Bounds for estimation of covariance matrices from heterogeneous samples - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Signal Processing Année : 2008

Bounds for estimation of covariance matrices from heterogeneous samples

Résumé

This correspondence derives lower bounds on the mean-square error (MSE) for the estimation of a covariance matrix mbi Mp, using samples mbi Zk,k=1,...,K, whose covariance matrices mbi Mk are randomly distributed around mbi Mp. This framework can be encountered e.g., in a radar system operating in a nonhomogeneous environment, when it is desired to estimate the covariance matrix of a range cell under test, using training samples from adjacent cells, and the noise is nonhomogeneous between the cells. We consider two different assumptions for mbi Mp. First, we assume that mbi Mp is a deterministic and unknown matrix, and we derive the Cramer-Rao bound for its estimation. In a second step, we assume that mbi Mp is a random matrix, with some prior distribution, and we derive the Bayesian bound under this hypothesis.
Fichier principal
Vignette du fichier
besson_1032.pdf (863.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03610279 , version 1 (16-03-2022)

Identifiants

Citer

Olivier Besson, Stéphanie Bidon, Jean-Yves Tourneret. Bounds for estimation of covariance matrices from heterogeneous samples. IEEE Transactions on Signal Processing, 2008, 5 (7), pp.3357-3362. ⟨10.1109/TSP.2008.917341⟩. ⟨hal-03610279⟩
10 Consultations
64 Téléchargements

Altmetric

Partager

More