Non-asymptotic study of a recursive superquantile estimation algorithm - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Statistics Année : 2021

Non-asymptotic study of a recursive superquantile estimation algorithm

Résumé

In this work, we study a new recursive stochastic algorithm for the joint estimation of quantile and superquantile of an unknown distribution. The novelty of this algorithm is to use the Cesaro averaging of the quantile estimation inside the recursive approximation of the superquantile. We provide some sharp non-asymptotic bounds on the quadratic risk of the superquantile estimator for different step size sequences. We also prove new non-asymptotic Lp-controls on the Robbins Monro algorithm for quantile estimation and its averaged version. Finally, we derive a central limit theorem of our joint procedure using the diffusion approximation point of view hidden behind our stochastic algorithm.
Fichier principal
Vignette du fichier
wp_tse_1149.pdf (740.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03610477 , version 1 (16-03-2022)

Identifiants

Citer

Manon Costa, Sébastien Gadat. Non-asymptotic study of a recursive superquantile estimation algorithm. Electronic Journal of Statistics , 2021, 15 (2), pp.4718-4769. ⟨10.1214/21-EJS1908⟩. ⟨hal-03610477⟩
40 Consultations
46 Téléchargements

Altmetric

Partager

More