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Abstract: The assessment of the quality of water can be shortly defined as the analysis of its physical,
chemical and biological characteristics in order to determine the degradation of freshwater resources. In
this context, one of the latest technological methods for real-time data acquisition comes from the use of
unmanned vehicles (aerial, surface and underwater). Therefore, the development of control strategies to
perform environmental missions is crucial to manage water resources in an efficient and effective way.
Prior to the actual implementation, some in-silico experiments are needed to test the proposals, which
is one of the purposes of this work. This proposal, based on real experiments in a lake, presents a novel
method for the construction of a water quality map based on polygons. The result is compared with
a classical data generation method showing positive outcomes. The generated limnological map has a
twofold purpose: to test set-based predictive controllers in simulation scenarios with an aquatic robot
and to determine if there is a source of contamination in the analyzed region of the lake.
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1. INTRODUCTION

Water resource management is an integral aspect of the preven-
tive management of aquatic ecosystems health and drinking-
water quality. A comprehensive monitoring program is becom-
ing a necessity in order to safeguard public health and to protect
the freshwater resources as required by the Water Framework
Directive (WFD) (Edition, 2011; Kannel et al., 2007).

Water quality assessment requires real-time measurement of
many physical and chemical parameters. Usually, the moni-
toring of these parameters exploits highly reliable instrumen-
tation which is deployed only in few locations. Nevertheless,
the vast collection of data necessary to define the conservation
status of a region represents a set of challenges to be solved.
For instance, the size of the monitored area will require the
deployment of a number of detection devices ranging from a
single device to a fleet of unmanned vehicles covering several
points. The second challenge comes from the remoteness of the
sites to be monitored. In this case, the sensing devices must be
provided with some kind of data transmission system. Finally,
to be efficient, human intervention must be kept to a minimum
(Madeo et al., 2020).

To fulfill all the previous objectives, recent works propose the
use of Unmanned Surface Vehicles (USV) for the collection of
data (Sinisterra et al., 2017; Siyang and Kerdcharoen, 2016).
The implementation of autonomous vehicles offers the flex-

ibility for a variety of intervention plans and it provides an
energy efficient and robust solution for specific tasks in sophis-
ticated environments (see Wang et al. (2021) and the references
therein).

In this preliminary work, the SPYBOAT® vessel - equipped
with specific sensors to monitor turbidity, dissolved oxygen
(DO), pH, conductivity, temperature from water surface - was
tested in several environmental scenarios. Some of these sce-
narios were intended to guarantee the quality of the data by
means of a proper validation using data provided by a Lab-
oratory deployed in the field (Mougin, 2021) in coordinated
experiments. Another experimental scenario was performed on
the wider area of the Heron lake in Villeneuve d’Ascq, France.
The monitored area is located close to the arrival of contami-
nated waters from storm overflows and was expected to show
interesting gradients.

The main purpose of this paper is to provide a novel data
approximation method to extract the maximum amount of in-
formation possible from a minimum amount of data. This ap-
proximation method is used to generate a limnological profile
of the complete monitored region of the Heron lake aforemen-
tioned. The result is compared with a classical data generation
method showing positive outcomes. The generated map has a
two-fold purpose, to create a structural reliability framework
to test predictive controllers in simulation scenarios with an
aquatic robot and to determine if there is a significant source



of pollution in the analyzed region of the lake by considering
the spatial direction in which the parameters rises most quickly.

The structure of this paper is as follows. Section 2 provides
the architecture of the USV used on the real measures and a
proper data validation analysis. Section 3 describes the main
experiment on the Heron lake, including the region of interest,
the analyzed parameters and the sampling procedure. The main
result of the paper is presented in Section 4. This section
presents an estimated limnological map of the region based
on data collected on the field. Two different approaches were
proposed to build the map, the strategy knowing as Kriging
and a novel proposal based on the specific features of the
experiment. A comparison between the results and a discussion
about the methods are further presented. Lastly, Section 5
presents the conclusions and perspectives of the paper.

2. THE USE OF ROBOTS FOR REAL-TIME
MEASUREMENT

The exploration and exploitation of water resources has a
remarkable growth and development in robotics in recent
decades. Unmanned surface vehicles (USVs) have become
common in marine robotics executing missions such as source
seeking, environmental monitoring and water sampling (in a
coordinated way with multivehicles). In what follows the ar-
chitecture and specifications of the USV employed to perform
the environmental missions described in this work is presented.

2.1 SPYBOAT®’s description

The CT2MC company has designed a range of vessels dedi-
cated to answer the need of data monitoring of freshwater re-
sources. The main feature of these vehicles consists in a flat hull
and aerial propulsion system. This guarantees the realization
of sampling missions and inspections without contamination of
the environment. The official SPYBOAT® system used in the
present study is illustrated in Fig. 1.

Fig. 1. The SPYBOAT® technology is based on the use of an
aquatic drone allowing the realization of water sampling
and inspections by guaranteeing the non-contamination of
the environment.

The SPYBOAT® technology follows standard equipment con-
figuration including multiple sensors (localization system, com-
pass, sonar, camera) and is propelled by two independent ac-
tuators. Thus the heading is controlled through a differential
thrust method. The architecture of the SPYBOAT® technology
is described in Fig. 2.
Remark 1. It is noteworthy that in Hervagault (2019) a model
was proposed based on appropriate assumptions according to
the characteristics of the SPYBOAT® vessel. Moreover, this
model was identified with measurements performed on a real

system. The access to an identified model is a crucial point
to the development of model predictive control strategies to
automatized the environment missions.

Fig. 2. Architecture of SPYBOAT® technology.

The USV is equipped with a Hyperion optical sensor from
Valeport 1 , for the measurement of the turbidity. It is also
equipped with Tripod sensors from AquaLabo 2 to measure the
temperature, DO, pH, and conductivity.

2.2 Data validation

The first experiment scenario - performed in the Marque River
(close to Lille in France) - attempted to validate the SPY-
BOAT® sensors measurements. This was carried out with an
intercomparison between the USV on a fixed location and a
field Laboratory (static station on the side of the river) (Mougin,
2021), performing an online analysis of the physicochemical
parameters of the water with a multiparameter probe (Manta+,
Eureka Water Probes). The comparison was performed during
a one hour monitoring period, with a one second delay between
measurements for the USV and a two and a half minute delay
for the laboratory.

Table 1. Comparison between sensors from USV
and from field Laboratory.

Temperature pH Conductivity Turbidity O2

Shift 3% 6% 5% 17% 5%
Correlation 0.98 0.95 0.93 0.42 0.96

The results show a small shift in absolute value for most of
the parameters between the USV and the laboratory (see Table
1). The small difference could be explained by some errors in
the calibration and it will be necessary to give additional care
to this essential step in the future. The measured variations
over the hour were good as a very strong correlation between
sensors (more than 95%) was found. Turbidity however was
very different between the USV and the station. If calibration
problems and noisy measures could be suspected, it is not
impossible that both sensors are properly functionning but are
not measuring in the same sample. Turbidity can indeed exhibit
strong gradients with depth as particles will often come from
the sediment and the lighter the particles, the higher they will
ascend. The pump for the station is 1 m below the surface, 50
cm above the sediment while the USV measure a few cm under
the surface. An intercomparison within the same sample or at
the same depth should be done in the future.

1 https://www.valeport.co.uk/content/uploads/2021/05/0901814i-Hyperion-
Optical-Sensors-Operating-Manual.pdf
2 https://en.aqualabo.fr/



3. DESCRIPTION OF ENVIRONMENTAL
EXPERIMENTATION

Pollution of surface water occurs when too much of an unde-
sirable or harmful substance flows into a water body, exceeding
its natural ability to remove it (dilute or convert it to a harmless
concentration). Water pollutants are categorized as being emit-
ted from point or nonpoint sources. Point sources are distinct
and confined, such as pipes from industrial and municipal sites
that discharge into streams or rivers. In general, point source
pollutants from industries are controlled through on-site treat-
ment or disposal and are regulated by authorisations.

3.1 Sampling area

The study area (see Fig. 3) of the experiment is a part of the
Heron Lake in Villeneuve d’Ascq, France. It is an artificial
lake, dug in the 70s to drain the marshy area, to receive rain
water from roads and other artificialized ground and from storm
overflows from mixed drainage system (rain and to a lesser
extent domestic wasterwater). The water arrives at the east of
the lake and when the level is too high, water is pumped out to
a nearby river in the far western point. A natural remediation
of the water occurs in lake so a gradient can be expected
between the entrance with a high biodegradable input and the
exit (Ivanovsky et al., 2018).

Fig. 3. Region Ω on the Heron lake, Villeneuve d’Ascq, where
measurements are carried out.

The measures were focused in the region Ω (pink region in
Fig. 3) where the gradient should be the strongest, at the inter-
face between the small canal bringing the contaminated water
and the main part of the lake where dilution and decontamina-
tion occurs. The region has been explored with the USV during
close to 1 hour, getting sample each 1 second (Fig. 4).

3.2 Description of the parameters

Direct in situ measurement of contaminant is usually not per-
formed as sensors are not always available or difficult to use in
environmental conditions. Reliable sensors can be easily found
and used for physicochemical factors such as pH, turbidity, con-
ductivity, temperature and dissolved oxygen. These parameters
can provide useful information about contamination, e.g. con-
ductivity usually increases with input of wastewater. But also
give some insight about the biological activity in the water. For
instance, dissolved oxygen and pH daily cycles can be observed
and are directly linked to the respiration and photosynthesis
alternation. The amplitude of these cycles gives an idea about

Fig. 4. Trajectory of the hand-operated vessel in region Ω with
decimal GPS coordinates.

the daily growth of photosynthetic organisms and so, of the
availability of nutrients in the system (Kumar and Thomas,
2019). Finally, hydrodynamic considerations can be derived
from the measure of turbidity, as it is often an indication of
the resuspension of sediment in the water body and so of the
currents at the water - sediment interface.

4. MAIN RESULTS

The environmental mission explained in the previous section
presents several challenges to improve the collection of data.
The first problem is the size of the area of exploration. This
means a large difference of time between the first and the last
measurement. Because the natural evolution of the physical
parameters to analyze, the delayed measurements are likely to
result into values that are significantly different. The second
problem is the regularization of the survey. Since the USV is
controlled manually, the route of the vessel leaves many places
unvisited (see Fig. 4).

In this section we discuss an approach to sort out these chal-
lenges. In order to account for the regularization of the survey,
we perform an approximation of every missing data. This is
accomplished thanks to a regular map of the region of interest
(set Ω from Fig. 3), where every point of Ω is now associated
with an estimation of its physical parameters (turbidity, DO,
pH, conductivity and temperature).

In what follows, the limnological map is constructed in such
a way it can be used in simulation scenarios in order to test
different control strategies (for a single and a fleet of USV) to
address these challenges.

4.1 Map meshing

In this section the area of interest Ω is computed by the largest
convex set containing the entire data collection of Fig. 4, and a
set of meshing of Ω are constructed with the aims of estimation
parameters and robotic simulations.

Each sample is geo-referenced with decimal GPS coordinates.
Based on these coordinates, new metric coordinates are gener-
ated for each sample Bi relative to the minimum longitude and
minimum latitude of all samples, i.e. the origin denoted A. The
metric coordinates (Bx

i , B
y
i ) of the ith sample denoted Bi in

the relative reference map with origin A, are easily computed
according to the distance formula between A and the projec-
tions on the horizontal and vertical axis of Bi:

Bx
i = cos−1(sinφA.sinφBi + cosφA.cosφBi).rE

By
i = cos−1(sinφA.sinφA + cosφA.cosφA.cos∆λ).rE



with latitudes φA, φBi, longitudes λA, λBi, ∆λ = λBi − λA

and rE the conventional Earth radius equal to 6, 378, 137 m.

The boundaries of the region Ω are determined thanks to the
Matlab function boundary. This function returns a vector of
points indices PB that represents a compact boundary around
this area. It is possible to obtain less detailed boundaries by
tuning the parameter FaceAlpha of the function, with a value
less than one. The following step aims at meshing the map.
Remark 2. The covered area is usually very large and its
meshing is required to build an adapted environment for robotic
simulations. From the computational mechanics domain, the
in-book chapter is of interest for the mesh generation methods
and mesh adaptivity issues (George et al., 2007). This paper is
dedicated to numerical solutions for computation in mechanics,
but it presents some rules, advices and methodology for the
surface domains.

A regular map meshing of the region Ω could be done by
different shapes of different sizes (see Fig. 5), which partic-
ularities are discussed in Section 4.5. Matlab software offers
the library Generate Mesh for triangular mesh for a 2-D
geometry. Another option is to perform map meshing thanks to
the Multiparametric Toolbox 3.0 3 library (Herceg et al., 2013),
that allows adjusting the size and choosing the shape of each
finite element. From this library, the functions Polyhedron,
meshGrid or isInside are available. Hence, according to
the function Polyhedron and the previous determined vector
PB , an entity Zone is created from the area of interest.

The meshing of Zone, i.e. the region Ω, is performed according
to three steps. The first one consists in defining the shape, the
size and the orientation of the finite element, i.e. an elementary
entity E (square or hexagon in Fig. 10); the second in determin-
ing the location in the Zone of the center of each E; the third in
attaching one E to each center.

The elementary entity E is created with the relative coordinates
of the polyhedron’s vertices VE . For a square entity Esqr with
a side length Sp, it is necessary to code:

Esqr = Polyhedron(′lb′, [−Sp/2,−Sp/2],′ ub′, [Sp/2, Sp/2]).
For any other polyhedron with a side length Sp, the code is:

Ep = Polyhedron(VE), with VE the coordinates of vertices.

As an example, to define the entity EH as a hexagon, the
vertices are defined as:

VEH = {(−Sp ∗ cosd(30)/2;Sp ∗ cosd(60)/2), (0;Sp/2),
(Sp ∗ cosd(30)/2;Sp ∗ cosd(60)/2),
(Sp ∗ cosd(30)/2;−Sp ∗ cosd(60)/2),
(0;−Sp/2), (−Sp ∗ cosd(30)/2;−Sp ∗ cosd(60)/2)}.

Note: Esqr is dedicated to an elementary entity with a square
shape, EH to a hexagonal shape, and Ep to a polyhedral shape.

The centers for Esqr can be easily determined thanks to the
function meshGrid. However, the coordinates of centers for
any other polyhedron has to be determined, based on the shape
of the entity Ep. Hence, the set of these centers Cp that belong
to Zone is determined thanks to the function isInside.

The final step consists in computing for each center ci ∈ Cp,
a new entity Epi

= ci + Ep. As a result we get one entity
Epi

for each center ci. Figure 5 shows different meshes with
constructed by varying the entity shape (square & hexagonal),

3 https://www.mpt3.org/

(a) Square Entity Esqr with
Sp = 10m.

(b) Square Entity Esqr with
Sp = 5m.

(c) Hexagonal Entity EH with
Sp = 5m.

(d) Hexagonal Entity EH with
Sp = 12.5m and overlapping.

Fig. 5. Map meshing of Ω.

in a. Sp = 10m (meters), in b. Sp = 5m, and with hexagonal
Entity without overlapping in c. Sp = 5m, and with in d.
Sp = 10m.

Based on the map meshing, the next step is to create the limno-
logical map of Zone, i.e. to associate an estimated value of each
physico-chemical parameter (turbidity, DO, pH, conductivity
and temperature) to each of the entity Epi , and to determine the
variance of these estimations if any. This represent a challenge
that will be tackle in the next Section. Basically, the USV has
explored the Zone with different velocities and several trajec-
tories. Hence, first the USV has not taken the same number of
samples for each entity Epi , second some entities Epj could not
be explored because of their size of entities.
Remark 3. In the past two decades, several approximation
methods for the structural reliability analysis were proposed.
The main objective of these methods is to extract the maximum
amount of information from the collected data in the small-
est number of experimental runs, resulting in lower material
consumption and considerably less laboratory work. Among
them, response surface methodology (RSM) and Kriging have
drawn extensive attention specially in design, modelling, and
optimization of environmental experiments (Karimifard and
Moghaddam, 2018; Brus and Heuvelink, 2007). To the best of
our knowledge, there exist no result about the application of
these approximation methods in experimental scenarios similar
to ours, where there is no simultaneous measurements. This
study is addressed in the next sections.

In the next Sections, two methods to attribute one value of
each physical parameter to each entity Epi is presented. The
first approach is the Kriging strategy, which results will be
compared with the proposed strategy presented in Section 4.3.
The two methods have been used to estimate all parameters
(turbidity, DO, pH, conductivity and temperature). However,
for sake of simplicity and due to the limitation of space, only
DO is depicted in this paper.

4.2 Map construction: Kriging approach

Kriging is a geostatistical interpolation method that was de-
veloped for the mining field at the end of the decade of 1960
(see Fig. 6). This method has been widely extended in the
literature to the interpolation of environmental variables, such
as soil quality (Snepvangers et al., 2003), wheater tempera-
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Fig. 6. Blue dots {A,B, ..., F}, represent already taken mea-
surements, {CA, CB , ..., CF }, and the red dot, O, is the
point where the value is being interpolated. Thus, since
distances from the measurements to the interpolated point
are available, we can use kriging to interpolate CO.

ture (Shtiliyanova et al., 2017), solar irradiance (Yang et al.,
2013), and water quality (Chen et al., 2012).

To perform these interpolations, Kriging strategy uses Vari-
ograms to relate the distance, h, between the measurements
and the semivariance, γ(h), and that can be computed from the
known measurements. However, these empirical variograms do
not provide information for all possible h (needed for kriging).
Thus, they are often approximated by model function, as cir-
cular variogram (see Fig. 7a), ensuring validity (Chiles et al.,
1999). Fig. 7b shows as red dots empirical variogram computed
from the measurements taken in Ω. The theoretical model used
to fit the data is represented as blue dashed line. Note that in
Fig. 7b there is a large divergence between the experimental and
the theoretical variagrams, specially for small distances. The
reason of this divergence is that there are many measurements
which, disregarding being very close in distance, are very far in
time. Thus, the real value of the parameter can have changed a
lot during the time between them.

Making use of this theoretical Variogram we can interpolate
the mesh of points inside Ω, carried out with hexagonal shape
of Sp = 5m. Fig. 8 shows the boundary of explored area in
red (set Ω), the explored entity Zone with grey face color, the
centers and each hexagonal entities EH and the real trajectory
of the USV in blue. Note that in the top left corner, it can be seen
that the USV explored several times the same entities. Mean-
while, in the bottom right corner there are some non-explored
entities. With the center of each entity EHi

, a limnological map
is obtained for every physical parameter analyzed in this work.
Fig. 9a shows the map for the DO.

Furthermore, by assessing Fig. 9a, it can be seen that the maxi-
mal rate of DO in this region comes from 1.1mg/l (dark blue)
to 9.09mg/l (yellow). The DO concentration presents smaller
values in the top left corner of the set Ω, which corresponds
to the river mouth where there is a suspicion of a source of
pollution. By means of the generated maps, the gradient of
each parameter can be assessed in order to determine if there
is a significance pollution source. Lastly, the variance of the
measures are depicted in Fig. 9b, with values from 0 to 0.51.
The variance takes the maximum values at the non-explored
area of Ω (see Fig. 8), i.e., the farthest points to the trajectory.

4.3 Map construction: Proposed approach

The creation of the measurement map is achieved in two steps.
The first step aims at determining, thanks to the function
isInside, the set of samples made in each constructed entity
Epi . The average of these samples leads to the estimation of
one value for each entity Epi , and the uncertainty associated

(a) Theoretical variogram (circular
model).
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(b) Experimental variogram (red dots) and
fitting to a theoretical model.

Fig. 7. Kriging Variograms. Circular variograms like the one
in Fig. 7a are one of the most use mathematical models.
However, there are other models as Gaussian, exponen-
tial, spherical, or lineal variagrams among others. Note
that many of the terms used came from the mining field
as Nugget (that models the uncertainty of the measuring
instruments) or Sill (which model the maximum uncer-
tainty). In Fig. 7b we have computed the empirical vari-
ogram according to the gathered data and we have fitted it
to a theorical model. In this case the mathematical model
which better fits the gathered data is the Gaussian vari-
ogram.

Fig. 8. Map meshing with hexagonal Entity EH with Sp = 5m.

to each entity Epi
estimation is determined by computing the

variance between the involved measurements.

The second step concerns the non-explored entities Epj
for

which a neighborhood propagation of the values is proposed.
To this end, a neighborhood matrix of the entities Ep is built.
It aims at determining which entities Epi

have common edge.
Two examples are provided in Fig. 10, with square and hexag-
onal entities. For the square Entity Esqr in Fig. 10a, and the
hexagonal Entity EH in Fig. 10b, the neighborhood matrices
Nsqr and NH are given in Eq. (1), respectively. In Nsqr, all the
1 values from the fifth line show that the entity Esqr5 has as
neighbours the entities Esqr2 , Esqr4 , Esqr6 and Esqr9 . In NH ,
the 1 from the second line shows that neighbours of the entity
EH2

are: EH1
, EH3

, EH7
and EH8

.



(a) Final Kriging map of DO.

(b) Variance of measures of DO based on Kriging map.

Fig. 9. Kriging Map Generation.

(a) Square Entity Esqr . (b) Hexagonal Entity EH .

Fig. 10. Map meshing examples.

Nsqr =



1 1 0 0 0 0 0 0 0
1 1 1 0 1 0 0 0 0
0 1 1 0 0 1 0 0 0
0 0 0 1 1 0 0 1 0
0 1 0 1 1 1 0 0 1
0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 1 0 0 1 1 1
0 0 0 0 1 0 0 1 1


NH =



1 1 0 0 0 1 1 0 0
1 1 1 0 0 0 1 1 0
0 1 1 1 0 0 0 1 1
0 0 1 1 1 0 0 0 1
0 0 0 1 1 0 0 0 0
1 0 0 0 0 1 1 0 0
1 1 0 0 0 1 1 1 0
0 1 1 0 0 0 1 1 1
0 0 1 1 0 0 0 1 1


(1)

The value that is associated to a non-explored entity Epj is
estimated as the average value of each of its neighbours. It is
computed as the multiplication of the vector of measurement
with the jth line of the associated neighborhood matrix.

(a) Final Average map of DO.

(b) Variance of measures of DO based on Average map.

Fig. 11. Average Map Generation.

Based on the map in Fig. 8, the limnological map is generated
with one mean value of the measured DO concentration for
each explored entity EHi

. Values for the non-explored entities
EHj

have been estimated. The final map of DO is depicted
in Fig. 11a. Each entity is associated to a value with rate of
DO from 1.43mg/l (dark blue) to 8.41mg/l (yellow). The DO
is less concentrated in the top left corner because this area
corresponds to the outlet of the river that runs through Lille; this
river can be loaded with pollutants. Finally, Fig. 11b shows the
variance of the measures given an indication of the uncertainties
on the sample. The variance for the DO varies from 0 to 10. It is
maximum in the top left corner. As well as the Kriging strategy,
the average method also show a higher concentration of DO
where a source of pollution is suspected. In the next Section,
the results obtained by both methods are discussed.

4.4 Comparison of both strategies

The two approaches based on average map generation (AMG)
and Kriging map generation (KMG) are compared considering
the computational load, the values of DO, the variance of
measurement. To generate the final map, the computational
loads are 74s and 14s for AMG and KMG respectively 4 . The
difference comes from AMG which consists in considering
each entity EH as surface, instead of KMG which takes into
account only dots. This computational load is not really an issue
in this work because the map is generated after collecting all the
sample and not any dynamical mapping has to be performed.
4 These durations were measured on a PC laptop with Intel(R) Core(TM) i7-
10850H with a 2.70GHz clock, 32 GB of RAM. The Operating System is a
64 bits Windows 10 Professionnel version 21H1. Both implementations were
developed using Matlab R2021b



Fig. 12. Absolute errors between estimated values from the
average and the Kriging approaches for each hexagonal
entity.

The interval of DO from KMG is a little bigger than AMG,
but the difference between both maps is not very big, from
0mg/l to 4.87mg/l, with the exception of some EH (see
Fig. 12). The maximum rate of error is located in the top left
corner. It is possible that it is due to the number of samples
considered in each EH (see Fig. 13), and also the duration
between measurements of the first and the last exploration of
each EH (see Fig. 14). Indeed, the number of samples and the
duration of exploration of these EH are bigger.

If the duration between two measurement times is high, the
water characteristics may change. This is very likely in this
zone of experimentation, with a gradient of concentration due
to punctual wastewater output. Depending of the weather or of
the river flow, differences in sample values can appear quickly.

Also, the number of samples and the duration of exploration of
each EH have a direct impact on the computed measurements
variance. The variance of the measurement from the AMG is
maximum in the top left corner. In this area, EH are explored
with the USV at different times, with a bigger number of sam-
ples. It is a way to highlight the importance of the measuring
process dynamics. The time and the changes on the parame-
ters could be shown according to the variance. However, this
variance is minimum for the non explored area in the bottom
right corner. It is mainly due to the step based on neighborhood
propagation. This is the main drawback of this approach.

At the opposite, as expected, the variance of measurements
from the KMG is very much smaller. The variance associated
to the non explored EH in the bottom right corner is higher
providing implicitly the biggest uncertainties on these measure-
ment.

4.5 Discussion

The map extraction from field measurements which consists
in detecting the explored area and to discretize it into small
entities is very generic. It can be applied to areas with different
shapes. Besides, it supports varying the shape of the entity used
for discretizing the explored area. However, convex covering
shapes, such as triangles, squares or hexagons are preferably
used. These shapes share common edges and can be organized
to cover the whole area without leaving blanks. Overlapping
between entities is possible, though the usefulness of such over-
laps is yet to be investigated. In the case of maps generated to

Fig. 13. Number of samples collected during the exploration
per hexagonal entity.

Fig. 14. Duration of exploring each hexagonal entity.

create simulation environments for robots, overlapping entities
is a priori not required. Additionally, the size of each entity can
be tuned according to the required accuracy required for robot
navigation.

The Kriging approach leads to accurate map with a small
variance, even if some estimations seem inaccurate. However,
this approach is not suitable to take into account dynamics in
the measuring process. In this case spatio-temporal Kriging is
required.

5. CONCLUSION AND PERSPECTIVES

This paper targets environmental missions to assess water qual-
ity by means of aquatic robots. Experiments we have con-
ducted expose critical points related to data collection that
can be improved by the study and the implementation of con-
trol strategies for Unmanned Surface Vehicles. To this end,
a limnological map of the region of interest is necessary to
conduct simulations with different scenarios before the field
implementation. In this context, and based on validated real
data collection, we have provided an estimated parameters map
of a region of interest. The proposed map was computed using
a known data interpolation method, namely Kriging. Kriging
shows some limitations in this kind of non-studied scenario,
mainly due to the gap of time between measurements.



To the best of our knowledge, there exist no study about the
application of this approximation method to scenarios similar
to ours: water characteristics are dynamic and evolve over time
while measurements are asynchronous. This is why we have
introduced a novel method for data approximation, based on
polyhedral sets. The potential benefits of this novel strategy
were illustrated by a detailed analysis and simulation results.

In future works, in order to improve the parameter estimation
of both methodologies, the strategies need to be adapted to a
more appropriate dynamic context. We need to consider the
time when the measures were taken as part of the estimation. In
the case of Kriging, the use of spatio-temporal Kriging (Mon-
tero et al., 2015) must be assessed. In addition, the generated
map will be utilised in simulation scenarios to test predictive
control strategies for USV. The goal is to reduce the gap of time
between measurements by appropriate optimal strategies that
involves a trade-off between the size of the exploration area
and the necessary amounts of measurements to create a reliable
map. The general objective is to improve the data collection
of water quality parameters in different sophisticated environ-
ments scenarios.
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