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Abstract

Sorted ℓ1 Penalized Estimator (SLOPE) is a relatively new convex regularization
method for fitting high-dimensional regression models. SLOPE allows to reduce the
model dimension by nullifying some of the regression coefficients and by equalizing some
of nonzero coefficients. This allows to identify situations where some of true regression
coefficients are equal. In this article we will introduce the SLOPE pattern, i.e., the set
of relations between the true regression coefficients, which can be identified by SLOPE.
We will also present new results on the strong consistency of SLOPE estimators and
on the strong consistency of pattern recovery by SLOPE when the design matrix is
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for references, comments and discussion. First Author was supported by a French Government Scholarship.
This research was carried out while the first author spent the summer semester of 2021 at Laboratoire de
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1 Introduction

1.1 Introduction and motivations

The Linear Multiple Regression concerns the model Y = Xβ+ε, where Y ∈ Rn is an output
vector, X ∈ Rn×p is a fixed design matrix, β ∈ Rp is an unknown vector of predictors
and ε ∈ Rn is a noise vector. The primary goal is to estimate β. In the low-dimensional
setting, i.e., when the number of predictors p is not larger than the number of explanatory

variables n and X is of full rank, the ordinary least squares estimator β̂
OLS

has an exact

formula β̂
OLS

= (X ′X)−1X ′Y . For practical reasons there is an urge to avoid the high-
dimensionality curse, therefore we want the estimate to be sparse, i.e., to be descriptible
by a smaller number of parameters. Several solutions were proposed to deal with such
problem. One of them, the Least Absolute Shrinkage and Selection Operator (LASSO [6, 24])

involves penalizing the residual sum of squares ∥Y −Xβ̂∥22 with an ℓ1 norm of β̂ multiplied
by a tuning parameter λ:

β̂
LASSO

:= arg min
b∈Rp

[
1

2
∥Y −Xb∥22 + λ∥b∥1

]
.

The LASSO estimator is not unbiased, but is a shrinkage estimator which reduces some of the
coefficients of β to zero, resulting in a sparser estimate. In the case of X being an orthogonal

matrix, i.e. X ′X = Ip, the exact formula for β̂
LASSO

introduced by Tibshirani [24] is based

on β̂
OLS

:
β̂LASSO
i = sign(β̂OLS

i ) max{|β̂OLS
i | − λ, 0}.

Another approach to reduce the dimensionality is the Sorted ℓ1 Penalized Estimator
(SLOPE [3, 2, 25]), which not only generalizes the LASSO method, but also allows to
clusterize the similar coefficients of β. In SLOPE, ℓ1-norm is replaced by its sorted version
JΛ, which depends on the tuning vector
Λ = (λ1, . . . , λp) ∈ Rp, where λ1 ≥ . . . ≥ λp ≥ 0:

JΛ(β) :=

p∑
i=1

|β|(i)λi,

where {|β|(i)}pi=1 is a decreasing permutation of absolute values of βi, namely

β̂
SLOPE

:= arg min
b∈Rp

[
1

2
∥Y −Xb∥22 + γJΛ(b)

]
.

The case of Λ being an arithmetic sequence was studied by Bondell and Reich [4] and called
the Octagonal Shrinkage and Clustering Algorithm for Regression (OSCAR). The special
case of SLOPE with

λ1 = λ2 = . . . = λp > 0

is LASSO. For Λ = (0, . . . , 0) we obtain the OLS estimator.
Clustering the predictors allows for additional dimension reduction by identifying variables
with the same values of regression coefficients. One may recently observe the rise of interest
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in methods, which cluster highly correlated predictors [5, 11, 13, 16, 17, 23]. SLOPE is ideal
for this task, since it is capable to identify the low-dimensional structure, which is called
the SLOPE pattern, defined by Schneider and Tardivel with the subdifferential of the SLOPE
norm JΛ [19]. For the convention of this article we let sign(0) = 0. As k we will denote the
number of clusters of patt(b) = (m1, . . . ,mp)′ i.e., the number of nonzero components of |b|.

Definition 1.0.1 (SLOPE pattern [19]). The SLOPE pattern is a function
patt : Rp → Zp such that

patt(b)i = sign(bi)rank(|bi|),

where rank(|bi|) ∈ {1, 2, . . . , k} is a rank of |bi| in a vector of distinct nonzero values among
{|b1|, . . . , |bp|}. We adopt the convention that rank(0) = 0.

As Mp we denote the set of all possible SLOPE patterns of b ∈ Rp.

Fact 1.0.1 (Basic properties of SLOPE pattern).
(a) for every 1 ≤ l ≤ ∥patt(b)∥∞ there exists j such that |patt(b)j | = l,

(b) sign(patt(b)) = sign(b) (sign preservation),

(c) |bi| = |bj | ⇒ |patt(b)i| = |patt(b)j | (clustering preservation),

(d) |bi| > |bj | ⇒ |patt(b)i| > |patt(b)j | (hierarchy preservation).

Example 1.0.1. patt(4, 0,−1.5, 1.5,−4) = (2, 0,−1, 1,−2).

Remark 1.0.1 (Subdifferential description of the SLOPE pattern [19]).
Let Λ = (λ1, . . . , λp) satisfy λ1 > . . . > λp > 0. Then

patt(b1) = patt(b2) ⇐⇒ ∂JΛ
(b1) = ∂JΛ

(b2),

where ∂f (b) is a subdifferential of the function f : Rp → R in b, i.e.:

∂f (b) = {v ∈ Rp : f(z) ≥ f(b) + v′(z − b) ∀z ∈ Rp}.

The subdifferential approach may be applied to a wider class of penalizers being polyhedral
gauges, cf. [22].

Definition 1.0.2 (Pattern recovery by SLOPE). We say that the SLOPE estimator β̂
SLOPE

recovers the pattern of β when

patt
(
β̂
SLOPE

)
= patt(β).

The clustering properties of SLOPE have been studied before, cf. [4, 10], but the re-
searchers consider strongly correlated predictors, which are being used in financial math-
ematics to group the assets with respect to their partial correlation with the hedge fund
return times series [12]. In our article we present the clusterization by SLOPE when the
predictors are orthogonal, i.e. X ′X = Ip. Such class of matrices is being widely used in
signal analysis, [18, 7]. For general X the problem is considered in our parallel article [20].
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To study the properties of SLOPE we often use the unit ball in the dual norm of JΛ, which
was studied e.g. by Zeng and Figueiredo [25]. This dual ball is also known as a signed
permutahedron, see e.g. [15, 19].

CΛ = {π = (π1, π2, . . . , πp) ∈ Rp :
∑
j≤i

|π|(j) ≤
∑
j≤i

λj : i = 1, 2, . . . , p}. (1)

In this article we prove novel results on the strong consistency of SLOPE both in estimation
and in pattern recovery. We also introduce a new, based on minimaxity, approach to relations

between β̂
SLOPE

and β̂
OLS

.

1.2 Outline of the paper

In Section 2 we derive the connections between β̂
SLOPE

and β̂
OLS

in the orthogonal de-
sign. We use the minimax theorem of Sion, cf. [1]. In Section 3 we focus on the properties

of β̂
SLOPE

. We use the geometric interpretation of SLOPE to explain its ability to identify
the SLOPE pattern and provide new theoretical results on the support recovery and cluster-
ing properties using a representation of SLOPE as a function of the ordinary least squares
(OLS) estimator. Similar approach for LASSO was used by Ewald and Schneider, cf. [9] In
Section 4 we discuss asymptotic properties of the SLOPE estimators in the low-dimensional
regression model in which p is fixed and the sample size n tends to infinity. To be more
precise, for each n ≥ 1 we consider a linear regression model

Y (n) = X(n)β + ε(n)

with the vector of observations Y (n) ∈ Rn and the design matrix X(n) ∈ Rn×p. Here ε(n) =

(ε
(n)
1 , ε

(n)
2 , . . . , ε(n))′ ∈ Rn is a noise term, which has the normal distribution N(0, σ2In).

We make no assumptions about the relations between ε(n) and ε(m) for n ̸= m. We consider
the low-dimensional setup when p is fixed and n goes to infinity and provide the conditions
under which the SLOPE estimator is strongly consistent. Additionally, in case when for
each n the design matrix is orthogonal, we provide the conditions on the sequence of tuning
parameters such that SLOPE is strongly consistent in the pattern recovery. Compared to
similar results in [20], dealing with the general design matrices, our results are obtained
using substantially simpler techniques and impose weaker restrictions on the sequence of
tuning parameters required for the pattern recovery. In Section 5 we show the applications
of the SLOPE clustering in terms of high frequency signal denoising and illustrate them
with simulations. The Appendix covers the proofs of technical results.

2 Approach by minimax theorem

2.1 Technical results

Let rSLOPE denote the minimum value of the SLOPE criterion, attained by β̂
SLOPE

, i.e.

rSLOPE := min
b∈Rp

[
1

2
∥Y −Xb∥22 + JΛ(b)

]
=

1

2
∥Y −Xβ̂

SLOPE
∥22 + JΛ(β̂

SLOPE
).
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Since

∥β̂
SLOPE

∥2 ≤ √
p∥β̂

SLOPE
∥∞ and λ1∥β̂

SLOPE
∥∞ ≤ JΛ(β̂

SLOPE
) ≤ rSLOPE ,

it follows that

λ1

∥∥∥β̂SLOPE
∥∥∥
2
≤ √

p rSLOPE ≤ √
p

[
1

2
∥Y −X0∥22 + JΛ(0)

]
=

√
p

2
∥Y ∥22 .

We immediately get the following result.

Corollary 2.0.1.
∥∥∥β̂SLOPE

∥∥∥2
2
≤ M0, where

M0 =

(
p ∥Y ∥42

4λ2
1

)
.

From this corollary it is seen that we can clearly limit our search to vectors β from the com-
pact set M ⊂ Rp defined by

M :=
{
b ∈ Rp : ∥b∥22 ≤ M0

}
.

Therefore, we can equivalently define a SLOPE solution by

β̂
SLOPE

= arg min
b∈M

[
1

2
∥Y −Xb∥22 + JΛ(b)

]
. (2)

Proposition 2.0.1. [3, Proposition 1.1] Let CΛ be the unit ball in the dual SLOPE norm.
Then, for each b ∈ Rp,

JΛ(b) = max
π∈CΛ

π′b.

This statement follows from the definition of CΛ (1) and from the reflexivity of finite-
dimensional spaces.

2.2 Saddle point

Let the function r : M× CΛ → R be defined by

r(b,π) :=
1

2
∥Y −Xb∥22 + π′b.

As an immediate consequence of ((2)) and Proposition 2.0.1 we obtain

rSLOPE = min
b∈Rp

[
1

2
∥Y −Xb∥22 + JΛ(b)

]
= min

b∈M

[
1

2
∥Y −Xb∥22 + JΛ(b)

]
= min

b∈M
max
π∈CΛ

[
1

2
∥Y −Xb∥22 + π′b

]
= min

b∈M
max
π∈CΛ

r(b,π).

It turns out that the order of the maximization over π ∈ CΛ and the minimization over
b ∈ M can be switched without affecting the result. To see this, note that both CΛ and M
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are convex and compact. Moreover, for each fixed π ∈ CΛ, r(b,π) is a convex continuous
function with respect to b ∈ M and, for each fixed b ∈ M, r(b,π) is concave with respect
to π ∈ CΛ (in fact, it is linear). Therefore, all assumptions of the Sion’s minimax theorem
are fulfilled (see [1, p. 218]) and thus there exists a saddle point (β∗,π∗) ∈ M× CΛ such
that

max
π∈CΛ

min
b∈M

r(b,π) = min
b∈M

r(b,π∗) = r(β∗,π∗)

= max
π∈CΛ

r(β∗,π) = min
b∈M

max
π∈CΛ

r(b,π) = rSLOPE .

In the next section we shall see that the first coordinate of any saddle point (β∗,π∗)
is the SLOPE estimator.

2.3 SLOPE solution in the orthogonal design

Since for each fixed π ∈ CΛ, the function r(b,π) is convex with respect to b ∈ M, any point

bπ ∈ M, at which the gradient
∂r(b,π)

∂b
is zero, is a global minimum. If we rewrite r(b,π)

as

r(b,π) =
1

2
Y ′Y − Y ′Xb +

1

2
b′b + π′b

and differentiate with respect to b, we obtain

∂r(b,π)

∂b
= −X ′(Y −Xb) + π.

Equating this gradient to 0 gives the following equation for the optimum point bπ :

bπ = X ′Y − π = β̂
OLS

− π.

Substituting this into the equation for r(bπ ,π), we find that

r(bπ ,π) =
1

2
Y ′Y − b′πX ′Y +

1

2
b′πbπ + π′bπ

=
1

2
Y ′Y − b′πX ′Y + b′πbπ + b′ππ − 1

2
b′πX ′Xbπ

=
1

2
Y ′Y − 1

2
b′πbπ =

1

2
Y ′Y − 1

2
b′πbπ

=
1

2
Y ′Y − 1

2
(X ′Y − π)′(X ′Y − π).

Let pj = |{i : |mi| = k+1−j}| be the number of elements of the jth cluster of β, Pj =
∑
i≤j

pi

and Pk+1 = p.

Lemma 2.1. Let π∗ = (π∗
1 , . . . , π

∗
p)′ ∈ CΛ be any solution of

π∗ = arg min
π∈CΛ

[
(β̂

OLS
− π)′(β̂

OLS
− π)

]
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and let β∗ = (β∗
1 , . . . , β

∗
p)′ be the corresponding point from M given by

β∗ = β̂
OLS

− π∗.

Then, (π − π∗)′β∗ ≤ 0, for all π ∈ CΛ and hence

(a) sign (β∗
i ) · sign (π∗

i ) ≥ 0, i = 1, 2, . . . , p,

(b)
(
|π∗

1 |, . . . , |π∗
p |
)
and

(
|β∗

1 |, . . . , |β∗
p |
)
are similarly sorted, i.e.

if |(patt(β))i| = k + 1 − j, then |π∗|i ∈
{
|π∗|(Pj−1+1), . . . , |π∗|(Pj)

}
,

(c) if there is a k ∈ {2, . . . , p} such that

k−1∑
i=1

∣∣∣π∗
σ(i)

∣∣∣ < k−1∑
i=1

λi and
∣∣∣π∗

σ(k)

∣∣∣ > 0,

then
∣∣∣β∗

σ(k−1)

∣∣∣ =
∣∣∣β∗

σ(k)

∣∣∣.
The proof is given in the Appendix. An immediate consequence of the Lemma is the following
result.

Lemma 2.2. The point (β∗,π∗) defined as in Lemma 2.1 is the saddle point of the function
r(b,π).

The proof is given in the Appendix. We use the last lemma to prove the main result of this
section.

Theorem 2.3. Let the point β∗ be defined as in Lemma 2.1. Then β∗ is the SLOPE
estimator of β.

Proof. Using the fact that max
π∈CΛ

r(β∗,π) = min
b∈M

max
π∈CΛ

r(b,π) (see previous lemma) we have

1

2
∥Y −Xβ∗∥22 + JΛ(β∗) = max

π∈CΛ

[
1

2
∥Y −Xβ∗∥22 + λπ′β∗

]
= max

π∈CΛ

r(β∗,π) = min
b∈M

max
π∈CΛ

r(b,π) = min
b∈Rp

[
1

2
∥Y −Xb∥22 + JΛ(b)

]
.

Corollary 2.3.1. [14]

β̂
OLS

− β̂
SLOPE

= π∗ = arg min
π∈CΛ

∥∥∥β̂OLS
− π

∥∥∥2
2

is the proximal projection of β̂
OLS

onto CΛ.

Remark 2.3.1. For each π ∈ CΛ, the point β̂
SLOPE

= bπ = β̂
OLS

− π
belongs to

M :=
{
b ∈ Rp : ∥b∥22 ≤ M

}
.

Therefore, the constant M is chosen so that M > max{M0,M1}, where

M1 := max
π∈CΛ

∥β̂
OLS

− π∥22 ≤ M.
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3 Properties of SLOPE in the orthogonal design

3.1 SLOPE vs. OLS

By the Theorem 2.3 and Corollary 2.3.1, when
X ′X = Ip, the orthogonal projection of the ordinary least squares estimator

β̂
OLS

= X ′Y onto the unit ball CΛ is equal to β̂
OLS

−β̂
SLOPE

. For Λ = (4, 2) this property

is illustrated on Figure 1. The figure represents β̂
SLOPE

(black arrows) depending on the

localization of β̂
OLS

in the orthogonal design. For β̂
OLS

being the blue point located on

the area labelled by (1, 0) the first component of β̂
SLOPE

is positive and the second is null.

For β̂
OLS

being the yellow point located on the area labelled by (−1, 1) both components of

β̂
SLOPE

have equal absolute value (clusterization), but their signs are opposite. For β̂
OLS

being the red point located on the area labelled by (1, 2) both components of β̂
SLOPE

are
positive and the first component is smaller than the second one. The blue polytope is the
dual SLOPE unit ball CΛ and labels

M2 = {(0, 0), (±1, 0), (0,±1), (±1,±1), (±2,±1), (±1,±2)}

associated to the areas of this figure correspond to all SLOPE patterns for
n ≥ p = 2. In the orthogonal design, one may also explicitly compute the SLOPE estimator.

Indeed, by the Corollary 2.3.1, β̂
SLOPE

is the image of β̂
OLS

by the proximal operator of
the SLOPE norm. Therefore, this operator has a closed form formula [2, 21, 8]. This
explicit expression gives an analytical way to learn that SLOPE solution is sparse and built
of clusters.

Lemma 3.1. [3, Equation (1.14)] In the linear model with orthogonal design X ′X = Ip
we have

arg min
b∈Rp

[
1

2
∥Y −Xb∥22 + JΛ(b)

]
= arg min

b∈Rp

[
1

2

∥∥∥β̂OLS
− b
∥∥∥2
2

+ JΛ(b)

]
. (3)

The next theorem gives a sufficient condition for the clustering effect of the SLOPE estimator
in the orthogonal design.

Theorem 3.2. Consider a linear model with orthogonal design
X ′X = Ip. Let π be a permutation of (1, 2, . . . , p) such that∣∣∣β̂OLS

π(1)

∣∣∣ ≥ ∣∣∣β̂OLS

π(2)

∣∣∣ ≥ . . . ≥
∣∣∣β̂OLS

π(p)

∣∣∣ .
For i ∈ {1, 2, . . . , p− 1},
if
∣∣∣β̂OLS

π(i)

∣∣∣− ∣∣∣β̂OLS

π(i+1)

∣∣∣ ≤ λi − λi+1, then
∣∣∣β̂SLOPE

π(i)

∣∣∣ =
∣∣∣β̂SLOPE

π(i+1)

∣∣∣.
Proof. By Lemma 3.1, in the orthogonal design, the calculation of SLOPE reduces to the ap-

plication of the proximal algorithm of SLOPE to the β̂
OLS

. The result may be inferred
from [2, Lemma 2.3].
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β1

β2

π∗ SLOPE OLS

π∗
SLOPE

OLS

π∗

SLOPE

OLS

(-2,1)

(-1,2) (1,2)

(2,1)

(2,-1)

(1,-2)(-1,-2)

(-2,-1)

(-1,0)

(-1,1) (0,1) (1,1)

(1,0)

(1,-1)(0,-1)(-1,-1)

(0,0)

Figure 1: The dual unit ball CΛ for Λ = (4, 2)′ and examples of β̂
SLOPE

and β̂
OLS

in the or-

thogonal design for n ≥ p = 2. The labels of each colored set refer to the pattern of β̂
SLOPE

for β̂
OLS

lying in this set. The arrows point from (β̂
OLS

− β̂
SLOPE

) to β̂
OLS

.

In the following theorem we derive necessary and sufficient conditions under which SLOPE
in the orthogonal design recovers the support of the vector
β = (β1, . . . ,βp)′, i.e.

β̂
SLOPE

i = 0 ⇐⇒ βi = 0.

Theorem 3.3. Under orthogonal design, let π be a permutation of (1, 2, . . . , p) satisfy-

ing
∣∣∣β̂OLS

π(1)

∣∣∣ ≥ |β̂
OLS

π(2) | ≥ . . . ≥ |β̂
OLS

π(p)|. Without loss of generality suppose that supp(β) =

{1, 2, . . . , p0} with p0 < p. The necessary and sufficient condition for SLOPE to identify the
set of relevant covariables is the following:

(a) min
1≤i≤p0

∣∣∣β̂OLS

i

∣∣∣ > max
p0+1≤i≤p

∣∣∣β̂OLS

i

∣∣∣,
(b)

p0∑
i=k

∣∣∣β̂OLS

π(i)

∣∣∣ > p0∑
i=k

λi, for k = 1, 2, . . . , p0,
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(c)
k∑

i=p0+1

∣∣∣β̂OLS

π(i)

∣∣∣ ≤ k∑
i=p0+1

λi, for k = p0 + 1, p0 + 2, . . . , p.

Proof. The result may be inferred from the properties of the proximal SLOPE [3, Lemma
2.3 and Lemma 2.4] and from Lemma 3.1.

4 Asymptotic properties of SLOPE

In this section we discuss several asymptotic properties of SLOPE estimators in the low-
dimensional regression model in which p is fixed and the sample size n tends to infinity.
For each n ≥ 1 we consider a linear model

Y (n) = X(n)β + ε(n), (4)

where Y (n) = (y1, y2, . . . , yn)′ ∈ Rn is a vector of observations, X(n) ∈ Rn×p is a determin-

istic design matrix with rank(X(n)) = p, β = (β1, β2, . . . , βp)′ ∈ Rp is a vector of unknown

regression coefficients and ε(n) = (ε
(n)
1 , ε

(n)
2 , . . . , ε

(n)
n )′ ∈ Rn is a noise term, which has

the normal distribution N(0, σ2In). We make no assumptions about the dependence be-
tween ε(n) and ε(m) for n ̸= m. In particular, ε(n) does not need to be a subsequence of ε(m).

When defining the sequence (β̂
SLOPE

n ) of SLOPE estimators, we assume that the tuning vec-

tor varies with n. More precisely, for each n ≥ 1 its coefficients λ
(n)
1 ≥ λ

(n)
2 ≥ . . . ≥ λ

(n)
p ≥ 0

are fixed and λ
(n)
1 > 0. By β̂

SLOPE

n we denote the SLOPE estimator corresponding to

the tuning vector Λ(n) = (λ
(n)
1 , . . . , λ

(n)
p )′:

β̂
SLOPE

n = arg min
b∈Rp

[
1

2

∥∥∥Y (n) −X(n)b
∥∥∥2
2

+ JΛ(n)(b)

]
. (5)

4.1 Strong consistency of the SLOPE estimator

Below we discuss consistency of the sequence (β̂
SLOPE

n ) of SLOPE estimators, defined by (5).

Theorem 4.1. Consider the linear regression model ( (4)) and assume that

lim
n

n−1
(
X(n)

)′
X(n) = C,

where C is a positive definite matrix. Let β̂
SLOPE

n , n ≥ 1, be the SLOPE estimator corre-

sponding to the tuning vector Λ(n) = (λ
(n)
1 , λ

(n)
2 , . . . , λ

(n)
p )′.

(a) If lim
n→∞

λ
(n)
1

n
= 0, then β̂

SLOPE

n
a.s.−→ β.

(b) If lim
n→∞

λ
(n)
1

n
= λ0 > 0, then β̂

SLOPE

n is not strongly consistent for β.

Before proving the above theorems we start with stating a simple technical lemma. It follows
quickly from the Borel-Cantelli Lemma and the well-known tail inequality:
If Z ∼ N(0, 1), then P(Z > t) ≤ t−1e−t2/2/

√
2π, t > 0.

10



Lemma 4.2. Assume that (Qn)n∈N is a sequence of Gaussian random variables, defined
on the same probability space, which converges in distribution to N(0, σ2) for some σ ∈
(0,∞). Then, for any δ > 0,

lim
n→∞

Qn

(log(n))1/2+δ
= 0 a.s.

Our proof of the strong consistency of SLOPE is based on the strong consistency of the OLS
estimator. The latter result is a folklore and we prove it in our setting.

Proposition 4.2.1. Consider the linear regression model ( (4)).

If lim
n

n−1(X(n))′X(n) = C, where C is positive definite, then β̂
OLS

n
a.s.−→ β.

Proof. We have

β̂
OLS

n − β = ((X(n))′X(n))−1(X(n))′Y (n) − β = ((X(n))′X(n))−1(X(n))′ε(n).

Then
√
n
(
β̂
OLS

n − β
)

has the normal distribution N(0, (n−1(X(n))′X(n))−1) and its com-

ponents satisfy the assumptions of Lemma 4.2. Since log(n)1/2+δ = o(
√
n), we get the

assertion by Lemma 4.2.

Proof of Theorem 4.1. (a) It follows from Theorem 2.1 that there exists a vector π∗
n ∈

C(Λ(n)) such that

β̂
SLOPE

n = ((X(n))′X(n))−1((X(n))′Y (n) − π∗
n).

Since π∗
n takes values in CΛ(n) , it follows that ∥π∗

n∥∞ ≤ λ
(n)
1 . Hence,

π∗
n

n

a.s.−→ 0, (6)

because

∥∥∥∥π∗
n

n

∥∥∥∥
∞

≤ λ
(n)
1

n
→ 0. The assumption that rank(X(n)) = p implies that the

matrix (X(n))′X(n) is invertible and hence the least squares estimator of β is unique and

has the form β̂
OLS

n = ((X(n))′X(n))−1(X(n))′Y (n). Combining with ((6)) the fact that

β̂
OLS

n
a.s.−→ β, we conclude that

β̂
SLOPE

n = ((X(n))′X(n))−1((X(n))′Y (n) − π∗
n) = β̂

OLS

n − ((X(n))′X(n))−1π∗
n

= β̂
OLS

n −

(
(X(n))′X(n)

n

)−1
π∗

n

n

a.s.−→ β −C−10 = β.

(b) Since β̂
SLOPE

n minimizes over b ∈ Rp the function

l(b) :=
1

2
∥Y (n) −X(n)b∥22 + JΛ(n)(b)

11



and since λ
(n)
1 ∥b∥∞ ≤ JΛ(n)(b), it follows that

0 ≤ l(0) − l(β̂
SLOPE

n ) = (β̂
SLOPE

n )′(X(n))′Y (n)

− 1

2
(β̂

SLOPE

n )′(X(n))′X(n)β̂
SLOPE

n − JΛ(n)(β̂
SLOPE

n )

≤ (β̂
SLOPE

n )′(X(n))′Y (n) − 1

2
(β̂

SLOPE

n )′(X(n))′X(n)β̂
SLOPE

n

− λ
(n)
1 ∥β̂

SLOPE

n ∥∞ = (β̂
SLOPE

n )′(X(n))′X(n)β̂
OLS

n

− 1

2
(β̂

SLOPE

n )′(X(n))′X(n)β̂
SLOPE

n − λ
(n)
1 ∥β̂

SLOPE

n ∥∞.

Suppose to the contrary that β̂
SLOPE

n
a.s.−→ β. Then, using the facts that

β̂
OLS

n
a.s.−→ β and that lim

n
n−1(X(n))′X(n) = C, we have

0 ≤ l(0) − l(β̂
SLOPE

n )

n

a.s.−→ β′Cβ − 1

2
β′Cβ − λ0∥β∥∞ =

1

2
β′Cβ − λ0∥β∥∞.

For λ0 > 0 this provides a contradiction since the inequality λ0∥β∥∞ ≤ 1
2β

′Cβ does not hold
when the value of β is sufficiently close to 0.

4.2 Asymptotical pattern recovery in the orthogonal design

We again consider a sequence of linear models ((4)) but this time we assume that for each n

the deterministic design matrix X(n) of size n× p satisfies

(X(n))′X(n) = nIp. (7)

As usual, we assume Gaussian errors, ε(n) ∼ N(0, σ2In).

Let β̂
SLOPE

n =
(
β̂
SLOPE

1 (n), . . . , β̂
SLOPE

p (n)
)′

be the SLOPE estimator defined by (5).

With the above notation we present the main result of this section.

Theorem 4.3. Assume that

lim
n→∞

λ
(n)
1

n
= 0

and that there exists δ > 0 such that

lim inf
n→∞

λ
(n)
i − λ

(n)
i+1√

n (log(n))1/2+δ
= m > 0 for i = 1, . . . , p− 1. (8)

Then we have
patt(β̂

SLOPE

n )
a.s.→ patt(β).

Proof. Without loss of generality we may assume that β = (β1, . . . , βp)′ and β1 ≥ β2 ≥
. . . ≥ βp ≥ 0. Indeed, we can always achieve such condition by permuting the columns

of X(n) and changing their signs.
Since the space of models is discrete, we have to show that for large n,

patt(β̂
SLOPE

n ) = patt(β) a.s. We divide the proof into the following four parts:

12



(a) βi = βj > 0 =⇒ β̂SLOPE
i (n) = β̂SLOPE

j (n) a.s. for large n,

(b) βi > βi+1 =⇒ β̂SLOPE
i (n) > β̂SLOPE

i+1 (n) a.s. for large n,

(c) βi = 0 =⇒ β̂SLOPE
i (n) = 0 a.s. for large n,

(d) βi > 0 =⇒ β̂SLOPE
i (n) > 0 a.s. for large n.

The points (b) and (d) follow quickly by the strong consistency of β̂
SLOPE

(n). To prove (a)
and (c) we reduce the problem to the orthogonal design case. We have

arg min
b∈Rp

[
1

2
∥Y (n) −X(n)b∥22 + JΛ(n)(b) ]

= arg min
b∈Rp

[
1

2
∥(Ỹ

(n)
)′ − (X̃

(n)
)′b∥22 + JΛ̃(n)(b) ],

where Ỹ
(n)

= Y n/
√
n, X̃

(n)
= X(n)/

√
n and Λ̃

(n)
= Λ(n)/n. Clearly, (7) implies that

(X̃
(n)

)′X̃
(n)

= Ip, which allows to use results from the orthogonal design. However, we

note that the OLS estimators β̂
OLS

n = (β̂
OLS

1 (n), . . . , β̂
OLS

p (n)) are the same in the original

model and its scaled version Ỹ
(n)

= X̃
(n)

β + ε(n)/
√
n.

Let πn be a permutation of (1, 2, . . . , p) satisfying

|β̂OLS
πn(1)

(n)| ≥ |β̂OLS
πn(2)

(n)| ≥ . . . ≥ |β̂OLS
πn(p)

(n)|.

By the strong consistency of the OLS estimator, taking n sufficiently large, we may ensure

that the clusters of β do not interlace in β̂
OLS

n in the sense that if βi > βj , then β̂OLS
i (n) >

β̂OLS
j (n) a.s. for n sufficiently large.

Let us now consider point (i). Let Si denote the cluster containing βi > 0, that is, the set
Si = {j ∈ {1, . . . , p} : βj = βi}. In view of the ordering of β, there exists ki ∈ {1, . . . , p}
such that

Si = {πn(j) : j ∈ {ki, ki + 1, . . . , ki + #Si − 1}} .

We will show that if πn(k), πn(k + 1) ∈ Si, then for large n

β̂SLOPE
πn(k)

(n) = β̂SLOPE
πn(k+1)(n) a.s., (9)

which implies that β̂SLOPE
j (n) = β̂SLOPE

k (n) for j, k ∈ Si and finishes the proof of (a).
Now assume that πn(k), πn(k+1) ∈ Si. Then, by Theorem 3.2, the condition (9) is satisfied
if ∣∣∣β̂OLS

πn(k)
(n)
∣∣∣− ∣∣∣β̂OLS

πn(k+1)(n)
∣∣∣ ≤ Λ̃

(n)
k − Λ̃

(n)
k+1 =

1

n

(
λ
(n)
k − λ

(n)
k+1

)
(10)

holds for large n and both β̂OLS
πn(k)

(n) and β̂OLS
πn(k)

(n) have the same sign. The latter is ensured
by the strong consistency of the OLS estimator and the fact that βi > 0.
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If πn(k), πn(k + 1) ∈ Si, then we have the following bound∣∣∣β̂OLS
πn(k)

(n) − β̂OLS
πn(k+1)(n)

∣∣∣ ≤ ∑
j∈Si

∣∣∣β̂OLS
j (n) − β̂OLS

i (n)
∣∣∣ . (11)

Take any j ∈ Si. Since both β̂OLS
j (n) and β̂OLS

i (n) have the normal distribution with
the same mean, by Lemma 4.2, we have

lim
n→∞

√
n
(
β̂OLS
j (n) − β̂OLS

i (n)
)

(log(n))1/2+δ
= 0 a.s.

In view of (11) and (8), this implies that (10) holds true for large n. Hence, (a) follows.
It remains to establish (c). Assume that βp0

> 0 = βp0+1 = . . . = βp. Clearly, condition (a)
from Theorem 3.3 is satisfied thanks to the strong consistency of the OLS estimator. For
(b), we have for k = 1, 2, . . . , p0,

p0∑
i=k

Λ̃
(n)
i =

1

n

p0∑
i=k

λ
(n)
i ≤ p0

λ
(n)
1

n
,

which converges to 0. On the other hand, the left-hand side of (b) converges a.s. to
∑p0

i=k βi,
which is positive. Thus, condition (b) from Theorem 3.3 holds for large n. Condition (c)
from Theorem 3.3 follows from Lemma 4.2. Indeed, we have for δ > 0 and k = p0 + 1, . . . , p,

lim
n→∞

√
n

(log(n))1/2+δ

k∑
i=p0+1

|β̂OLS
πn(i)

(n)| =

k∑
i=p0+1

lim
n→∞

|
√
n β̂OLS

πn(i)
(n)|

(log(n))1/2+δ
= 0 a.s.,

while

lim
n→∞

√
n

(log(n))1/2+δ

k∑
i=p0+1

Λ̃
(n)
i ≥

k∑
i=p0+1

lim
n→∞

λ
(n)
i − λ

(n)
i+1√

n(log(n))1/2+δ
= m > 0

Thus, all assumptions of Theorem 3.3 are verified and the proof is complete.

5 Applications and simulations

Below we present an application of SLOPE in signal denoising. In our example X ∈ R300×100

is an orthogonal system of trigonometric functions, i.e.
Xi,(2∗j−1) = sin(2πij/n) and Xi,(2∗j) = cos(2πij/n) for i = 1, . . . , 100
and j = 1, . . . , 150. Here β ∈ Rp is a vector consisting of two clusters: 20 coordinates with
absolute value 100 and 20 coordinates with absolute value 80. To avoid large bias caused
by the shrinkage nature of LASSO and SLOPE, we debias them by combining with the
Ordinary Least Squares method in the following way. Firstly we recover the support and
clusters of a true vector β and secondly we apply the OLS method to the regression model
Y = XUβ + ε, where the rows of U ∈ Rn×2 are defined as

U i,• =


[sign(β̂SLOPE

i ), 0], 1 ≤ i ≤ k,

[0, sign(β̂SLOPE
i )], k + 1 ≤ i ≤ 2k,

[0, 0], else.
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Figure 3: Comparison of signal denoising by OLS, LASSO, debiased LASSO and debiased
SLOPE (respective images from left) on the coordinates [120, 125] of the regression model
Y = Xβ+ε. The black lines correspond to the true values of Xβ. The red lines correspond
to the estimators Y = Xβ̂ + ε.

We compare the Mean Square Error and the signal denoising of the classical OLS estimation,
the LASSO with the tuning parameter λcv minimizing the cross-validated error, the denoised
version of LASSO with λ = 5λcv and the denoised version of SLOPE with the tuning vector
Λ chosen with respect to the scaled arithmetic sequence (λi = 3.5(p− 1)).
We also compare the Mean Square Error of the SLOPE estimator with others.

OLS LASSO-CV LASSO-LS SLOPE-LS
MSE(β, ·) 613.6797 417.0071 171.7957 20.74967

Table 1: Comparison of MSE between different regression methods.

A Appendix

Proof of Lemma 2.1. It follows that the function g : CΛ → [0,∞) defined by

g(π) := (β̂
OLS

− π)′(β̂
OLS

− π)
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Figure 4: Signal denoising by debiased SLOPE on all coordinates of the regression model
Y = Xβ + ε. The (almost overlapping) black line and the red line correspond respectively

to the true values of Xβ and to Y = Xβ̂
SLOPE

+ ε.

Figure 5: Pattern recovery by LASSO (left image) and by debiased SLOPE (right image)
in the same setting as above. The horizontal lines correspond to the true values of β.
As one may observe, in the presented setting LASSO does not recover the true support,
while debiased SLOPE perfectly recovers support, sign and clusters.

is convex in π. Therefore, at the point π∗ = (π∗
1 , . . . , π

∗
p)′, where g attains its global

minimum over CΛ, the gradient ∇g of g satisfies

[∇g(π∗) ]
′
(π − π∗) ≥ 0, for all π ∈ CΛ.
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This implies (π − π∗)′β∗ ≤ 0, for all π ∈ CΛ, because

∇g(π∗) = −2(β̂
OLS

− π∗) = −2β∗.

In the proof of parts (a), (b) and (c) we use the fact that π∗ maximizes π′β∗ over π ∈ CΛ

To prove part (a) suppose that sign(β∗
i ) · sign(π∗

i ) < 0 for some i and define

π = (π∗
1 , . . . , π

∗
i−1,−π∗

i , π
∗
i+1, . . . , π

∗
p)′.

Then we have (π∗)′β∗ < π′β∗, which is impossible since π ∈ CΛ.
To prove part (b), consider a permutation τ of (1, 2, . . . , n) such that
(|π∗

τ(1)|, . . . , |π
∗
τ(p)|) and (|β∗

1 |, . . . , |β∗
p |) are similarly sorted. Define the point

π = (s1 · π∗
τ(1), s2 · π∗

τ(2), . . . , sp · π∗
τ(p)), where si = sign(β∗

i ), for i = 1, 2, . . . , p. If

(|π∗
τ(1)|, . . . , |π

∗
τ(p)|) ̸= (|π∗

1 |, . . . , |π∗
p |), then, by the Hardy-Littlewood-Pólya rearrangement

inequality,

π′β∗ =

p∑
i=1

|π∗
τ(i)||β

∗
i | >

p∑
i=1

|π∗
i ||β

∗
i | ≥ (π∗)′β∗,

which is impossible since π ∈ CΛ.
Finally, to prove part (c), suppose that

∑k−1
i=1 |π∗

σ(i)| <
∑k−1

i=1 λi, and that |π∗
σ(k)| > 0. In this

case there is a sufficiently small δ > 0, such that

π = (π∗
1 , . . . , π

∗
i−2, π

∗
i−1 + δsi−1, π

∗
i − δsi, π

∗
i+1, . . . , π

∗
p)′ ∈ CΛ.

If |β∗
σ(k−1)| > |β∗

σ(k)| then

π′β∗ = (π∗)′β∗ + δ(|β∗
σ(k−1)| − |β∗

σ(k)|) > (π∗)′β∗,

which is impossible.

Proof of Lemma 2.2. At first we note that for all π ∈ CΛ

r(β∗,π) =
1

2
∥Y −Xβ∗∥22 + π′β∗ =

1

2
∥Y −Xβ∗∥22 + (π∗)′β∗

+(π − π∗)′β∗ = r(β∗,π∗) + (π − π∗)′β∗ ≤ r(β∗,π∗),

where the last inequality follows from the fact that (π − π∗)′β∗ ≤ 0, for all π ∈ CΛ,
see the proof of 2.1. Therefore, max

π∈CΛ

r(β∗,π) = r(β∗,π∗). Moreover, from the definition

of the point β∗ it is seen that r(β∗,π∗) = min
β∈M

r(β,π∗). These two facts imply that

min
β∈M

max
π∈CΛ

r(β,π) ≤ max
π∈CΛ

r(β∗,π) = r(β∗,π∗)

= min
β∈M

r(β,π∗) ≤ max
π∈CΛ

min
β∈M

r(β,π).

Since max
π∈CΛ

min
β∈M

r(β,π) ≤ min
β∈M

max
π∈CΛ

r(β,π) (by the max-min inequality), we have the equal-

ity throughout. This completes the proof.
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Proof of Lemma 3.1. Let H = X(X ′X)−1X ′ be a projection matrix on Col(X) - the linear
subspace spanned by the columns of X. Then

∥Y −Xb∥22 = ∥(Ip −H)Y + HY −Xb∥22 = ∥(Ip −H)Y + H(Y −Xb)∥22
= ∥(Ip −H)Y ∥22 + 2 [(Ip −H)Y ]

′
H(Y −Xb) + ∥H(Y −Xb)∥22

= ∥(Ip −H)Y ∥22 + 2Y ′(Ip −H)H(Y −Xb) + ∥H(Y −Xb)∥22
= ∥(Ip −H)Y ∥22 + ∥H(Y −Xb)∥22,

because H = H ′, H(Ip − H) = 0 and HX = X. In the orthogonal design we have

H = XX ′ and β̂
OLS

= X ′Y , which yields

∥H(Y −Xb)∥22 = ∥X ′Y −X ′Xb∥22 = ∥β̂
OLS

− b∥22.

Therefore

∥Y −Xb∥22 = ∥(Ip −H)Y ∥22 + ∥β̂
OLS

− b∥22.

Since the difference ∥Y −Xb∥22−∥β̂
OLS

−b∥22 does not depend on b, it follows that the equal-
ity ((3)) holds.
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