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Minimum Mean Square Distance
Estimation of a Subspace

Olivier Besson, Senior Member, IEEE, Nicolas Dobigeon, Member, IEEE, and
Jean-Yves Tourneret, Senior Member, IEEE

Abstract—We consider the problem of subspace estimation in a
Bayesian setting. Since we are operating in the Grassmann man-
ifold, the usual approach which consists of minimizing the mean
square error (MSE) between the true subspace ��� and its estimate
���� may not be adequate as the MSE is not the natural metric in the
Grassmann manifold����, i.e., the set of �-dimensional subspaces
in � . As an alternative, we propose to carry out subspace esti-
mation by minimizing the mean square distance between ��� and
its estimate, where the considered distance is a natural metric in
the Grassmann manifold, viz. the distance between the projection
matrices. We show that the resulting estimator is no longer the pos-
terior mean of ��� but entails computing the principal eigenvectors
of the posterior mean of ������� . Derivation of the minimum mean
square distance (MMSD) estimator is carried out in a few illus-
trative examples including a linear Gaussian model for the data
and Bingham or von Mises Fisher prior distributions for ��� . In all
scenarios, posterior distributions are derived and the MMSD esti-
mator is obtained either analytically or implemented via a Markov
chain Monte Carlo simulation method. The method is shown to
provide accurate estimates even when the number of samples is
lower than the dimension of ��� . An application to hyperspectral
imagery is finally investigated.

Index Terms—Bayesian inference, minimum mean-square dis-
tance (MMSD) estimation, simulation method, Stiefel manifold,
subspace estimation.

I. PROBLEM STATEMENT

I N many signal processing applications, the signals of in-
terest do not span the entire observation space and a rel-

evant and frequently used assumption is that they evolve in a
low-dimensional subspace [1]. Subspace modeling is accurate
when the signals consist of a linear combination of modes
in an -dimensional space, and constitute a good approxima-
tion for example when the signal covariance matrix is close to
rank-deficient. As a consequence, subspace estimation plays a
central role in recovering these signals with maximum accuracy.
Estimation of the frequencies of complex exponential signals
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or of the directions of arrival (DoA) of signals using an array
of sensors are well-known examples where obtaining accurate
subspace estimates constitutes a crucial task. In the latter case,
the data matrix can be written as where the
columns of the matrix contain the steering vec-
tors of the sources of interest, and corresponds to the vector of
their DoA. In a noise-free environment, is rank-deficient and
its column space is spanned by the steering vectors, from which
DoA estimation can be performed. Therefore, a key issue is to
first identify the dominant subspace of in order then to infer
the DoA. This is the essence of most subspace-based methods,
such as MUSIC [2], ESPRIT [3] or Min-Norm [4], [5]. These
methods have gained much popularity because they represent
computationally interesting alternatives to the maximum likeli-
hood (ML) estimator [6]. Moreover, they yield equivalent per-
formance in the asymptotic regime, viz. large number of snap-
shots or high signal-to-noise ratio (SNR) [7], [8]. An ubiqui-
tous tool to compute the dominant subspace is the singular value
decomposition (SVD) of the data matrix or, equivalently, the
eigenvalue decomposition of the sample covariance matrix. Ob-
serve also that the SVD emerges naturally as the maximum like-
lihood estimator of the range space of in the classical
model , where stands for the observa-
tion matrix, is the (deterministic) matrix, with ,
whose columns span the -dimensional subspace of interest,
is the (deterministic) waveform matrix and is the ad-
ditive noise. The latter model is relevant, e.g., in hyperspectral
imagery, see Section V for further discussion.

When the SNR is high or the number of snapshots is large,
the SVD yields quasi-optimal estimates. However, the SVD can
incur some performance loss in two main cases, namely when
the SNR is very low and thereof the probability of a subspace
swap or subspace leakage is high [9]–[12]. A second case oc-
curs when the number of samples is small, typically of the
order of or, even less, of the order of . In order to over-
come these limitations, especially the case of low sample sup-
port, some interesting alternatives have been proposed, such as
[13], where accurate estimates of the eigenvalues and eigenvec-
tors are derived, based on random matrix theory. However, the
sample support considered there is still higher than what we con-
sider herein. More precisely, we are mostly interested in the case
where the number of snapshots is very small and may be less
than the subspace dimension : in this case, is at most of rank

and information is lacking about how to complement
in order to estimate . This case along with the low SNR
case are those of most interest to us and, hence, we need to turn
to a different methodology.



In such situations, a Bayesian approach might be helpful as
it enables one to assist estimation by providing some statistical
information about . We investigate such an approach herein
and assign to the unknown matrix an appropriate prior dis-
tribution, taking into account the specific structure of . The
paper is organized as follows. In Section II, we propose an ap-
proach based on minimizing a natural distance on the Grass-
mann manifold, which yields a new estimator of . The theory
is illustrated in Section III where the new estimator is derived
for some specific examples. In Section IV its performance is as-
sessed through numerical simulations, and compared with con-
ventional approaches. Section V studies an application to the
analysis of interactions between pure materials contained in hy-
perspectral images.

II. MINIMUM MEAN SQUARE DISTANCE ESTIMATION

As explained above, we adopt a Bayesian framework for es-
timation of the unknown matrix and consider an alternative
to the conventional minimum mean square error (MMSE) es-
timator, which is usually regarded as the chief systematic ap-
proach under the Bayesian umbrella [14]. Let us consider that
we wish to estimate the range space of from the joint distri-
bution where stands for the available data matrix.
Usually, one is not interested in per se but rather in its range
space , and thus we are operating in the Grassmann man-
ifold , i.e., the set of -dimensional subspaces in [15].
It is thus natural to wonder whether the MMSE estimator is
suitable in . The MMSE estimator of a vector mini-
mizes the average squared Euclidean distance between and ,
i.e., . Despite the fact that this distance is natural
in an Euclidean space, it may not be the more natural metric
in . In fact, the natural distance between two subspaces

and is given by [15] where are
the principal angles between these subspaces, which can be ob-
tained by SVD of where and denote orthonormal
bases for these subspaces [16]. The SVD of is defined
as , where and are
two unitary matrices. Therefore, it seems more adequate,
rather than minimizing as the MMSE estimator does,
to minimize the natural distance between the subspaces spanned
by and . Although this is the most intuitively appealing
method, it faces the drawback that the cosines of the angles
and not the angles themselves emerge naturally from the SVD.
Therefore, for the sake of practicality, we consider minimizing
the sum of the squared sine of the angles between and . As
argued in [15], [16], this cost function is natural in the Grass-
mann manifold since it corresponds to the Frobenius norm of
the difference between the projection matrices on the two sub-

spaces, viz. . It
should be mentioned that our approach follows along the same
principles as in [17] where a Bayesian framework is proposed
for subspace estimation, and where the author considers mini-
mizing . Hence the theory presented in this section is
similar to that of [17], only the parameterization of the problem
in [17] being slightly different from ours. The main differences
compared to [17] lie in the prior distributions and signal models

used, as well as in the implementation of the MMSD estimator,
see the next section for details.

Given that , we define
the minimum mean-square distance (MMSD) estimator of as

(1)

Since

(2)

it follows that

(3)

Therefore, the MMSD estimate of the subspace spanned
by is given by the largest eigenvectors of the matrix

, which we denote as

(4)

In other words, MMSD estimation amounts to find the best
rank- approximation to the posterior mean of the projection
matrix on . For notational convenience, let us denote

. Except for a few cases where this
matrix can be derived in closed-form (an example is given in the
next section), there usually does not exist any analytical expres-
sion for . In such situation, an efficient way to approxi-
mate the matrix is to use a Markov chain Monte Carlo
(MCMC) simulation method whose goal is to generate random
matrices drawn from the posterior distribution , and
to approximate the integral in (4) by a finite sum. This aspect
will be further elaborated in the next section. Let

denote the eigenvalue decomposition
of with and

. Then the average distance
between and is given by

(5)

The latter expression constitutes a lower bound on
and is referred to as the Hilbert-Schmidt bound in [17], [18]. As
indicated in these references, and similarly to , this lower
bound may be difficult to obtain analytically.



The MMSD approach can be extended to the mixed case
where, in addition to , a parameter vector which can take ar-
bitrary values in needs to be estimated jointly with . Under
such circumstances, one can estimate and as

(6)

Doing so, the MMSD estimator of is still be given by (4) while
the MMSD and MMSE estimators of coincide.

Remark 1: The MMSD approach differs from an MMSE ap-
proach which would entail calculating the posterior mean of ,
viz. . Note that the latter may not be meaningful,
in particular when the posterior distribution depends on

only through , see next section for an example. In such
a case, postmultiplication of by any unitary matrix
yields the same value of . Therefore averaging over

does not make sense while computing (4) is relevant.
On the other hand, if depends on directly, then com-
puting the posterior mean of can be investigated: an example
where this situation occurs will be presented in the next section.
As a final comment, observe that is not neces-
sarily unitary but its range space can be used to estimate .

Remark 2: We open a parenthesis here regarding the frame-
work of this paper. First of all, we do not deal herein with se-
quential estimation in a Bayesian framework as can be the case
e.g., in [17], [19]. In contrast, we consider batch algorithms
where a given number of snapshots is used to produce an es-
timate of . A second important notice is that the MMSD es-
timator of this paper originally stems from the minimization of
a certain distance over the Grassmann manifold or the Stiefel
manifold (the set of matrices such that ).
Optimization over these manifolds has received considerable at-
tention recently, see the excellent tutorial paper by Edelman et
al. [15] as well as [20]–[24] for signal processing applications.
More generally, minimization over special manifolds (see e.g.,
[25] for optimization over the special linear group) is attracting
interest as it enables the underlying geometry of the problem
to be taken into account. In the aforementioned references, the
focus is on deriving iterative methods, such as steepest descent,
conjugate gradient or Newton methods. In the present paper, the
problem addressed is slightly different: we do not consider opti-
mization with respect to an unknown matrix , rather we need to
compute the average of over when is a random
matrix on the Stiefel manifold.

III. ILLUSTRATION EXAMPLES

In this section we illustrate the previous theory on some ex-
amples, including the conventional linear Gaussian model (con-
ditioned on ) and a model involving the eigenvalue decompo-
sition of the data covariance matrix. As a first step, we address
the issue of selecting prior distributions for and then move on
to the derivation of the MMSD estimator.

A. Prior Distributions

A crucial step in any Bayesian estimation scheme consists of
selecting the prior distribution for the variables to be estimated.

We focus here on distributions on the Stiefel or Grassmann man-
ifold, depending whether we consider the matrix itself or its
range space. There exist only a few distributions on the Stiefel
or Grassmann manifolds, the most widely accepted being the
Bingham or von Mises Fisher (vMF) distributions [26], [27],
which are given, respectively, by

(7)

(8)

where stands for the exponential of the trace of the ma-
trix between braces, is an symmetric matrix, is
an arbitrary matrix, and , are hy-
pergeometric functions of matrix arguments, see e.g., [27] for
their definitions. The Bingham and the von Mises Fisher distri-
butions have been proposed in various applications, including
meteorology, biology, medicine, image analysis (see [26] and
references therein), and recently for modeling of multipath com-
munications channels [28], [29] or in shape analysis [30]. We
will denote these distributions as and , respec-
tively. Observe that the Bingham distribution depends on
only, and can thus be viewed as a distribution on the Grassmann
manifold [26], [27] while the vMF distribution depends on
and is a distribution on the Stiefel manifold. In most applica-
tions, one is mostly interested in the projection matrix and
therefore the Bingham distribution appears to be a more natural
choice than the vMF distribution. In our case, in order to intro-
duce some knowledge about , we assume that it is “close” to a
given subspace spanned by the columns of an orthonormal ma-
trix , and hence we consider two possible prior distributions
for , namely

(9)

(10)

where means “proportional to”. The matrix reflects our
knowledge about the subspace where the signals evolve. This
matrix can be obtained from the data itself (see Section V-B for
an example about hyperspectral imagery) or from some avail-
able models. For instance, in radar applications, if the clutter
subspace is to be estimated, there exists a number of relevant
models, including the general covariance matrix model of [31],
that can be used to obtain . The distribution in (9) is propor-
tional to the sum of the squared cosine angles between
and while is proportional to the sum of the co-
sine angles between and . Note that is a concen-
tration parameter: the larger the more concentrated around
are the subspaces . The difference between the two distribu-
tions is the following. In the Bingham distribution only
and are close (at least for large values of ) since
is invariant to postmultiplication of by any unitary ma-
trix . Hence is not necessarily close to . In contrast, under
the vMF prior distribution, and are close. For illustration
purposes, Fig. 1 displays the average fraction of energy of in

defined as

(11)



Fig. 1. Average fraction of energy of ��� in�� ����� versus �. � � ��, � � �.

Fig. 2. Distribution of the angles between ������ and �� ����� for a Bingham
distribution. � � ��, � � � and � � ��.

As can be observed from these figures, both distributions allow
the distance between and to be set in a rather flexible way.
Their AFE is shown to be identical for small values of the con-
centration parameter but, when increases, the AFE of the vMF
distribution increases faster. Additionally, even if the AFE are
close for small values of , the distributions of the angles be-
tween and exhibit some differences, as shown in
Figs. 2 and 3 which display the probability density functions of
these angles for .

B. Linear Model

In order to illustrate how the previous theory can be used in
practice, we first consider a simple example, namely a linear
Gaussian model (conditioned on ), i.e., we assume that the
data follows the model where the columns of
are independent and identically distributed (i.i.d.) Gaussian

Fig. 3. Distribution of the angles between ������ and �� ����� for a von Mises
Fisher distribution. � � ��, � � � and � � ��.

vectors with zero-mean and (known) covariance matrix . We
assume that no knowledge about is available and hence its
prior distribution is set to . Therefore, conditioned on

we have

(12)

The above distribution, along with the prior distribution ,
is now used to derive the MMSD estimator. We successively
investigate the case of a Bingham prior and that of a vMF prior.

Proposition 1: When is assigned the Bingham prior distri-
bution, the MMSD estimator is obtained in closed-form as

(13)

The proof of this proposition is given in Appendix A. There-
fore, in this case, the MMSD estimator has a very simple form.
It consists of the principal subspace of a (weighted) combina-
tion of the a priori projection matrix and the information
brought by the data through . Observe that, in this partic-
ular case of a Bingham posterior, the MMSD estimator coin-
cides with the maximum a posteriori (MAP) estimator.

Let us now consider the case where the prior distribution of
is vMF, and contrast it with the previous example. Using (12)

along with along with (10), it follows that the posterior distri-
bution now writes

(14)

which is referred to as the Bingham-von-Mises-Fisher (BMF)
distribution with parameter matrices , and , re-



spectively.1 Although this distribution is known [27], to our
knowledge, there does not exist any analytic expression for the
integral in (4) when has the BMF distribution (14). There-
fore, the MMSD estimator cannot be computed in closed-form.
In such situation, it is very common to implement a Markov
chain Monte Carlo (MCMC) method for sampling according to
the posterior distribution of interest. There are many MCMC al-
gorithms that could be used for that purpose (the reader is invited
to consult [32], [33] for more details). However, when the full
conditional distributions of the target posterior distribution can
be sampled, the very popular Gibbs sampler is generally adopted
for simplicity. An efficient Gibbs sampling scheme to generate
random unitary matrices drawn from a distri-
bution with arbitrary full-rank matrix was proposed in [34].
It amounts to sampling successively each column of by gen-
erating a random unit norm vector drawn from a (vector) BMF
distribution. In our case, whose rank is
and hence is rank-deficient whenever , a case of
most interest to us. Note also that to generate matrices drawn
from the Bingham distribution in (9), we need to consider

which has rank . Therefore, the scheme of [34]
needs to be adapted in order to generate random matrices drawn
from (14): details on how this can be achieved can be found in
[35]. Once these matrices asymptotically distributed according
to (14) are obtained, (4) can be approximated as

(15)

In (15), is the number of burn-in samples and is the
number of samples used to approximate the estimator.

Remark 3: Interestingly enough, the above estimator in (15)
is the so-called induced arithmetic mean (IAM) [36] of the set
of unitary matrices , . It differs
from the Karcher mean of the set ,

, which truly minimizes the sum of the distances to all .
However, the Karcher mean may not exist and requires iterative
schemes to be computed [37] while the IAM is straightforward
to compute.

Remark 4: In the particular case where has a Bingham
prior distribution, the MAP estimator of and its MMSD esti-
mator are equal. This is no longer true when has a vMF prior
distribution, and hence a BMF posterior distribution. The mode
of the latter is not known in closed-form either. However, it can
be approximated by selecting, among the matrices generated by
the Gibbs sampler, the matrix which results in the largest value
of the posterior distribution.

C. Covariance Matrix Model

We now consider a more complicated case where , condi-
tioned on and , is Gaussian distributed with zero-mean and
covariance matrix

(16)

1The matrix ��� is said to have a ���������������� distribution—where ��� is
an� �� symmetric matrix,��� is a �� � diagonal matrix and��� is an� � �
matrix—if ������ � ������� ��� 	������ �������.

where is an orthonormal basis for the signal subspace, is
the diagonal matrix of the eigenvalues and stands for the
white noise power which is assumed to be known here. As it
will be more convenient and more intuitively appealing, we
reparametrize the covariance matrix as follows. The inverse of

can be written as

(17)

where , with and

(18)

The idea is to parametrize the problem in terms of and
rather than and . The interest of this transforma-

tion is twofold. First, it enables one to express all eigen-
values with respect to the white noise level. Indeed, one has

where is an orthonormal
basis for and hence the s are representative of
the scaling between the “signal” eigenvalues and the noise
eigenvalues. In fact, they carry information about the SNR
since and represents the SNR of the

-th signal component. Second, this new parametrization will
facilitate derivation of the conditional distributions required for
the Gibbs sampler.

Since conditioned on and is Gaussian, it follows that

(19)
From , it ensues that
and hence

(20)
Let us now consider the prior distributions for and . We will
consider either a Bingham or vMF distribution for . As for ,
we assume that are a priori independent random variables
uniformly distributed in the interval , i.e.

(21)

The value of [respectively ] can be set to 1 [respectively,
0] if a noninformative prior is desired. Otherwise, if some in-
formation is available about the SNR, and can be chosen
so as to reflect this knowledge since :
[respectively, ] rules the lowest [respectively, highest] value
of the SNR, say [respectively, ].

As explained in Appendix B, marginalization of
with respect to leads to intractable distributions .
Therefore, in order to implement the MMSD estimator, we pro-
pose to draw samples from the the joint posterior distribution
of and , and then average them to estimate , similarly to



what is done in (15). In Appendix B, we provide the details for
generating samples according to , which is given by

Bingham prior

(22)

vMF prior

(23)

IV. SIMULATIONS

In this section we illustrate the performance of the approach
developed above through Monte Carlo simulations. In all simu-
lations , and . The matrix is generated
from a Gaussian distribution with zero-mean and covariance
matrix and the SNR is defined as .
The matrix is generated from the Bingham distribution (9)
or the vMF distribution (10) and, for the sake of simplicity,

. The number of burn-in iterations in the Gibbs
sampler is set to and . The MMSD esti-
mator (4) is compared with the MAP estimator, the MMSE esti-
mator, the usual SVD-based estimator and the estimator
that discards the available data and use only the a priori knowl-
edge. The latter is referred to as “Ubar” in the figures. The esti-
mators are evaluated in terms of the fraction of energy of in

, i.e., .

A. Linear Model

We begin with the linear model. Figs. 4 to 7 investigate the
influence of and onto the performance of the estima-
tors. Figs. 4 and 5 concern the Bingham prior while the vMF
prior has been used to obtain Figs. 6 and 7. From inspection of
these figures, the following conclusions can be drawn:

• the MMSD estimator performs better than the estimator
, even at low SNR. The improvement is all the

more pronounced that is large. Therefore, the MMSD
estimator makes a sound use of the data to improve accu-
racy compared to using the prior knowledge only.

• the MMSD estimator performs better than the SVD, espe-
cially at low SNR. Moreover, and this is a distinctive fea-
ture of this Bayesian approach, it enables one to estimate
the subspace even when the number of snapshots is less
than the size of the subspace .

• for a Bingham prior, the MMSE performs very poorly since
the posterior distribution of conditioned on depends
on only. Hence, averaging the matrix itself does
not make sense, see our remark 1. In contrast, when has
a vMF prior, the posterior depends on both and :
in this case, the MMSE performs well and is close to the
MMSD. Note however that the vMF prior is more restric-
tive than the Bingham prior.

Fig. 4. Fraction of energy of ���� in������ versus� .� � ��, � � �, � � ��,
and ��� � � �	. Linear model, Bingham prior.

Fig. 5. Fraction of energy of ���� in ������ versus ���. � � ��, � � �,
� � ��, and � � �. Linear model, Bingham prior.

• the MMSD estimator also outperforms the MAP estimator.
As a conclusion, the MMSD estimator performs better than most
other estimators in the large majority of cases.

B. Covariance Matrix Model

We now conduct simulations with the covariance matrix
model. The simulation parameters are essentially the same as
in the previous section, except for the SNR. More precisely, the
random variables are drawn from the uniform distribution in
(21) where and are selected such that
and . The results are shown in Fig. 8 for the
Bingham prior and Fig. 9 for the vMF prior. They corroborate
the previous observations made on the linear model, viz. that the
MMSD estimator offers the best performance over all methods.

V. APPLICATION TO HYPERSPECTRAL IMAGERY

In this section, we show how the proposed subspace esti-
mation procedure can be efficiently used for an application to



Fig. 6. Fraction of energy of ���� in������ versus� . � � ��, � � �, � � ��,
and ��� � � �	. Linear model, vMF prior.

Fig. 7. Fraction of energy of ���� in ������ versus ���. � � ��, � � �,
� � ��, and � � �. Linear model, vMF prior.

multiband image analysis. For several decades, hyperspectral
imagery has received considerable attention because of its great
interest for various purposes: agriculture monitoring, mineral
mapping, military concerns, etc. One of the crucial issue when
analyzing such image is the spectral unmixing which aims to
decompose an observed pixel into a collection of
reference signatures, (called endmembers) and to
retrieve the respective proportions of these signatures (or abun-
dances) in this pixel [38]. To describe the physical
process that links the endmembers and their abundances to the
measurements, the most widely admitted mixing model is linear

(24)

where is the pixel spectrum measured in spectral
bands, are the endmember spectra
and are their corresponding abundances.
Due to obvious physical considerations, the abundances obey

Fig. 8. Fraction of energy of ���� in������ versus� .� � ��, � � �, � � ��,
��� � � �	, and ��� � 
� �	. Covariance matrix model, Bingham
prior.

Fig. 9. Fraction of energy of ���� in������ versus� .� � ��, � � �, � � ��,
��� � � �	, and ��� � 
� �	. Covariance matrix model, vMF prior.

two kinds of constraints. Since they represent proportions, they
must satisfy the following positivity and additivity constraints

(25)

Let now consider pixels of an hyperspectral image
induced by the linear mixing model (LMM) in (24) with the
abundance constraints (25). It is clear that the dataset formed
by these pixels lies in a lower-dimensional subspace . More
precisely, in this subspace , the dataset belongs to a simplex
whose vertices are the endmembers to be recov-
ered. Most of the unmixing strategies developed in the hyper-
spectral imagery literature are based on this underlying geo-
metrical formulation of the LMM. Indeed, the estimation of the
endmembers is generally conducted in the lower-dimensional
space , previously identified by a standard dimension reduc-
tion technique such as the principal component analysis (PCA)



[38]. However, it is well known that the model linearity is a sim-
plifying assumption and does not hold anymore in several con-
texts, circumventing the standard unmixing algorithms. Specif-
ically, nonlinearities are known to occur for scenes including
mixtures of minerals or vegetation. As a consequence, evalu-
ating the suitability of the LMM assumption for a given hyper-
spectral image is a capital question that can be conveniently ad-
dressed by the approach introduced above.

A. Synthetic Data

First, we investigate the estimation of the subspace when
the image pixels are nonlinear functions of the abundances. For
this purpose, a 50 50 synthetic hyperspectral image is gener-
ated following a recently introduced nonlinear model referred
to as generalized bilinear model (GBM). As indicated in [39],
the GBM is notably well adapted to describe nonlinearities due
to multipath effects. It assumes that the observed pixel spectrum

can be written

(26)

where stands for the Hadamard (termwise) product and
the abundances satisfy the constraints
in (25). In (26), the parameters (which belong to [0,1])
characterize the importance of nonlinear interactions between
the endmembers and in the -th pixel. In particular,
when , the GBM reduces to the standard
LMM (24). Moreover, when , the GBM leads
to the nonlinear model introduced by Fan et al. in [40]. In
this simulation, the synthetic image has been generated using
the GBM with endmember signatures extracted from
a spectral library. The corresponding abundances have been
uniformly drawn in the set defined by the constraints (25). We
have assumed that there is no interaction between endmembers

and , and between endmembers and resulting
in , . Moreover, the interactions between
endmembers and are defined by the map of coefficients

displayed in Fig. 10 (top, left panel) where a black
(respectively, white) pixel represents the lowest (respectively,
highest) degree of nonlinearity. As can be seen in this figure,
75% of the pixels (located in the bottom and upper right squares
of the image) are mixed according to the LMM resulting in

. The 25% remaining image pixels (located in the
upper left square of the image) are mixed according to the
GBM with nonlinearity coefficients radially increasing
from 0 to 1 ( in the image center and in the
upper left corner of the image). Note that this image contains
a majority of pixels that are mixed linearly and belong to a
common subspace of . Conversely, the nonlinearly mixed
pixels do not belong to this subspace.2 We propose here to
estimate the local subspace where a given image pixel
and its nearest spectral neighbors live ( denotes
the set of the -nearest neighbors of ).

2Assuming there is a majority of image pixels that are mixed linearly is a
reasonable assumption for most hyperspectral images.

Fig. 10. Top, left: nonlinearity coefficients � . Top, right: distance between
���� and ���� estimated with � � �. Bottom: distance between ���� and ���� estimated
with � � ��� (left) and � � �� (right).

Assuming as a first approximation that all the image pixels
are linearly mixed, all these pixels are approximately con-
tained in a common 2-dimensional subspace that can be
determined by performing a PCA of (see [41] for
more details). The corresponding principal vectors spanning
are gathered in a matrix . This matrix is used as a priori
knowledge regarding the 2-dimensional subspace containing

. However, this crude estimation can
be refined by the Bayesian estimation strategy developed in
the previous sections. More precisely, for each pixel , we
compute the MMSD estimator of the matrix , whose
columns are supposed to span the subspace containing

and its -nearest neighbors . The Bayesian
estimator is computed from its closed-form expression (13),
i.e., using the Bingham prior where has been introduced
above. Then, for each pixel, we evaluate the distance between

the two projection matrices and onto the sub-
spaces and , respectively. As stated
in Section II, the natural distance between these two projection

matrices is given by .
The resulting distance maps are depicted in Fig. 10 (bottom
panels) for 2 nonzero values of [as it can be noticed
in (13), this hyperparameter balances the quantity of a priori
knowledge included in the estimation with respect to the
information brought by the data]. For comparison purpose,
the subspace has been also estimated by a crude SVD of

(top right panel). In this case, simply reduces
to the associated principal singular vectors and can be consid-
ered as the MMSD estimator of obtained for .

These figures show that, for the 75% of the pixels generated
using the LMM (bottom and right parts of the image), the sub-
space estimated by an SVD of the whole dataset
is very close to the hyperplanes locally estimated from

through the proposed approach (for any value
of ). Regarding the remaining 25% pixels resulting from the
GBM (top left part of the image), the following comments can
be made. When a crude SVD of is conducted,



Fig. 11. Top, left: the Moffett field scene as composite true colors. Top, right:
distance between ���� and ���� estimated with � � �. Bottom: distance between
���� and ���� estimated with � � ��� (left) and � � �� (right).

i.e., when no prior knowledge is taken into account to compute
the MMSD ( , top right panel), the distance between
the locally estimated subspace and the a priori assumed
hyperplane does not reflect the nonlinearities contained in
the image. Conversely, when this crude SVD is regularized
by incorporating prior knowledge with and
(bottom left and right panels, respectively), leading to the
MMSD estimator, the larger the degree of nonlinearity, the
larger the distance between and . To summarize, evalu-
ating the distance between the MMSD estimator and the
a priori given matrix allows the degree of nonlinearity to
be quantified. This interesting property is exploited on a real
hyperspectral image in the following section.

B. Real Data

The real hyperspectral image considered in this section has
been acquired in 1997 over Moffett Field, CA, by the NASA
spectro-imager AVIRIS. This image, depicted with composite
true colors in Fig. 11 (top, left panel), has been minutely studied
in [41] assuming a linear mixing model. The scene consists
of a large part of a lake (black pixels, top) and a coastal area
(bottom) composed of soil (brown pixels) and vegetation (green
pixels), leading to endmembers whose spectra and abun-
dance maps can be found in [41]. A simple estimation of a
lower-dimensional space where the pixels live can be con-
ducted through a direct SVD of the whole dataset, providing the
a priori matrix . As in the previous section, this crude estima-
tion can be refined by computing locally the MMSD estimators

spanning the subspaces (bottom panels). These estima-
tors have been also computed with , corresponding to an
SVD of (top, right figure). The distances between

and have been reported in the maps of Fig. 11. Again, for
(top, right panel), a simple local SVD is unable to locate

possible nonlinearities in the scene. However, for two3 nonzero

3Additional results obtained with other values of � are available online at
http://dobigeon.perso.enseeiht.fr/app_MMSD.html.

values and (bottom left and right panels, re-
spectively), the distances between the a priori recovered sub-
space and the MMSD-based subspace clearly indicate that
some nonlinear effects occur in specific parts of the image, espe-
cially in the lake shore. Note that the nonlinearities identified by
the proposed algorithm are very similar to the ones highlighted
in [39] where the unmixing procedure was conducted by using
the GBM defined in (26). This shows the accuracy of the pro-
posed MMSD estimator to localize the nonlinearities occurring
in the scene, which is interesting for the analysis of hyperspec-
tral images.

VI. CONCLUSION

This paper considered the problem of estimating a subspace
using some available a priori information. Towards this end,
a Bayesian framework was advocated, where the subspace
is assumed to be drawn from an appropriate prior distribution.
However, since we operate in a Grassmann manifold, the con-
ventional MMSE approach is questionable as it amounts to min-
imizing a distance which is not the most meaningful on the
Grassmann manifold. Consequently, we revisited the MMSE
approach and proposed, as an alternative, to minimize a nat-
ural distance on the Grassmann manifold. A general framework
was formulated resulting in a novel estimator which entails com-
puting the principal eigenvectors of the posterior mean of .
The theory was exemplified on a few simple examples, where
the MMSD estimator can either be obtained in closed-form or
requires resorting to an MCMC simulation method. The new ap-
proach enables one to combine efficiently the prior knowledge
and the data information, resulting in a method that performs
well at low SNR or with very small sample support. A successful
application to the analysis of nonlinearities contained in hyper-
spectral images was also presented.

APPENDIX A
PROOF OF PROPOSITION 1

In this appendix, we derive the MMSD estimator for the linear
model when follows a Bingham prior. In this case, the poste-
rior distribution of , conditioned on is given by

(27)

which is recognized as a Bingham distribution
with parameter matrix , i.e.,

. Therefore, in order
to derive the MMSD estimator, we need to derive the
eigenvectors of when is a Bingham
distribution. Towards this end, we make use of the following
proposition.

Proposition 2: Let be an orthogonal ma-
trix— —drawn from a Bingham distribution with
parameter matrix

(28)

with . Let
denote the eigenvalue decomposition of where the
eigenvalues are ordered in descending order. Let us define



. Then the eigenvalue decomposition of
writes

with and where
.

Proof: For notational convenience, let us work with the
projection matrix whose distribution on the Grass-
mann manifold is [27]

(29)

We have then that

Moreover is diagonal since, for any orthogonal diagonal ma-
trix

where, to obtain the third line, we made use of the fact that
. It follows that the eigenvectors of and

coincide, and that the eigenvalues of are ,
for . Moreover, it is known that

and, from (29), one has

Differentiating the latter equation with respect to and de-
noting , one obtains

The previous equation enables one to relate the eigenvalues of
and those of . It remains to prove that .
Towards this end, we make use of a very general theorem due
to Letac [42], which is briefly outlined below. Let

be a probability associated with a unitarily invariant measure
on the set of symmetric matrices. Consider the case of
a diagonal matrix with

. Then [42] proves that is
also diagonal, and moreover if
then . Use of this theorem completes
the proof of the proposition.

It then follows that the posterior distribution is

when has a Bingham prior. Thus,

the eigenvectors of coincide with those of

, with the same ordering of their eigenvalues.
Consequently, the MMSD estimator is given by (13), which
concludes the proof.

APPENDIX B
MCMC IMPLEMENTATION OF THE MMSD ESTIMATOR IN THE

COVARIANCE MATRIX MODEL

In this appendix, we provide the necessary details for MCMC
implementation of the MMSD estimator in the covariance ma-
trix model. We successively investigate the case of a Bingham
prior and the case of a vMF prior.

A. Bingham Prior

When the prior distribution of is the Bingham distribution
of (9), the joint posterior distribution of and is given by (22).
Since the MMSD estimator involves the posterior distribution

of only, a natural way to proceed is to marginalize
(22) with respect to . Let . Then,
from (22) one has

(30)

where is the incomplete Gamma func-
tion. Unfortunately, the above distribution does not belong to
any known family and it is thus problematic to generate sam-
ples drawn from it. Instead, in order to sample according to (22),
we propose to use a Gibbs sampler drawing samples according
to and for . From (22), the
conditional distribution of is

(31)



TABLE I
COVARIANCE MATRIX MODEL. GIBBS SAMPLER FOR THE

BINGHAM PRIOR DISTRIBUTION

which is recognized as a (modified) Bingham distribution4

(32)

Let us now turn to the conditional distribution of . From
(22) one has

(33)

which is the product of independent gamma distribu-
tions with parameters and , truncated
in the interval . We denote this distribution as

. Random variables with
such a distribution can be efficiently generated using the ac-
cept-reject scheme of [43].

The above conditional distributions can now be used in a
Gibbs sampler, as described in Table I. The so-generated ma-
trices can be used similarly to (15) to obtain the MMSD
estimator.

B. von Mises Fisher Prior

When has a vMF prior distribution, the joint posterior dis-
tribution of and is given by (23). Marginalizing the latter
with respect to will yield a posterior distribution sim-
ilar to that of (30), except that the term should be
replaced by . Again this leads to an intractable posterior.
Therefore, as done previously, we consider drawing samples ac-
cording to and . The latter distribution will
still be given by (33) while now takes the form

(34)

which is recognized as a BMF distribution

. Therefore only line I of the
Gibbs sampler in Table I needs to be modified, which yields the
Gibbs sampler of Table II in the case of a vMF prior.
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