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Abstract

Active learning methods have recently surged in the literature due to their ability to

solve complex structural reliability problems within an affordable computational cost. These

methods are designed by adaptively building an inexpensive surrogate of the original limit-

state function. Examples of such surrogates include Gaussian process models which have

been adopted in many contributions, the most popular ones being the efficient global re-

liability analysis (EGRA) and the active Kriging Monte Carlo simulation (AK-MCS), two

milestone contributions in the field. In this paper, we first conduct a survey of the recent

literature, showing that most of the proposed methods actually span from modifying one or

more aspects of the two aforementioned methods. We then propose a generalized modular

framework to build on-the-fly efficient active learning strategies by combining the following

four ingredients or modules: surrogate model, reliability estimation algorithm, learning func-

tion and stopping criterion. Using this framework, we devise 39 strategies for the solution

of 20 reliability benchmark problems. The results of this extensive benchmark (more than

12, 000 reliability problems solved) are analyzed under various criteria leading to a synthe-

sized set of recommendations for practitioners. These may be refined with a priori knowledge

about the feature of the problem to solve, i.e. dimensionality and magnitude of the failure

probability. This benchmark has eventually highlighted the importance of using surrogates

in conjunction with sophisticated reliability estimation algorithms as a way to enhance the

efficiency of the latter.

Keywords: Structural reliability – Active learning – Surrogate models – Benchmark –

Gaussian process (Kriging) – Polynomial chaos expansions
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1 Introduction

Structural reliability analysis is a central tool for the design and assessment of complex en-

gineering systems. Such systems are affected by uncertainties, which may arise from natural

variability in their physical properties (e.g., material strength, manufacturing tolerances),

operating conditions (e.g., variable loads, environmental conditions) or simply because of an

incomplete or lack of knowledge (e.g., in the non-destructive assessment of existing struc-

tures). Structural reliability analysis aims at assessing the effects of such uncertainties, by

estimating the associated failure probability with respect to some relevant limit states. In

this paper, we consider a probabilistic setting, in which the uncertainties are represented

through a set of random parameters X ∈ DX ⊂ RM completely defined by their joint

probability distribution function (PDF) fX . These parameters represent the state of the

system, which can be evaluated through a so-called performance function (a.k.a. limit-state

function), herein denoted by g (X). By convention, the system is assumed to be in a failure

(resp. safe) state when g (x) ≤ 0 (resp. g (x) > 0). The probability of failure of the system

can then be defined as

Pf = P (g(X) ≤ 0) =

∫

Df

fX (x) dx. (1)

This integration over an implicitly defined domain Df = {x : g (x) ≤ 0} is not straight-

forward to solve and has motivated the development of a rich variety of techniques (Ditlevsen

and Madsen, 1996; Lemaire, 2009; Melchers, 2018). These techniques can be broadly grouped

in several classes. These include approximation methods, where the limit-state function is

linearized (or otherwise approximated) around a so-called design point, e.g., the most prob-

able failure point (MPFP) in a suitably transformed probabilistic input space. This step

allows one to then derive (semi-)analytically an approximation of the failure probability.

This class includes the well-known first-order and second-order reliability methods (FORM

and SORM) (Hasofer and Lind, 1974; Rackwitz and Fiessler, 1978). This family, however,

is known to suffer severe limitations when the limit-state function is strongly non linear,

or in the presence of multiple failure modes. A second class of methods, namely that of

simulation techniques, is widely used for the solution of Eq. 1. Monte Carlo simulation is

certainly among the most widely-used methods in this category. It is known to be robust

and unbiased, yet its convergence rate is extremely slow, especially when the target failure

probability is small. This is problematic when the computational model used in the eval-

uation of the limit-state function is costly, a common occurrence when e.g., finite element

analysis is involved. More advanced methods, based on variance-reduction techniques, are

constantly being developed. A non-exhaustive list of the latter include importance sampling

(Melchers, 1989), subset simulation (Au and Beck, 2001), directional simulation (Ditlevsen

et al., 1990), line sampling (Koutsourelakis et al., 2004) and asymptotic sampling (Bucher,

2009). Numerous variants of these methods have been introduced in the recent literature

in an attempt to further accelerate their convergence rates, e.g., Papaioannou et al. (2016);
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Wang et al. (2019); Geyer et al. (2019). However, the computational cost remains unaf-

fordably high (i.e. O(103−4) model runs) when considering time-consuming computational

models.

In the past decade, a different avenue that offers substantial savings in the computational

budget, while retaining the favourable properties of simulation methods, has been explored

in the reliability analysis literature: surrogate-model aided methods. Surrogate models are

inexpensive approximations of the original computational model, which have consistently

shown superior performance when combined with the traditional simulation methods intro-

duced earlier. Originally, simple polynomial response surface models (RSM) were built using

a set of carefully designed computer experiments (Faravelli, 1989; Lemaire, 1998) These RSM

were then used in lieu of the original computational model to approximately solve Eq. 1.

Borrowing from the machine learning community, this process has evolved into a more so-

phisticated methodology known as active learning (Bichon et al., 2008; Echard et al., 2011).

In active learning, the surrogate model is not used as a mere proxy of the original compu-

tational model, but as a tool to help explore the random input variable space efficiently.

The idea is to start with an initial small set of model evaluations, known as the experimen-

tal design, which is then sequentially enriched following a so-called learning function. The

latter aims at finding which model evaluation would bring the most useful information for

the purpose of accurately assessing the failure probability of the system under consideration.

This starts from the premise that in Eq. 1, only the sign of the limit-state is required to

characterize the failure domain Df in simulation-based reliability algorithms. The goal is

then to approximate the limit-state surface as parsimoniously as possible (i.e., using the least

number of model evaluations) to achieve the best possible accuracy for the estimated failure

probability. In the past few years, an increasingly large number of contributions have been

proposed in the field of active learning for reliability analysis. The most popular approaches

are based on Kriging, a.k.a. Gaussian process modelling, owing to its built-in error measure.

The most prominent examples are the efficient global reliability analysis (EGRA) proposed

by Bichon et al. (2008) and the active Kriging Monte Carlo simulation (AK-MCS) developed

by Echard et al. (2011). The latter is a cornerstone of various methods derived incrementally

by modifying one or another aspect of the AK-MCS algorithm (Lelièvre et al., 2018) and

commonly referred to as AK methods. For instance, replacing the Monte Carlo simulation

part of the algorithm with importance sampling or subset simulation leads respectively to

AK-IS (Echard et al., 2013) or AK-SS (Huang et al., 2016). Similarly, other contributions

have targeted the surrogate model type, introducing for instance support vector machines

(Hurtado, 2004; Deheeger and Lemaire, 2007; Bourinet et al., 2011; Bourinet, 2018) or poly-

nomial chaos expansions (Marelli and Sudret, 2018). A comprehensive overview of recent

developments in active-learning based reliability analysis can be found in Teixeira et al.

(2021).

This paper aims at achieving two goals. The first is to provide an in-depth characteriza-
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tion of the current trends in active-learning-based reliability analysis through a comprehen-

sive survey, following the footsteps of Teixeira et al. (2021). In doing so, however we focus on

highlighting common aspects in the numerous literature contributions. More specifically, we

classify the methods with respect to the specific novelty put forward in each contribution.

We then propose a generalized framework that summarizes the survey and puts the entire

reviewed literature under a consistent formal umbrella. This framework is built by combin-

ing non-intrusively four identified common ingredients of active learning-based methods: i.

a surrogate model, ii. a reliability estimation algorithm, iii. a learning function and iv. a

stopping criterion. In the second part of the paper, we then conduct the first-ever extensive

benchmark of active learning methods considering, on the one hand, a collection of 20 prob-

lems of diverse characteristics and on the other hand, a total of 39 active learning schemes

built by combining selected methods in each of the four aforementioned components.

This benchmark is mainly aimed at illustrating how easily the proposed framework can

be configured to reproduce a wide class of recently published studies, and hence only a

limited number of methods per component was considered. The methods were selected for

their maturity and ease of deployment, i.e., they do not require extensive tuning by the

user and are relatively fast to run on standard workstations. For instance, only Kriging,

polynomial chaos expansions and PC-Kriging surrogate models are considered in this study

due to their prevalence in the reliability analysis literature and their off-the-shelf availabil-

ity. Similarly the scope of the problems solved within the benchmark is limited to the ones

typically considered in the reviewed active learning papers. More specifically, we do not con-

sider time-variant (such as in Kroetz et al. (2020)), dynamic or extremely high-dimensional

problems (i.e., in the order of hundreds) as they would require special treatment. For the

former, dimensionality reduction techniques are often combined with surrogate modelling as

in manifold learning (Zheng and Xue, Zheng and Xue), active subspace method (Constantine

et al., 2014; Zhou and Peng, 2020) or in a more general setting as in Lataniotis et al. (2020).

Even though some of these methods may be used for mildly high dimensional problems, they

are not considered in the survey or benchmark carried out in this paper.

The large batch of analyses resulting from the selected methods is repeated 15 times, to

obtain statistically significant estimates on the stability of each method. This results in a

set of over 12, 000 reliability analyses which allows us to validate, repeat and assess most

of the methods introduced in the recent literature, and at the same time to explore a large

portion of new methods and combinations that have not been published yet. The results of

this benchmark are used to give recommendations as to which type of methods performs the

best generally or at least to be preferred given features of the reliability problem at hand.

The remainder of the paper is organized as follows. Section 2 presents a literature review

of the current state-of-the art in surrogate-modeling based reliability analysis. Section 3

introduces a generalized active learning reliability framework inferred from the literature

review. In Section 4, an extensive comparative benchmark study is carried out on a wide
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class of methods and benchmark problems. Finally, recommendations and conclusions are

given in Section 5 and 6.

2 A short overview of recent literature

2.1 Common rationale

At the core of active-learning reliability lies the idea of reducing the cost of simulation algo-

rithms by introducing a surrogate model as an inexpensive approximation of the expensive-

to-evaluate limit-state function. Surrogate models were first introduced in a static scheme

to globally replace computer codes mainly for the purpose of visualization or optimiza-

tion. Active learning pushes this concept further by aiming to an efficient allocation of

resources, i.e., computer simulations are performed sparingly and only when most needed.

Active learning reliability (ALR) algorithms are practically devised using the general frame-

work illustrated in Figure 1. In the initialization step, a so-called experimental design

E(0) =
{(

X (i),Y(i)
)

: Y(i) = g
(
X (i)

)
∈ R,X (i) ∈ X ⊂ RM , i = 1, . . . ,m0

}
is initially gen-

erated. The input sample set
{
X (i), i = 1, . . . ,m0

}
is often drawn using space-filling meth-

ods such as Latin hypercube sampling (LHS, McKay et al. (1979)) or randomized low-

discrepancy sequences (Sobol’, 1967). Typically m0 is chosen small, i.e., in the order of tens

of samples. Following initialization, the algorithm enters in a four-step loop where:

1. A surrogate model is built using the current experimental design;

2. The failure probability is estimated using the current surrogate model and an appro-

priate reliability estimation algorithm;

3. The convergence of the algorithm is assessed;

4. An enrichment of the experimental design is carried out by appropriately select-

ing at least one pair of sample points
{
X (enr), g

(
X (enr)

)}
, when convergence is not

achieved. This is often achieved by evaluating a so-called learning function which gives

information as to which points are most likely to increase the accuracy of the surrogate

(and subsequently of the estimated failure probability) when added to the experimental

design.

One of the first implementations of this flowchart was proposed by Bichon et al. (2008) in

their efficient global reliability analysis method (EGRA). In this work, they used Gaussian

process regression as a surrogate model, Monte Carlo simulation as reliability estimation

algorithm and the so-called expected feasibility function (EFF) as a means to find points to

enrich the experimental design. The latter is actually an adaptation to contour estimation

of the well-known expected improvement (EI) function (Ranjan et al., 2008) widely used in

Bayesian optimization as first introduced in Jones et al. (1998). A noticeable improvement of

EGRA was introduced by Echard et al. (2011) in the widely known active Kriging - Monte

Carlo simulation (AK-MCS) method. Contrary to EGRA, where reliability estimation is
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Build an initial experimental design E(0)

i = 0

Build a surrogate model ĝ(i) using E(i)

Estimate the failure probability P̂f using ĝ(i)

Estimate the accuracy of P̂f

Converged?

Enrich the experimental design
E(i+1) = E(i) ∪ {X enr, g(X enr)}

End

i = i+ 1

no

yes

Figure 1: General flowchart of active learning reliability.

carried out only after the enrichment stage is completed, AK-MCS couples enrichment and

reliability estimation. Furthermore, it introduces a new learning function, the so-called

deviation number U , which is optimized with respect to a pre-defined sample set. This

highly reduces the computational cost and the complexity of the active learning procedure.

While this algorithm is at the time of writing already ten years old, it has aged surprisingly

well, with a number of recent methods proposing only minor variations to one or more

of the steps just reported. A comprehensive survey on recent developments on this topic

was recently proposed by Teixeira et al. (2021). In the following sections we identify and

describe in more detail four key ingredients that are common to all of the aforementioned

active-learning based methods.

2.2 Surrogate models in structural reliability

Various surrogate models were already used in adaptive schemes for the solution of reliabil-

ity problems even before the emergence of the AK methods. Polynomial response surface

models were arguably the first type of surrogates used in the context of structural reliability

analysis. Faravelli (1989) uses a second-order polynomial while Bucher and Bourgund (1990)

introduced a two-stage approach where a first quadratic response surface is used to locate

the MPFP. A second response surface is then built close to that MPFP to refine the knowl-

edge of the limit-state surface. A direct improvement of this approach which introduces

an iterative procedure was proposed by Rajashekhar and Ellingwood (1993). Leonel et al.

(2011) considered various schemes using response surfaces for reliability analysis in crack

propagation and concluded that a direct coupling (i.e., building the surrogate only once the
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MPFP has been located) is more efficient. More recently, Roussouly et al. (2013) proposed

an iterative scheme that combines trust regions, sparse response surface and bootstrap for

the identification of regions where enrichment is necessary. Radial basis functions (RBF),

which have been popular in static surrogate-assisted reliability analysis, were introduced in

a sequential approach as well. Li et al. (2018) presented an MCS-based approach where an

RBF is sequentially updated through a constrained min-max optimization problem which

aims at finding points close to the limit-state surface while keeping a minimum distance to

the existing ED points. Shi et al. (2019) proposed two other learning schemes based on

RBF considering either an ensemble of surrogates or cross-validation. In the former case,

the interquartile range of the predictions using an ensemble of surrogates is considered as

a measure of uncertainty to derive a learning function similar to the U -function of Echard

et al. (2011). Another learning function similar to U was developped by Marelli and Su-

dret (2018) using bootstrap and polynomial chaos expansions (PCE). More recently, sparse

Bayesian PCE was used by Cheng and Lu (2020) where a new learning function relying on

the Gaussian process variance was proposed. Pan et al. (2020) also used Bayesian regression

PCE combined with the deviation number U .

Popular methods from the machine learning community, such as support vector machines

or neural networks, have also been steadily introduced in structural reliability. Support

vector machines for classification was first introduced by Hurtado (2004). Basudhar and

Missoum (2008) proposed an adaptive scheme combining SVM classification and Monte Carlo

simulation. The enrichment scheme is based on finding the point belonging to the limit-

state surface approximation that is the furthest from the existing training points. This

is a maximin problem solved using a general-purpose optimization algorithm. Lacaze and

Missoum (2014) proposed an improvement of this maximin scheme by including a weight

which accounts for the random variables joint PDF. Another improvement aiming at avoiding

the optimization problem and relying on a candidate pool for enrichment has been proposed

by Pan and Dias (2017). Combining SVM and subset simulation, Bourinet et al. (2011)

proposed a learning scheme where a classifier is built in each iteration of the SuS algorithm.

SVM has also been widely used in its regression form (SVR) for reliability analysis (Bourinet,

2018). Bourinet (2017) proposed an SVR scheme with three novelties: i. the sample set size

is kept constant, meaning some samples are withdrawn from the training set as the algorithm

is proceeding, ii. intermediate thresholds are used to approximate the limit-state functions

and iii. the surrogate models built in each stage are combined in a weighted ensemble to

keep information of all training points without increasing the computation time. Another

popular machine learning method widely used in structural reliability analysis is neural

networks. Even though most of the contributions are in a static scheme, the most recent

ones consider adaptivity (Chojazyk et al., 2015; Kroetz et al., 2017). Sundar and Shields

(2016) proposed a two-stage algorithm where an artificial neural network (ANN) is first used

together with parallel Markov Chains to identify (possibly disjoint) failure regions. The
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ANN is then enriched to accurately represent the limit-state surface. Finally, Gomes (2019)

introduced an active scheme combining artificial neural networks and Monte Carlo simulation

using the bootstrap-based learning function introduced in Marelli and Sudret (2018).

Various other surrogate model types have been used to propose new active learning

reliability algorithms, following similar schemes as introduced earlier, e.g., polynomial chaos-

Kriging (Schöbi et al., 2016), high-dimensional model reduction (HDMR) (Sadoughi et al.,

2017), deep neural networks (Li and Wang, 2020) or stochastic spectral embedding (Wagner

et al., 2021), among others.

2.3 Reliability estimation algorithm

An immediate alternative strategy to AK-MCS can be devised by focusing on the reliability

estimation algorithm. The benefits of replacing Monte Carlo simulation are two-fold. First,

more sophisticated algorithms have been developed to reduce the variance of the failure

probability estimate, and introducing them in active learning allows overcoming the pitfalls

of MCS, i.e., its slow convergence rate. Second, choosing another reliability estimation

algorithm also allows one to modify the way sample candidates to enrichment are generated.

In fact, for problems with low failure probability, the initial candidate set for enrichment

may not contain any sample point at all in the actual failure domain. This can seriously

reduce the chances of convergence of the active learning scheme. In contrast, more advanced

reliability estimation algorithms may allow one to reach more easily areas associated with

small probability densities, as well as disconnected failure regions.

Basically, almost all well-established simulation-based reliability estimation methods have

been used together with active learning in the literature. A direct adaptation of AK-MCS,

simply coined AK-IS, has been proposed by Echard et al. (2013) using importance sampling

(Melchers, 2018) in lieu of Monte Carlo simulation. In this contribution, they first find

the design point using FORM and the original model. They then build an importance

density sample set around this point which is used both for computing the failure probability

and as candidate pool for enrichment. Gaspar et al. (2017) proposed to use a surrogate

model even for the location of the design point, hence further reducing the computational

cost. Zhao et al. (2015) did not rely on the design point but rather uses Monte Carlo

Markov Chain (MCMC) to generate points in the failure domains. Importance sampling

is then performed around those points together with enrichment. This allows overcoming

a major shortcoming of importance sampling related to the presence of multiple design

points. Another line of research involving Kriging combined with IS includes the meta-IS

algorithm where Dubourg et al. (2012) proposed to use the Kriging model to approximate the

optimal importance density in an iterative scheme. Cadini et al. (2014) combined the work

of Dubourg et al. (2012) and Echard et al. (2013) in a two-stage algorithm called metaAK-

IS2. Other sequential importance sampling methods have been adapted in an active Kriging

strategy. For instance, Balesdent et al. (2013) sequentially built and enriched Kriging models
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in intermediate steps of a cross-entropy and non-parametric adaptive importance sampling

algorithm. Other contributions using adaptive importance sampling include Gaspar et al.

(2017); Razaaly and Congedo (2018); Yang et al. (2018); Zhang and Taflanidis (2018); Liu

et al. (2019); Pan et al. (2020); Zhang et al. (2020).

Another popular reliability estimation algorithm that has been used in an active learning

scheme is subset simulation (Au and Beck, 2003). Huang et al. (2016) introduced AK-SS

which, as its name suggests, is a declination of AK-MCS with the use of subset simulation

for the computation of the failure probability. All other aspects are those of the original

AK-MCS algorithm, including the candidate pool for enrichment which is obtained by an

initial large Monte Carlo sample set. The obvious limitation here is that it may be difficult

to find points in the failure region for problems where failure is an extremely rare event.

Zhang et al. (2019) then proposed an improvement where the first and last levels of subset

simulation are used as candidate pool for enrichment. The first level being a global Monte

Carlo and the last one leading to points closest to the limit-state surface, this method allows

both exploration and exploitation of the random input space. Ling et al. (2019) proposed an

intermediate approach where a local Kriging model is built at each stage of subset simulation.

Other similar methods include Bayesian subset simulation (Li et al., 2012; Bect et al., 2017)

which combines subset simulation, sequential Monte Carlo and Kriging and AK-SSIS (Tong

et al., 2015) which combines subset simulation and importance sampling in an active Kriging

strategy.

Finally, we shall note that even though importance sampling and subset simulation have

been widely exploited in active learning methods, the use of other variance-reduction simula-

tion methods has been explored. Examples include algorithms such as directional importance

sampling (Guo et al., 2020), radial basis importance sampling (Bo and HuiFeng, 2018) or

line sampling (Lv et al., 2015).

2.4 Enrichment of the experimental design

A core feature of active-learning-based reliability methods is that the accuracy of the fail-

ure probability estimate is gradually increased by enriching the experimental design. A key

component in this respect is the learning function (LF), which plays the central role of pro-

viding a measure of the information value of any experimental design enrichment candidates.

Many authors have come up with new learning functions that can increase the efficiency of

otherwise comparable methods. A direct improvement of the deviation number U was given

for instance by Peijuan et al. (2017), where a line search step is added to get even closer to

the limit-state surface once the best next point with respect to U is found. Arguing that

errors due to regions with small density would be negligible in the final estimate of the fail-

ure probability, Wen et al. (2016) also used the random variables joint PDF to constrain the

EFF learning function. Similarly, Sun et al. (2017) proposed the least improvement function

(LIF) which weights the probability of misclassification Φ (−U (x)) with the joint probability
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density of the samples fX (x), an idea already used in Dubourg et al. (2012). Tong et al.

(2019) followed this idea and, adding more terms related to global/local uncertainty, they

created a new learning function.

From another perspective, Lv et al. (2015) introduced a new learning function based on

the information theory with an analytical expression similar to EFF. Hu and Mahadevan

(2016) introduced a method which relies on computing the sensitivities of the failure proba-

bility to add new points to the experimental design. A new learning function using K-fold

cross validation generalizable to any type of surrogate model was introduced by Xiao et al.

(2018). More recently, Jiang et al. (2019) proposed an approach which is based on splitting

the space using Voronoi cells and finding out those points with the largest sensitivities to

the estimated failure probability. The use of Voronoi cells allows the authors to both reduce

the computational cost and spread the sample points as much as possible. The latter goal

is also achieved through a pre-processing step by Zhang et al. (2019) who then introduced a

new LF inspired from the expected improvement.

2.5 Stopping criterion

The stopping criterion is an often overlooked yet crucial part of any active learning reliability

algorithm. Three types of criteria have been proposed in the literature to halt the iterative

enrichment scheme. The first one is directly based on the learning function. For instance,

Bichon et al. (2008) proposed to stop the enrichment scheme when the value of the expected

feasibility function is lower than 10−3. Similarly, Echard et al. (2011) stops AK-MCS it-

erations when U > 2 for all candidate points. This actually means that the probability of

misclassifying any point from the sample set used to evaluate the failure probability is below

2.28%. This criterion has shown to be extremely conservative, leading to unnecessarily added

points. Some authors have tried softening it either by considering the whole candidate set

through an average, for instance Jian et al. (2017); Sun et al. (2017); Lelièvre et al. (2018),

or by considering convergence when only a small proportion of the candidate set does not

comply with U > 2 (Moustapha et al., 2016; Fauriat and Gayton, 2017).

The second family of convergence criteria are those based on the accuracy of the failure

probability. Using the Kriging variance, Dubourg et al. (2013) proposed a bound on the

estimate P̂f which accounts for the Kriging epistemic uncertainty. Similarly, Sun et al.

(2017); Jian et al. (2017) proposed an upper bound on
∣∣∣P̂f − Pf

∣∣∣ using the probability of

misclassification Φ(−U). For surrogate models which do not possess a built-in error measure,

similar bounds have been derived considering either cross-validation (Shi et al., 2019) or

bootstrap replicates (Marelli and Sudret, 2018).

Finally, the third family of stopping criteria has been built using the stabilization of ei-

ther the limit-state surface or the failure probability estimates within enrichment iterations.

Basudhar and Missoum (2008) tracked the fraction of some predefined convergence points

that changed sign within two updates of an SVM model and assumed convergence when this

10



fraction was relatively small. This criteria, often with slight adjustments, has been used in

numbers of SVM-based active learning schemes (Bourinet, 2018). As for the failure proba-

bility, the obvious approach is to track its variation within iterations. Stabilization criteria

may often lead to premature convergence when the initial surrogate model is extremely inac-

curate. A workaround consists in tracking the convergence over several iterations, on average

2 to 3 and in some contributions and up to 10 iterations (Bourinet, 2017). An alternative

is to smooth out the convergence criterion as in Basudhar and Missoum (2008) by using an

exponential curve fitted to the convergence criterion.

3 A generalized active learning reliability framework

3.1 Motivation

As anticipated in the previous section, the state-of-the-art in active learning reliability can

essentially be summarized into four basic components or modules. These modules are namely

the surrogate model, the reliability estimation algorithm, the learning function and the

stopping criterion. Most of the contributions in the recent literature can be reconstructed by

combining various methods within each module. In a few cases, elaborate ad-hoc techniques

are devised by taking advantage of some highly specific combination of such methods. The

modules are in these cases not independent anymore but intrusively linked to each other.

However, the advantages brought by such configurations are most often only marginal and

not systematically justified by benchmarks.

In this section, we present a modular framework for active learning whose first aim is

to unify and present the plethora of active learning reliability methods from a single and

consistent viewpoint. The interest of such an approach can be seen through the prism of the

no-free lunch principle. Despite their claimed advantages, methods proposed in the literature

perform best under certain conditions and do not generalize so well as to provide consistently

superior performance in the wide spectrum of structural reliability problems. By framing

active learning reliability under a modular framework, we can then take advantage of each

method to solve a wide class of reliability problems, possibly identifying guidelines based on

limited prior information, such as the problem dimensionality.

A second advantage of the framework we propose is that it decouples the four modules.

This independence means that there is no need to alter or adapt a given method/module to

fit in the overall workflow. Methods can be used solely through their input/output structures,

as ”black boxes” even allowing for a seamless interconnection to third-party software.

The core idea of the framework is depicted in Figure 2. The four modules are shown

in columns with examples of popular methods. Most of the contributions surveyed in the

previous section can be retrieved by appropriately combining the methods. For instance,

combining all methods on the first row, i.e., Kriging, Monte Carlo simulation, deviation

number U and the LF-based stopping criterion, leads to the well-known AK-MCS. In princi-
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ple, all methods within each module block can be combined with any from the other blocks.

The only exceptions are from the methods that specifically rely on the surrogate built-in

error, e.g., the Kriging variance. It should be noted however that alternatives have been

proposed in the literature to estimate comparable local error measures when not directly

provided by the surrogate model itself.

Surrogate model

Kriging

PCE

SVR

PC-Kriging

Neural networks
...

Reliability estimation

Monte Carlo

Subset simulation

Importance sampling

Line sampling

Directional sampling
...

Learning function

U

EFF

FBR

CMM

SUR
...

Stopping criterion

LF-based

Stability of β

Stability of Pf

Bounds on β

Bounds on Pf

...

Figure 2: Active learning reliability framework with example of methods.

3.1.1 Surrogate models

Surrogate models lie at the core of any active learning reliability algorithm. A relevant

aspect that needs to be stressed here is that they are merely used as a tool to explore the

random input space in conjunction with the original computational model. They are not

meant to replace the latter per se. Many surrogates have been adopted in the literature for

active learning and can be further classified on the basis of different properties. One way

is to consider interpolation vs. regression approaches. The former are often preferred in

active learning schemes as they allow to precisely approximate the limit-state function in

the vicinity of any point that belongs to the experimental design. One may also consider a

classification with regards to the availability of a built-in error measure. Built-in errors have

been instrumental in the proliferation of active learning schemes, because most enrichment

schemes rely on them. Kriging for instance, with its local variance estimator, is arguably

the most adopted surrogate in recent active learning contributions. However, as shown in

the literature review above, alternatives also exist and have even shown to be quite efficient.

Such alternatives may include a similar error measure (either through statistical methods

such as bootstrap and cross-validation or plug-in methods) or the use of alternative learning

functions, as will be explained shortly.

3.1.2 Reliability estimation algorithm

Despite approximation methods have been sometimes used in early surrogate-assisted reli-

ability methods (Bucher and Bourgund, 1990; Rajashekhar and Ellingwood, 1993), most of

the recent contributions rely on simulation-based methods. Monte Carlo simulation, thanks

12



to its generality, is naturally one of the most commonly-used methods. The use of variance-

reduction techniques such as subset simulation or importance sampling has also been widely

explored. The latter can reduce the error due to the random nature of the sampling algo-

rithm while keeping the number of model evaluations as low as possible, especially when the

probability of failure is low.

In this contribution, we advocate for going even one step further by using an “overkill

setting” of the reliability estimation algorithm, further capitalizing on the negligible compu-

tational costs associated with the use of surrogate models. By “overkill setting”, we mean

that the parameters of the algorithms are tuned to drastically reduce the coefficient of vari-

ation of the resulting failure probability estimate. This set of parameters depends on the

reliability estimation algorithm. When using subset simulation for instance, the batch sam-

ple size and conditional failure probability are made larger than in the settings classically

found in the literature: we choose here 105 samples per simulation step and an intermediate

probability of 0.25 instead of the usual 0.10 value.

This approach has a two-fold benefit. First, the stochastic error due to the reliability

estimation algorithm is reduced as much as possible, hence leaving only the surrogate-induced

error to dominate the global estimation uncertainty on the failure probability. It should be

noted that the overall computational time is of course increased, especially when Kriging

is used. However, this overhead is expected to be marginal when compared to that of an

actual computational model, e.g., a finite element analysis. Second, by over-calibrating the

reliability algorithm, we allow for the random space to be even more thoroughly explored,

hence increasing the likelihood of finding sample points in the failure regions when the latter

is considerably small. Examples of such settings will be shown in the benchmark section and

compared to more traditional settings.

3.1.3 Learning function

The learning function is used as a driver to add new points in the experimental design. It is

often intrinsically linked to both the surrogate model and the reliability estimation algorithm.

Indeed, its very definition often draws from the characteristics of the surrogate model, e.g.,

variance or built-in error measure. This does not need to be the case systematically, as

the same features can be replaced by statistical methods that provide comparable error

metrics, such as bootstrap and cross-validation or even mere distance measures to the existing

experimental design points.

Generally, new candidate enrichment points are obtained by minimizing (or maximizing)

the learning function over the input domain. The optimization problem is most often sim-

plified into a discrete approximation where the enrichment samples are chosen from a finite

candidate pool. In most of the literature (starting from the original AK-MCS algorithm

(Echard et al., 2011) and in most subsequent variants), the candidate pool is defined prior

to the analysis using Monte Carlo sampling. However this is not an optimal approach. For
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instance, it is difficult to find points in the failure domain when the real failure probability

is very small (i.e., Pf < 10−6) as this would require an extremely large candidate pool.

An alternative and more efficient approach proposed here is to define the candidate pool

as the set of samples generated by the chosen reliability estimation algorithm, which can

in principle be updated throughout the ALR iterations. This allows us to fully exploit the

benefits of more advanced reliability estimation algorithms that are more likely to locate the

(multiple) failure domains and sample more points where needed most. To further avoid

being intrusive, we consider as candidate pool for enrichment all samples that were used

to estimate the failure probability in the previous iteration of the algorithm. To accelerate

the procedure, it is possible to statistically reduce the size of the candidate pool by simple

down-sampling or clustering. The latter approach can also serve as a way of simultaneously

identifying multiple enrichment points so as to take advantage of any available parallelization

capability.

3.1.4 Stopping criterion

The stopping criterion is an important part of the active learning scheme as the efficiency of

the algorithm is ultimately and largely driven by its robustness. Too loose a stopping crite-

rion can lead to premature convergence, while a too strict one would cause the unnecessarily

addition of costly experimental design points. The criteria proposed in the literature can be

classified into two groups. First are those based on the learning function value, e.g., Bichon

et al. (2008); Echard et al. (2011). These have shown to often be extremely conservative.

The second family is derived by directly monitoring the accuracy of the estimated failure

probability. Confidence bounds on the latter can be derived (Dubourg et al., 2012; Schöbi

et al., 2016), and convergence is assumed when such bounds are small enough. Alternatively,

one may monitor their evolution and assume convergence when a certain degree of stability is

observed. Finally, increased robustness may be achieved by either combining different stop-

ping criteria and/or considering convergence only when the criteria are satisfied consistently

within a given number of consecutive iterations.

4 Comparative study

4.1 Benchmark set-up

The ingredients shown in the previous section can be assembled non-intrusively to build

active learning schemes. In this section we perform an extensive comparison of several

framework configurations on a set of benchmark reliability problems representative of a wide

range of real case applications. We selected such configurations by considering some of the

most widely-used methods in each module. Table 1 shows the different algorithms considered

for the benchmark in this paper. The first part of the table deals with methods that use
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the built-in surrogate model variance, while the second is based on a regression method and

bootstrap error estimation. All possible combinations resulting from the tensor product of

each compatible ingredient are considered. This amounts in a total of 39 strategies (36 for the

first surrogate class and 3 for the second). UQLab (Marelli and Sudret, 2014), a Matlab

framework for uncertainty quantification was used to run these analyses.

Table 1: Methods selected in each module to create the 39 solution strategies used in the bench-

mark. Further details about each method are given in Sections 4.2 and in the supplementary

materials (Appendix B).

Reliability Metamodel Learning function Stopping criterion

Monte Carlo simulation
Kriging U

Beta bounds

Subset simulation Beta stability

Importance sampling
PC-Kriging EFF

Combined

Monte Carlo simulation

PCE FBR Beta stabilitySubset simulation

Importance sampling

Using these 39 strategies, a collection of 20 reliability problems are solved. 11 of these

problems were collected from the TNO reliability benchmark repository (Rozsas and Slobbe,

2019). The remaining were chosen from the literature with the aim of ensuring a large

variety both in terms of limit-state function dimensionality and reference failure probabil-

ity/reliability index. Most of the limit-state functions are analytical, except for two which

are based on a truss finite element model. A list of the problems together with some ref-

erences is given in the supplementary materials (Appendix B). Figure 3 summarizes these

problems in terms of dimension against reference reliability index. They range from input

dimension M = 2 to M = 100 and have a reliability index (resp. failure probability) that

ranges from βref ≈ 1.86 (resp. Pf,ref ≈ 3.14 · 10−2) to βref ≈ 5.15 (resp. Pf,ref ≈ 1.32 · 10−7).

The reference solutions are calculated using the original models and a large Monte Carlo

set whose size is set adaptively until a coefficient of variation of 1% is reached. For the

four problems that have a failure probability smaller than 10−7, an overcalibrated subset

simulation is used instead.

Throughout the benchmark, each analysis is repeated 15 times. The only exception being

benchmark #8 of dimension 100, which is repeated only 10 times. It should be noted that

within different strategies, the same initial random conditions/seeds are used for each of the

repetitions. Hence, a total of 11, 700 reliability analyses (39 strategies x 20 problems x 15

repetitions) are carried out for this benchmark.
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Figure 3: Collection of problems selected for the benchmark in terms of dimensions M and

reference reliability indices βref.

4.2 Algorithmic settings

In this section, we will briefly review the algorithm settings used for each of the methods

selected in Table 1. The methods selected for the first three components, i.e., surrogate mod-

els, reliability estimation algorithm and learning functions are detailed in the supplementary

materials (Appendix B). A summary of the most important settings for the surrogate models

and reliability estimation algorithms is given in Figure 4. The learning functions however

do not possess any special setting and are used exactly as described in the supplementary

materials.

This section therefore focuses on the three stopping criteria mentioned in Table 1:

Beta bounds: This stopping criterion is based on the Kriging variance and reads:

∣∣∣β̂+ − β̂−
∣∣∣

β̂
≤ ε̄BB (2)

where β̂+ and β̂− are the reliability indices respectively obtained using the limit-state func-

tions µĝ (x) − 2σĝ (x) and µĝ (x) + 2σĝ (x), while β̂ is the reliability index obtained using

the limit-state µĝ (x).

The threshold ε̄BB is set to 0.01 which is arguably a relatively large value. However,

convergence is assumed only when this criterion is respected three times in a row, hence

ensuring some degree of robustness.
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Kriging

� Trend: Constant

� Kernel: Gaussian

� Calibration: MLE

Monte Carlo simulation

� Max. sample size: 107

� Target C.o.V: 2.5%

� Batch size: 105

PCE

� Degree: 1− 20

� q-norm : 0.8

� Calibration: LAR

Importance sampling

� Max. sample size: 104

� Target C.o.V: 2.5%

� Instrumental density:
Standard Gaussian
centered on the MPFP

PC-Kriging

� Same as Kriging

� same as PCE but...

� Degree 1− 3

Subset simulation

� Max. sample size: 107

� Target C.o.V: 2.5%

� Batch size: 105

� Conditional probability:
p0 = 0.25

Figure 4: A summary of the most important settings for the surrogate models and reliability

estimation algorithms considered in this paper. The meaning of each of these parameters can

be found in the supplementary materials (Appendix B).

Beta stability This convergence criterion ensures the stability of the failure probability

estimate assuming that convergence is achieved when adding new points do not noticeably

modify the estimate. Using the reliability index, it reads:

∣∣∣β̂(i) − β̂(i−1)
∣∣∣

β̂(i)
≤ ε̄BS , (3)

where β̂(i) represents the estimated reliability index at the i-th iteration.

The threshold is set to ε̄BS = 0.005 and convergence is considered only when this criterion

is respected within three consecutive iterations.

Combined stopping criterion: This stopping criterion is simply a combination of the

previous two. Convergence is assumed when the two criteria in Eq. 2 and 3 are met within

two consecutive iterations.

4.2.1 Other common settings

Beside the method-specific settings introduced in the previous paragraph, others, which

are common to all methods, need to be defined. These are mainly related to the initial

experimental design which is drawn using the Latin hypercube sampling (LHS) method

(McKay et al., 1979). The number of initial ED points is set to max(10, 2M), where M

is the problem dimensionality. This allows one to ensure a minimum of 10 points for low-

dimensional problem while at the same time making sure that there are enough sample

points w.r.t. the dimension when the latter increases. Similarly at the other end of the
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spectrum, the number of sample points is limited and only a maximum of 100 + 10M points

can be added during the enrichment process. This number appears realistic for classical

costly simulators used in engineering.

4.3 Criteria for the evaluation of the strategies

To properly compare different reliability analysis strategies, a performance measure needs

to be defined. Due to the inherent complexity of the problem, we compare our benchmark

results in terms of several different measures that take into account different performance

metrics. Perhaps the most straightforward measures are i. how close the reliability estimate

is to the reference and ii. how many points are needed to reach it. Focusing on the reliability

index rather than the failure probability, a first criterion can be simply computed using the

following relative reliability error estimator:

ε
(k)
βi,j

=

∣∣∣∣∣
β̂
(k)
i,j − βref,j
βref,j

∣∣∣∣∣ , (4)

where β̂
(k)
i,j denotes the reliability index resulting from the k-th replication of the i-th strategy

applied to the j-th problem and βref,j is the reference solution for the j-th problem. As a

reminder, this benchmark comprises a set of 20 problems solved using 39 strategies, each

repeated 15 times.

The criterion presented in Eq. 4 measures the accuracy of the resulting reliability index

estimate. Additionally, we need to also assess the efficiency of the method, which simply

relates to the number of model evaluations Neval necessary to converge. The lower Neval, the

better the strategy. However Neval alone is not a sufficient measure of the strategy efficiency,

as premature convergence may occur. To avoid this, we will consider only solutions whose

relative error, as computed in Eq. 4, is below a threshold arbitrarily set at 0.05 when ranking

w.r.t. Neval. Those with larger error will be automatically ranked in the last position,

regardless of the number of model evaluations needed to converge.

Ideally, both criteria should be as low as possible, but they are by construction conflicting.

Finding the best approach would therefore mean finding a good trade-off between relative

error and computational cost. We therefore propose here a third criterion that combines

these two criteria in one, making the ranking easier:

∆
(k)
i,j = ε

(k)
βi,j

N
(k)
eval,i,j

Nmed,j
, (5)

whereNmed,j is the median number of model evaluations considering all strategies, repetitions

included, to solve the j-th problem (in total, there are 15×39 = 585 runs for each problem).

All the 39 strategies are compared with each other and a ranking is established based

on the three criteria defined above. The main goal of such a ranking is to find out if one

strategy is consistently better than the others. If no such strategy were to be found, next

is to find whether there are methods within each module that are consistently better than
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the others. Finally, the ranking will be used to assess whether given methods are better

when applied to a specific feature of the problem at hand, i.e., dimensionality and failure

probability magnitude.

4.4 Methods ranking over different problems

4.4.1 Ranking of the strategies

At first, we compare different strategies considering all the criteria previously defined, to

which we add as reference two plain simulation methods, i.e., importance sampling and

subset simulation (the total number of reliability analysis runs becomes then 12, 300). They

provide us with reference results without surrogates and serve as a benchmark baseline. For

importance sampling, the MPFP is found using FORM and the MCS sample set is of size

103. For subset simulation, the subset sample set is of size 103 while p0 is set to 0.1.

Additionally to the ranking, the robustness of each strategy is assessed. For each problem

and replication, we observe whether a given strategy is within a certain distance from the

best solution w.r.t. a chosen criterion. For the criterion “number of model evaluations”, the

distance is set to {2, 3, 5} ×N∗eval where N∗eval is the smallest number of model evaluations

among strategies whose relative error is below the threshold of 0.05. For the “relative error”

(resp. ∆-criterion), the distance is measured as {5, 10, 20} × ε∗β (resp. {5, 10, 20} × ∆∗)

where ε∗β (resp. ∆∗) is the smallest relative error (resp. ∆ value) among all strategies. This

count is aggregated over all problems and replications (in total, 20 × 15 = 300 analyses)

and given in terms of percentage as illustrated by the bars in Figures 5, 6 and 7. The mid-

distance (i.e., 3N∗eval, 10 ε∗β and 10 ∆∗) is used to rank the methods in these figures (the best

solutions are in the upper positions).

In general, the larger the bars, the more robust and accurate the associated method

is. For instance looking at the first line of Figure 5, the second bar shows that for the

combination PCK + SuS + EFF + β-stability criterion and considering all the problems,

the number of model evaluations required to converge in 69% of the repetitions is below 2

times the smallest number of model evaluations achieved for each given problem. The largest

bar shows that this ratio increases to 88% when considering a threshold within 5 times the

best achieved number of model evaluations. Finally, in each of these figures, the smallest

and darkest bar represents the percentage of times a strategy was ranked first for a given

experimental design.

Ranking with respect to the number of model evaluations

The first criterion we consider is the number of model evaluations, whose results are

shown in Figure 5. As expected, when considering only the number of model evaluations,

the direct solutions (i.e., subset simulation and importance sampling without the use of

surrogates) rank last. The most robust and efficient solution w.r.t. the number of model
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evaluations is the combination of PCK with subset simulation, EFF and β-stability stopping

criterion. Overall, considering the 10 best solutions, PCE or PC-Kriging as surrogates, subset

simulation as reliability estimation algorithm and β-stability as stopping criterion seem to

dominate. Regarding the learning function, there is no clear top performer as they all appear

at least twice in the first ten positions.

Percentage of runs

Figure 5: Ranking of the strategies w.r.t. Neval. The overall ranking is based on the number of

times the method performs within 3N∗
eval.

Ranking with respect to the relative error

The next criterion we consider is the relative error as illustrated in Figure 6. Here the

direct solutions (without surrogates) are better ranked than with the previous criterion but

they still rank worse than more than half of the methods considered. The better performance

of surrogate-based methods is due to the “overkill” setup of the reliability solvers used in

conjunction with the surrogates. As explained in Section 3.1.2, the computational efficiency

of the surrogates allows one to use reliability solver configurations that maximize accuracy
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and minimize the stochastic uncertainty in the reliability estimator, without the traditional

trade-offs associated. This shows that the use of surrogate models as an instrument for the

exploration of the random input space can lead to results at least as equally accurate as a

direct solution, i.e., without the use of surrogates.

Regarding the best strategy, we can observe a few differences with the previous ranking.

The overall most robust and efficient strategy is the combination of PC-Kriging with subset

simulation, deviation number U and the combined stopping criterion. PCE is not so well

classified when focus is put solely on accuracy. PC-Kriging is dominating the top ranking

with a few occurences of Kriging. As far as reliability estimation algorithm and learning

function are concerned, subset simulation and the deviation number U are preferred. Finally,

regarding the stopping criterion, β-stability (Eq. 3) seems not to favor accuracy, in sharp

contrast to the combined criterion, which now appears in the top performing combinations.

Percentage of runs

Figure 6: Ranking of the strategies w.r.t. εβ. The overall ranking is based on the number of

times the method performs within 10 ε∗β (one order of magnitude).
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Ranking with respect to the ∆-criterion

The last criterion considered is ∆ (Figure 7, Eq. 5), which as expected results in a combina-

tion of the two previous rankings. First the direct solutions are penalized by their relatively

large number of model evaluations and rank again in the last two positions. Overall, this

criterion favours solution accuracy, because the relative error in Eq. 4 can vary orders of

magnitudes, while the range of variation of the number of model evaluations is not equally

large (remember that the allowed number of model evaluations is limited to 100 + 10M).

Therefore the latter can only help make a difference within strategies that already lead to

roughly the same accuracy.

Percentage of runs

Figure 7: Ranking of the strategies w.r.t. ∆. The overall ranking is based on the number of

times the method performs within 10 ∆∗ (one order of magnitude).

As evidenced by Figures 5, 6 and 7, there is not a single strategy that outperforms all

others in every benchmark. However, some trends are emerging from these results. The next

section dives deeper into the specific methods selected for each module.
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4.4.2 Ranking of the methods within each module

In the previous section, we analyzed the strategies as a block, now we split them into their

four components and perform the same statistical analysis. The strategies are once again

ranked for each problem and replication and we count the number of occurrences of each

method in a given ranking. The results are summarized in Figures 8 and 9, where the

percentage of times a given method is the best is shown in the last group of bars of each

panel. To assess the variability in the ranking we also count the number of times a given

method is within the first 5, 10 or 20 positions. Despite some minor variations in the share

of each method in the top positions, the ranking remains unchanged if considering either

the ∆-criterion or the relative error. In terms of surrogate models, PC-Kriging is the best

performing choice, as it accounts for roughly half the occurrence in the best rankings. The

reliability module is the most balanced, even though subset simulation shows a slight margin

over the two others. In terms of learning function, the deviation number U outperforms both

the expected feasibility function (EFF ) and its PCE counterpart (FBR).

The convergence criterion is the only module, the results of which differ depending on

the ranking criterion considered. The best method seems to be β-stability when it comes to

the ∆-criterion. However this turns to β-bounds when considering the relative error. The

explanation is simply that β-stability converges faster than β-bounds. Hence, when accuracy

is the prior concern, the second criterion is more suitable. However, when the computational

budget is limited, β-stability is a more appropriate convergence criterion.
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(a) Surrogate model (b) Reliability estimation algorithm

(c) Learning function (d) Stopping criterion

Figure 8: Relative number of times a given method is among the top 20, top 10, top 5 or is the

best. Ranking is made w.r.t. to the ∆-criterion.
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(a) Surrogate model (b) Reliability estimation algorithm

(c) Learning function (d) Stopping criterion

Figure 9: Relative number of times a given method is among the top 20, top 10, top 5 or is the

best. Ranking is made w.r.t. the relative error εβ

25



4.5 Aggregation of the results w.r.t. the problem features

Using the ranking from the previous two sections, it is clear now which methods lead on

average to the best performance in terms of accuracy and efficiency. In this section, we go

a step further and try to determine if these methods behave in the same way as a function

of two selected features of the problem, namely input dimensionality and magnitude of the

probability of failure, or if their performances are intrinsically linked to the type of problem

at hand. We split the benchmark into low- (M < 20) and high-dimensional (M ≥ 20)

problems, as well as small (βref < 3.5) and high (βref ≥ 3.5) reliability indices.

4.5.1 Performance with respect to dimensionality

Figures 10 and 11 respectively show the ∆-criterion values and relative errors aggregated over

all problems and then split for each method. The horizontal dotted black line represents the

median over all problems. In each panel, the boxplots represent the aggregated median

results (over all 15 replications) considering all (blue), low- to medium- (magenta) and high-

dimensional problems (cyan).

Starting with the surrogate models and looking at the ∆-criterion (Figure 10a), we observe

that PC-Kriging does not seem to be strongly affected by the problem dimensionality, as in

all cases the conditional median remains slightly below the overall median, while PCE seems

to improve its relative performance in higher dimensional problems. Kriging on the other

hand performs noticeably poorly. The same trend is observed with the accuracy criterion εβ

(Figure 11a).

Next are the reliability estimation algorithms (Figure 10b) and as expected Monte Carlo

simulation is essentially insensitive to the dimension. Subset simulation performs slightly

worse in high-dimension but not as much as importance sampling. The latter becomes

slightly worse when considering the purely accuracy-oriented criterion (Figure 11b).

Regarding the learning functions (Figure 10c and 11c), the deviation number (U) also

does not seem to be noticeably affected by the dimension, contrary to the expected feasibility

function (EFF ) which gets considerably worse as the dimension increases. The fraction of

bootstrap replicates (FBR) mirrors the behavior of PCE as there is a one-to-one mapping

between the two. Their performance gets somehow better for high-dimensional problems

when considering either of the criteria.

Finally, as already observed earlier, contradicting conclusions are obtained when con-

sidering either the ∆-criterion value (Figure 10d) or the relative error (Figure 11d) for the

stopping criterion. In the former case, β-stability seems to be the best option when dimen-

sion increases whereas in the latter β-bounds, or even the combined criterion, seem to be the

best option. This again can be explained by the fact that β-bounds is a stricter convergence

criterion, especially in high-dimensional cases where the Kriging variance hardly shrinks as

the experimental design is enriched.
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(a) Surrogate model (b) Reliability estimation algorithm

(c) Learning function (d) Stopping criterion

Figure 10: Different methods compared w.r.t. the combined criterion ∆ with problems split in

two: low- (M < 20) and high-dimensional (M ≥ 20).

4.5.2 Performance with respect to the magnitude of the failure proba-

bility

In contrast to the dimensionality cases where some methods were not particularly affected

by the increase in dimensions, the level of the reliability index seems to affect pretty much

all the methods. More specifically, the extremely low failure probability cases result on

average in systematically poorer performances both in terms of relative error and ∆ (See

Figures 12 and 13). As expected, Monte Carlo simulation performs considerably worse than

its alternatives. The reason is that even in its “overkill” setting, the maximum number

of model evaluations was set to 107, hence limiting the statistical estimator variance for

extremely low failure probability problems.
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(a) Surrogate model (b) Reliability estimation algorithm

(c) Learning function (d) Stopping criterion

Figure 11: Different methods compared w.r.t. the relative error εβ with problems split in two:

low- (M < 20) and high-dimensional (M ≥ 20).
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(a) Surrogate model (b) Reliability estimation algorithm

(c) Learning function (d) Stopping criterion

Figure 12: Different methods compared w.r.t. the combined criterion ∆ with problems split in

two: small (βref < 3.5) and large (βref ≥ 3.5) reliability indices.
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(a) Surrogate model (b) Reliability estimation algorithm

(c) Learning function (d) Stopping criterion

Figure 13: Different methods compared w.r.t. the relative error εβ with problems split in two:

small (βref < 3.5) and large (βref ≥ 3.5) reliability indices.
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4.6 Results with strategies aggregated over different problems

Now that we have a clear picture of the performances of each strategy as a whole and more

particularly of different methods w.r.t. different problems and their features, let us have a

look at the overall performance of all methods for each problem. The aggregated relative error

and ∆ values for all 20 problems (ordered in increasing dimensions) are shown in Figure 14

as violin plots, i.e., boxplots with an additional indication of the probability density of the

data. The three problems with the overall worst median performances are highlighted in

red. The first observation from Figure 14 is that, regardless of the problem, there are still

at least a few strategies that lead to good performances. As a matter of fact, the median

values of both criteria are for most problems below the level arbitrarily set at 10−2.

(a) ∆-criterion (b) Relative error

Figure 14: Results aggregated for all solutions strategies and shown for each problem considering

the combined criterion and the relative error. The three problems with the worst median results

are highlighted in red.

To end this benchmark, the methods which were ranked most often best are compared

with the overall pool of strategies. This is shown in Figure 15. More specifically, Fig-

ures 15a and 15b show comparison on the ∆-criterion and relative error respectively, with

respect to the combination of PC-Kriging with subset simulation, deviation number U and

Combined criterion. This is the approach that was consistently best both in the strategies

and methods ranking. In both cases, we can observe that this choice of methods improves

the performance on most problems and also reduce the scatter in the results. This graph also

confirms the no-free-lunch principle exhibited by this benchmark as the overall best strategy

is not necessarily the best for each problem.
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(a) ∆ with PCK+SuS+U+Co

(b) εβ with PCK+SuS+U+Co

Figure 15: Results aggregated for all solutions strategies (blue) compared to those corresponding

to the overall best strategy (orange) w.r.t. to ∆ and εβ

4.7 Investigation of the most difficult problems

In this section, we closely look at the three problems that were most difficult to solve using

the proposed ALR methods. By doing so, we note that some of these problems could not

have been solved correctly even when considering the direct reliability estimation algorithms

(without surrogates). Problem #11 contains four disjoint failure regions, which makes it

impossible to solve using the standard importance sampling configuration considered in this

benchmark. This also applies to the problem #8, which is spherical along the variables

{X2, X3, . . . , X100}. Furthermore, problem #11 cannot be solved with direct Monte Carlo
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simulation due to the low reference failure probability pf = 7.83 · 10−7, which would require

NMCS ≈ 109−10 samples to achieve sufficient accuracy.

These observations can be confirmed by Figure 16 which shows the results corresponding

to the solution of the benchmark problems using the three reliability estimation algorithms,

with their overkill settings and without the aid of surrogate models. The red lines correspond

to problems whose relative error is larger than 1. Using the threshold for acceptable accuracy

at 10−2 as in the previous sections, we can see that Monte Carlo simulation fails to solve

problems #10, #11, and #15 while importance sampling fail with problems #8, #11, #13,

#18. This illustrates an important result of the benchmark, namely that the surrogate

models were never the main cause of failure of the ALR strategies.

Figure 16: Solution of the 20 problems using the three “overkill” reliability settings without

surrogate models.

5 Research questions and recommendations

Our extensive benchmarking exercise allows us to showcase the framework introduced in

this paper. We compared strategies built using this generalized active learning reliability

framework with respect to various metrics. In this section, we summarize the findings from

this benchmark and set up some guidelines as to the choice of the methods within the modules

of the framework.

The first question that we set out to answer in this benchmark was whether there was

one strategy that would consistently outperform the others with respect to all metrics and

throughout all problems. The answer is clearly that there is no such strategy (no-free-lunch

principle), yet using a surrogate model is always beneficial. For each analysis, the best strat-

egy would vary according to the metric of interest and the type of problems. A natural
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follow-up question is whether any pattern could be uncovered by the benchmark. With-

out prior knowledge about the problem and using a non-intrusive combination of different

methods, the conclusion is sharp: the best results are most likely obtained by combining

PC-Kriging, subset simulation, deviation number U and β-bounds or combined stopping

criterion.

This conclusion is obviously only limited to the methods selected for the benchmark.

However, we may in some cases extrapolate to general guidelines by considering the charac-

teristics of the different methods in relation to various features of the problems solved in the

benchmark. We made the following observations regarding each module of the framework:

• Surrogate model: From this benchmark, it is clear that Kriging, which is the most

used method in the literature, is not necessarily the best choice for active learning

reliability. The main reason is that it performs poorly in fairly high-dimensional prob-

lems. PC-Kriging, which combines the global and local approximations capabilities of

PCE and Kriging respectively, has shown consistently high performance throughout

this benchmark. PCE has shown to perform better than Kriging for high-dimensional

problems and this also benefits PC-Kriging to some extent. Finally, PC-Kriging pos-

sesses the same built-in error measure as Kriging, which makes it compatible with the

various learning functions that take advantage of the Kriging variance.

• Reliability estimation algorithm: From this benchmark, it is clear that the active

learning scheme inherits the pros and cons of the reliability estimation algorithm it uses,

although this is somewhat mitigated by the ability to use “overkill” configurations.

There is a direct correlation between the ability of a reliability estimation method to

solve a given type of problems and the performance of the associated active learning

scheme. Once again, Monte Carlo simulation, which is widely used in the literature, has

proven not to be the best choice of algorithm according to the benchmark results. The

introduction of surrogates does not eliminate the weakness of Monte Carlo simulation

indeed when it comes to problems with extremely small failure probabilities. This is

true also for the other algorithms, as importance sampling still showed limitations with

problems where multiple failure regions exist. Note that other importance sampling

densities may be used in practice when such a multiple-failure feature is known in

advance (this was not considered in the benchmark). Regardless of the three algorithms

used in the benchmark, it seems that the best course of action is to choose whatever

algorithm the analyst thinks is best given his a priori knowledge on the problem.

Finally, an important result highlighted by the benchmark is that over-calibrating

the reliability estimation algorithm is beneficial and can lead to even better results

than the non-surrogate equivalent using conventional settings. Therefore, surrogate

models should be used to fully harness the benefits of the most sophisticated reliability

estimation methods.

• Learning function: Considering this benchmark, the deviation number U seems to
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outperform EFF . The fraction of bootstrap replicates (FBR) is better than U when it

comes to high-dimensional problems but loses its advantage when considering problems

with small failure probabilities. All the methods selected for the benchmark are however

very similar. It would have been interesting in this specific case to explore other type of

learning functions, e.g., those that also include the PDF of the input random variables.

• Stopping criterion: The stopping criteria selected for the benchmark are based on

the accuracy of the Pf (or β) estimate rather than on the learning function. This finding

is consistent with those identified in previous contributions (Schöbi et al., 2016). This

benchmark has however highlighted the difference between stopping criteria based on

the local accuracy of the surrogate with those based on the stability of the limit-state

surface. The former are shown to provide good results overall but to perform poorly in

high-dimensional problems. This can be explained by the difficulty to sufficiently reduce

the Kriging variance for high-dimensional problems. In contrast, stability criteria are

somewhat more efficient for high-dimensional problems. However, they are prone to

premature convergence. Combining these two criteria did not lead to a noticeable

increase in performance.

To further summarize the observations made by analyzing the results of the benchmark,

Table 2 gives a few recommendations on the basis of the benchmark.

Table 2: General recommendations on the basis of the benchmark carried out in this paper.

βbo stands for β-bounds convergence, βstab stands for β-stability convergence and βco is the

combined criterion.

Module Dimensionality Failure probability magnitude

M < 20 20 ≤M ≤ 100 β ≤ 3.5 β ≥ 3.5

Surrogate model PCK PCE PCE/PCK PCK

Reliability estimation algorithm SuS SuS SuS SuS

Learning function U FBR FBR/U U

Stopping criterion βbo,βco βbo,βco
1/ βstab

2 βbo,βco βbo

1 When considering accuracy only εβ.

2 When factoring in efficiency ∆.

6 Conclusions

This paper investigated the use of active learning strategies for the solution of structural

reliability problems. We first conducted a literature survey and identified an underlying and

recurring scheme. This scheme was used to propose a global framework for active learning
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reliability which is made of four components non-intrusively linked to each other. The four

modules of this framework are surrogate model, reliability analysis, learning function and

stopping criterion. We then showed that it is possible to combine various methods from each

of the modules to build a wide array of viable solution strategies. On this basis, 39 solution

strategies were built to solve a set of 20 selected problems. The results of this benchmark

allowed us to identify patterns regarding the generalization capability of each method.

The first observation is that there is no strategy that consistently outperforms the others.

We could however identify clear patterns to give recommendations on which types of methods

should be preferred with regard to a given feature of the problem at hand. The flexibility

of the presented framework is in this regard of great value as it allows the analyst to build

tailored active learning reliability schemes.

The second observation is that there is essentially no drawbacks in using surrogate models.

The latter allows one indeed to better exploit the reliability estimation algorithms through

“overkill” settings.

Even though we ran an extensive benchmark a few aspects still need to be investigated.

For instance, we did not explore the effect of the thresholds in the stopping criterion, nor

did we explore more advanced learning functions. This includes techniques that weigh in the

input PDF or allow for multiple points enrichment. By design, the scope of the analysis was

limited to problems with single limit-state functions. More aspects need to be taken into

account when considering multiple limit-state functions. Finally, extremely high-dimensional

problems (M in the other of hundreds or even thousands) were not considered as they also

would require special treatment. Finally the proposed optimal framework has been applied

blindly to a structural reliability context organized by TNO (Rozsas and Slobbe, 2019), whose

results are available at https://rprepo.readthedocs.io/en/latest/results.html (last accessed on

October 4th, 2021). Out of 16 component- and 11 system-reliability problems, our approach

was the most efficient for 24 problems. A short summary of the results is provided in A for

the sake of completeness.

It is worth mentioning that the codes and the set of examples used are made publicly

available through the UQLab release R1.4, such that it will be easy to extend the results

presented here to new problems.
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A TNO Benchmark

The TNO benchmark is a truly black-box benchmark of structural reliability analysis meth-

ods organized by TNO (Netherlands) in 2019 (Rozsas and Slobbe, 2019). It is a two-part

challenge which consists in a set of 16 component- and 11 system-reliability problems. It

aims at assessing the efficiency and accuracy of various structural reliability methods. The

limit-state functions were not known to the participants and were only accessible via an

anonymous server API, i.e., the participants could only submit a set of sample points and

the server would return the corresponding model evaluations.

The methods highlighted by the benchmark in this paper, i.e., a combination of PC-

Kriging, subset simulation with overkill settings, deviation number U and combined stopping

criterion, were used to participate in the challenge. The results were disclosed in terms of

accuracy and efficiency.

Figure 17 shows the results submitted anonymously by the nine research groups that took

part in the challenge. The black arrows point to the results submitted using our approach.

Our approach turned out to be both the most accurate and efficient in 24 out of 27 problems.

This confirms the potential of such a flexible framework for the solution of a wide variety of

structural reliability problems.

44



(a) Part 1: Component-reliability problems

(b) Part 2: System-reliability problems

Figure 17: Results of the black-box reliability challenge as disclosed by Rozsas and Slobbe

(2019). The results submitted using the approach highlighted in this paper are marked by the

black arrow.
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B Supplementary materials

B.1 Detailed list of problems

This section presents the different problems used in the benchmark. Only the transmission

tower problems which were specifically developed for this benchmark are presented in details.

The reader is referred to the mentioned references for further details on the other problems.

Table 3: Summary of the benchmark problems (#01 to #11 are from (Rozsas and Slobbe, 2019).

#19 & #20 are based on finite element models.)

Problem Dimension Pf,ref Reference

01 (TNO RP 14) 5 7.69 10−4 Rozsas and Slobbe (2019)

02 (TNO RP 24) 2 2.90 10−3 Rozsas and Slobbe (2019)

03 (TNO RP 28) 2 1.31 10−7 Rozsas and Slobbe (2019)

04 (TNO RP 31) 2 3.20 10−3 Rozsas and Slobbe (2019)

05 (TNO RP 38) 7 8.20 · 10−3 Rozsas and Slobbe (2019)

06 (TNO RP 53) 2 3.14 · 10−2 Rozsas and Slobbe (2019)

07 (TNO RP 54) 20 9.79 · 10−4 Rozsas and Slobbe (2019)

08 (TNO RP 63) 100 3.77 · 10−4 Rozsas and Slobbe (2019)

09 (TNO RP 75) 2 9.80 · 10−3 Rozsas and Slobbe (2019)

10 (TNO RP 107) 10 2.85 · 10−7 Rozsas and Slobbe (2019)

11 (TNO RP 111) 2 7.83 · 10−7 Rozsas and Slobbe (2019)

12 (4-branch series) 2 3.85 · 10−4 Echard et al. (2011)

13 (Hat function) 2 4.40 · 10−3 Schöbi et al. (2016)

14 (Damped oscillator) 8 4.80 · 10−3 Der Kiureghian and de Stefano (1990)

15 (Non-linear oscillator) 6 3.47 · 10−7 Echard et al. (2011, 2013)

16 (Frame) 21 2.25 · 10−4 Echard et al. (2013)

17 (HD function) 40 2.00 · 10−3

18 (VNL function) 40 1.40 · 10−3 Bichon et al. (2008); Sadoughi et al. (2017)

19 (Transmission tower 1) 11 5.76 · 10−4 See Section B.1.1

20 (Transmission tower 2) 9 6.27 · 10−4 See Section B.1.1

B.1.1 Transmission tower

The transmission tower example is originally developped within this paper. It is a three-

dimensional finite element model consisting of 51 nodes and 172 bars. The bars are split
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in four groups, each characterized by their cross-sectional areas (A1 to A4) and constitutive

materials Young’s moduli (E1 to E4). The truss is subjected at its tip to a horizontal wind

load F whose deviation α from the lateral axis of the hands is random. At the extremity

of the hands two vertical loads due to cables weight are added. All these parameters are

random and described in Table 4.

The finite element analysis is carried out in Matlab and failure is assumed:

• for problem #19, when the displacement at the tip of the tower is larger than 0.07 m

and;

• for problem #20, when the maximum stress in any of the bars is larger than the yield

stress fy defined in Table 4.

F

P

P

Group 1

Group 2

Group 3

Group 3

Group 4

Figure 18: Illustration of the transmission tower used for problems #19 and #20.
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Table 4: Probabilistic model for the transmission tower problems.

Parameter Distribution Mean C.o.V

A1 (m2) Gaussian 10−3 0.05

A2 (m2) Gaussian 10−3 0.05

A3 (m2) Gaussian 5 · 10−3 0.05

A4 (m2) Gaussian 5 · 10−3 0.05

E1 (GPa)a Gaussian 210 0.05

E2(GPa)a Gaussian 210 0.05

E3(GPa)a Gaussian 210 0.05

E4(GPa)a Gaussian 210 0.05

F (N) Gumbel 3.5 · 104 0.30

P (GPa) Gumbel 104 0.30

α (degrees) Uniformb −30 30

fy (MPa)c Lognormal 355 0.2

a For problem #20, E = E1 = E2 = E3 = E4;

b The values in the next columns are parameters of the

Uniform distribution (minimum and maximum);

c Only used for Problem #20.

B.2 Algorithmic settings

B.2.1 Surrogate models

Kriging Kriging also known as Gaussian process modelling considers the model to ap-

proximate as a realization of a stochastic Gaussian process made up of two parts (Santner

et al., 2003; Rasmussen and Williams, 2006):

M (x) = fT (x)β + σ2Z (x) , (6)

where f (x) is a vector of regressors with their corresponding coefficients β, σ2 is the process

constant variance and Z (x) a zero-mean, unit-variance stationnary Gaussian process.

This parametric form is calibrated by learning over an experimental design and the pre-

diction for any unknown sample is given by the following analytical formula:

µĝ (x) = fT (x) β̂ + rT (x)R−1
(
y − F T β̂

)
, (7)

where fT (x) β̂ is a polynomial trend calibrated through least-square regression, R is a

parametric auto-correlation matrix, r (x) is a vector of cross-correlations between the point

x and the experimental design points and F is the so-called observation matrix. Interestingly,

Kriging not only allows for prediction but can also provide a measure of its own accuracy
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through the following variance:

σ2
ĝ (x) = σ2

(
1− rT (x)R−1r (x) + uT (x)

(
F TR−1F

)−1
u (x)

)
(8)

where u (x) = F TR−1r (x)− f (x).

In this benchmark, we consider ordinary Kriging, meaning that the trend is an unknown

constant as it is a common practice in GP modelling. Furthermore, we consider an anisotropic

Gaussian auto-correlation function, the parameters of which are calibrated using maximum

likehood estimation. The optimization is carried out using a genetic algorithm whose results

are refined by a gradient-based solver.

The implementations in the Kriging module (Lataniotis et al., 2017) of UQLab (Marelli

and Sudret, 2014) were used for the applications in this paper.

Polynomial chaos expansions Polynomial chaos expansions result from a spectral

expansion of a random variable Y onto a set of orthonormal polynomials (Xiu and Karni-

adakis, 2002):

Y =M (X) =
∑

α∈NM

yαΨα (X) (9)

where Ψα are a set of multivariate polynomials orthornormal with respect to fX and yα are

the coefficients representing the coordinates of the individual components of Ψα indexed by

α ∈ NM .

Building a PCE approximation requires two main steps. The first is to truncate the

infinite expansions into a finite sum, which is achieved in this work using hyperbolic trunca-

tion (q-norm with q = 0.75) (See Blatman and Sudret (2010) for details). Furthermore, the

maximum degree is limited to 20 and the interactions to the second order. The second step

is to estimate the coefficients, which is achieved here using a regularized least-square min-

imization problem whose formulation allows for sparsity in the PC expansion. Practically,

this problem is solved by the hybrid least-angle regression algorithm (LARS, Efron et al.

(2004)) as proposed in Blatman and Sudret (2011).

The implementations in the PCE module (Marelli and Sudret, 2017) of UQLab (Marelli

and Sudret, 2014) were used for the applications in this paper.

PC-Kriging PC-Kriging is a metamodellling technique obtained by combining polyno-

mial chaos expansions and Kriging. More specifically, a PC-Kriging model is simply a uni-

versal Kriging model whose trend is a set of orthonormal polynomials (Schöbi et al., 2016):

M (x) =
∑

α∈A
yαΨα (x) + σ2Z (x) , (10)

where A is a finite set of multi-indices.

The calibration of the PC-Kriging model is carried out sequentially: first the terms of

the (sparse) polynomial trend are detected with LARS then the Kriging metamodel is fitted

(both the trend coefficients and the hyperparameters of the covariance kernel). The same
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algorithms and settings as in the two previous paragraphs are used. The only difference is

the maximum polynomial degree, which is set here equal to 3.

The implementations in the PC-Kriging module (Schöbi et al., 2017) of UQLab (Marelli

and Sudret, 2014) were used for the applications in this paper.

B.2.2 Reliability analysis

Monte Carlo simulation Monte Carlo simulation is a direct integration of Eq. 1 by

sampling the probability density function fX . Given a population of size N , the MC estimate

of Pf reads:

P̂f =
N∑

k=1

1{x:g(x)≤0}
(
x(k)

)
=
Nfail

N
, (11)

where Nfail is the number of failed samples. The only parameter to calibrate here is the

sample size. In this work, the simulation is carried out in batches of size 105 until the

coefficient of variation of the estimate:

CoV =

√
1− P̂f
NP̂f

(12)

is smaller than a threshold arbitrarily set to 0.025 or until the maximum sample size of 107

is reached.

Importance sampling Importance sampling is a variance reduction simulation tech-

nique where the samples are generated following a proposal distribution rather than the

original random variables PDF. The associated failure probability estimate therefore reads:

P̂f =
1

N

N∑

k=1

1{x:g(x)≤0}
(
x(k)

) fX
(
x(k)

)

h
(
x(k)

) , (13)

where the set
{
x(1), . . . ,x(N)

}
is sampled following the distribution h (x).

In this work, the proposal distribution is simply a standard Gaussian centered around

the most probable failure point as estimated using FORM. The maximum sample size is set

to 104.

Subset simulation Subset simulation is another popular variance reduction technique

obtained by solving a series of reliability problems with a relatively large target failure

probability. Considering a set of nested events D1 ⊃ D2, . . . ,⊃ Dm = Df defined such that

Dk = {x : g (x) ≤ tk} with t1 > t2 >, . . . , tm = 0, the failure probability can be recast as:

Pf = P (Df ) = P (∩mk=1Dk) = P (D1)
m−1∏

i=1

P (Di+1|Di) (14)

While the initial failure probability P (D1) is estimated using crude Monte Carlo simulation,

the remaining conditional failure probabilities are computed using Markov Chain Monte

Carlo. The intermediate thresholds are set on-the-fly such that the P (Di+1|Di) = p0 is large
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enough. Traditionnally p0 is set to 0.1 but in this work, we consider p0 = 0.25 and a batch

size of 105 for each subset level. This overkill setting allows us to better explore the random

input space and results in a relatively small coefficient of variation of P̂f .

B.2.3 Learning functions

In this work, we consider three different learning functions. The first two are associated to

Kriging and PC-Kriging while the third one is only used with PCE. They respectively read:

Deviation number

U (x) =
|µĝ (x)|
σĝ (x)

(15)

Expected feasibility function

EFF (x) = µĝ(x)

[
2Φ

(−µĝ(x)

σĝ(x)

)
− Φ

(−ε− µĝ(x)

σĝ(x)

)
− Φ

(
ε− µĝ(x)

σĝ(x)

)]

− σĝ(x)

[
2ϕ

(−µĝ(x)

σĝ(x)

)
− ϕ

(−ε− µĝ(x)

σĝ(x)

)
− ϕ

(
ε− µĝ(x)

σĝ(x)

)]

+ ε

[
Φ

(
ε− µĝ(x)

σĝ(x)

)
− Φ

(−ε− µĝ(x)

σĝ(x)

)]
, (16)

where ε = 2σĝ(x) and φ and Φ are respectively the probability density function (PDF) and

cumulative distribution function (CDF) of a Gaussian random variable.

Fraction of bootstrap replicates This learning function, developed by Marelli and

Sudret (2016), is based on bootstrap replicates of a PCE model. First, B PCE models

are built using B new experimental designs
{
E(b), b = 1, . . . , B

}
where each new ED is

constructed by drawing samples with replacement from E . Following this procedure, the

learning function reads:

UFBR(x) =
|Bs (x)−Bf (x)|

B
, (17)

where Bs (x) and Bf (x) ∈ [0, , . . . , , B] are respectively the number of safe and failed PC-

bootstrap replicates at the point x.

No specific algorithmic settings are considered for these learning functions. Considering

a candidate pool made up of samples drawn within the previous iterations of the reliability

algorithm, the next point to add to the ED is simply chosen by selecting the one that

minimizes U (or UFBR) and maximizes EFF .
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