊗ N * . Replacing each symbol A ij (z) in the above equation with their associated Toeplitz matrix leads to an equivalent equation involving the coefficients:

(Id n ⊗ (A -N ) * + Id n ○ A * )col(P) = -col(Q)
where Id n ○ A is given by (32), P ∶= F(P ) and Q ∶= F(Q).

If (A -N ) is invertible, it follows necessarily that (Id n ⊗ (A-N ) * +Id n ○A * ) is also invertible, otherwise it contradicts the fact that the solution of the harmonic Lyapunov equation is uniquely defined. This concludes the proof. We are now in position to state one of the main results of this paper. To this end, define for any given m the m-truncated solution as

col( Pm ) ∶= -(Id n ⊗ (A m -N m ) * + Id n ○ A * m )) -1 col(Q m ) (33) with A m ∶= T m (A), N m ∶= Id n ⊗ diag(jωk, k ≤ m) and
where Id n ○ A is defined by (32). The components of the m-truncated matrix Q m are given by

(Q m ) ij ∶= F m (q ij ), i, j ∶= 1, ⋯, n,
with F m (q ij ) the m-truncation of F(q ij ) obtained by suppressing all phasors of order k > m.

Theorem 11: Assume that A(t) ∈ L ∞ ([0 T ]) and (A -N ) is invertible. For any given > 0, there exists m 0 such that for any m ≥ m 0 :

col(P -Pm ) 2 <
where P, given by (31), is the solution of the infinitedimensional problem. Moreover, P -Pm 2 < with P ∶= T (P ) and Pm ∶= T ( Pm ).

Proof: It is sufficient to prove the theorem for n ∶= 1. In this case, A(z) = A 11 (z) and A(z) ′ = A(z). The symbol equation (29) reduces to: 2A(z)P (z)+N (z)⋅P (z)+Q(z) = 0. Now, observe that the k-th coefficient of A(z)P (z) for k ∈ Z is provided by

(A(z)P (z)) k = r∈Z A k-r P r
while the k-th coefficient of N (z) ⋅ P (z) is given by:

(N (z) ⋅ P (z)) k = jωkP k .
Thus, the symbol Lyapunov equation 2A(z)P (z) + N (z) ⋅ P (z) + Q(z) = 0 can be rewritten equivalently by means to its coefficients as the infinite-dimensional linear system:

(2A -N ) * P = -Q (34) 
where P and Q are infinite vectors whose components are the coefficients of P (z) and Q(z) (or equivalently the phasors of their time counterpart P (t) and Q(t)). If a m-truncation on Equation ( 34) is applied, we obtain:

(2A m -N m ) * P m = -Q m + E + m + E - m
where the correcting term is given by (see [START_REF] Bolzern | The periodic Lyapunov equation[END_REF] in Proposition 1)

E + m ∶= -2H (m,∞) (A + )P - m E - m ∶= -2JH (m,∞) (A -)P + m with P + m ∶= (P m+1 , P m+2 , ⋯) and P - m ∶= (P -m-1 , P -m-2 , ⋯).
As the operator (A -N ) is invertible, the matrix Λ in Equation ( 24) is also invertible as well as 2Λ. Consequently, the spectrum of (2A -N ) is given by σ(2A -N ) = {2λ + jωk ∶ k ∈ Z}. Therefore, (2A -N ) is invertible as well as (2A -N ) * . Then, Corollary 4 implies that (2A m -N m ) * is invertible for m sufficiently large. Now, define Pm the solution of the m-truncated problem by the following relation:

Pm ∶= -(2A m -N m ) * -1 Q m .
Therefore, we have:

Pm -P m = (2A m -N m ) * -1 (E + m + E - m
) with a 2 -norm bounded by (see Theorem 3): Corollary 4), and as P - m 2 = P + m 2 → 0 when m → +∞, we conclude that for a given > 0, there exists m 0 such that for any m ≥ m 0 , P m -Pm 2 < 2 and P-P m 2 < 2 as the phasors P k → 0 when k → +∞. Finally, we obtain:

Pm -P m 2 ≤ (2A m -N m ) * -1 2 (E + m + E - m ) 2 ≤ 2 A L ∞ (2A m -N m ) * -1 2 ( P - m 2 + P + m 2 ). As (2A m -N m ) * -1 is uniformly bounded (see
P -Pm 2 < assuming ( Pm ) k ∶= 0 for k > m.
To prove the last assertion, that is P -Pm 2 < , notice that for n ∶= 1, col(P -Pm ) = P -Pm . When n ≥ 1, invoking similar steps as before yields col(P -Pm ) 2 < . The proof is completed invoking Proposition 3, for any n.

Remark 2: Using the symbolic equation to derive the approximate solution allows to obtain a significant reduction of the computational burden since the linear problem defined by (33) is of dimension n(2m + 1) while the one defined by (30) is of dimension n 2 (2m + 1) 2 .

The following Corollary is interesting from a practical point of view in order to determine an accurate solution to the infinite harmonic Lyapunov equation from (33). Indeed, for a prescribed > 0, it is sufficient to increases m in (33) until (35) is satisfied.

Corollary 5: For a given > 0, there exists m 0 such that for any m ≥ m 0 , the symbol Pm (z) associated to Pm satisfies:

A(z) ′ Pm (z)+ Pm (z)A(z)+(1 n ⊗N (z))⋅ Pm (z)+Q(z) 2 < (35) Proof: It is sufficient to provide the proof for n ∶= 1.
If we evaluate the symbol equation with Pm (z), by construction of Pm (z), the result is given by A

(z) ′ Pm (z) + Pm (z)A(z) + (1 n ⊗ N (z)) ⋅ Pm (z) + Q(z) = E m (z) where E m (z) ∶= A(z) ′ Pm (z) -(A(z) ′ Pm (z)) m + Pm (z)A(z) - ( Pm (z)A(z)) m with (A(z) Pm (z)) m the m-truncation of the product (A(z) Pm (z)). When n ∶= 1, as A(z) = A ′ (z)
and as the coefficients of A(z) are complex scalar numbers, E(z) reduces to

E m (z) = 2(A(z) Pm (z) -(A(z) Pm (z)) m .
Thus, the non-zero coefficients of E m (z) are of degree k for k > m, and are given by the following equation (see Equation ( 4), Proposition 1):

E - m ∶ = 2J ∞ H (∞,m) (A -) Pm E + m ∶ = 2H (∞,m) (A + )J m Pm . Consider m ∶= m
2 (assuming m is an even number) and split J ∞ H (∞,m) (A -) as follow :

J ∞ H (∞,m) (A -) = [M 1 M 2 ]
where M 1 corresponds to the first m columns of J ∞ H (∞,m) (A -) and M 2 to its complement. Then, it follows that:

E - m 2 ≤ 2 M 1 P1 2 + 2 M 2 P2 2
where Pm = ( P1 , P2 ). With this partition, it can be observed that

M 2 = ⎛ ⎜ ⎜ ⎜ ⎝ ⋮ ⋱ ⋮ ⋮ ⋱ ⋱ ⋮ A -m-2 ⋱ ⋱ A -2m-2 A -m-1 A -m-2 ⋯ A -2m-1 ⎞ ⎟ ⎟ ⎟ ⎠ .
Therefore, the 2 norm satisfies:

M 2 2 ≤ H(A - m) 2 where A - m(z) is the m-shifted symbol A - m(z) ∶= ∑ +∞ k=1 A -m-k z -k .
Using Theorem 3, the following bounds can be established:

M 1 P1 2 ≤ 2 A L ∞ P1 2 M 2 P2 2 ≤ 2 H(A - m) 2 P2 2 .
Since Pm -P 2 → 0 when m → +∞ and since the phasors P k of P vanishe when k → +∞, it follows that

P1 2 = (∑ -m 2 r=-m Pr 2 )
1 2 → 0 when m → +∞. On the other hand, we have

H(A - m) 2 → 0 when m → +∞ since A - m(z) 2 → 0.
Therefore, for a given > 0, there exists m 0 so that for m ≥ m 0 , E - m 2 ≤ 2. With similar steps, this is also the case for E + m 2 ≤ 2 and the conclusion follows.

We illustrate the results of this section using a 1-dimensional example where the T -periodic state matrix is given by A(t) = -1cos(t) + 2 sin(t) + cos(2t) (T = 2π) so that the associated symbol A(z) is given by Finally, on Fig. 7 we plot log 10 ∆P m (i, j) , i, j ∶= 1, ⋯, 2m + 1 of the correction term ∆P m (see Theorem 9). We observe that the support of ∆P m is mainly located in the upper leftmost corner and in the lower rightmost corner, when m is chosen sufficiently large. 

A(z) = 2z -2 + (-1 + 2j)z -1 -1 + (-1 -2j)z + 2z 2

VI. SOLVING HARMONIC RICCATI EQUATIONS

Here, we combine the proposed algorithm for solving harmonic Lyapunov equations and the Kleinman algorithm [START_REF] Kleinman | On an iterative technique for Riccati equation computations[END_REF] to solve harmonic Riccati equations. Recall that the Kleinman algorithm is a Newton based algorithm that allows to determine recursively the unique positive definite solution of a standard algebraic Riccati equation.

Consider T -periodic symmetric positive definite matrix functions R and Q of L ∞ class. Under the assumption that there exists η > 0 such that the set {t ∶ det(R(t)) < η} is of zero measure, it is proved in [START_REF] Blin | Necessary and Sufficient Conditions for Harmonic Control in Continuous Time[END_REF] that P is the unique Tperiodic symmetric positive definite solution of the periodic Riccati differential equation: Ṗ (t) + A ′ (t)P (t) + P (t)A(t)

-

P (t)B(t)R -1 (t)B(t) ′ P (t) + Q(t) = 0,
if and only if the matrix P = T (P ) is the unique hermitian and positive definite solution of the algebraic Riccati equation:

(A -N ) * P + P(A -N ) -PBR -1 B * P + Q = 0, (36) 
where Q = T (Q) is hermitian positive definite. Moreover, P is a bounded operator on 2 . Before generalizing the Kleinman algorithm to harmonic Riccati equations, we introduce the symbol Riccati equation and provide a link between a solution of a harmonic Riccati equation and a solution of the associated harmonic Lyapunov equation.

Proposition 5: P satisfies Equation (36) if and only if P (z) satisfies the symbol Riccati equation 

col(P) = -M -1 col(Q + Y)
where M ∶= Id n ⊗ (A -BK -N ) * + Id n ○ (A -BK) * with N defined by ( 8) and Q ∶= F(Q).

Proof: If P ∶= T (P ) is the solution of (36) then it is the unique solution of the Lyapunov equation:

(A -BK -N ) * P + P(A -BK -N ) + Q + Y = 0. (38)
The result follows applying Theorem 10 to (38). In the next Theorem, we provide the algorithm to solve the infinite-dimensional harmonic Riccati equation (36) up to an arbitrary small error.

Theorem 13: Assume that A(t) ∈ L ∞ ([0 T ]). For k ∶= 0, 1, 2, ⋯ and for a sufficiently large m k ∶= m(k), define Sm k (k) by:

col( Sm k (k)) ∶= -M(k) -1 col(Q m k + Y(k) m k ) (39) 
the m k -truncated unique solution of the algebraic Lyapunov equation :

(A(k) -N ) * S(k) + S(k)(A(k) -N ) + Y(k) + Q = 0 (40) with Y(k) ∶= F(Y (k)), Y (k) ∶= T -1 (Y(k)) and Y(k) defined by Y(k) ∶= K(k) * RK(k)
and where

M(k) ∶= Id n ⊗(A m k (k)-N m k ) * +Id n ○A * m k (k), A(k), its m k -truncation A m k (k)
and Y(k) are determined recursively by the symbols:

K k (z) ∶= R -1 (z)B(z) ′ Sk-1 (z) A k (z) ∶= A(z) -B(z)K k (z) Y k (z) ∶= K k (z) ′ R(z)K k (z)
in which Sk-1 (z) denotes the symbol associated to Sm k-1 (k -1). Moreover, K 0 (z) is chosen such that the matrix A(0) -N ∶= A -BK 0 -N is Hurwitz. Then, for > 0 sufficiently small, if m k is chosen sufficiently large at each step, we have:

1) S(k) -Sm k (k)) 2 <
where S(k) is the exact positive definite solution of (40) and Sm k (k) ∶= T (F -1 ( Sm k (k))) with Sm k (k) given by (39), 2) P ≤ S(k + 1) ≤ S(k) ≤ ⋯ ≤ S(0) where P solves (36) 3) Sm k (k) > 0, for any k = 0, 1, ⋯, 4) lim k→+∞ Sm k (k) ∶= S m with m = lim k→+∞ m k < +∞, 5) S ∞ -S m 2 ≤ where S ∞ ∶= lim k→+∞ S(k) satisfies (36) with an error in 2 norm given by

(A-N ) * S ∞ +S ∞ (A-N )-S ∞ BR -1 B * S ∞ +Q 2 ≤ η 2 (41) and η ∶= B(t)R -1 (t)B ′ (t) L ∞ .
Proof: We use Theorem 11 in this proof as the related assumptions satisfied. For a given > 0 and for k ∶= 0, we have from (39), Sm0 (0) ∶= T (F -1 ( Sm0 (0))) which differs from the exact solution S(0) of (40) by

S(0) -Sm0 (0) 2 ≤
provided that m 0 is a sufficiently large number. Thus, as S(0) is positive definite, so is Sm0 (0) provided that is small enough.

Recall that if A -BK -N is Hurwitz, the solution of (40) is provided by

S K ∶= +∞ 0 e (A-BK-N ) * τ (Q + K * RK)e (A-BK-N )τ dτ.
Set k ∶= 1 and consider S 1 the bounded operator on 2 solution of (40) obtained with K 1 ∶= R -1 B * Sm0 (0) and A(1) ∶= A -BK 1 -N . Note that S 1 is well defined since A -BK 1 and Y(1) + Q are bounded operators on 2 (or equivalently T -1 (A -BK 1 ) and T -1 (Y(1) + Q) are L ∞ ). Using similar steps as in the proof of [START_REF] Kleinman | On an iterative technique for Riccati equation computations[END_REF], it can be established that:

S(0)-S(1) = +∞ 0 e A * (1)τ (K 0 -K 1 ) * R(K 0 -K 1 )e A(1)τ dτ ≥ 0 S(1) -P = +∞ 0 e A * (1)τ (K 1 -K) * R(K 1 -K)e A(1)τ dτ ≥ 0
where P is the solution of the Riccati equation (36). Therefore, 0 < P ≤ S(1) ≤ S(0) which proves that A(1) ∶= A -BK 1 -N is Hurwitz. Using Theorem 11, the approximated solution Sm1 (1) ∶= T (F -1 ( Sm1 (1))) where Sm1 (1) is determined by (39), differs from S(1) by S(1)-Sm1 (1)) 2 < provided that m 1 is a sufficiently large number. Hence, Sm1 (1) is positive definite provided that is small enough.

Repeating, for k ∶= 2, 3, ⋯ the above arguments, one gets:

1) P ≤ S(k + 1) ≤ S(k) ≤ ⋯ ≤ S(0) 2) S(k) -Sm k (k) 2 < 3) for any k, A(k) ∶= A -BK k -N is Hurwitz
Recall that for any k, S(k) are bounded operators on 2 . Using monotonic convergence of positive operators, it follows that S ∞ ∶= lim k→+∞ S(k) exists with S ∞ a bounded operator on 2 satisfying:

(A -B K∞ -N ) * S ∞ + S ∞ (A -B K∞ -N ) + K * ∞ R K∞ + Q = 0 (42)
where K∞ ∶= R -1 B * S m with S m ∶= lim k→+∞ Sm k (k) and m ∶= lim k→+∞ m k . Therefore, S ∞ satisfies the following Riccati equation:

(A -N ) * S ∞ + S ∞ (A-N ) -K * ∞ RK ∞ + Q = (K ∞ -K∞ ) * R(K ∞ -K∞ ) with K ∞ ∶= R -1 B * S ∞ . As by construction K ∞ -K∞ 2 ≤ ζ S ∞ -S m 2 ≤ where ζ ∶= R -1 B * 2 = R -1 B * L ∞ (see Theorem 3
) and as S ∞ and K ∞ are bounded operators on 2 , we have necessarily that S m and K∞ are also bounded on 2 . It follows that m is a finite number. Indeed, as S ∞ solves (42) and as the assumptions of Theorem 11 are satisfied, there exists a finite m such that S ∞ -Sm 2 ≤ . Consequently, m is finite. Now, taking the 2 -norm, we get:

(A -N ) * S ∞ + S ∞ (A -N )-S ∞ BR -1 B * S ∞ + Q 2 ≤ η S m -S ∞ 2 
2
where η is such that BR Theorem 3). We have by construction S m -S ∞ 2 ≤ and the conclusion follows.

-1 B * 2 = B(t)R(t) -1 B(t) * L ∞ < η (see
This theorem shows that the algorithm returns a solution S m that approximates in 2 -norm operator sense the solution of the algebraic harmonic Riccati equation (36) and this approximation is characterized by (41).

Remark 3: The choice of m k at each step k must be sufficiently large to guarantee that S(k)-Sm k (k) 2 < . This can be achieved by checking at each step a similar condition to the one provided in Corollary 5 using the symbol equation (37). Moreover, the algorithm requires an initial step where the initial gain must be chosen such that A 0 -N ∶= A -BK 0 -N is Hurwitz. This is not a major problem as one can use the pole placement procedure proposed in [START_REF] Riedinger | Harmonic pole placement[END_REF] to design such a stabilizing K 0 .

Remark 4: Compared to [START_REF] Zhou | Derivation and Solution of Harmonic Riccati Equations via Contraction Mapping Theorem[END_REF] where an algorithm based on the iterative solution of the Lyapunov equation is proposed to solve harmonic Riccati equations, the algorithm of Theorem 13 is more general as the matrices A(t) and B(t) belongs to L ∞ . Moreover, it is assumed in [START_REF] Zhou | Derivation and Solution of Harmonic Riccati Equations via Contraction Mapping Theorem[END_REF] that A-N is Hurwitz which is not the case here. Our algorithm applies to unstable harmonic matrices A -N and it is also numerically more efficient with a significant reduction of the computational burden due to Theorem 11. Observe that a 11 , a 12 and a 21 are respectively square, triangular and sawtooth signals and include an offset part. The associated Toeplitz matrix has an infinite number of phasors and is not banded. Moreover, this LTP system is unstable.

VII. HARMONIC LQ CONTROL DESIGN

The eigenvalues set is characterized by Λ = {1 ± j1.64}. Let Q ∶= T (100Id n ) and R ∶= T (Id m ). We want to solve the associated Harmonic Riccati Equation using a m-truncation.

We perform the study with m ∈ {8, 16, 32, 64}.

When one attempts to solve the m-truncated version of (36), the Toeplicity defect for the solution P m and the associated gain K m is shown on Fig. 8 and9. We observe that, for Clearly it can be observed that the provided state feedback allows to track any T -periodic trajectory corresponding to any equilibrium of (44). From a practical point of view, we see on this example that once a good approximation of the harmonic Riccati equation has been obtained for a sufficiently large m, a few number of coefficients m 0 ≤ m are needed to reconstruct the matrix gain K(t) ∶= ∑ m0 k=-m0 K k e jωkt . This can be explained by the fact that the phasor gain modules vanish relatively quickly and can be approximated by K k ≈ O( 1 k ) since K(t) ∈ L ∞ (see Fig. 12).

VIII. CONCLUSION

In this paper, a simple closed form formula for a Floquet factorization in the general case of L 2 matrix functions as well as a detailed spectrum characterization of harmonic state space operators and their m-truncations are provided. For any m, it has been proved that the spectrum of the truncated harmonic matrix may contain a part that does not converge to the spectrum of the original infinite-dimensional harmonic matrix. From a practical point of view, these results have important consequences on the stability analysis when considering, for example, a m-truncation of the harmonic Lyapunov equation. We built upon this analysis efficient solutions to solve infinitedimensional harmonic Lyapunov and Riccati equations up to an arbitrarily small error. These algorithms allow to recover the infinite-dimensional solution from a sequence of finite dimensional problems and the computational burden is reduced from n 2 (2m+1) 2 to n(2m+1) where n is the dimension of the LTP system and m the order of the truncation. These results are important in practice and has been illustrated on the design of a harmonic LQ control with periodic trajectories tracking.
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  and A m is banded. Having fixed Q m = Id m , if we attempt to solve the truncated harmonic Lyapunov equation (see Theorem 9), the Toeplicity of the obtained solution P m is clearly defective as shown in Fig.4by evaluating log 10 P m (i, j) -P m (i + 1, j + 1) , i, j ∶= 1, ⋯, 2m. It can be observed that this defect is mainly located in the upper leftmost corner and in the lower rightmost corner, when m is chosen sufficiently large.
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 9 Fig. 9.Plot (normalized axes) of the "toeplicity" defect, log 10 Km(i, j) -Km(i + 1, j + 1) , i, j ∶= 1, ⋯, 2m of the gain matrix Km = [K 1 K 2 ] w.r.t. the truncation order m.
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 10 Fig. 10. Plot (normalized axes) of log 10 ∆Pm(i, j) , i, j ∶= 1, ⋯, 2m w.r.t. the truncation order m.
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 1112 Fig. 11. Plot (normalized axes) of log 10 ∆Km(i, j) , i, j ∶= 1, ⋯, 2m w.r.t. the truncation order m.
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 13 Fig. 13. Closed loop response with u(t) ∶= -K(t)(x(t)x ref (t)) + u ref (t) and for K(t) = ∑ m 0 k=-m 0 K k e jωkt and m 0 ∶= 10, 20, 50.
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