
HAL Id: hal-03610840
https://hal.science/hal-03610840v1

Submitted on 1 Apr 2022 (v1), last revised 23 Jun 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Modeling exposure to airborne metals using moss
biomonitoring in cemeteries in two urban areas around

Paris and Lyon in France
Emeline Lequy, Caroline Meyer, Danielle Vienneau, Claudine Berr, Marcel

Goldberg, Marie Zins, Sébastien Leblond, Kees de Hoogh, Bénédicte
Jacquemin

To cite this version:
Emeline Lequy, Caroline Meyer, Danielle Vienneau, Claudine Berr, Marcel Goldberg, et al.. Modeling
exposure to airborne metals using moss biomonitoring in cemeteries in two urban areas around Paris
and Lyon in France. Environmental Pollution, 2022, 303, pp.119097. �10.1016/j.envpol.2022.119097�.
�hal-03610840v1�

https://hal.science/hal-03610840v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Jo
urn

al 
Pre-

pro
of



1 
 

Modeling exposure to airborne metals using moss biomonitoring in 1 

cemeteries in two urban areas around Paris and Lyon in France. 2 

Emeline Lequy1*, Caroline Meyer2, Danielle Vienneau3,4, Claudine Berr5,6, Marcel 3 

Goldberg1, Marie Zins1, Sébastien Leblond2, Kees de Hoogh3,4**, Bénédicte 4 

Jacquemin7** 5 

1: Unité "Cohortes en Population" UMS 011 Inserm/Université de Paris/Université Paris 6 

Saclay/UVSQ, Villejuif, France 7 

2: UMS 2006 Patrimoine Naturel, OFB-CNRS-MNHN, Muséum national d’Histoire 8 

naturelle, Paris, France 9 

3: Swiss Tropical and Public Health Institute, Basel, Switzerland.  10 

4: University of Basel, Basel, Switzerland.  11 

5.University of Montpellier, Inserm, INM (Institute of Neurosciences of Montpellier) U1198, 12 

Montpellier, France 13 

6. Memory Research and Resources Center, Department of Neurology, Montpellier  14 

7: Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et 15 

travail) – UMR_S 1085, Rennes, France 16 

*: address correspondance to : 17 

Emeline Lequy, UMS 011, Hôpital Paul Brousse, 16 avenue Paul Vaillant Couturier, 94807 18 

VILLEJUIF CEDEX, France. Telephone number: +33 (0)1 77 74 74 19.  19 

E-mail Address: e.lequy@gmail.com 20 

**: equal contribution 21 

 22 

  23 

Jo
urn

al 
Pre-

pro
of

mailto:e.lequy@gmail.com


2 
 

Abstract 24 

Exposure of the general population to airborne metals remains poorly estimated 25 

despite the potential health risks. Passive moss biomonitoring can proxy air quality at 26 

fine resolution over large areas, mainly in rural areas. We adapted the technique to 27 

urban areas to develop fine concentration maps for several metals for Constances 28 

cohort’s participants. We sampled Grimmia pulvinata in 77 and 51 cemeteries within 29 

~50km of Paris and Lyon city centers, respectively. We developed land-use regression 30 

models for 14 metals including cadmium, lead, and antimony; potential predictors 31 

included the amount of urban, agricultural, forest, and water around cemeteries, 32 

population density, altitude, and distance to major roads. We used both kriging with 33 

external drift and land use regression followed by residual kriging when necessary to 34 

derive concentration maps (500x500m) for each metal and region. Both approaches 35 

led to similar results. The most frequent predictors were the amount of urban, 36 

agricultural, or forest areas. Depending on the metal, the models explained part of 37 

the spatial variability, from 6% for vanadium in Lyon to 84% for antimony in Paris, 38 

but mostly between 20% and 60%, with better results for metals emitted by human 39 

activities. Moss biomonitoring in cemeteries proves efficient for obtaining airborne 40 

metal exposures in urban areas for the most common metals. 41 

 42 

Keywords: air pollution; moss biomonitoring; cadmium; lead; exposure surface; 43 

land-use regression 44 
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Introduction  46 

As naturally occurring elements, metals abundantly occur in the lithosphere and 47 

accumulate in the biosphere and atmosphere through processes including root 48 

absorption and subsequent transfer through food webs, wind erosion, and human 49 

activities since the Bronze Age (Gall et al., 2015; Gnesin, 2013; Jaworowski et al., 50 

1981). Some metals support life, yet all become toxic when exceeding thresholds 51 

(Nordberg et al., 2007). Cadmium (Cd) and arsenic (As) for example are recognized 52 

human carcinogens (International Agency for Research on Cancer, 2016), and, as 53 

neurotoxicants, lead (Pb) and mercury (Hg) may also play a role in the development 54 

and decline of cognitive functions (Genuis and Kelln, 2015; Grandjean and 55 

Landrigan, 2014). As early as the 1960s it’s been known that airborne metals are a 56 

component of airborne particulate matter (PM) (Schroeder, 1968), and it is also 57 

established that air pollution also affects health and cognition (Brauer et al., 2012; 58 

Gatto et al., 2014). In Europe, toxic metals As, Cd, Pb, and nickel (Ni), have been 59 

measured in PM (diameter<10µm or PM10) as enforced by Council Directive 60 

96/62/EC of 27 September 1996 on ambient air quality assessment and management 61 

and its updates. Yet these measurements are performed only at a few sites, providing 62 

insufficient spatial coverage to allow for assessing the exposure of the general 63 

population to these airborne metals. Further, the directive does not include other 64 

potentially harmful metals such as aluminum (Al), antimony (Sb), copper (Cu), or 65 

zinc (Zn).  66 

In France, a network of moss biomonitoring of atmospheric deposition of metals on 67 

mosses (BRAMM) has recorded metal concentrations in mosses across 400-500 68 

sampling sites over the rural and forested areas since 1996 (Lequy et al., 2016) 69 

following the guidelines of the international program ICP-Vegetation (Schröder et al., 70 
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2016). Briefly, this moss-biomonitoring technique, detailed in (Markert, 2007), relies 71 

on mosses’ lack of roots, making them dependent on atmospheric sources to get 72 

water and nutrients (Bates, 1992; Tyler, 1990). Mosses combine a morphology of 73 

leaves able to trap particulate metals (Bargagli, 2006) to a monolayer cell thickness 74 

facilitating the accessibility of dissolved metals for the exchange sites in the cell walls 75 

(Bates, 1992; Carballeira et al., 2008; González and Pokrovsky, 2014). Data obtained 76 

by this technique allowed for deriving concentration maps suitable for the French 77 

rural and semi-urban populations, and was successfully used to estimate mortality 78 

risks associated to airborne metal exposure (Lequy et al., 2019). However, most of the 79 

French population lives in urban areas for which the above-mentioned concentration 80 

maps are not suitable. In fact, to the best of our knowledge, there are no available fine 81 

concentration map for metals for urban populations. Moss biomonitoring was shown 82 

to perform well in urban areas (Gallego-Cartagena et al., 2021; Jiang et al., 2018; 83 

Zechmeister et al., 2005), capturing particles mostly within the inhalable fraction (Di 84 

Palma et al., 2017), and with a large influence of urban or traffic land use variables on 85 

metal concentrations in mosses (De Nicola et al., 2013; Di Palma et al., 2017) but with 86 

a negligible contribution of soil on metal concentrations (Jiang et al., 2018). Specific 87 

sources of metals are well known, such as non-exhaust traffic (e.g. brakes) for Cu, Sb 88 

or Pb, or local or distant steel industry for Cd (Ledoux et al., 2017). For these reasons, 89 

we aimed at adapting the moss biomonitoring technique to urban settings to derive 90 

fine concentration maps by land use regression (LUR) modelling in two of the most 91 

populated French regions, the greater Paris and Lyon areas. 92 

Material and Methods 93 

To adapt the technique of moss biomonitoring used by BRAMM (Harmens, 2010) to 94 

urban areas, we needed to find suitable sampling sites and moss species. Regarding 95 
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sampling sites, we opted for cemeteries for several reasons: at least one is located in 96 

most municipalities, they can shelter mosses (Natali et al., 2016), cemeteries in urban 97 

municipalities are near sources of air pollutants such as roads while being relatively 98 

sheltered from direct contamination by humans or animals, and they offer 99 

homogeneous substrates such as concrete. In addition, opting for cemeteries allows 100 

for collecting mosses that grow in full light and can survive in contaminated 101 

environments. We selected a moss living in cushion, Grimmia pulvinata (Hedw.) 102 

Sm., which performs well in biomonitoring airborne metals (Gallego-Cartagena et al., 103 

2021), including in cemeteries (Natali et al., 2016).  104 

 105 

Study design 106 

With the goal to provide concentration maps for urban populations for the general 107 

population-based Constances cohort (Zins et al., 2015), the sampling strategy was 108 

designed to cover the widest urban area where Constances participants were residing 109 

and in which we could find cemeteries to sample mosses. To do so, and to obtain 110 

sampling sites as evenly distributed as possible to subsequently develop an 111 

concentration map, we proceeded as follows. 112 

We developed a “target-style” gridded study design (Figure 1), with concentric circles 113 

around the city center with increasing radii up to 49km around Paris and 30km 114 

around Lyon. These circles were crossed by transects starting from the center of the 115 

study site and passing through areas with the highest possible population density, 116 

while covering as many directions as possible. We classified population density into 117 

categories based on two indexes defined by the French institute for Statistics, 118 

according to the size of the municipality (Institut national de la statistique et des 119 

études économiques (National Institute of Statistics and Economic Studies), n.d., 120 

n.d.). For municipalities with less than 5000 inhabitants, the index is high, moderate, 121 

Jo
urn

al 
Pre-

pro
of



6 
 

low, and very low population density, taking into account the surface actually 122 

inhabited. For municipalities with more than 5000 inhabitants, the index is 123 

residential, commercial or industrial areas, and recreational areas. In Figure 1, to 124 

improve readability, the municipalities with less than 5000 inhabitants with high 125 

population density and the residential areas of municipalities with more than 5000 126 

inhabitants were merged into a “high” population density category, and the low and 127 

very low population density areas of municipalities with less than 5000 inhabitants 128 

into a “low” population density category. In the areas around Paris and Lyon and 129 

their surrounding areas (referred to as Paris and Lyon for readability), population 130 

density decreases as the distance from city center increases, therefore reaching low 131 

values in the outer circles. The junctions between circles and transects defined 132 

different potential sampling sites. The absence of cemeteries at some junctions, the 133 

refusal of the town halls to collect mosses in cemeteries, the absence of concrete walls 134 

or tombstones, or the species of mosses have led to modify the initially selected 135 

sampling sites. Final sampling sites were chosen in the field among the potential 136 

candidates matching our criteria: 77 sites in Paris, 51 sites in Lyon. 137 

 138 

Figure 1: distribution of sampling sites (white-circled black dots) around 139 

Lyon (left) and Paris (right). Dark gray, medium gray, and gridded-gray areas 140 
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indicate high, intermediate, and low population densities. Pale gray areas correspond 141 

to business or industry parks and to large uninhabited areas (forests, large parks, 142 

airports). Black lines indicate the borders of French départements. 143 

 144 

Moss sampling and metal concentrations 145 

Details of the moss sampling are available in Vieille et al (2021). Briefly, sampling in 146 

the Paris and Lyon regions took place in May and June 2018, respectively. In each 147 

sampling site, mosses were sampled with standardized methods by trained experts 148 

only on concrete substrate, either on tombstones or on the top of walls, as follows: we 149 

collected an average of 75 moss colonies (minimum 50), on at least 10 tombstones or 150 

on a total length of 15m of top of wall, and using two different walls, to reduce the  151 

influence of any moss cushion potentially contaminated by the substrate. We chose 152 

concrete because of the low risk of potential contamination. Moreover, we avoided 153 

decorative metallic objects.  Sampling collection in each site included a total of about 154 

9600 cushions. Each cushion was validated with a magnifying glass (10x 155 

magnification). Samples were stored in a cooler before being brought back in the 156 

laboratory where they dried at room temperature before being manually cleaned, 157 

ground with an automatic non-polluting titanium grinder (Pulverisette 14, Fritsch, 158 

Germany), and sent for analyses. Sampling and preparation were conducted using 159 

nytril gloves and ceramic knives to avoid contamination. Mosses were analyzed by 160 

inductively coupled plasma mass spectrometry by the USRAVE laboratory (INRAE- 161 

Centre de Bordeaux) (Agilent 7700x spectrometer) after drying at 40°C and acid 162 

mineralization by HF/HNO3/H2O2 (concentrations expressed at 103°C after 163 

accounting for water loss on a subsample). For Hg, the moss powder is directly 164 

analyzed by Cold Vapour Atomic Fluorescence Spectrometry. Analyses provided 165 

concentrations of aluminum (Al), arsenic (As), calcium (Ca), cadmium (Cd), 166 
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chromium (Cr), Cu, iron (Fe), mercury (Hg), sodium (Na), nickel (Ni), lead (Pb), 167 

antimony (Sb), vanadium (V), and zinc (Zn). Analytical uncertainties are 20% for As, 168 

Cd, Cr, Cu, Na, Ni, Pb, Sb and V, 15% for Al and Fe and 10% for Ca, Hg and Zn.  169 

 170 

Generating concentration maps 171 

Source data for potential predictors 172 

Corine Land Cover (2018, on https://www.copernicus.eu/en) was used to calculate 173 

the relative coverage of urban area, agricultural area, forest area, natural area, water 174 

within buffers of 500, 1000, 2500, and 5000 m radius around the sampling site (the 175 

subcategories used to define each category are detailed in the supplementary 176 

material). We used a minimal buffer radius of 500m due to the resolution of Corine 177 

Land Cover (250x250m). Sata from the French GIS database (Institut Géographique 178 

National) were used to calculate distance from major roads (defined as those 179 

classified level 1 and 2 i.e. corresponding to highways or equivalent, access roads, and 180 

other busy roads - in m), the population density of each municipality (in 181 

inhabitant/km2), and the altitude (in m). To consider the potential influence of 182 

industry, we used the European pollutant release and transfer register for industrial 183 

emissions (in the air only and in 2018) to calculate, for each available metal (As, Cd, 184 

Cr, Cu, Hg, Ni, Pb, and Zn) the distance to the closest industrial site (in m) and the 185 

total annual emissions released by this site (in kg).  186 

To use the most informative variables that did not risk to provide distorted estimates 187 

in the models, we removed any predictor containing more than 50% of null values 188 

before starting developing the LUR models (Table 1).  189 
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All GIS processing and analyses were performed with R version using the packages 190 

“SP”(Bivand et al., 2013), “RASTER”(Hijmans, 2020), “GSTAT”(Gräler et al., 2016), 191 

and “AUTOMAP”(Hiemstra et al., 2008). 192 

 193 

Table 1: list of variables and their description.   194 

    
N(%) or median [p25, p75] 

Type Variable Buffer size (radius, 

m) 

Code Lyon (n=51) Paris (n=77) 

Point  Substrate: wall or tombstone* - Substrate(Tombst

ones) 

     9 (18%)      58 (82%) 

 
Altitude (m) - altitude 259 [216, 316]   78 [51, 110]  
Population density (inhab/km2) - density 370 [166, 

1979] 

1804 [247, 7997] 

 
Distance to major roads (m) - dist_road 925 [419, 

1857] 

 530 [210, 1334] 

Buffer 

(%) 

agricultural area within: 500 agri_500  34 [0, 55]    0 [0, 37]**  
1000 agri_1000  40 [6, 69]   10 [0, 47]  
2500 agri_2500  53 [23, 67]   15 [0, 53]  
5000 agri_5000  52 [24, 67]   19 [1, 52] 

forest area within: 500 forest_500   0 [0, 4]**    0 [0, 5]**  
1000 forest_1000   0 [0, 12]**    3 [0, 20]  
2500 forest_2500   8 [0, 18]    9 [0, 22]  
5000 forest_5000  10 [4, 15]   14 [1, 26] 

urban area within: 500 urb_500  63 [42, 91]   90 [49, 100]  
1000 urb_1000  50 [24, 86]   68 [28, 100]  
2500 urb_2500  33 [10, 73]   60 [16, 95]  
5000 urb_5000  28 [13, 69]   52 [17, 95] 

water area within: 500 water_500   0 [0, 0]**    0 [0, 0]**  
1000 water_1000   0 [0, 0]**    0 [0, 0]**  
2500 water_2500   0 [0, 4]**    0 [0, 2]**  
5000 water_5000   2 [0, 4]    1 [0, 3] 

*: only concrete tombstones and top of walls 

**: removed from dataset before developing the land use regression models. Natural area (see supplementary material for the 

details) buffer variables all included more than 50% of null values and were deleted from the dataset. p25 and p75 stand for the 

25th and 75th percentiles.  

 195 

 196 

Developing land use regression models 197 

LUR models were developed separately in each region. We aimed to find the most 198 

parsimonious models with the best goodness of fit between metal concentrations in 199 

mosses and spatial predictors, and applied the following steps. We natural log-200 
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transformed metal concentrations when the distribution was left-skewed, and 201 

checked for any outlier. We found only one outlier, for Hg in the Paris region, with an 202 

unlikely value of 1 µg.g-1 , which we excluded. After computing univariate Spearman 203 

correlations between each metal concentration and all spatial predictors, we pre-204 

selected only variables with a Spearman correlation coefficient>0.3. We used 205 

supervised modeling to choose the final predictors, after conducting both forward 206 

and backward stepwise approaches. At first, we used generalized additive modeling to 207 

account for any possible nonlinear relationship by including spline functions for all 208 

continuous variables.  209 

Forward stepwise approach: for each metal, we included potential predictors one by 210 

one in a generalized additive model. Starting from the predictor yielding the 211 

univariate model with the highest R2, followed by the next highest in turn. At each 212 

iteration we kept the newly included predictor only if the variable increased the 213 

adjusted R2 of the multivariate model.  214 

Backward stepwise approach: for each metal, we included all the variables with a 215 

statistically significant Spearman correlation coefficient>0.3. For both approaches, 216 

we subsequently removed one by one any variable with a p-value>0.05. When all the 217 

remaining variables were significantly associated with the metal concentration, we 218 

handled nonlinear relationship as follows: when the predictor had more than 1 degree 219 

of freedom (i.e. a nonlinear relationship), and if the relationship visually did not 220 

deviate too much from linearity, we simply removed the spline function. If the 221 

relationship visually deviated from linearity, but was monotonic or transformable, we 222 

replaced the spline function by the most suitable function (power or natural 223 

logarithm). In the case of a non-monotonic and not easily transformable relationship, 224 

we removed the variable from the model. We also checked whether the relationship 225 

was in the expected direction. Finally, for each model we compared the models 226 
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yielded by the forward and backward approaches and selected as final model the one 227 

with the best adjusted R2.  228 

 229 

Deriving concentration maps 230 

We created a 500x500m resolution grid covering each region and computed all the 231 

predictors used by the final models for each metal on each mesh of these grids to 232 

generate the concentration maps. We then applied, on each 500x500m mesh of these 233 

grids, the final models based on two methods, to generate concentration maps: 234 

kriging with external drift (KED) or land use regression (LUR) followed by residual 235 

kriging when necessary. Regarding KED, for each metal in each region, a variogram 236 

was computed, based on the site geocodes, the metal concentration (log-transformed 237 

when necessary), and the predictors included in the final model (Figure S1). Using 238 

this modelled variogram, universal kriging was performed over the 500m pixels. 239 

Regarding LUR with kriging of the residuals, for each metal in each region, we 240 

applied the final model over the 500x500m grid. Then, when the residuals of the final 241 

model showed a statistically significant spatial autocorrelation based on Moran’s I 242 

test (Bivand et al., 2013), we performed ordinary kriging over the 500x500m grid and 243 

added these values to those obtained after applying the LUR model. 244 

 245 

Quality of the models and of the concentration maps. 246 

To estimate the quality of each final model, in addition to the adjusted R2, we 247 

computed the Akaike Information Criterion (AIC) and the variance inflation factor 248 

(VIF) of each variable of each model. We considered multicollinearity for VIF larger 249 

than 10. We assessed the quality of KED and LUR by 10-hold out validation (10-250 

HOV). For each metal, separately in each study area, we first used 10 training sets 251 

(each set is a random selection of 90% of the sites) to derive regression coefficients 252 
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for both approaches, and to obtain variograms for all metals in the KED approach. 253 

We then applied the coefficients and variograms to generate maps over the 254 

500x500m grid. We back-transformed the predicted values for all the natural log-255 

transformed metals. Additionally, we developed variograms of the residuals from the 256 

LUR models using the training sets. We performed a 10-HOV first to evaluate the 257 

robustness of the final model, and another 10-HOV to evaluate the robustness of the 258 

variogram for the residual kriging. Finally, we extracted the predicted values at the 259 

coordinates of the validating sets (the remaining 10% of sites) and regressed these 260 

predicted values on the corresponding observed values to obtain a R2; we also 261 

calculated the relative root mean square error (RRMSE). We categorized modeling 262 

quality scores: 1 (satisfactory final model (adjusted R2>0.45) with satisfactory 263 

robustness (quantified by 10-HOV with an R2>0.3)), 2 (satisfactory final model with 264 

poor robustness or conversely), and 3 (poor final model with poor robustness). 265 

 266 

Results 267 

Metal concentrations 268 

In both regions combined, metal concentrations ranged over several orders of 269 

magnitudes from Hg to Ca, between 0.10 μg.g-1 [IQR: 0.21] for Hg and 1.7 104 μg.g-270 

1 [IQR: 2.3 104] for Ca (Figure 2). The magnitude was similar for each metal in the 271 

two regions, but still we found concentrations of Cd, Cu, Pb, Sb, and Zn at least twice 272 

as high in Paris as in Lyon.  273 
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 274 

Figure 2: distribution (Y-axis on a log-10 scale) of the metal 275 

concentrations in mosses collected in the cemeteries of the regions of 276 

Lyon (n=51) and Paris (n=77) in 2018. See Table S1 for corresponding numeric 277 

data. 278 

 279 

Final models 280 

Most final models were constructed based on the backward stepwise selection, which 281 

provided slightly higher adjusted R2 for more than half of the metals in both regions 282 

(Table S2). Depending on the metal, and on the region, the models explained part of 283 

the spatial variability, from 6% for vanadium in Lyon to 84% for antimony in Paris, 284 

but mostly between 21%-54% in Lyon and 30-60% in Paris, with better results for 285 

metals emitted by human activities (Table 2). For each metal in both study regions, 286 

final models yielded lower AIC than intercept-only models (Table S3). The models 287 

yielded relationships in the expected direction for each included predictor (such as 288 

higher concentrations of metals with higher coverage of urban areas, population 289 

density, or closer to major roads) (Table 2). The final models typically explained more 290 
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variance in Paris, except for Al and As. Residuals were spatially autocorrelated only 291 

for Ca, Na, and Ni in Lyon.  292 

In each final model, the VIF of most predictors was lower than two, with only some 293 

values larger than six but overall indicating no multicollinearity (Table S4). 294 

 295 

Table 2: final models for each metal in each region, including the 296 

transformation of the metal distribution, the formula used for the linear 297 

regression, and the adjusted R2. 298 

 299 

Region Metal Transformation Model formula R2 

Lyon Al natural log 6.9 + forest_2500 x -1.4 + I(dist_road^-0.05) x 2.7 + 

altitude x 0.0013 

0.26 

Paris Al none 7600 + forest_5000 x -5800 0.24 

Lyon As natural log 0.51 + forest_2500 x -2.9 + altitude x 0.0023 0.37 

Paris As none 2.1 + forest_5000 x -1.8 0.25 

Lyon Ca none 15000 + urb_1000 x 1700 0.14 

Paris Ca none 17000 + agri_5000 x -1700 + density x 0.06 + 

forest_1000:I(forest_1000 < 0.25) x -690 + 

forest_1000:I(forest_1000 ≥ 0.25) x 7400 

0.28 

Lyon Cd natural log -1 + urb_1000x0.59 + I(forest_5000^0.3) x -0.93 + 

Substrate(Tombstones) x 0.38 

0.58 

Paris Cd natural log -1 + urb_5000 x 0.87 + density x 2e-5 + 

Substrate(Tombstones) x 0.34 

0.67 

Lyon Cr natural log 2.7 + forest_2500 x -2.1 0.31 

Paris Cr natural log 2.8 + altitude x -0.0033 + urb_5000 x 0.44 + 

forest_2500 x -1.1 

0.63 

Lyon Cu natural log 3.1 + urb_1000 x 0.9 + forest_2500 x -2.1 0.55 

Paris Cu natural log 3 + urb_5000 x 1.6 + water_5000 x 7.2 0.67 

Lyon Fe natural log 8.7 + forest_2500 x -1.7 0.20 

Paris Fe none 1700 + altitude x -13 + urb_5000 x 6500 + 

agri_5000 x 5000 

0.50 

Lyon Hg natural log -2.3 + urb_1000 x 0.99 0.23 

Paris Hg natural log -2.9 + altitude x -0.0025 + urb_2500 x 0.95 + 

agri_5000 x 0.81 + Substrate(Tombstones) x 0.2 

0.34 

Lyon Na natural log 7 + forest_2500 x -1.8 0.12 
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 300 

On average, the final models included approximately three predictor variables in 301 

Paris and two in Lyon (Table S5). In both regions, the most frequent covariables were 302 

forest and urban land use – they occurred even more frequently in Lyon than in 303 

Paris; population density entered more frequently in the Paris models (Table 1). The 304 

large majority of predictors had linear relationships with metal concentrations and 305 

did not need transformation, with a few exceptions such as forest and population 306 

density for Zn in Lyon (Table 2).  307 

 308 

Comparing the mapping approaches in the two regions 309 

The LUR approach needed a further step of residual kriging only for Ca, Na, and Ni in 310 

the Lyon region. The 10-HOV indicated that this supplementary step increased the 311 

quality of the modelling for Ca and Ni, but not for Na. Using the same final models 312 

for both KED and LUR, the 10-HOV yielded similar R2 for both approaches and most 313 

metals (Table 3). The HOV-10 R2 ranged from 0.03 to 0.74, and the RRMSE ranged 314 

between 0.08 to 0.88. Comparing the adjusted R2 of the final models to those of the 315 

10-HOV, we calculated lower absolute values of percentage change in Paris (median 316 

Paris Na natural log 6.5 + forest_2500 x -1.1 + agri_2500 x 0.33 0.29 

Lyon Ni natural log 1.9 + urb_1000 x 0.38 + forest_2500 x -1.3 0.32 

Paris Ni natural log 2.1 + altitude x -0.0031 + urb_500 x 0.27 + 

forest_2500 x -1.1 + density x 1.5e-05 + 

Substrate(Tombstones) x 0.16 

0.69 

Lyon Pb natural log 2.1 + urb_500 x 1.1 + Substrate(Tombstones) x 0.72 0.49 

Paris Pb natural log 3.4 + forest_1000 x -1.2 + density x 3.7e-05 + 

Substrate(Tombstones) x 0.91 

0.59 

Lyon Sb natural log 1.5 + agri_1000 x -0.75 + I(forest_5000^0.2) x -1.8 0.62 

Paris Sb natural log 0.16 + urb_5000 x 1.6 + forest_1000 x -1.2 0.84 

Lyon V natural log 2.9 + forest_5000 x -0.88 0.06 

Paris V none -0.75 + urb_5000 x 15 + agri_5000 x 15 + 

I(altitude^-0.5) x 34 

0.43 

Lyon Zn natural log 6.5 + I(forest_5000^0.3) x -2.2 + agri_500 x -0.92 + 

log(density) x -0.12 

0.65 

Paris Zn natural log 4.5 + urb_5000 x 0.61 + density x 2.8e-05 + 

Substrate(Tombstones) x 0.47 

0.56 
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14%, IQR 6-40) than in Lyon (median 38%, IQR 12-45) and therefore varying 317 

robustness across metals and areas. Combining this estimation of robustness and the 318 

amount of explained spatial variation by the final models, we broadly classified three 319 

types of modelling quality: satisfactory adjusted R2 of the final model with 320 

satisfactory robustness (eg Zn in Lyon), satisfactory adjusted R2 of the final model 321 

with poor robustness (eg Pb in Paris) or poor adjusted R2 of the final model with 322 

satisfactory robustness (eg As in Lyon), and poor adjusted R2 of the final model with 323 

poor robustness (eg Na in Lyon) (Table 3). 324 

 325 

Table 3: R2 and RRMSE (unitless) of the HOV-10 validation for the KED 326 

and LUR approaches, and final approach chosen as the one providing the 327 

higher R2. 328 

Metal Region R2 RRMSE 
Final 

approach 

Model 

quality 

    
HOV10,  

KED 

HOV10,  

LUR 

HOV10,  

KED 

HOV10,  

LUR 
  

 

      Model Kriging        

Al Lyon 0.05 0.20 0.46 0.41 LUR 3 

Al Paris 0.18 0.22 0.20 0.20 LUR 3 

As Lyon 0.39 0.28 0.43 0.47 KED 2 

As Paris 0.17 0.20 0.28 0.28 LUR 3 

Ca Lyon 0.10 0.05 0.08 0.09 0.09 KED 3 

Ca Paris 0.09 0.12 0.08 0.08 LUR 3 

Cd Lyon 0.31 0.34 0.51 0.46 LUR 1 

Cd Paris 0.33 0.36 0.56 0.54 LUR 1 

Cr Lyon 0.20 0.21 0.52 0.52 LUR 3 

Cr Paris 0.60 0.62 0.27 0.26 LUR 1 

Cu Lyon 0.30 0.30 0.71 0.71 LUR 1 

Cu Paris 0.50 0.52 0.46 0.44 LUR 1 

Fe Lyon 0.14 0.17 0.50 0.49 LUR 3 

Fe Paris 0.47 0.46 0.25 0.25 KED 1 

Hg Lyon 0.17 0.15 0.67 0.67 KED 3 

Hg Paris 0.22 0.41 0.31 0.22 LUR 2 

Na Lyon 0.04 0.07 0.02 0.80 0.81 KED 3 

Na Paris 0.06 0.08 0.31 0.3 LUR 3 

Ni Lyon 0.38 0.26 0.35 0.41 0.42 KED 2 

Ni Paris 0.63 0.64 0.34 0.34 LUR 1 
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Pb Lyon 0.03 0.08 0.88 0.83 LUR 2 

Pb Paris 0.17 0.20 0.75 0.76 LUR 2 

Sb Lyon 0.27 0.31 0.87 0.81 LUR 1 

Sb Paris 0.71 0.74 0.37 0.36 LUR 1 

V Lyon 0.03 0.03 0.41 0.41 LUR 3 

V Paris 0.51 0.53 0.16 0.16 LUR 2 

Zn Lyon 0.47 0.48 0.54 0.52 LUR 1 

Zn Paris 0.29 0.34 0.53 0.54 LUR 1 

HOV: hold-out validation; LUR: land use regression ; KED: kriging with external drift. For the LUR 

approach, metals Ca, Na, and Ni required an extra step of residual kriging since the residuals of the 

regression had a significant positive spatial autocorrelation. Modeling quality scores: 1 (satisfactory final 

model (adjusted R2>0.45) with satisfactory robustness (quantified by 10-HOV with an R2>0.3)), 2 

(satisfactory final model with poor robustness or conversely), and 3 (poor final model with poor 

robustness). 

 329 

Final concentration map by metal and by region 330 

The final concentration map for each metal and each region is the one with the higher 331 

adjusted R2 and lower RRMSE after 10-HOV (Table 3). The LUR approach was 332 

favoured for most metals in both regions.  The predicted concentration maps clearly 333 

show the gradual decline on concentration away from the city center. This pattern is 334 

driven by the urban and natural predictor variables entering in most models (Figure 335 

3, Figure S2). 336 
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 337 

Figure 3: final concentration maps of Cd, Pb, and Sb in Lyon (left) and 338 

Paris (right). The legends display the minimum, median and maximum values on a 339 

log-10 scale for readability. These maps have the same extents as those in Figure 1. 340 

White lines represent the borders of French départements. 341 
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Discussion 342 

Biomonitoring of mosses in cemeteries together with geostatistical modelling proved 343 

an efficient method to generate concentration maps in urban areas, with satisfactory 344 

quality for metals emitted by human sources, such as Cd and Cu, but with lesser 345 

quality for metals emitted by natural sources, such as Ca and Na. The final models 346 

were parsimonious. In most cases, KED and LUR modelling yielded similar results 347 

but with generally better robustness for LUR. 348 

 349 

To date, only few other methods allow attributing airborne metal exposures to 350 

populations. CHIMERE, a chemistry-dispersion model, provides concentrations of 351 

PM and PM components regionally (Mailler et al., 2017; Menut et al., 2013) and 352 

showed some agreement in the predicted concentrations of atmospheric Cd and 353 

measured concentrations of Cd in mosses, with Kendall correlations generally above 354 

0.5 in Paris and 0.4 in Lyon (Vieille et al., 2021). LUR models have been developed 355 

for some metals included in PM2.5 in Western Europe (Chen et al., 2020), and in 356 

Pittsburgh, USA (Tripathy et al., 2019). A GIS-based tool provides Cd exposure from 357 

industrial sources (Coudon et al., 2019), but only from industrial sources and not yet 358 

for other metals. A study using field X-Ray analysis on epiphytic mosses to measure 359 

Cu, Pb, and Zn, also produced LUR maps in a study area in the USA but for three 360 

metals (Messager et al., 2021). Studies comparing or combining these predicted 361 

exposures would help better estimate exposure to airborne metals. There were not 362 

enough monitoring sites of concentrations of metals (As, Cd, Ni, Pb) in PM10 to allow 363 

for a comparison with our exposure assessment, again advocating for more 364 

measuring sites or alternative measurement techniques. 365 

 366 
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This study is based on passive moss biomonitoring, whose concentration values show 367 

strong relationships with modelled metal emission or deposition in rural areas at 368 

least for Cd and Pb (Harmens et al., 2012), and of Cd in Paris and Lyon (Vieille et al., 369 

2021). This moss biomonitoring technique, which therefore can proxy atmospheric 370 

concentrations, allowed for (i) rapid collection of sufficient moss samples to cover 371 

large urban areas and (ii) measuring many metals or potential other components (e.g. 372 

persistent organic pollutants, platinoids) with high cost-effectiveness. Cemeteries – 373 

at least in France – offer a regular sampling frame and choice of possible sampling 374 

sites that will most likely shelter Grimmia pulvinata, or, at least, a single moss 375 

species that will not risk to confound the spatial variability of the measured 376 

concentrations. For the sake of homogeneity and to avoid potential contamination by 377 

debris of different substrates, we sampled only concrete surface. Regarding the 378 

modeling process, all the predictors used to build the final models were readily 379 

available and open source, with regular updates so that the predictor data generally 380 

matched the moss sampling periods. The sets of final predictors were quite similar in 381 

both regions even though population density entered more frequently in the Paris 382 

models, probably due to the high percentages of urban coverage and the high 383 

variability in population density in Paris. However, for each metal both variables and 384 

coefficients differed between the two regions; more data in other regions is needed to 385 

explore the possibility to pool the data to obtain a single model to be applied to 386 

several unsampled regions. None of the models used the data on industrial sites, 387 

probably because they were too far from the sampling sites in both regions with at 388 

least a few kilometres from the closest site. The final models explained a large 389 

amount of the spatial variability of metals mainly emitted by human activities except 390 

Hg, with between 40 and 82% explained for Ni in Lyon or Sb in Paris, respectively. At 391 

ambient temperature Hg can exist in gaseous form, and this high volatility may have 392 
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disturbed the spatial distribution of Hg concentrations in mosses collected during 393 

late spring. During the sampling, temperatures were as high as 27.2°C and 28.6°C in 394 

Paris and Lyon (data from the French meteorological agency MeteoFrance) – without 395 

considering the likely higher temperature on the concrete substrate. For metals 396 

mostly emitted by natural sources, the models explained a lesser amount of spatial 397 

variability. We did not detect strong multicollinearity in the final models. Some VIF 398 

values larger than 6 occurred in models including both urban and agriculture or 399 

forest variables, which were negatively correlated. However, multicollinearity does 400 

not affect the models’ predictive accuracy. 401 

The present result showed largely higher moss concentrations in urban areas than 402 

those previously found in rural areas since 1996 (Lequy et al., 2017), up to a factor 12 403 

for Cu for example, in Paris. These urban and rural results seem consistent and 404 

plausible, given the positive relationships of metals with relative urban area or 405 

negative relationships with its opposite, i.e. greenspace areas, and a strong gradient 406 

from the city center to the rural outskirts of Lyon and Paris, and in line with other 407 

studies. Indeed, despite the methods are not the same and therefore the estimates are 408 

not straightforwardly comparable, the relationships we found between metal 409 

concentrations and land used variables, such as traffic, were of the same direction as 410 

those found in studies using field measurements on epiphytic mosses in the USA 411 

(Messager et al., 2021), or using other biomonitoring techniques using moss bags or 412 

epiphytes in Italy (Capozzi et al., 2016; Di Palma et al., 2017). All of these techniques 413 

were able to capture spatial variations of metals from either urban or rural sources, 414 

thereby reinforcing the plausibility of our results. In our dataset, forest and 415 

agricultural variables were negatively correlated with urban variables and may better 416 

capture the variability of some metals in mosses in cemeteries.   417 

 418 
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This study presents the limits inherent to passive moss biomonitoring, including the 419 

uncertainty on the period of exposure they represent. However, it is usually estimated 420 

that mosses accumulate metals over their lifespan of several years. Mosses, being 421 

living organisms, are affected by meteorological conditions in particular drought 422 

periods since mosses rely on water even more than other plants (Markert, 2007). But 423 

since they accumulate over several years, we took the hypothesis, as in the BRAMM 424 

network and the ICP-Vegetation program, that the concentrations in mosses are able 425 

to reflect spatial variations in air quality when compared across sampling sites for the 426 

same date. Several possible disturbances may either disturb mosses’ physiology and 427 

their ability to biomonitor metals, or contaminate mosses with metals: the use of 428 

bleach or surfactants to clean tombstones, or the (former) paintings on some 429 

tombstones, which cannot be easily retrieved, or the use of herbicides or other 430 

products by cemeteries. During the sampling, data on the use of herbicides or other 431 

products proved difficult to collect, with information available for 55% and 80% of 432 

the sampled cemeteries in the regions of Paris and Lyon, respectively. Of those, 29% 433 

and 47% had information while 26% and 33% declared they used no treatment, in the 434 

respective study areas. We could not assess the local effect of wind-blown particles of 435 

cemeteries’ topsoil, possibly contaminated by metals (Neckel et al., 2016); yet the 436 

spatial patterns of metal concentrations, and their relationships with the land use 437 

variables included in the final models, suggest that any local topsoil effect would be 438 

negligible . The fact that Grimmia pulvinata develops preferentially on concrete does 439 

not allow the use of cemeteries or tombstones built in a material other than concrete 440 

(e.g. granite). This was not an issue in Paris or Lyon but it may be the case in other 441 

regions in France or in the world, for which it would be mandatory to find a more 442 

suitable moss species.  As expected, KED and LUR provided similar maps of similar 443 

quality; KED may be used as an alternative for air pollutants when using LUR does 444 
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not provide satisfactory outputs. The 10-HOV indicated that some models lack 445 

robustness but the concentration maps presented in this study showed plausible 446 

spatial patterns, at least for metals emitted by human activities. Such concentration 447 

maps seem to provide a sufficient geographical contrast in concentrations across each 448 

study area, for a future use as exposure data at individual level in epidemiological 449 

studies.  450 

Conclusion 451 

Moss biomonitoring in cemeteries offers a practical alternative for rapid estimation of 452 

exposure to airborne metals in urban areas, and land-use regression provided 453 

satisfactory concentration maps for airborne metals emitted by human sources. 454 

Further research to compare these results with more conventional techniques should 455 

refine exposure assessment for airborne metals such as Cd, Hg, or Pb, but also for 456 

other potentially harmful metals and other pollutants. 457 
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Airborne metal measures remain scarce to derive exposure for large urban populations 

We measured metals in mosses to derive exposure surfaces in two large French cities 

We applied land use regression modeling and obtained surfaces for 13 metals 

Models were satisfactory and robust particularly for cadmium and antimony 
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