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Marie Zins a, Sébastien Leblond b, Kees de Hoogh c,d,1, Bénédicte Jacquemin g,1 
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A B S T R A C T   

Exposure of the general population to airborne metals remains poorly estimated despite the potential health 
risks. Passive moss biomonitoring can proxy air quality at fine resolution over large areas, mainly in rural areas. 
We adapted the technique to urban areas to develop fine concentration maps for several metals for Constances 
cohort’s participants. We sampled Grimmia pulvinata in 77 and 51 cemeteries within ~50 km of Paris and Lyon 
city centers, respectively. We developed land-use regression models for 14 metals including cadmium, lead, and 
antimony; potential predictors included the amount of urban, agricultural, forest, and water around cemeteries, 
population density, altitude, and distance to major roads. We used both kriging with external drift and land use 
regression followed by residual kriging when necessary to derive concentration maps (500 × 500 m) for each 
metal and region. Both approaches led to similar results. The most frequent predictors were the amount of urban, 
agricultural, or forest areas. Depending on the metal, the models explained part of the spatial variability, from 
6% for vanadium in Lyon to 84% for antimony in Paris, but mostly between 20% and 60%, with better results for 
metals emitted by human activities. Moss biomonitoring in cemeteries proves efficient for obtaining airborne 
metal exposures in urban areas for the most common metals.   

1. Introduction 

As naturally occurring elements, metals abundantly occur in the 
lithosphere and accumulate in the biosphere and atmosphere through 
processes including root absorption and subsequent transfer through 
food webs, wind erosion, and human activities since the Bronze Age 
(Gall et al., 2015; Gnesin, 2013; Jaworowski et al., 1981). Some metals 
support life, yet all become toxic when exceeding thresholds (Nordberg 
et al., 2007). Cadmium (Cd) and arsenic (As) for example are recognized 
human carcinogens (International Agency for Research on Cancer, 
2016), and, as neurotoxicants, lead (Pb) and mercury (Hg) may also play 
a role in the development and decline of cognitive functions (Genuis and 

Kelln, 2015; Grandjean and Landrigan, 2014). As early as the 1960s it’s 
been known that airborne metals are a component of airborne particu
late matter (PM) (Schroeder, 1968), and it is also established that air 
pollution also affects health and cognition (Brauer et al., 2012; Gatto 
et al., 2014). In Europe, toxic metals As, Cd, Pb, and nickel (Ni), have 
been measured in PM (diameter<10 μm or PM10) as enforced by 
Council Directive 96/62/EC of September 27, 1996 on ambient air 
quality assessment and management and its updates. Yet these mea
surements are performed only at a few sites, providing insufficient 
spatial coverage to allow for assessing the exposure of the general 
population to these airborne metals. Further, the directive does not 
include other potentially harmful metals such as aluminum (Al), 
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antimony (Sb), copper (Cu), or zinc (Zn). 
In France, a network of moss biomonitoring of atmospheric deposi

tion of metals on mosses (BRAMM) has recorded metal concentrations in 
mosses across 400–500 sampling sites over the rural and forested areas 
since 1996 (Lequy et al., 2016) following the guidelines of the inter
national program ICP-Vegetation (Schröder et al., 2016). Briefly, this 
moss-biomonitoring technique, detailed in (Markert, 2007), relies on 
mosses’ lack of roots, making them dependent on atmospheric sources to 
get water and nutrients (Bates, 1992; Tyler, 1990). Mosses combine a 
morphology of leaves able to trap particulate metals (Bargagli, 2006) to 
a monolayer cell thickness facilitating the accessibility of dissolved 
metals for the exchange sites in the cell walls (Bates, 1992; Carballeira 
et al., 2008; González and Pokrovsky, 2014). Data obtained by this 
technique allowed for deriving concentration maps suitable for the 
French rural and semi-urban populations, and was successfully used to 
estimate mortality risks associated to airborne metal exposure (Lequy 
et al., 2019). However, most of the French population lives in urban 
areas for which the above-mentioned concentration maps are not suit
able. In fact, to the best of our knowledge, there are no available fine 
concentration map for metals for urban populations. Moss bio
monitoring was shown to perform well in urban areas (Gallego-Carta
gena et al., 2021; Jiang et al., 2018; Zechmeister et al., 2005), capturing 
particles mostly within the inhalable fraction (Di Palma et al., 2017), 
and with a large influence of urban or traffic land use variables on metal 
concentrations in mosses (De Nicola et al., 2013; Di Palma et al., 2017) 
but with a negligible contribution of soil on metal concentrations (Jiang 
et al., 2018). Specific sources of metals are well known, such as 
non-exhaust traffic (e.g. brakes) for Cu, Sb or Pb, or local or distant steel 
industry for Cd (Ledoux et al., 2017). For these reasons, we aimed at 
adapting the moss biomonitoring technique to urban settings to derive 
fine concentration maps by land use regression (LUR) modeling in two of 
the most populated French regions, the greater Paris and Lyon areas. 

2. Material and methods 

To adapt the technique of moss biomonitoring used by BRAMM 
(Harmens, 2010) to urban areas, we needed to find suitable sampling 
sites and moss species. Regarding sampling sites, we opted for ceme
teries for several reasons: at least one is located in most municipalities, 
they can shelter mosses (Natali et al., 2016), cemeteries in urban mu
nicipalities are near sources of air pollutants such as roads while being 
relatively sheltered from direct contamination by humans or animals, 
and they offer homogeneous substrates such as concrete. In addition, 
opting for cemeteries allows for collecting mosses that grow in full light 
and can survive in contaminated environments. We selected a moss 

living in cushion, Grimmia pulvinata (Hedw.) Sm., which performs well 
in biomonitoring airborne metals (Gallego-Cartagena et al., 2021), 
including in cemeteries (Natali et al., 2016). 

2.1. Study design 

With the goal to provide concentration maps for urban populations 
for the general population-based Constances cohort (Zins et al., 2015), 
the sampling strategy was designed to cover the widest urban area 
where Constances participants were residing and in which we could find 
cemeteries to sample mosses. To do so, and to obtain sampling sites as 
evenly distributed as possible to subsequently develop a concentration 
map, we proceeded as follows. 

We developed a “target-style” gridded study design (Fig. 1), with 
concentric circles around the city center with increasing radii up to 49 
km around Paris and 30 km around Lyon. These circles were crossed by 
transects starting from the center of the study site and passing through 
areas with the highest possible population density, while covering as 
many directions as possible. We classified population density into cat
egories based on two indexes defined by the French institute for Sta
tistics, according to the size of the municipality (Institut national de la 
statistique et des études économiques (National Institute of Statistics 
and Economic Studies), 2016, 2021). For municipalities with less than 
5000 inhabitants, the index is high, moderate, low, and very low pop
ulation density, taking into account the surface actually inhabited. For 
municipalities with more than 5000 inhabitants, the index is residential, 
commercial or industrial areas, and recreational areas. In Fig. 1, to 
improve readability, the municipalities with less than 5000 inhabitants 
with high population density and the residential areas of municipalities 
with more than 5000 inhabitants were merged into a “high” population 
density category, and the low and very low population density areas of 
municipalities with less than 5000 inhabitants into a “low” population 
density category. In the areas around Paris and Lyon and their sur
rounding areas (referred to as Paris and Lyon for readability), popula
tion density decreases as the distance from city center increases, 
therefore reaching low values in the outer circles. The junctions between 
circles and transects defined different potential sampling sites. The 
absence of cemeteries at some junctions, the refusal of the town halls to 
collect mosses in cemeteries, the absence of concrete walls or tomb
stones, or the species of mosses have led to modify the initially selected 
sampling sites. Final sampling sites were chosen in the field among the 
potential candidates matching our criteria: 77 sites in Paris, 51 sites in 
Lyon. 

Fig. 1. Distribution of sampling sites (white-circled black dots) around Lyon (left) and Paris (right). Dark gray, medium gray, and gridded-gray areas indicate 
high, intermediate, and low population densities. Pale gray areas correspond to business or industry parks and to large uninhabited areas (forests, large parks, 
airports). Black lines indicate the borders of French départements. 
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2.2. Moss sampling and metal concentrations 

Details of the moss sampling are available in Vieille et al. (2021). 
Briefly, sampling in the Paris and Lyon regions took place in May and 
June 2018, respectively. In each sampling site, mosses were sampled 
with standardized methods by trained experts only on concrete sub
strate, either on tombstones or on the top of walls, as follows: we 
collected an average of 75 moss colonies (minimum 50), on at least 10 
tombstones or on a total length of 15 m of top of wall, and using two 
different walls, to reduce the influence of any moss cushion potentially 
contaminated by the substrate. We chose concrete because of the low 
risk of potential contamination. Moreover, we avoided decorative 
metallic objects. Sampling collection in each site included a total of 
about 9600 cushions. Each cushion was validated with a magnifying 
glass (10× magnification). Samples were stored in a cooler before being 
brought back in the laboratory where they dried at room temperature 
before being manually cleaned, ground with an automatic non-polluting 
titanium grinder (Pulverisette 14, Fritsch, Germany), and sent for ana
lyses. Sampling and preparation were conducted using nytril gloves and 
ceramic knives to avoid contamination. Mosses were analyzed by 
inductively coupled plasma mass spectrometry by the USRAVE labora
tory (INRAE - Center de Bordeaux) (Agilent 7700x spectrometer) after 
drying at 40 ◦C and acid mineralization by HF/HNO3/H2O2 (concen
trations expressed at 103 ◦C after accounting for water loss on a sub
sample). For Hg, the moss powder is directly analyzed by Cold Vapour 
Atomic Fluorescence Spectrometry. Analyses provided concentrations of 
aluminum (Al), arsenic (As), calcium (Ca), cadmium (Cd), chromium 
(Cr), Cu, iron (Fe), mercury (Hg), sodium (Na), nickel (Ni), lead (Pb), 
antimony (Sb), vanadium (V), and zinc (Zn). Analytical uncertainties are 
20% for As, Cd, Cr, Cu, Na, Ni, Pb, Sb and V, 15% for Al and Fe and 10% 
for Ca, Hg and Zn. 

2.3. Generating concentration maps 

2.3.1. Source data for potential predictors 
Corine Land Cover (2018, on https://www.copernicus.eu/en) was 

used to calculate the relative coverage of urban area, agricultural area, 
forest area, natural area, water within buffers of 500, 1000, 2500, and 
5000 m radius around the sampling site (the subcategories used to 
define each category are detailed in the supplementary material). We 
used a minimal buffer radius of 500 m due to the resolution of Corine 
Land Cover (250 × 250 m). Data from the French geographic informa
tion system (GIS) database (Institut Géographique National) were used 
to calculate distance from major roads (defined as those classified level 1 
and 2 i.e. corresponding to highways or equivalent, access roads, and 
other busy roads - in m), the population density of each municipality (in 
inhabitant/km2), and the altitude (in m). To consider the potential in
fluence of industry, we used the European pollutant release and transfer 
register for industrial emissions (in the air only and in 2018) to calcu
late, for each available metal (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) the 
distance to the closest industrial site (in m) and the total annual emis
sions released by this site (in kg). 

To use the most informative variables that did not risk to provide 
distorted estimates in the models, we removed any predictor containing 
more than 50% of null values before starting developing the LUR models 
(Table 1). 

All GIS processing and analyses were performed with R version using 
the packages “SP” (Bivand et al., 2013), “RASTER” (Hijmans, 2020), 
“GSTAT” (Gräler et al., 2016), and “AUTOMAP” (Hiemstra et al., 2009). 

2.3.2. Developing land use regression models 
LUR models were developed separately in each region. We aimed to 

find the most parsimonious models with the best goodness of fit between 
metal concentrations in mosses and spatial predictors, and applied the 
following steps. We natural log-transformed metal concentrations when 
the distribution was left-skewed, and checked for any outlier. We found 

only one outlier, for Hg in the Paris region, with an unlikely value of 1 
μg g− 1, which we excluded. After computing univariate Spearman cor
relations between each metal concentration and all spatial predictors, 
we pre-selected only variables with a Spearman correlation coef
ficient>0.3. We used supervised modeling to choose the final predictors, 
after conducting both forward and backward stepwise approaches. At 
first, we used generalized additive modeling to account for any possible 
nonlinear relationship by including spline functions for all continuous 
variables. 

Forward stepwise approach: for each metal, we included potential 
predictors one by one in a generalized additive model. Starting from the 
predictor yielding the univariate model with the highest coefficient of 
determination (R2), followed by the next highest in turn. At each iter
ation we kept the newly included predictor only if the variable increased 
the adjusted R2 of the multivariable model. 

Backward stepwise approach: for each metal, we included all the 
variables with a statistically significant Spearman correlation coef
ficient>0.3. For both approaches, we subsequently removed one by one 

Table 1 
List of variables and their description.      

N (%) or median 
[p25, p75] 

Type Variable Buffer size 
(radius, 
m) 

Code Lyon 
(n =
51) 

Paris (n 
= 77) 

Point Substrate: wall 
or tombstonea 

– Substrate 
(Tombstones) 

9 
(18%) 

58 
(82%)  

Altitude (m) – altitude 259 
[216, 
316] 

78 [51, 
110]  

Population 
density (inhab/ 
km2) 

– density 370 
[166, 
1979] 

1804 
[247, 
7997]  

Distance to 
major roads 
(m) 

– dist_road 925 
[419, 
1857] 

530 
[210, 
1334] 

Buffer 
(%) 

Agricultural 
area within: 

500 agri_500 34 [0, 
55] 

0 [0, 
37]b  

1000 agri_1000 40 [6, 
69] 

10 [0, 
47]  

2500 agri_2500 53 [23, 
67] 

15 [0, 
53]  

5000 agri_5000 52 [24, 
67] 

19 [1, 
52] 

Forest area 
within: 

500 forest_500 0 [0, 
4]b 

0 [0, 
5]b  

1000 forest_1000 0 [0, 
12]b 

3 [0, 
20]  

2500 forest_2500 8 [0, 
18] 

9 [0, 
22]  

5000 forest_5000 10 [4, 
15] 

14 [1, 
26] 

Urban area 
within: 

500 urb_500 63 [42, 
91] 

90 [49, 
100]  

1000 urb_1000 50 [24, 
86] 

68 [28, 
100]  

2500 urb_2500 33 [10, 
73] 

60 [16, 
95]  

5000 urb_5000 28 [13, 
69] 

52 [17, 
95] 

Water area 
within: 

500 water_500 0 [0, 
0]b 

0 [0, 
0]b  

1000 water_1000 0 [0, 
0]b 

0 [0, 
0]b  

2500 water_2500 0 [0, 
4]b 

0 [0, 
2]b  

5000 water_5000 2 [0, 4] 1 [0, 3] 

p25 and p75 stand for the 25th and 75th percentiles. 
a Only concrete tombstones and top of walls. 
b Removed from dataset before developing the land use regression models. 

Natural area (see supplementary material for the details) buffer variables all 
included more than 50% of null values and were deleted from the dataset. 
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any variable with a p-value>0.05. When all the remaining variables 
were significantly associated with the metal concentration, we handled 
nonlinear relationship as follows: when the predictor had more than 1 
degree of freedom (i.e. a nonlinear relationship), and if the relationship 
visually did not deviate too much from linearity, we simply removed the 
spline function. If the relationship visually deviated from linearity, but 
was monotonic or transformable, we replaced the spline function by the 
most suitable function (power or natural logarithm). In the case of a non- 
monotonic and not easily transformable relationship, we removed the 
variable from the model. We also checked whether the relationship was 
in the expected direction. Finally, for each model we compared the 
models yielded by the forward and backward approaches and selected as 
final model the one with the best adjusted R2. 

2.3.3. Deriving concentration maps 
We created a 500 × 500 m resolution grid covering each region and 

computed all the predictors used by the final models for each metal on 
each mesh of these grids to generate the concentration maps. We then 
applied, on each 500 × 500 m mesh of these grids, the final models 
based on two methods, to generate concentration maps: kriging with 
external drift (KED) or land use regression (LUR) followed by residual 
kriging when necessary. Regarding KED, for each metal in each region, a 
variogram was computed, based on the site geocodes, the metal con
centration (log-transformed when necessary), and the predictors 
included in the final model (Figure S1). Using this modelled variogram, 
universal kriging was performed over the 500 m pixels. Regarding LUR 
with kriging of the residuals, for each metal in each region, we applied 
the final model over the 500 × 500 m grid. Then, when the residuals of 
the final model showed a statistically significant spatial autocorrelation 
based on Moran’s I test (Bivand et al., 2013), we performed ordinary 
kriging over the 500 × 500 m grid and added these values to those 
obtained after applying the LUR model. 

2.3.4. Quality of the models and of the concentration maps 
To estimate the quality of each final model, in addition to the 

adjusted R2, we computed the Akaike Information Criterion (AIC) and 
the variance inflation factor (VIF) of each variable of each model. We 
considered multicollinearity for VIF larger than 10. We assessed the 
quality of KED and LUR by 10-hold out validation (10-HOV). For each 
metal, separately in each study area, we first used 10 training sets (each 
set is a random selection of 90% of the sites) to derive regression co
efficients for both approaches, and to obtain variograms for all metals in 
the KED approach. We then applied the coefficients and variograms to 
generate maps over the 500 × 500 m grid. We back-transformed the 
predicted values for all the natural log-transformed metals. Additionally, 
we developed variograms of the residuals from the LUR models using the 
training sets. We performed a 10-HOV first to evaluate the robustness of 
the final model, and another 10-HOV to evaluate the robustness of the 
variogram for the residual kriging. Finally, we extracted the predicted 
values at the coordinates of the validating sets (the remaining 10% of 
sites) and regressed these predicted values on the corresponding 
observed values to obtain a R2; we also calculated the relative root mean 
square error (RRMSE). We categorized modeling quality scores: 1 
(satisfactory final model (adjusted R2>0.45) with satisfactory robust
ness (quantified by 10-HOV with an R2>0.3)), 2 (satisfactory final 
model with poor robustness or conversely), and 3 (poor final model with 
poor robustness). 

3. Results 

3.1. Metal concentrations 

In both regions combined, metal concentrations ranged over several 
orders of magnitudes from Hg to Ca, between 0.10 μg g− 1 [IQR: 0.21] for 
Hg and 1.7 104 μg g− 1 [IQR: 2.3 104] for Ca (Fig. 2). The magnitude was 
similar for each metal in the two regions, but still we found 

concentrations of Cd, Cu, Pb, Sb, and Zn at least twice as high in Paris as 
in Lyon. 

3.2. Final models 

Most final models were constructed based on the backward stepwise 
selection, which provided slightly higher adjusted R2 for more than half 
of the metals in both regions (Table S2). Depending on the metal, and on 
the region, the models explained part of the spatial variability, from 6% 
for vanadium in Lyon to 84% for antimony in Paris, but mostly between 
21% and 54% in Lyon and between 30 and 60% in Paris, with better 
results for metals emitted by human activities (Table 2). For each metal 
in both study regions, final models yielded lower AIC than intercept-only 
models (Table S3). The models yielded relationships in the expected 
direction for each included predictor (such as higher concentrations of 
metals with higher coverage of urban areas, population density, or 
closer to major roads) (Table 2). The final models typically explained 
more variance in Paris, except for Al and As. Residuals were spatially 
autocorrelated only for Ca, Na, and Ni, in Lyon. 

In each final model, the VIF of most predictors was lower than two, 
with only some values larger than six but overall indicating no multi
collinearity (Table S4). 

On average, the final models included approximately three predictor 
variables in Paris and two in Lyon (Table S5). In both regions, the most 
frequent covariables were forest and urban land use – they occurred 
even more frequently in Lyon than in Paris; population density entered 
more frequently in the Paris models (Table 1). The large majority of 
predictors had linear relationships with metal concentrations and did 
not need transformation, with a few exceptions such as forest and 
population density for Zn in Lyon (Table 2). 

3.3. Comparing the mapping approaches in the two regions 

The LUR approach needed a further step of residual kriging only for 
Ca, Na, and Ni, in the Lyon region. The 10-HOV indicated that this 
supplementary step increased the quality of the modeling for Ca and Ni, 
but not for Na. Using the same final models for both KED and LUR, the 
10-HOV yielded similar R2 for both approaches and most metals 
(Table 3). The HOV-10 R2 ranged from 0.03 to 0.74, and the RRMSE 
ranged between 0.08 and 0.88. Comparing the adjusted R2 of the final 
models to those of the 10-HOV, we calculated lower absolute values of 
percentage change in Paris (median 14%, IQR 6–40) than in Lyon 
(median 38%, IQR 12–45) and therefore varying robustness across 
metals and areas. Combining this estimation of robustness and the 

Fig. 2. Distribution (Y-axis on a log-10 scale) of the metal concentrations 
in mosses collected in the cemeteries of the regions of Lyon (n = 51) and 
Paris (n = 77) in 2018. See Table S1 for corresponding numeric data. 
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amount of explained spatial variation by the final models, we broadly 
classified three types of modeling quality: satisfactory adjusted R2 of the 
final model with satisfactory robustness (eg Zn in Lyon), satisfactory 
adjusted R2 of the final model with poor robustness (eg Pb in Paris) or 
poor adjusted R2 of the final model with satisfactory robustness (eg As in 
Lyon), and poor adjusted R2 of the final model with poor robustness (eg 
Na in Lyon) (Table 3). 

3.4. Final concentration maps by metal and by region 

The final concentration map for each metal and each region is the 
one with the higher adjusted R2 and lower RRMSE after 10-HOV 
(Table 3). The LUR approach was favoured for most metals in both re
gions. The predicted concentration maps clearly showed a gradual 
decline on concentration away from the city center. This pattern is 
driven by the urban and natural predictor variables entering in most 
models (Fig. 3, Figure S2). 

4. Discussion 

Biomonitoring of mosses in cemeteries together with geostatistical 
modeling proved an efficient method to generate concentration maps in 
urban areas, with satisfactory quality for metals emitted by human 
sources, such as Cd and Cu, but with lesser quality for metals emitted by 
natural sources, such as Ca and Na. The final models were parsimonious. 
In most cases, KED and LUR modeling yielded similar results but with 
generally better robustness for LUR. 

To date, only few other methods allow attributing airborne metal 
exposures to populations. CHIMERE, a chemistry-dispersion model, 
provides concentrations of PM and PM components regionally (Mailler 
et al., 2017; Menut et al., 2013) and showed some agreement in the 
predicted concentrations of atmospheric Cd and measured concentra
tions of Cd in mosses, with Kendall correlations generally above 0.5 in 
Paris and 0.4 in Lyon (Vieille et al., 2021). LUR models have been 
developed for some metals included in PM2.5 in Western Europe (Chen 
et al., 2020), and in Pittsburgh, USA (Tripathy et al., 2019). A GIS-based 
tool provides Cd exposure from industrial sources (Coudon et al., 2019), 
but only from industrial sources and not yet for other metals. A study 
using field X-Ray analysis on epiphytic mosses to measure Cu, Pb, and 
Zn, also produced LUR maps in a study area in the USA but for three 
metals (Messager et al., 2021). Studies comparing or combining these 
predicted exposures would help better estimate exposure to airborne 
metals. There were not enough monitoring sites of concentrations of 
metals (As, Cd, Ni, Pb) in PM10 to allow for a comparison with our 
exposure assessment, again advocating for more measuring sites or 
alternative measurement techniques. 

This study is based on passive moss biomonitoring, whose concen
tration values show strong relationships with modelled metal emission 
or deposition in rural areas at least for Cd and Pb (Harmens et al., 2012), 
and of Cd in Paris and Lyon (Vieille et al., 2021). This moss bio
monitoring technique, which therefore can proxy atmospheric concen
trations, allowed for (i) rapid collection of sufficient moss samples to 
cover large urban areas and (ii) measuring many metals or potential 
other components (e.g. persistent organic pollutants, platinoids) with 
high cost-effectiveness. Cemeteries – at least in France – offer a regular 
sampling frame and choice of possible sampling sites that will most 
likely shelter Grimmia pulvinata, or, at least, a single moss species that 
will not risk to confound the spatial variability of the measured con
centrations. For the sake of homogeneity and to avoid potential 
contamination by debris of different substrates, we sampled only con
crete surface. Regarding the modeling process, all the predictors used to 
build the final models were readily available and open source, with 
regular updates so that the predictor data generally matched the moss 
sampling periods. The sets of final predictors were quite similar in both 
regions even though population density entered more frequently in the 
Paris models, probably due to the high percentages of urban coverage 
and the high variability in population density in Paris. However, for 
each metal both variables and coefficients differed between the two 
regions; more data in other regions is needed to explore the possibility to 
pool the data to obtain a single model to be applied to several unsampled 
regions. None of the models used the data on industrial sites, probably 
because they were too far from the sampling sites in both regions with at 
least a few kilometres from the closest site. The final models explained a 
large amount of the spatial variability of metals mainly emitted by 

Table 2 
Final land-use regression models for each metal in each region, including the 
transformation of the metal distribution, the formula used for the linear 
regression, and the adjusted coefficient of determination (R2).  

Region Metal Transformation Model formula R2 

Lyon Al natural log 6.9 + forest_2500 x − 1.4 + I 
(dist_road^-0.05) x 2.7 + altitude x 
0.0013 

0.26 

Paris Al none 7600 + forest_5000 x − 5800 0.24 
Lyon As natural log 0.51 + forest_2500 x − 2.9 + altitude 

x 0.0023 
0.37 

Paris As none 2.1 + forest_5000 x − 1.8 0.25 
Lyon Ca none 15000 + urb_1000 × 1700 0.14 
Paris Ca none 17000 + agri_5000 x − 1700 +

density x 0.06 + forest_1000:I 
(forest_1000 < 0.25) x − 690 +
forest_1000:I (forest_1000 ≥ 0.25) x 
7400 

0.28 

Lyon Cd natural log − 1 + urb_1000 × 0.59 + I 
(forest_5000^0.3) x − 0.93 +
Substrate (Tombstones) x 0.38 

0.58 

Paris Cd natural log − 1 + urb_5000 × 0.87 + density x 
2e-5 + Substrate (Tombstones) x 
0.34 

0.67 

Lyon Cr natural log 2.7 + forest_2500 x − 2.1 0.31 
Paris Cr natural log 2.8 + altitude x − 0.0033 +

urb_5000 × 0.44 + forest_2500 x 
− 1.1 

0.63 

Lyon Cu natural log 3.1 + urb_1000 × 0.9 + forest_2500 
x − 2.1 

0.55 

Paris Cu natural log 3 + urb_5000 × 1.6 + water_5000 ×
7.2 

0.67 

Lyon Fe natural log 8.7 + forest_2500 x − 1.7 0.20 
Paris Fe none 1700 + altitude x − 13 + urb_5000 

× 6500 + agri_5000 × 5000 
0.50 

Lyon Hg natural log − 2.3 + urb_1000 × 0.99 0.23 
Paris Hg natural log − 2.9 + altitude x − 0.0025 +

urb_2500 × 0.95 + agri_5000 ×
0.81 + Substrate (Tombstones) x 0.2 

0.34 

Lyon Na natural log 7 + forest_2500 x − 1.8 0.12 
Paris Na natural log 6.5 + forest_2500 x − 1.1 +

agri_2500 × 0.33 
0.29 

Lyon Ni natural log 1.9 + urb_1000 × 0.38 +
forest_2500 x − 1.3 

0.32 

Paris Ni natural log 2.1 + altitude x − 0.0031 + urb_500 
× 0.27 + forest_2500 x − 1.1 +
density x 1.5e-05 + Substrate 
(Tombstones) x 0.16 

0.69 

Lyon Pb natural log 2.1 + urb_500 × 1.1 + Substrate 
(Tombstones) x 0.72 

0.49 

Paris Pb natural log 3.4 + forest_1000 x − 1.2 + density x 
3.7e-05 + Substrate (Tombstones) x 
0.91 

0.59 

Lyon Sb natural log 1.5 + agri_1000 x − 0.75 + I 
(forest_5000^0.2) x − 1.8 

0.62 

Paris Sb natural log 0.16 + urb_5000 × 1.6 +
forest_1000 x − 1.2 

0.84 

Lyon V natural log 2.9 + forest_5000 x − 0.88 0.06 
Paris V none − 0.75 + urb_5000 × 15 +

agri_5000 × 15 + I (altitude^-0.5) x 
34 

0.43 

Lyon Zn natural log 6.5 + I (forest_5000^0.3) x − 2.2 +
agri_500 x − 0.92 + log (density) x 
− 0.12 

0.65 

Paris Zn natural log 4.5 + urb_5000 × 0.61 + density x 
2.8e-05 + Substrate (Tombstones) x 
0.47 

0.56  
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human activities except Hg, with between 40 and 82% explained for Ni 
in Lyon or Sb in Paris, respectively. At ambient temperature Hg can exist 
in gaseous form, and this high volatility may have disturbed the spatial 
distribution of Hg concentrations in mosses collected during late spring. 
During the sampling, temperatures were as high as 27.2 ◦C and 28.6 ◦C 
in Paris and Lyon (data from the French meteorological agency Meteo
France) – without considering the likely higher temperature on the 
concrete substrate. For metals mostly emitted by natural sources, the 
models explained a lesser amount of spatial variability. We did not 
detect strong multicollinearity in the final models. Some VIF values 
larger than 6 occurred in models including both urban and agriculture or 
forest variables, which were negatively correlated. However, multi
collinearity does not affect the models’ predictive accuracy. 

The present result showed largely higher moss concentrations in 
urban areas than those previously found in rural areas since 1996 (Lequy 
et al., 2017), up to a factor 12 for Cu for example, in Paris. These urban 
and rural results seem consistent and plausible, given the positive re
lationships of metals with relative urban area or negative relationships 
with its opposite, i.e. greenspace areas, and a strong gradient from the 
city center to the rural outskirts of Lyon and Paris, and in line with other 
studies. Indeed, despite the methods are not the same and therefore the 
estimates are not straightforwardly comparable, the relationships we 
found between metal concentrations and land use variables, such as 
traffic, were of the same direction as those found in studies using field 
measurements on epiphytic mosses in the USA (Messager et al., 2021), 
or using other biomonitoring techniques using moss bags or epiphytes in 
Italy (Capozzi et al., 2016; Di Palma et al., 2017; De Nicola et al., 2013). 
All of these techniques were able to capture spatial variations of metals 
from either urban or rural sources, thereby reinforcing the plausibility of 
our results. In our dataset, forest and agricultural variables were 

negatively correlated with urban variables and may better capture the 
variability of some metals in mosses in cemeteries. 

This study presents the limits inherent to passive moss bio
monitoring, including the uncertainty on the period of exposure they 
represent. However, it is usually estimated that mosses accumulate 
metals over their lifespan of several years. Mosses, being living organ
isms, are affected by meteorological conditions in particular drought 
periods since mosses rely on water even more than other plants (Mar
kert, 2007). But since they accumulate over several years, we took the 
hypothesis, as in the BRAMM network and the ICP-Vegetation program, 
that the concentrations in mosses are able to reflect spatial variations in 
air quality when compared across sampling sites for the same date. 
Several possible disturbances may either disturb mosses’ physiology and 
their ability to biomonitor metals, or contaminate mosses with metals: 
the use of bleach or surfactants to clean tombstones, or the (former) 
paintings on some tombstones, which cannot be easily retrieved, or the 
use of herbicides or other products by cemeteries. During the sampling, 
data on the use of herbicides or other products proved difficult to collect, 
with information available for 55% and 80% of the sampled cemeteries 
in the regions of Paris and Lyon, respectively. Of those, 29% and 47% 
had information while 26% and 33% declared they used no treatment, in 
the respective study areas. We could not assess the local effect of 
wind-blown particles of cemeteries’ topsoil, possibly contaminated by 
metals (Neckel et al., 2016); yet the spatial patterns of metal concen
trations, and their relationships with the land use variables included in 
the final models, suggest that any local topsoil effect would be negli
gible. The fact that Grimmia pulvinata develops preferentially on con
crete does not allow the use of cemeteries or tombstones built in a 
material other than concrete (e.g. granite). This was not an issue in Paris 
or Lyon but it may be the case in other regions in France or in the world, 

Table 3 
Coefficient of determination (R2) and relative root mean square error (RRMSE, unitless) of the HOV-10 validation for the KED and LUR approaches, and final approach 
chosen as the one providing the higher R2.  

Metal Region R2 RRMSE Final approach Model quality   

HOV10, KED HOV10, LUR HOV10, KED HOV10, LUR      

Model Kriging     

Al Lyon 0.05 0.20 0.46 0.41 LUR 3 
Al Paris 0.18 0.22 0.20 0.20 LUR 3 
As Lyon 0.39 0.28 0.43 0.47 KED 2 
As Paris 0.17 0.20 0.28 0.28 LUR 3 
Ca Lyon 0.10 0.05 0.08 0.09 0.09 KED 3 
Ca Paris 0.09 0.12 0.08 0.08 LUR 3 
Cd Lyon 0.31 0.34 0.51 0.46 LUR 1 
Cd Paris 0.33 0.36 0.56 0.54 LUR 1 
Cr Lyon 0.20 0.21 0.52 0.52 LUR 3 
Cr Paris 0.60 0.62 0.27 0.26 LUR 1 
Cu Lyon 0.30 0.30 0.71 0.71 LUR 1 
Cu Paris 0.50 0.52 0.46 0.44 LUR 1 
Fe Lyon 0.14 0.17 0.50 0.49 LUR 3 
Fe Paris 0.47 0.46 0.25 0.25 KED 1 
Hg Lyon 0.17 0.15 0.67 0.67 KED 3 
Hg Paris 0.22 0.41 0.31 0.22 LUR 2 
Na Lyon 0.04 0.07 0.02 0.80 0.81 KED 3 
Na Paris 0.06 0.08 0.31 0.3 LUR 3 
Ni Lyon 0.38 0.26 0.35 0.41 0.42 KED 2 
Ni Paris 0.63 0.64 0.34 0.34 LUR 1 
Pb Lyon 0.03 0.08 0.88 0.83 LUR 2 
Pb Paris 0.17 0.20 0.75 0.76 LUR 2 
Sb Lyon 0.27 0.31 0.87 0.81 LUR 1 
Sb Paris 0.71 0.74 0.37 0.36 LUR 1 
V Lyon 0.03 0.03 0.41 0.41 LUR 3 
V Paris 0.51 0.53 0.16 0.16 LUR 2 
Zn Lyon 0.47 0.48 0.54 0.52 LUR 1 
Zn Paris 0.29 0.34 0.53 0.54 LUR 1 

HOV: hold-out validation; LUR: land use regression; KED: kriging with external drift. For the LUR approach, metals Ca, Na, and Ni required an extra step of residual 
kriging since the residuals of the regression had a significant positive spatial autocorrelation. Modeling quality scores: 1 (satisfactory final model (adjusted R2>0.45) 
with satisfactory robustness (quantified by 10-HOV with an R2>0.3)), 2 (satisfactory final model with poor robustness or conversely), and 3 (poor final model with 
poor robustness). 
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for which it would be mandatory to find a more suitable moss species. As 
expected, KED and LUR provided similar maps of similar quality; KED 
may be used as an alternative for air pollutants when using LUR does not 
provide satisfactory outputs. The 10-HOV indicated that some models 
lack robustness but the concentration maps presented in this study 
showed plausible spatial patterns, at least for metals emitted by human 
activities. Such concentration maps seem to provide a sufficient 
geographical contrast in concentrations across each study area, for a 
future use as exposure data at individual level in epidemiological 
studies. 

5. Conclusion 

Moss biomonitoring in cemeteries offers a practical alternative for 
rapid estimation of exposure to airborne metals in urban areas, and land- 
use regression provided satisfactory concentration maps for airborne 
metals emitted by human sources. Further research to compare these 
results with more conventional techniques should refine exposure 

assessment for airborne metals such as Cd, Hg, or Pb, but also for other 
potentially harmful metals and other pollutants. 
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