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In remote telerobotics applications, real-time 3D perception through RGB-D cameras (real-time 3D reconstruction, point-clouds), and its rendering inside modern virtual reality (VR) environments, can enhance a user's sense of presence and immersion in a remote scene. However, this approach requires that the whole pipeline from sensor data acquisition to VR rendering satisfy the speed, throughput, and visual quality requirements. Point-cloud data suffers from network latency and throughput limitations that can negatively impact user experience. In this research, the human visual system was taken as an inspiration to address this problem. Human eyes have their sharpest visual acuity at the center of their fieldof-view, which falls off at the periphery. A remote 3D data visualization framework is proposed that utilizes this acuity fall-off to facilitate the processing, transmission, buffering, and rendering in VR of dense point-clouds / 3D reconstructed scenes. The proposed framework shows significant reductions in latency and throughput needs, higher than 60% in both. A preliminary user study shows that the framework does not significantly affect the perceived visual quality.

I. INTRODUCTION

Remote telerobotics applications have received increased interest in recent times due in no small measure to the ongoing COVID-19 pandemic. Effective implementations in this field would immeasurably improve the lives of frontline workers, being able to respond to certain emergencies without requiring physical presence [START_REF] Yang | Keep Healthcare Workers Safe: Application of Teleoperated Robot in Isolation Ward for COVID-19 Prevention and Control[END_REF]. The advances in the field are especially attributed to the ready availability of good quality, low-cost, consumer-grade sensors (RGB-D cameras), and immersive virtual reality (VR) devices [START_REF] Zollhöfer | State of the Art on 3D Reconstruction with RGB-D Cameras[END_REF]. This has helped the development of novel algorithms in real-time point-cloud acquisition and 3D scene reconstruction [START_REF] Izadi | KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera[END_REF][START_REF] Whelan | ElasticFusion: Dense SLAM without a Pose Graph[END_REF]. Immersive remote telerobotics (IRT), i.e., the combination of VR and real-time 3D visual data from remote RGB-D cameras can allow real-time immersive visualization and interaction by the user, perceiving the colour and 3D profile of the remote scene and robotic agents simultaneously [START_REF] Stotko | SLAMCast: Large-Scale, Real-Time 3D Reconstruction and Streaming for Immersive Multi-Client Live Telepresence[END_REF][START_REF] Mossel | Streaming and Exploration of Dynamically Changing Dense 3D Reconstructions in Immersive Virtual Reality[END_REF]. The user can experience enhanced situational awareness while maintaining their presence illusion [START_REF] Stotko | A VR System for Immersive Teleoperation and Live Exploration with a Mobile Robot[END_REF][START_REF] Wonsick | A Systematic Review of Virtual Reality Interfaces for Controlling and Interacting with Robots[END_REF]. This combination is the key distinguishing factor against traditional teleoperation interfaces, which rely on mono-or stereo-video feedback and suffer from limitations in terms of fixed or non-adaptable camera viewpoints, occluded views of This research was conducted in collaboration with the Italian National Worker's Compensation Authority (INAIL). the remote space, etc. [START_REF] Chen | Human Performance Issues and User Interface Design for Teleoperated Robots[END_REF][START_REF] Kamezaki | A Basic Framework of Virtual Reality Simulator for Advancing Disaster Response Work Using Teleoperated Work Machines[END_REF]. Nevertheless, the increased data footprint (3D vs 2D) in real-time IRT imposes constraints on resolution, latency, throughput, compression, acquisition, and the visualization of this information [START_REF] Stotko | A VR System for Immersive Teleoperation and Live Exploration with a Mobile Robot[END_REF][START_REF] Rosen | Mixed Reality as a Bidirectional Communication Interface for Human-Robot Interaction[END_REF]. For instance, latency and low resolution negatively impact the sense of presence and provoke cybersickness [START_REF] Meehan | Effect of Latency on Presence in Stressful Virtual Environments[END_REF][START_REF] Stauffert | Latency and Cybersickness: Impact, Causes, and Measures. A Review[END_REF].

In this paper, the human visual system serves as the inspiration to address the coupling between the 3D data acquisition and its rendering in IRT. The human eye has the highest visual acuity at the center of its field-of-view, and this acuity falls off towards the periphery [START_REF] Hendrickson | Organization of the Adult Primate Fovea[END_REF]. This acuity fall-off can facilitate the processing, streaming, and rendering of 3D data to a remote user in VR, thereby optimizing the amount of data transmitted. The user's gaze is exploited to divide the acquired 3D data into concentric conical regions of progressively reducing resolution away from the center of the gaze. It is shown that such data manipulation offers significant benefits in latency and throughput. Preliminary analysis shows that it has minimal impact on the perceived visual experience for the user.

II. SYSTEM OVERVIEW

A. Human Visual Acuity and Foveation

Humans perceive visual information through two kinds of photoreceptors in the retina: cones and rods. As shown in Figure 1-A the cone density is highest in the central region of the retina, and reduces monotonically to a reasonably even density into the peripheral retina region. This distribution is the concept of Foveation. Retinal eccentricity is the angle at which light from a scene / image gets focused on the retina. With the photoreceptors' density reducing monotonically, it is possible to approximate the retina as being formed of discrete concentric regions. The density of the photoreceptors is inversely proportional to the eccentricity angles [START_REF] Quinn | The clinical relevance of visualising the peripheral retina[END_REF]. Table I gives an example of such an approximation for retinal regions. Figure 1-B shows an example of how this formulation applies to the concentric regions to foveate the point-cloud.

1) Visual Acuity: is quantitatively represented in terms of the minimum angle of resolution (MAR, measured in arcminutes), which is the smallest angle at which two objects in the visual scene are perceived as separate by the human eye [START_REF] Frank | Visual Sensory Units and the Minimal Angle of Resolution[END_REF]. The relationship between MAR and eccentricity can be approximated as a linear model, Eq. 1. This has been shown to closely match the anatomical features of the eye [START_REF] Frank | Visual Sensory Units and the Minimal Angle of Resolution[END_REF][START_REF] Guenter | Foveated 3D Graphics[END_REF]. 

M AR = mE + M AR 0 (1) 
Here M AR 0 is the intercept, which signifies the smallest resolvable eccentricity angle for humans, and m is the slope of the linear model. Authors in [START_REF] Guenter | Foveated 3D Graphics[END_REF] experimentally determined the values of m based on observed image quality, ranging between 0.022 to 0.034. This formulation applies the concept of foveation RGB-D data.

B. Real-time 3D Data Acquisition and Foveated Sampling

The acquired RGB and depth map images from the RGB-D camera are utilized in two ways: (i) as a point-cloud represented as an unordered list of surfels, where each surfel has a position p ∈ R 3 , a normal n ∈ R 3 , a colour c ∈ R 3 , a weight w ∈ R, a radius r ∈ R, an initialization timestamp t 0 , and a current timestamp t; and (ii) the mapping pipeline uses the state-of-the-art dense visual SLAM system, ElasticFusion [START_REF] Whelan | ElasticFusion: Dense SLAM without a Pose Graph[END_REF], at each time step t, to register the colour image C t and the depth map D t into the global 3D reconstruction map, M, by estimating the camera pose. The alignment is achieved by minimizing the geometric and photometric error [START_REF] Whelan | ElasticFusion: Dense SLAM without a Pose Graph[END_REF].

1) Map Partitioning: For brevity, the symbol M is used interchangeably for the real-time point-cloud and the global 3D reconstruction map. Applying the foveation model to M implies projecting the retinal fovea regions into it to partition it into concentric conical regions. M is then resampled to approximate the monotonically decreasing visual acuity in the foveation model, termed foveated sampling.

To partition M into regions, the eye gaze direction and its point of origin are utilized. The center of the eye gaze is 2) Foveated PCL Sampling: The partitioned global map M, with the region-assigned surfels, then needs to be downsampled to follow the acuity drop-off, as seen in Fig. 1. For this, M is converted into a PCL point-cloud data structure, P n for each M n region ∀n ∈ {0...N }. To implement the foveated sampling, the R 3 space of each P n region needs to be further partitioned into an axis-aligned regular grid of cubes as shown in Fig. 3. This process of re-partitioning the regions is called voxelization [START_REF] Radu | 3D is here: Point Cloud Library (PCL)[END_REF] and the discrete grid elements are called voxels.

This voxelization and down-sampling is a three-step pro-cess: (1) calculating the volume of the voxel grid in each region, which is the point-cloud distribution along x-, y-, and z-axes; (2) calculating the voxel size, i.e., dimension, v n , for the voxelization in each region, and (3) down-sampling by approximating the point-cloud inside each voxel by its 3D centroid point.

For the voxel size, v, consider the voxelization of the central fovea region, P 0 . The smallest angle a healthy human with a normal visual acuity of 20/20 can discern is 1 arcminute, i.e., 0.016667 • . In Eq. ( 1) therefore, M AR 0 = 0.016667 • . Eq. 2 calculates the smallest visually resolvable object length.

l = d vi * tan (M AR 0 ) (2) 
The important consideration here is the value of d vi , which is the distance to the image along the gaze vector L. In Alg. 1, a d vi value for each surfel is calculated. In contrast, here in order to down-sample the region based on the voxelization, we calculate one d vi value for the entire P 0 region, approximated as the distance from H(hx, hy, hz) to the 3D centroid of the point-cloud in the region, Eq. ( 3).

pc 0 = 1 N P0   N P 0 i=1
x i ,

N P 0 i=1 y i , N P 0 i=1 z i   ( 3 
)
d vi 0 = d(H, pc 0 ) (4) 
, where N P0 is the number of PCL points in P 0 , and H is the eye gaze origin. Then, Eq. ( 2) is re-written as Eq. ( 5) to give the voxel size v 0 for the region. Once the voxelization of region P 0 is finalized, for the subsequent concentric regions from P 1 to P n , the voxel sizes are correlated through the linear MAR relationship. Eq. [START_REF]Subjective test methodologies for 360º video on head-mounted displays. ITU[END_REF] shows that as the eccentricity angle of the regions increases, so do the voxel sizes.

v 0 = d vi 0 * tan (M AR 0 ) (5) 
M AR n = m • E n + M AR 0 v n = M AR n M AR n-1 * v n-1 (6) 
The increasing voxel size away from the fovea region implies more and more surfels of the point-cloud of the corresponding regions are now accommodated within each single voxel of that region. Therefore, when the down-sampling step is applied, the approximation of the point-cloud within a voxel is done over progressively dense voxels. For the downsampling part, the region P 0 being the fovea region is left untouched so its density is the same as the incoming global map density, i.e., the resolution set for the RGB-D camera. The down-sampling in the subsequent regions is done by approximating the point-cloud within each voxel with its 3D centroid, using Eq. [START_REF] Izadi | KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera[END_REF].

pc v n (x, y, z) = 1 N v Pn   N v Pn i=1 x i , N v Pn i=1 y i , N v Pn i=1 z i   (7) 
Here N v Pn is the number of points in voxel v of the region P n (∀n ∈ {1...N }). Figure 3 shows the centroid approximation of the point-cloud, while Fig. 4 shows the sample voxel grids for the different regions.

C. The Foveated Rendering Framework

Based on the system overview, the proposed Foveated Rendering (FR) framework, seen in Figure 5, comprises a serverclient architecture that encapsulates the foveation methodology detailed in sec. II. It is divided into three parts: the user site, the remote site, and a communication network between them. Figure 5 shows the details and the main system components are described below: The user site manages the: (1) decoding, conversion, and texture rendering of the streamed 3D data, (2) tracking of the eye-gaze and head-mounted display (HMD) pose, and (3) real-time transfer of gaze and pose information to the remote site. A VR-based interface is designed using the Unreal Engine (UE) graphics development environment on Windows 10, which serves as the IRT environment for the user. As shown in Fig. 5 a parallel streamer, a point-cloud decoder and a conversion system to transfer the textures to the UE GPU shaders is implemented. The remote site consists of modules for acquisition, reconstruction, map partitioning, foveated sampling, encoding, and streaming, as shown in Fig. 5. A custom point-cloud and data packetization and streaming pipeline was implemented using the Boost ASIO cross-platform C++ library for the communication network.

III. EXPERIMENT DESIGN AND EVALUATION METRICS

The experiment design focuses on an initial evaluation of the FR framework using two datasets: (i) an online synthetic dataset of a static living room environment [START_REF] Handa | A Benchmark for RGB-D Visual Odometry, 3D Reconstruction and SLAM[END_REF], (LIV), seen in Fig. 4, and (ii) a dynamic scene dataset acquired using an RGB-D camera and a moving balloon (BAL), seen in Fig. 1.

Three test conditions were created with combinations of regions from the Table I as follows:

• F1: The 3D data has four partitions -Fovea, Parafovea, Perifovea, and the rest. The progressive foveated sampling in the regions follows Eq. ( 6). For the 4 th region, i.e., the rest of the point-cloud is sampled using the voxel sizes for the Far Peripheral region. • F2: has five partitions -Fovea, Parafovea, and Perifovea, Near Peripheral, and then the rest, with a similar sampling strategy as F1. • F3: includes all six partitions -Fovea, Parafovea, Perifovea, Near-, Mid-, and the Far Peripheral regions. These conditions are compared against the reference condition FREF, where the FR framework is not applied on the 3D data. The following metrics were used to evaluate the FR framework: (i) Data transfer rate measured using the network data packet analysis tool, Wireshark [START_REF] Sanders | Practical packet analysis: Using Wireshark to solve real-world network problems[END_REF]; (ii) Endto-end latency measured for each of the sub-components seen in Fig. 5; and (iii) A preliminary user study to assess the visual quality experience of the FR framework. Using the Double Stimulus Impairment Scale (DSIS) study approach [START_REF]Subjective test methodologies for 360º video on head-mounted displays. ITU[END_REF] with the LIV dataset, subjects were first presented with the FREF condition, followed by a 3-second pause, and one of the altered conditions (F1-F3) following immediately after, in a randomized manner. The subjects were then asked to rate the second presented stimulus on a 5-point scale [START_REF]Subjective test methodologies for 360º video on head-mounted displays. ITU[END_REF], on whether the alteration was: (5) imperceptible; (4) perceptible, but not annoying; (3) slightly annoying; (2) annoying; and (1) very annoying. 24 subjects (9 females and 15 males) participated in the study. The arithmetic mean opinion score (MOS) was calculated for each condition.

IV. RESULTS AND CONCLUSIONS

Five randomized HMD positions with varying distances to the center of the datasets were used for the objective metrics evaluation [START_REF] Bruder | On evaluating runtime performance of interactive visualizations[END_REF]. Four hundred frames were tested for each HMD position from each dataset. Table II reports the average bandwidth and overall latency values for streaming the datasets in each condition and the relative percentage reductions in the values as compared to the FREF condition. F1 gives an average 61% reduction against FREF. The numbers are similar for F2, while F3 offers a lower, 56% reduction. Statistical ttest analysis showed that these reductions are significant at 95% CI (p-values << 0.05), against FREF. However, within the 3 conditions, the differences are not statistically significant (p-value = 0.3). Likewise for the latency numbers, the foveation conditions offer between 60% (F3) and 67% (F1) speedup over the FREF condition, which are statistically significant, p-values << 0.05.

Figure 6 shows the MOS, averaged over the 24 subjects. It is seen that all three foveation conditions have their MOS > 3. For the F1 and F2 conditions, the foveation is certainly perceptible, but it may not hinder the users' experience, since the perceived degradation is only 'slightly annoying' (F1) or 'not annoying'. With an MOS > 4, the F3 condition shows that subjects are not able to easily perceive the degradation, and even if they do, it is 'not annoying'.

The novel FR framework presented here shows that by integrating eye-tracking, remotely acquired real-time 3D data can be represented to the user in a foveated way inside VR in IRT applications, which not only helps to reduce the bandwidth and latency but also does not significantly impact the visual quality experience. Future investigations will include the analysis of the limitations in the approach, e.g., effects of discontinuities at region boundaries and the over-sampling in the peripheral regions. A comprehensive user study will help situate the FR framework in terms of usability and user experience in real-world environments.

  Fig. 1. A) Rods and Cones distribution in the retina. B) Retinotopic organization of the primary visual cortex (bottom-left). Foveation applied to a sample point-cloud (bottom-right).
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 2 Fig. 2. Map partitioning -the surfel point P(px, py, pz) is classified using the ray L cast from the point of gaze origin H(hx, hy, hz).
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 3 Fig. 3. PCL voxelization -the point-cloud inside each voxel is approximated by its centroid in that voxel.
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 4 Fig. 4. Foveated point-cloud sampling example showing the different voxel grid sizes for the different regions.
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 5 Fig. 5. Schema of the proposed Foveated Rendering framework.
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 6 Fig. 6. Mean MOS for the VQE metric against the experimental conditions (F1,F2,F3). Error bars show the standard deviation.

TABLE I HUMAN

 I RETINAL REGIONS AND THEIR SIZES IN DIAMETER AND ECCENTRICITY ANGLE (DERIVED FROM[START_REF] Quinn | The clinical relevance of visualising the peripheral retina[END_REF]).

		Region	Diameter (mm) Eccentricity •
	R 0 R 1 R 2 R 3 R 4 R 5	Fovea ParaFovea PeriFovea Near Peripheral Mid Peripheral Far Peripheral	1.5 2.5 5.5 8.5 14.5 26	5 • 8 • 18 • 30 • 60 • > 60 •
	A	B		
		Calcarine fissure	
		Secondary	
		visual areas	
		Primary		
		visual cortex	
			Macula