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Abstract

In the context of uncertainty quantification, computational models are required to be
repeatedly evaluated. This task is intractable for costly numerical models. Such a problem
turns out to be even more severe for stochastic simulators, the output of which is a random
variable for a given set of input parameters. To alleviate the computational burden, we
develop a new stochastic surrogate model called stochastic polynomial chaos expansions.
To this aim, we introduce a latent variable and an additional noise variable, on top of the
well-defined input variables, to represent the intrinsic stochasticity. As a result, for a given
set of input parameters, the model output is given by a function of the latent variable with
an additive noise, thus a random variable. We develop an adaptive algorithm to construct
such a surrogate, which does not require repeated runs of the simulator for the same input
parameters. The performance of the proposed method is compared with the generalized
lambda model and a state-of-the-art kernel estimator on two case studies in mathematical
finance and epidemiology and on an analytical example whose response distribution is bimodal.
The results show that the proposed method is able to accurately represent general response
distributions, i.e., not only normal or unimodal ones. In terms of accuracy, it generally
outperforms both the generalized lambda model and the kernel density estimator.

1 Introduction

In modern engineering, computational models, a.k.a. simulators, are commonly used to simulate
different operational scenarios of complex systems in silico. These models help engineers assess the
reliability, control the risk, and optimize the system components in the design phase. Conventional
simulators are usually deterministic: a given set of input parameters has a unique corresponding
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model response. In other words, repeated model evaluations with the same input values will
always give identical results. In contrast, stochastic simulators return different outcomes of the
model response when run twice with the same input parameters.

Stochastic simulators are widely used in engineering and applied science. The intrinsic stochas-
ticity typically represents some uncontrollable effect in the system [1, 2]. For example, in
mathematical finance, Brownian motions are commonly introduced to represent stochastic effects
and volatility of the stock market [1]. In epidemic simulations, additional random variables on
top of the well-defined characteristic values of the population are used to simulate the stochastic
spread of a disease [2].

Mathematically, a stochastic simulator can be viewed as a function

Ms : DX × Ω→ R

(x, ω) 7→ Ms(x, ω),
(1)

where DX is the domain of the input parameters, and Ω denotes the probability space that
represents the internal stochasticity. The latter is due to some latent random variables Ξ(ω)
which are not explicitly considered as a part of the input variables. The stochastic simulator can
then be considered as a deterministic function of the input vector x and the latent variables Ξ.
However, it is assumed that one can only control x but not Ξ when evaluating the model. Hence,
when the value of x is fixed but Ξ is generated randomly following the underlying probability
distribution, the output remains random.

In practice, each model evaluation for a fixed vector of input parameters x0 uses a particular
realization of the latent variables, i.e., a particular ω0 ∈ Ω that is usually controlled by the
random seed. Thus, it provides only one realization of the output random variable. In order to
fully characterize the associated distribution ofMs(x0, ·), it is necessary to repeatedly run the
stochastic simulator with the same input parameters x0. The various output values obtained by
this procedure the same input are called replications in the sequel.

In the context of uncertainty quantification or optimization, various input values should be
investigated. To this aim, multiple runs of the simulator are needed for many different inputs
and for many replications. This becomes impracticable for high-fidelity costly numerical models.
In this context, surrogate models have received tremendous attention in the past two decades. A
surrogate model is a proxy of the original model constructed from a limited number of model
runs. However, standard surrogate models such as polynomial chaos expansions [3] and Gaussian
processes [4] that have been successfully developed for deterministic simulators are not directly
applicable to emulating stochastic simulators due to the random nature of the latter.

In the past decade, large efforts have been dedicated to estimating some summary quantities of
the response distribution which are deterministic functions of the input.

For the mean and variance of the response distribution, Ankenman et al. [5] proposed using
replications to estimate the mean and variance for various input values. The mean function

2



is represented by a Gaussian process, for which the variance estimated from the replications
is cast as a heteroskedastic effect. Marrel et al. [6] modeled both the mean and variance by
Gaussian processes. The estimation procedure is similar to the feasible generalized least-squares
[7] that consists in alternating between fitting the mean from the data and the variance from
the residuals. This approach does not require replications. Binois et al. [8] proposed jointly
optimizing the likelihood to represent the mean and variance by Gaussian processes, which is
mainly designed for data with replications.

To estimate the quantiles of the response distribution, Koenker and Bassett [9] proposed optimizing
the check function, which established the quantile regression method. Plumlee and Tuo [10]
suggested estimating the quantiles by performing replications and building a Gaussian process
from the estimated quantiles. The reader is referred to Torossian et al. [11] for a detailed review.

The methods listed above produce only targeted summary quantities. However, far less literature
has been devoted to the emulation of the entire probability distribution function of the response
random variable for a given input. Three types of methods can be found in the literature.

Moutoussamy et al. [12] proposed using replications to characterize the response distribution for
different input values. Then, the fitted distributions (based on replications) for the discrete input
values can be extended to the entire input space by parametric or nonparametric techniques.
Since this approach capitalizes on replications for local inference, it is necessary to generate many
replications to obtain an accurate surrogate [13], i.e., in the order of 103 − 104 [12].

In the second approach, a stochastic simulator is considered as a random field indexed by the input
variables [14, 15]. When fixing the internal stochasticity ω in Eq. (1), the stochastic simulator is a
mere deterministic function of x, called a trajectory. This function can be emulated by standard
surrogate methods. Collecting different trajectories, one can approximate the underlying random
field using Karhunen–Loève expansions. Therefore, it is necessary to fix the internal randomness
to apply this approach, which is practically achieved by controlling the random seed.

The third type of methods is referred to as the statistical approach and does not require replications
or manipulating the random seed. If the response distribution belongs to the exponential family,
generalized linear models [16] and generalized additive models [17] can be efficiently applied. For
arbitrary types of response distributions, nonparametric estimators developed in statistics can
be applied, namely kernel density estimators [18, 19] and projection estimators [20]. However,
nonparametric estimators are known to suffer from the curse of dimensionality, which indicates
that the necessary amount of data increases drastically with increasing input dimensionality. To
balance between very restrictive parametric assumptions and nonparametric approaches, Zhu
and Sudret [21, 22] proposed using generalized lambda distributions to approximate the response
distributions. The four distribution parameters are seen as functions of the input and further
represented by polynomial chaos expansions. The main limitation of this approach is that it
cannot produce multimodal distributions, however.

In this paper, we develop an original approach that directly emulates the functional representation
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in Eq. (1). More precisely, we extend the classical polynomial chaos expansions to emulating
stochastic simulators. We introduce a latent variable and a noise variable to reproduce the
random behavior of the model output. We develop an adaptive method to construct such a
surrogate model. This novel stochastic surrogate is parametric and shown to be not limited to
unimodal distributions.

The remainder of the paper is organized as follows. In Section 2, we first review the standard
polynomial chaos representations. In Section 3, we present a novel formulation named stochastic
polynomial chaos expansions which is meant for stochastic simulators. In Section 4, we present
the algorithms to adaptively build such a surrogate from data without the need for replications.
We illustrate the performance of the proposed method on a complex analytical example and on
case studies from mathematical finance and epidemiology in Section 5. Finally, we conclude the
main findings of the paper and provide outlooks for future research in Section 6.

2 Reminder on polynomial chaos expansions

Polynomial chaos expansions (PCEs) have been widely used in the last two decades to emulate
the response of deterministic simulators in many fields of applied science and engineering.
Consider a deterministic modelMd which is a function that maps the input parameters x =
(x1, x2, . . . , xM )T ∈ DX ⊂ RM to the scalar output y =Md(x) ∈ R. In the context of uncertainty
quantification, the input vector x is affected by uncertainties and thus modeled by a random
vector X with prescribed joint probability density function (PDF) denoted by fX . In the sequel,
we focus on the case where the input parameters are independent for simplicity. Therefore, the
joint PDF is expressed by

fX(x) =
M∏

j=1
fXj (xj), (2)

where fXj is the marginal PDF of the input random variable Xj . Note that in the case where
the input vector X has dependent components, it is always possible to transform them into
independent ones using the Nataf or Rosenblatt transform [23–25].

Because of the randomness in the input, the model response Y =Md(X) becomes a random
variable. Provided that Y has a finite variance, i.e., Var [Y ] < +∞, the functionMd belongs to
the Hilbert space H of square-integrable functions with respect to the inner product

〈u, v〉H def= E [u(X)v(X)] =
∫

DX

u(x)v(x)fX(x)dx. (3)

Under certain conditions on the joint PDF fX [26], the Hilbert space H possesses a polynomial
basis. As a result,Md can be represented by an orthogonal series expansion

Md(x) =
∑

α∈NM

cαψα(x), (4)
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where cα is the coefficient associated with the basis function ψα that is defined by the multi-index
α. More precisely, the multivariate basis function ψα is given by a tensor product of univariante
polynomials

ψα(x) =
M∏

j=1
φ(j)
αj

(xj), (5)

where αj indicates the degree of ψα(x) in its j-th component xj , and
{
φ

(j)
k : k ∈ N

}
is the

orthogonal polynomial basis with respect to the marginal distribution fXj of Xj , which satisfies

E
[
φ

(j)
k (Xj)φ(j)

l (Xj)
]

= δkl. (6)

In the equation above, the Kronecker symbol δkl is such that δkl = 1 if k = l and δkl = 0
otherwise.

Following Eq. (5), the multivariate polynomial basis is defined from univariate orthogonal
polynomials that depend on the corresponding marginal distribution. For uniform, normal, gamma
and beta distributions, the associated orthogonal polynomial families are known analytically [27].
For arbitrary marginal distributions, such a basis can be iteratively computed by the Stieltjes
procedure [28].

The spectral representation in Eq. (4) involves an infinite sum of terms. In practice, the series needs
to be truncated to a finite sum. The standard truncation scheme is defined by selecting all the
polynomials whose total degree is small than a given value p, i.e., Ap,M =

{
α ∈ NM ,

∑M
j=1 αj ≤ p

}
.

However, this will provide a large number of terms for big values of p and M . A more flexible
scheme is the hyperbolic (q-norm) truncation scheme [29]:

Ap,q,M =
{
α ∈ NM , ‖α‖q ≤ p

}
, (7)

where p is the maximum polynomial degree, and q ∈ (0, 1] defines the quasi-norm ‖α‖q =
(∑M

j=1|αj |q
)1/q

. This truncation scheme allows excluding high-order interactions among the
input variables but keeps univariate effects up to degree p. Note that with q = 1, we recover the
full basis of total degree less than p.

To estimate the coefficients in Eq. (4), one popular approach relies on minimizing the mean-
squared error between the model response and the surrogate model. The basic method applies
ordinary least-squares (OLS) with a given set of basis (e.g., defined by a truncation scheme) [30].
In this approach, the model is evaluated on a number of points called the experimental design
X =

{
x(1), . . . ,x(N)

}
. The associated model responses are gathered into y =

{
y(1), . . . , y(N)

}

with y(i) = M
(
x(i)

)
. The basis functions (and thus the coefficients) can be arranged by

ordering the multi-indices {αj}Pj=1. The regression matrix Ψ is defined by Ψij = ψαj

(
x(i)

)
.

By minimizing the mean-squared error between the original model and the surrogate on the
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experimental design, the OLS estimator is given by

ĉ = arg min
c
‖y −Ψc‖22 (8)

With increasing polynomial degree or input dimension, the number of coefficients increases
drastically. As a consequence, a large number of models runs are necessary to guarantee a good
accuracy, which becomes intractable for costly simulators. To solve this problem, Blatmann and
Sudret [29], Doostan and Owhadi [31], Babacan et al. [32] developed methods to build sparse
PCEs by only selecting the most influential polynomials. The reader is referred to the review
papers by Lüthen et al. [33, 34] for more details.

3 Stochastic polynomial chaos expansions

3.1 Introduction

Let us now come back to stochastic simulators. It would be desirable to have a spectral expansion
such as Eq. (4) for stochastic simulators. Indeed, the standard PCE has numerous features such
as close-to-zero-cost model evaluations, and clear interpretation of the coefficients in terms of
sensitivity analysis [35]. However, because the spectral expansion in Eq. (4) is a deterministic
function of the input parameters, it cannot be directly used to emulate stochastic simulators.

Considering the randomness in the input variables, the output of a stochastic simulator is a
random variable. The randomness of the latter comes from both the intrinsic stochasticity and
the uncertain inputs. When fixing the input parameters, the model response remains random.
For the purpose of clarity, we denote by Yx the random model response for the input parameters
x and by Y the model output containing all the uncertainties: following Eq. (1), we have

Yx
def= Ms(x, ω), Y

def= Ms(X(ω), ω). (9)

From a probabilistic perspective, Yx is equivalent to the conditional random variable Y |X = x.
Let FY |X (y |x) denote the associated cumulative distribution function (CDF). By using the
probability integral transform, we can transform a random variable Z to the desired distribution,
that is

Yx
d= F−1

Y |X (FZ (Z) |x) (10)

where FZ is the CDF of Z. The equality in Eq. (10) is to be understood in distribution, meaning
that two random variables on the left- and right-hand side follow the same distribution. In
Eq. (10), the right-hand side is a deterministic function of both x and z. As a result, assuming
that Y has a finite variance, we can represent this function using a PCE in the (X, Z) space,
that is,

F−1
Y |X (FZ (Z) |X) =

∑

α∈NM+1

cαψα (X, Z) . (11)
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For a given vector of input parameters x, the expansion is a function of the latent variable Z,
thus a random variable

Yx
d=

∑

α∈NM+1

cαψα (x, Z) . (12)

Then, we apply a truncation scheme A (e.g., Eq. (7)) to reduce Eq. (12) to a finite sum

Yx
d≈ Ỹx =

∑

α∈A
cαψα (x, Z) . (13)

Even though Eq. (13) is derived from Eq. (11), it is more general. Equation (10) offers one
way to represent the response distribution by a transform of a latent variable. But many other
transforms can achieve the same goal. For example, using Z ∼ N (0, 1), both µ(x) + σ(x)Z and
µ(x)−σ(x)Z can represent the stochastic simulator defined by Yx ∼ N (µ(x), σ(x)). Because we
are interested in the response distribution, Eq. (13) only requires that the polynomial transform
of the latent variable produces a distribution that is close to the response distribution, but the
transform does not need to follow Eq. (11) exactly. Note that the latent variable Z is only
introduced to reproduce the stochasticity, but it does not allow us to represent the detailed data
generating process of the simulator though. In other words, the PCE in Eq. (13) cannot emulate
the response for a particular replication, yet it provides a representation of the distribution of Yx.

3.2 Potential issues with the formulation in Eq. (13)

Building a PCE by least-squares as presented in Section 2 requires evaluating the deterministic
function to surrogate, which, in the case of stochastic simulators, is the left-hand side of Eq. (11).
However, it is practically impossible to evaluate such a function, as the response distribution F−1

Y |X
is unknown. One common way to fit the latent variable model defined in Eq. (13) is maximum
likelihood estimation [36, 37]. In this section, we show some potential problems associated with
a standard use of this method for building Eq. (13), which calls for a novel fitting algorithm.

According to the definition in Eq. (13), Ỹx is a function of Z. Denote fZ(z) the PDF of Z and
DZ the support of Z. Based on a change of variable [38], we can obtain the PDF of Ỹx, which is
denoted by fỸx

(y;x, c). As a result, the (conditional) likelihood function of the coefficients c for
a data point (x, y) is given by

l(c;x, y) = fỸx
(y;x, c). (14)

Now, let us consider an experimental design X =
{
x(1), . . . ,x(N)

}
. The stochastic simulator

is assumed to be evaluated once for each point x(i), yielding y =
{
y(1), . . . , y(N)

}
with y(i) =

Ms

(
x(i), ω(i)

)
. Note that here we do not control the random seed, so the model outcomes for

different values of x are independent. Thus, the likelihood function can be computed by the
product of l

(
c;x(i), y(i)

)
over the N data points. As a result, the maximum likelihood estimator
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is given by

ĉ = arg max
c

N∑

i=1
log l

(
c;x(i), y(i)

)
. (15)

Equation (15) commonly serves as a basic approach for fitting parametric statistical models
(including stochastic surrogates) [16, 21, 39]. However, the likelihood function of the latent PCE
defined in Eq. (13) is unbounded and can reach +∞, making the maximization problem Eq. (15)
ill-posed.

To illustrate the issue, let us consider a simple stochastic simulator without input variables,
which gives a realization of Y upon each model evaluation. Hence, the surrogate in Eq. (13)
contains only the latent variable Z, that is, Ỹ = g (Z) = ∑

α∈A cαψα (Z). For simplicity, let g(z)
be a second-degree polynomial expressed by monomials g(z) = a1z2 + a2z + a3. Note that there
is a one-to-one mapping between monomials and full polynomial chaos basis, so one can map
a = (a1, a2, a3)T to c through a change of basis. Using a change of variable [38], the PDF of Ỹ is

fỸ (y) = fZ(z)
|g′(z)|1g(z)(y), (16)

where 1 is the indicator function, and g′ denotes the derivative of g. For a given y0, certain
choices of a can make any given z0 with fZ(z0) 6= 0 satisfy g(z0) = y0 and g′(z0) = 0:




g(z0) = y0

g′(z0) = 0
⇒




a1z2

0 + a2z0 + a3 − y0 = 0

2a1z0 + a2 = 0
⇒




−z2

0 a
2
1 + a3 − y0 = 0

a2 = −2z0 a1
. (17)

The system of equations in Eq. (17) is underdetermined for a. Therefore, there are infinite
combinations of the coefficients a, and therefore of c, such that the denominator of Eq. (16) is
zero and the numerator is non-zero, which gives fỸ (y0) = +∞. Consequently, the maximum
likelihood estimation will always produce a certain vector c that makes the likelihood reach +∞.

As a conclusion, the surrogate ansatz of Eq. (13) can produce non-smooth conditional PDFs with
singularity points where fỸx

tends to infinity. Consequently, the standard maximum likelihood
estimation would fail.

3.3 Formulation of stochastic polynomial chaos expansions

In the previous section, we discussed some potential problems of the model defined in Eq. (13).
To regularize the optimization problem in Eq. (15) and smooth out the produced PDFs, we
introduce an additive noise variable ε, and define the stochastic surrogate as follows:

Yx
d≈ Ỹx =

∑

α∈A
cαψα (x, Z) + ε, (18)
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where ε is a centered Gaussian random variable with standard deviation σ, i.e., ε ∼ N (0, σ2).
With this new formulation, the response PDF of the stochastic surrogate is a convolution of that
of the PCE and the Gaussian PDF of ε. Let Gx = ∑

α∈A cαψα (x, Z). The PDF of Ỹx = Gx + ε

reads
fỸx

(y) = (fGx ∗ fε)(y) =
∫ +∞

−∞
fGx(y − t)fε(t)dt. (19)

Using Hölder’s inequality, the above integral is bounded from above by

‖fGx‖1 ‖fε‖∞ = ‖fε‖∞ = 1
σ
√

2π
, (20)

meaning that the PDF of Ỹx and the associated likelihood function are bounded.

To illustrate the role of the additive noise variable in Eq. (18), let us consider a random variable
Y with bimodal distribution to be represented by

Y
d≈
∑

α∈A
cαψα (Z) + ε, (21)

where the latent variable Z follows a standard normal distribution and ε ∼ N (0, σ). In the case
σ = 0 (the noise term vanishes), we build the model by applying a standard algorithm such as
least-angle regression (LAR) [29] to the probability integral transform F−1

Y (FZ(Z)). When the
regularization term ε is added, maximum likelihood estimation can be used (see Section 4.1 for
details) to construct the surrogate.

Figure 1: Emulating a bimodal distribution. The blue line corresponds to the result of using
LAR to represent directly the probability integral transform (without regularization term). The
red and green lines are the results of maximum likelihood estimation for two different values of σ.

Figure 1 shows the original (reference) PDF, and the ones obtained by LAR (σ = 0) and by the
stochastic PCE for two different values of σ. It is observed that the PDF obtained by LAR has
singularity points, which confirms the analysis in Section 3.2, whereas the proposed noise term
regularizes the PDFs. Moreover, LAR is applied directly to the probability integral transform
which in practice is unknown. In contrast, the maximum likelihood estimation does not require
knowing the values of Z (in this example, only the realizations of Y are used). Finally, the
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value of σ affects the accuracy of the model. Hence, σ is an additional parameter of the model
that must also be fitted to the data to get the optimal approximation. The fitting procedure is
detailed in the next section.

4 Fitting the stochastic polynomial chaos expansion

To construct a stochastic PCE defined in Eq. (18), one needs to estimate both the coefficients
c and the standard deviation σ of the noise variable. In this section, we present a method to
calibrate these parameters from data without replications. Moreover, we propose an algorithm
that adaptively selects an appropriate distribution for the latent variable Z and truncation
scheme A.

4.1 Maximum likelihood estimation

Let us assume for a moment that the standard deviation σ of the noise variable is given (the
estimation of σ will be investigated separately in Section 4.4). From Eq. (18), we see that our
surrogate response Ỹx is the sum of a polynomial function of (x, z) and the noise variable ε.
Therefore, its PDF can be computed by

fỸx
(y) =

∫

DZ

fỸx|Z(y | z)fZ(z)dz

=
∫

DZ

1
σ
ϕ

(
y −∑α∈A cαψα(x, z)

σ

)
fZ(z) dz,

(22)

since Ỹx | Z = z is a Gaussian random variable with mean value ∑α∈A cαψα(x, z) and variance
σ2 according to Eq. (18). In this equation, ϕ stands for the standard normal PDF. Therefore,
for a given data point (x, y), the likelihood of the parameters c conditioned on σ reads

l(c;x, y, σ) =
∫

DZ

1√
2πσ

exp
(
−(y −∑α∈A cαψα(x, z))2

2σ2

)
fZ(z)dz. (23)

In practice, we can use numerical integration schemes, namely Gaussian quadrature [40], to
efficiently evaluate this one-dimensional integral, that is

l(c;x, y, σ) ≈ l̃(c;x, y, σ) =
NQ∑

j=1

1√
2πσ

exp
(
−(y −∑α∈A cαψα(x, zj))2

2σ2

)
wj , (24)

where NQ is the number of integration points, zj is the j-th integration point, and wj is the
corresponding weight, both associated to the weight function fZ . Based on Eq. (24) and
the available data (X ,y), the PCE coefficients c can be fitted using the maximum likelihood
estimation (MLE)

ĉ = arg max
c

N∑

i

log
(
l̃
(
c;x(i), y(i), σ

))
. (25)
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The gradient of Eq. (24), and therefore of Eq. (25), can be derived analytically. Hence, we opt
for the derivative-based BFGS quasi-Newton method [41] to solve this optimization problem.

4.2 Starting point for the optimization

The objective function to optimize in Eq. (25) is highly nonlinear. As a result, a good starting
point is necessary to ensure convergence. According to the properties of the polynomial chaos
basis functions, the mean function of a stochastic PCE can be expressed as

m̃(x) def= E
[
Ỹx
]

= EZ,ε

[∑

α∈A
cαψα (x, Z) + ε

]
=

∑

α∈A,αz=0
cαψα(x), (26)

where αz is the degree of the univariate polynomial in Z. Equation (26) contains all the terms
without Z, as indicated by αz = 0. We define this set of multi-indices as

Am = {α ∈ A : αz = 0} . (27)

Another surrogate m̂(x) of the mean function can be obtained by using standard (or sparse)
regression to directly fit the following expansion:

m(x) def= E [Yx] ≈ m̂(x) def=
∑

α∈Am

cmαψ(x) (28)

The obtained coefficients cm are used as initial values for the coefficients {cα : α ∈ Am} of the
stochastic surrogate in the optimization procedure, i.e., cα for α ∈ Am.

For the other coefficients {cα : α ∈ A \ Am}, we randomly initialize their value.

4.3 Warm-start strategy

Because of the form of the likelihood Eq. (23), the gradient at the starting point can take extremely
large values when σ is small. In this case, the optimization algorithm may become unstable and
converge to an undesired local optimum. To guide the optimization, we propose a warm-start
strategy summarized in Algorithm 1. We generate a decreasing sequence σ = {σ1, . . . , σNs} with
σNs = σ (the target value). In this paper, we choose the maximum value σ1 of the sequence as
the square root of the leave-one-out error εLOO in the mean fitting procedure (see Appendix A.1
for the explanation of this choice). Then, σ is generated equally-spaced in the log-space between
√
εLOO and σ. Starting with σ1 which is the largest element of σ, we build a stochastic PCE

based on Eq. (25) with the initial values defined above (the mean function estimation and random
initialization). Then, the results are used as a starting point for the construction of the surrogate
for σ2. We repeat this procedure sequentially for each element in σ with each new starting
point being the results of the previous optimization. Because the standard deviation decreases
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progressively to the target value and the starting point is updated accordingly, the associated
gradient for each optimization prevents extremely big values.

Algorithm 1 Warm-start approach for estimating c with known σ
Input: (X ,y), σ, A
Output: Coefficients ĉ

1: cm, εLOO ← OLS(X ,y,Am) % Estimation of the coefficients of the mean function
2: c0

α ← cmα for α ∈ Am and randomly initialize
{
c0
α : α ∈ A \ Am

}

3: σlog ← linspace
(
log

(√
εLOO

)
, log(σ), Ns

)

4: σ ← exp (σlog)
5: for i← 1, . . . , Ns do
6: Solve Eq. (25) to compute ci using ci−1 as initial values
7: end for
8: ĉ← cNs

4.4 Cross-validation

As explained in Section 3.2, the hyperparameter σ cannot be jointly estimated together with the
PCE coefficients c because the likelihood function can reach +∞ for certain choices of c and
σ = 0. As a result, σ should be tuned separately from the estimation of c.

In this paper, we propose applying cross-validation (CV) [39] to selecting the optimal value
of σ. More precisely, the data (X ,y) are randomly partitioned into Ncv equal-sized groups
{Vk : k = 1, . . . , Ncv} (so-called Ncv-fold CV). For k ∈ {1, . . . , Ncv}, we pick the k-th group Vk
as the validation set and the other Ncv − 1 folds denoted by V∼k as the training set. The latter
is used to build a stochastic PCE following Eq. (25) and Algorithm 1, which yields

ĉk(σ) = arg max
c

∑

i∈V∼k

log
(
l̃
(
c;x(i), y(i), σ

))
. (29)

Note that the coefficients depend on the value of σ, and thus we explicitly write them as functions
of σ. The validation set Vk is then used to evaluate the out-of-sample performance:

lk(σ) =
∑

i∈Vk

log
(
l̃
(
ĉk(σ);x(i), y(i), σ

))
. (30)

We repeat this procedure for each group of the partition {Vk : k = 1, . . . , Ncv} and sum up the
respective score to estimate the generalized performance, referred to as CV score in the sequel.
Then, the optimal value of σ is selected as the one that maximizes this CV score:

σ̂ = arg max
σ

Ncv∑

k=1
lk(σ). (31)

Because of the nested optimization in Eq. (29), the gradient of Eq. (31) is difficult to derive.
In this paper, we apply the derivative-free Bayesian optimizer [42] to solving Eq. (31) and
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search for σ within the range [0.05, 1]×√εLOO. The upper bound of the interval is explained
in Appendix A.1. The lower bound is introduced to prevent numerical instabilities near σ = 0.
According to our investigations, the optimal value σ̂ is always within the proposed interval.

After solving Eq. (31), the selected σ̂ is used in Eq. (25) with all the available data to build the
final surrogate.

Large value of Ncv can lead to high computational cost, especially when N is big. In this paper,
we choose Ncv = 10 for N < 200 (small data set), Ncv = 5 for 200 ≤ N < 1,000 (moderate data
set) and Ncv = 3 for N ≥ 1,000 (big data set).

4.5 Adaptivity

The method developed in Sections 4.1 and 4.4 allows us to build a stochastic PCE for a given
distribution of the latent variable Z and truncation set A of polynomial chaos basis. However, in
practice, there is usually no prior knowledge that would help determine these quantities. In this
section, we propose a procedure to iteratively find a suitable distribution for the latent variable
Z and truncation scheme A.

We consider Nz candidate distributions D = {D1, . . . , DNz} for the latent variable, Np degrees
p =

{
p1, . . . , pNp

}
and Nq q-norms q =

{
p1, . . . , pNp

}
that are used to define the hyperbolic

truncation scheme in Eq. (7). Both p and q are sorted in increasing order.

The adaptive procedure is shown in Algorithm 2 and described here. For each type of latent
variable and truncation set A = Ap,q,M , we first apply the hybrid LAR algorithm developed
by Blatman and Sudret [29] to fitting the mean function m̂(x) as shown in Eq. (28). This
algorithm only selects the most important basis among the candidate set Am defined in Eq. (27).
To reduce the total number of unknowns in the optimization Eq. (25), we exclude from A the
basis functions in Am that are not selected by hybrid LAR. In other words, we only estimate
the coefficients associated with the basis functions that either have αz 6= 0 or are selected by
the hybrid LAR when fitting the mean function m(x). Then, we use the methods presented in
Sections 4.1 and 4.4 to build a stochastic PCE for A and record the CV score. The latter is used
for model comparisons, and the one with the best CV score is selected as the final surrogate.

In order to avoid going through all the possible combinations, we propose a heuristic early
stopping criterion for both degree and q-norm adaptivity. If two consecutive increases of q-norm
cannot improve the CV score, the inner loop for q-norm adaptivity stops. Besides, if the best
model (among all the q-norms) of a larger degree decreases the CV score, the algorithm stops
exploring higher degrees. Note that the early stopping is only applied to p- and q-adaptivity, but
all the candidate distributions are investigated.

In the application examples, we choose NZ = 2 possible distributions for the latent variable
Z, namely a standard normal distribution N (0, 1) and a uniform distribution U(−1, 1). The
truncation parameters p and q may be selected according to the dimensionalityM of the problem
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Algorithm 2 Adaptive algorithm for building a stochastic PCE
Input: (X ,y), D, p, q
Output: Dopt, Aopt, ĉ, σ̂

1: lopt ← −∞
2: for iz ← 1, . . . , Nz do
3: for ip ← 1, . . . , Np do
4: for iq ← 1, . . . , Nq do
5: A ← Apip ,qiq ,M+1

6: Am ← {α : α ∈ A, αz = 0} , Ac ← A \Am
7: An ← Hybrid-LAR (X ,y,Am) % Selection of the basis for m̂(x)
8: A ← An ∪ Ac
9: Apply the algorithm presented in Sections 4.1 and 4.4 to build a stochastic PCE with

A, which gives c, σ, and the CV score lip,iq associated with σ.
10: end for
11: end for
12: end for
13: Return the model with the maximum CV score

and the prior knowledge on the level of non-linearity. We typically use p = {1, 2, 3, 4, 5} and
q = {0.5, 0.75, 1}.

4.6 Post-processing of stochastic polynomial chaos expansions

In this section, we show how to post-process a stochastic PCE for various analyses. The very
feature of this surrogate is that it provides a functional mapping between the input parameters
X, the latent variable Z, and the noise term ε:

Ỹ
def=

∑

α∈A
cαψα (X, Z) + ε, (32)

To generate realizations of Ỹ , we simply sample X, Z and ε following their distributions and
then evaluate Eq. (32). To obtain samples of Ỹx for a fixed x (e.g., to plot the conditional
distribution), we follow the same procedure with fixed X = x. Moreover, Eq. (32) can be easily
vectorized for efficient sampling.

By generating a large number of samples, one can display the distribution of Ỹ and Ỹx using
histograms or kernel density estimation. We can also use the quadrature version in Eq. (24) to
get an explicit form of the conditional response distribution of Ỹx.

In addition, because the proposed surrogate model is derived based on PCE, it inherits all the
good properties of PCE. In particular, some important quantities can be directly computed
by post-processing the PCE coefficients c and the parameter σ, without the need for sampling.
Indeed, the mean and variance of Ỹ are given by

E
[
Ỹ
]

= c0, Var
[
Ỹ
]

=
∑

α∈A\0
c2
α + σ2. (33)
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where c0 is the coefficient of the constant function.

As already shown in Eq. (26), for a given value of x, the mean of the model response Ỹx can be
computed as

E
[
Ỹx
]

=
∑

α∈A,αz=0
cαψα(x), (34)

Similarly, we can compute the variance as follows:

Var
[
Ỹx
]

= VarZ,ε
[∑

α∈A
cαψα (x, Z) + ε

]
=

∑

α∈A\Am

c2
αψ

2
α(x) + σ2. (35)

4.7 Global sensitivity analysis

In the context of global sensitivity analysis of stochastic simulators [22], various types of Sobol’
indices can also be computed analytically for the proposed surrogate model. The classical
Sobol’ indices are defined from the Sobol’-Hoeffding decomposition of the deterministic model
given by the stochastic simulator with both the well-defined input variables X and its intrinsic
stochasticity as explicit inputs ω, see Eq. (1). Since the surrogate model in Eq. (32) is also
a deterministic function of X and the additional variables Z and ε, the Sobol’ indices can be
efficiently computed from the PCE coefficients, similarly to the classical PCE-based Sobol’ indices
[35]. For example, the first-order classical Sobol’ index of the i-th input Xi is given by

Si
def=

Var
[
E
[
Ỹ | Xi

]]

Var
[
Ỹ
] =

∑
α∈Ai

c2
α

∑
α∈A\0

c2
α + σ2 , (36)

where Ai def= {α ∈ A : αi 6= 0, αj = 0 , ∀j 6= i}. Similarly, one can also calculate higher-order
and total Sobol’ indices of the model Eq. (32). Let us split the input vector into two subsets
X = (Xu,X∼u), where u ⊂ {1, . . . ,M} and ∼u is the complement of u, i.e., ∼u = {1, . . . ,M}\u.
The higher-order and total Sobol’ indices, denoted by Su and STi , respectively, are given by

Su =

∑
α∈Au

c2
α

∑
α∈A\0

c2
α + σ2 , STi =

∑
α∈A,αi 6=0

c2
α

∑
α∈A\0

c2
α + σ2 , (37)

where Au
def= {α ∈ A : αi 6= 0, αj = 0 , αz = 0 ,∀i ∈ u, ∀j ∈ ∼u}. However, as mentioned in Sec-

tion 3, the surrogate model aims only at emulating the response distribution of the simulator
instead of representing the detailed data generation process. Therefore, the indices involving the
artificial variables introduced in the surrogate (i.e., Z and ε), e.g., the first-order Sobol’ index for
Z and the total Sobol’ index for each component of X, do not reveal the nature of the original
model [22].

The QoI-based Sobol’ indices quantify the influence of the input variables on some quantity of
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interest of the random model response, e.g., mean, variance, and quantiles [22]. As the mean
function in Eq. (26) is a PCE, the associated Sobol’ indices can be computed in a straightforward
way [35]. Similar to Eq. (36), the first-order index is given by

Smi
def= Var [E [m̃(X) | Xi]]

Var [m̃(X)] =

∑
α∈Ai

c2
α

∑
α∈Am\0

c2
α

, (38)

while higher-order and total Sobol’ indices of the mean function read

Smu =

∑
α∈Au

c2
α

∑
α∈Am\0

c2
α

, SmTi
=

∑
α∈A,αi 6=0

c2
α

∑
α∈Am\0

c2
α

. (39)

In addition, the variance function in Eq. (35) is a polynomial. The associated Sobol’ indices can
be computed by building another PCE to represent Eq. (35) the without error.

5 Numerical examples

In this section, we validate the proposed method on several examples, namely case studies from
mathematical finance and epidemiology and a complex analytical example with bimodal response
distributions. To illustrate its performance, we compare the results obtained from the stochastic
polynomial chaos expansion (SPCE) with two state-of-the-art models that are developed for
emulating the response distribution of stochastic simulators. The first one is the generalized
lambda model (GLaM). This surrogate uses the four-parameter generalized lambda distribution
to approximate the response distribution of Yx for any x ∈ DX . The distribution parameters, as
functions of the inputs, are represented by PCEs (see details in [13, 21]). The second model is
based on kernel conditional density estimation (KCDE) [43]. This method uses kernel density
estimation to fit the joint distribution f̂X,Y (x, y) and the marginal distribution f̂X(x). The
response distribution is then estimated by

fY |X(y | x) = f̂X,Y (x, y)
f̂X(x)

=

∑N
i=1

1
hy
KY

(
y−y(i)

hy

)∏M
j=1

1
hj
Kj

(
xj−x(i)

j

hj

)

∑N
i=1

∏M
j=1

1
hj
Kj

(
xj−x(i)

j

hj

) , (40)

where Ky and Kj ’s are the kernels for Y and Xj ’s, and hy and hj ’s are the associated bandwidths
which are hyperparameters selected by a thorough leave-one-out cross-validation [19].

Finally, we also consider a model where we represent the response with a normal distribution.
The associated mean and variance as functions of the input x are set to the true values obtained
from the simulator. Therefore, the accuracy of such an approximation measures how close the
response distribution is to the normal distribution. Moreover, this model represents the “oracle”
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of Gaussian-type mean-variance models, such as the ones presented in Marrel et al. [6] and
Binois et al. [8].

To quantitatively compare the various surrogates, we define an error metric between the simulator
and the emulator by

ε =
EX

[
d2

WS

(
YX , ỸX

)]

Var [Y ] , (41)

where Yx is the model response, Ỹx denotes that of the surrogate (with the same input parameters
as Yx), and Y is the model output aggregating all the uncertainties from both the input and
the intrinsic stochasticity. dWS is the Wasserstein distance of order two [44] between the two
probability distributions defined by

d2
WS (Y1, Y2) def= ‖Q1 −Q2‖22 =

∫ 1

0
(Q1(u)−Q2(u))2 du, (42)

where Q1 and Q2 are the quantile functions of random variables Y1 and Y2, respectively. The
error metric ε in Eq. (41) is unitless and invariant to shift and scale, i.e.,

EX
[
d2

WS

(
aYX + b, aỸX + b

)]

Var [aY + b] =
EX

[
d2

WS

(
YX , ỸX

)]

Var [Y ] . (43)

To evaluate the numerator in Eq. (41), we generate a test set Xtest of size Ntest = 1,000 from
the input distribution of X. The Wasserstein distance is calculated for each point x ∈ Xtest and
then averaged over Ntest.

We use Latin hypercube sampling (LHS) [45] to generate the experimental design and the test
set. The stochastic simulator is evaluated only once for each set of input parameters, i.e., we do
not use replications. To study the convergence property of the surrogates, experimental designs
of various sizes are investigated. Each scenario is run 20 times with independent experimental
designs to account for the statistical uncertainty in the LHS design and also in the internal
stochasticity of the simulator. As a result, error estimates for each size of experimental design
are represented by box plots constructed from the 20 repetitions of the full analysis.

5.1 Geometric Brownian motion

In the first example, we consider the Black-Scholes model that is popular in mathematical
finance [1]

dSt = x1 St dt+ x2 St dWt. (44)

Equation (44) is a stochastic differential equation used to model the evolution of a stock price
St. Here, x = (x1, x2)T are the input variables that describe the expected return rate and the
volatility of the stock, respectively. Wt is a Wiener process that represents the stochastic behavior
of the market. Without loss of generality, we set the initial condition to S0 = 1.
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The simulator is stochastic: for a given x, the stock price St is a stochastic process, where the
stochasticity comes from Wt. In this example, we are interested in Yx = S1, which corresponds
to the stock value at t = 1 year. We set X1 ∼ U(0, 0.1) and X2 ∼ U(0.1, 0.4) to represent the
uncertainty in the return rate and the volatility, where the ranges are selected based on real data
[46].

The solution to Eq. (44) can be derived using Itô calculus [47]: Yx follows a lognormal distribution
defined by

Yx ∼ LN
(
x1 −

x2
2

2 , x2

)
. (45)

As the distribution of Yx is known analytically in this simple example, we can sample directly
from the response distribution to get the model output instead of simulating the whole path of
St.

(a) PDF for x = (0.07, 0.13)T (b) PDF for x = (0.04, 0.21)T

(c) PDF for x = (0.05, 0.3)T (d) PDF for x = (0.02, 0.33)T

Figure 2: Geometric Brownian motion — Comparisons of the emulated PDFs, N = 400.

Figure 2 illustrates four response PDFs predicted by the considered surrogates built on an
experimental design of size N = 400. We observe that with 400 model runs, both SPCE and
GLaM accurately represent the variation of the response PDF. Moreover, SPCE better represents
the left tail in Fig. 2d. In contrast, KCDE can well approximate the response PDF for low
volatility (in Fig. 2a) but exhibits unrealistic oscillations in the case of high volatility.

For convergence studies, we vary the size of the experimental designN ∈ {100; 200; 400; 800; 1,600}
and plot the error ε defined in Eq. (41) with respect to N in Fig. 3. In order to show more details,
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Figure 3: Geometric Brownian motion — Comparison of the convergence of the surrogate models.
The dashed lines denote the average value over 20 repetitions of the full analysis, whereas the
box plot summarize the 20 results. The black dash-dotted line represents the error of the model
assuming that the response distribution is normal and using the true mean and variance.

each subfigure in Fig. 3 compares SPCE with one competitor. We observe that the average error
of KCDE built on N = 400 model runs is similar to the best normal approximation, whereas
both SPCE and GLaM provide smaller errors. Compared with KCDE and GLaM, the average
performance of SPCE is always the best for all sizes of experimental design. For large N , namely
N = 1,600, the average error of SPCE is less than half of that of KCDE, and the spread of the
error is narrower than that obtained by GLaM.

5.2 Stochastic SIR model

The second example is the stochastic Susceptible-Infected-Recovered (SIR) model frequently used
in epidemiology [2]. This model simulates the outbreak of an infectious disease which spreads
out through stochastic contacts between infected and susceptible individuals. The simulator
is a compartmental state-space model. More precisely, a population of P individuals at time
t is partitioned into three groups: (1) susceptible individuals who have not caught the disease
and may be infected by close contact with infectious patients; (2) infected individuals who are
contaminated and infectious; (3) recovery individuals who have recovered from the disease and are
immune to future infections. The count of each group is denoted by St, It, and Rt, respectively.
Because no newborn or death is considered, the three quantities satisfy Et + It +Rt = P . As a
result, any two out of the three counts, e.g., Et and It, can characterize the configuration of the
population of size P at time t.

Figure 4 illustrates the dynamics of the model, where the black icons stand for susceptible
individuals, the red icons correspond to infected persons, and the blue icons are the ones who
have recovered. At time t, the state of the population is given by (St, It) (the top left panel of
Fig. 4). The next configuration depends on two transition channels: infection and recovery. The
first channel evolves the system to CI where one susceptible individual is infected (the bottom
left panel of Fig. 4). The recovery channel proceeds to CR where one infected person recovers
(the bottom right panel of Fig. 4). Whether the system evolves to the candidate state CI or CR
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depends on two random variables, TI and TR which are the respective transition time of each
channel. Both TI and TR follow an exponential distribution, yet with different parameters:

TI ∼ Exp(λI), λI = β
StIt
P

,

TR ∼ Exp(λR), λR = γIt,

(46)

where β is the contact rate of an infected individual, and γ is the recovery rate. The next
configuration of the population is the one that comes first, i.e., for TR < TI , the system evolves to
CR at t+ TR with St+TR

= Et − 1 and It+TI
= It + 1, and vice versa. We iterates this updating

procedure until the time T where IT = 0 corresponding to no remaining infected individual: no
infection or recovery can happen, and the outbreak stops. Since the population size is constant
and recovered individuals will not be infected again, the outbreak will stop at finite time, i.e.,
T < +∞. The simulation process described here corresponds to the Gillespie algorithm [48].

Figure 4: Dynamics of the stochastic SIR model: black icons stand for susceptible individuals,
red icons represent infected individuals, and blue icons are the ones that have recovered.

The input variables of the simulator are the initial conditions S0 and I0 and the transitive rates
β and γ. We are interested in the total number of newly infected individuals during the outbreak
without counting the initial infections, which is an important quantity in epidemics management
[8]. This can be calculated by the difference between the number of susceptibles at time 0 and T ,
i.e., Y = S0−ST . Because each updating step in Eq. (46) depends on two latent variables TI and
TR, the simulator is stochastic. Moreover, the total number of latent variables is also random.

In this case study, we set P = 2,000. To account for different scenarios, the input variables
X = {S0, I0, β, γ} are modeled as S0 ∼ U(1,200 , 1,800), I0 ∼ U(20, 200), and β, γ ∼ U(0.5, 0.75).
The uncertainty in the first two variables is due to the lack of knowledge of the initial condition.
The two transitive rates β, γ are affected by possible interventions such as quarantine and
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increase of medical resources.

(a) PDF for x = (1500, 60, 0.6, 0.7)T (b) PDF for x = (1400, 100, 0.6, 0.6)T

(c) PDF for x = (1700, 140, 0.55, 0.55)T (d) PDF for x = (1600, 180, 0.7, 0.6)T

Figure 5: Stochastic SIR — Comparisons of the emulated PDFs, N = 1,600.

Figure 5 illustrates the response PDF for four different sets of input parameters. Because of
the transition process in Eq. (46), no analytical closed-form distribution of Yx can be derived.
Therefore, we use 104 replications for each input values to obtain the reference histograms.
The surrogate models are trained on an experimental design of size N = 1,600 (without any
replications). We observe that the four PDFs are unimodal. The reference histogram in Fig. 5a
is slightly right-skewed, while the others in Fig. 5 are symmetric. SPCE and GLaM produce
similar predictions of the PDF which are very close to the reference histograms. In comparison,
KCDE overestimates the spread of the distributions in. Moreover, the KCDE prediction has
non-negligible probability for unrealistic negative values in Fig. 5a. Besides, it exhibits relatively
poor shape representations with spurious wiggles in Fig. 5c and Fig. 5d.

Figure 6 compares the performance of the surrogates built on various sizes of experimental
design N ∈ {200; 400; 800; 1,600; 3,200}. To evaluate the error defined in Eq. (41), the reference
distribution for each x is given by the empirical distribution of 104 replications. The oracle
normal approximation gives an error of 6× 10−4 which is smaller than any of the surrogates in
consideration. Note that this model is not built on the training data but using the mean and
variance from the 104 replications for each test point. This implies that the response distribution
is close to normal. We do not include this error in Fig. 6 to not loose detailed comparisons of
the surrogate models. Figure 6 reveals a poor performance of KCDE in this case study. This is
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Figure 6: Stochastic SIR — Comparison of the convergence of the surrogate models. The dashed
lines denote the average value over 20 repetitions of the full analysis, whereas the box plot
summarize the 20 results. The Gaussian model that assumes the response distribution being
normal with the mean and variance estimated from 104 replications yields an error of 6× 10−4,
which is not plotted in the figure.

because the example is four-dimensional, and KCDE is a kernel-based method which is known to
suffer from the curse of dimensionality. In contrast, SPCE and GLaM are flexible parametric
models, and both provide a much smaller error than KCDE for all values of N . Compared with
GLaM, SPCE yields a similar spread of the error but demonstrates better average performance
for N ≥ 400.

5.3 Bimodal analytical example

The response distributions of the previous two examples are unimodal. In the last example, we
consider a complex analytical example to test the flexibility of the stochastic polynomial chaos
expansion. For this purpose, we directly define the response distribution to approximate as

fY |X(y | x) = 0.5ϕ
(
1.25 y − (5 sin2(π · x) + 5x− 2.5)

)
+0.75ϕ

(
1.25 y − (5 sin2(π · x)− 5x+ 2.5)

)

(47)
where ϕ stands for the standard normal PDF. This response PDF is a mixture of two Gaussian
PDFs with weights 0.6 and 0.8. The mean function of each component distribution depends
on the input variable x. Let X ∼ U(0, 1). With different realization of X, the two components
change their location accordingly. Figure 7 illustrates a data set generated by N = 800 model
runs and the mean function of each component of Eq. (47) which varies nonlinearly with respect
to the input. It is clear that the resulting conditional distribution is bimodal for small (x . 0.2)
and large values of x (x & 0.8), whereas it is unimodal in between.

Figure 8 compares the response PDF estimated by the surrogates built on the experimental
design of Fig. 7 (N = 800) for four different values of x. We observe that small values of x yield
a bimodal distribution with the higher mode on the right. With x increasing, the two modes
merge and form a unimodal distribution at x = 0.5. Then, the two modes separate again, which
leads to bimodal distributions with the higher mode on the left. This shape variation can also be
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Figure 7: Bimodal analytical example — Illustration of the model with an experimental design
of N = 800

observed from Fig. 7.

As opposed to the previous two examples, GLaM cannot represent this evolution, since generalized
lambda distributions cannot produce multimodal distributions. In contrast, SPCE and KCDE
capture well the bimodality and also the shape variation. Moreover, in Fig. 8c the higher mode
is moving to the left, which is a feature not exhibited by KCDE but correctly captured by SPCE.

(a) PDF for x = 0.2 (b) PDF for x = 0.5

(c) PDF for x = 0.7 (d) PDF for x = 0.9

Figure 8: Bimodal analytical example — Comparisons of the emulated PDFs, N = 800.

Quantitative comparisons for N ∈ {100; 200; 400; 800; 1,600} in Fig. 9 confirm our observation
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in Fig. 8. Because of the bimodality, GLaM provides the least accurate approximation. When
increasing N , it converges slowly to the same error as the best normal approximation which is
clearly outperformed by the best two surrogates: SPCE and KCDE for N ≥ 800. Both SPCE
and KCDE show a consistent decay of the error. Only when a few samples N = 100 are available
does KCDE provide stabler estimates (the spread of the error is small) and better average
performance. For N ≥ 200, SPCE yields more accurate results and exhibits an overall faster
rate of convergence. In summary, this example demonstrates that SPCE can represent bimodal
distributions with a high accuracy.

Figure 9: Bimodal analytical example — Comparison of the convergence of the surrogate models.
The dashed lines denote the average value over 20 repetitions of the full analysis. The black
dash-dotted line represents the error of the model assuming that the response distribution is
normal with the true mean and variance.

6 Conclusions

In this paper, we present a novel surrogate model called stochastic polynomial chaos expansions
(SPCE) to emulate the response distribution of stochastic simulators. This surrogate is an
extension of the classical polynomial chaos expansions developed for deterministic simulators. In
order to represent the intrinsic stochasticity of the simulator, we combine a latent variable with
the well-defined inputs to form a polynomial chaos representation. In addition, we introduce an
additive Gaussian noise as a regularizer. We propose using the maximum likelihood estimation
for calibrating the coefficients c of the polynomial basis. The standard deviation σ of the
noise variable is a hyperparameter that regularizes the optimization problem for the polynomial
coefficients c and is tuned by cross-validation to avoid overfitting. The cross-validation score
is also used as a model selection criterion to choose an appropriate truncation scheme for the
polynomial chaos expansion in an adaptive manner, and the most suitable distribution for the
latent variable. As seen from the presentation and the application examples, the proposed
method does not require replications.

The performance of the developed method is illustrated on examples from mathematical finance
and epidemiology and on an analytical example showcasing a bimodal response distribution.
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The results show that SPCE is able to well approximate various response distributions whether
unimodal or not, with a reasonable number of model runs.

Using an appropriate error measure defined in Eq. (41), SPCE is compared with the generalized
lambda model (GLaM) and one state-of-the-art kernel conditional density estimator (KCDE). In
the first two examples where the response distribution is unimodal, SPCE noticeably outperforms
KCDE and provides slightly more accurate results than GLaM which is known for its flexibility
for representing unimodal distributions. In the last example featuring bimodal distributions
which cannot be well approximated by generalized lambda distributions, SPCE can still capture
the complex shape variation and yields smaller errors than KCDE. All in all, SPCE generally
performs as the best against the various competitors considered in this study.

Applications of the proposed method to complex engineering problems, such as wind turbine
design [49] and structural dynamics [50], should be considered in future investigations. Statistical
properties (e.g., consistency and asymptotics) of the maximum likelihood estimation used in
SPCE remains to be studied. This will allow for assessing the uncertainty in the estimation
procedure.

Finally, the proposed approach has been validated so far only for problems with small to moderate
dimentionality. To improve the efficiency and performance of SPCE in high dimensions, models
that have a general sparse structure (not only regarding the mean function) are currently under
investigations.
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A Appendix

A.1 Upper bound

In this section, we demonstrate that the leave-one-out error obtained from fitting the mean
function Eq. (28) provides an upper bound for σ2.

Taking the expectation of Eq. (35) with respect to X, it holds

E
[
Var

[
Ỹ
∣∣∣X

]]
= E


 ∑

α∈A\Am

c2
αψ

2
α(X) + σ2


 =

∑

α∈A\Am

c2
α + σ2. (48)
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The leave-one-out error εLOO in the mean-fitting process is an estimate of E
[
(m̂(X)− YX)2

]

[51]. The latter can be decomposed as

E
[
(m̂(X)− YX)2

]
= E

[
(m̂(X)−m(X) +m(X)− YX)2

]

= E
[
(m̂(X)−m(X))2

]
+ E [Var [Y |X]]

. (49)

Aiming at approximating Yx with Ỹx, we have E [Var [Y |X]] ≈ E
[
Var

[
Ỹ
∣∣∣X

]]
. Hence, εLOO

provides an upper bound for Eq. (48) and therefore for σ2.
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