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Covariance Matrix Estimation
With Heterogeneous Samples

Olivier Besson, Senior Member, IEEE, Stéphanie Bidon, Student Member, IEEE, and
Jean-Yves Tourneret, Member, IEEE

Abstract—We consider the problem of estimating the covariance
matrix M, of an observation vector, using heterogeneous training
samples, i.e., samples whose covariance matrices are not exactly
M. More precisely, we assume that the training samples can
be clustered into K groups, each one containing L, snapshots
sharing the same covariance matrix M .. Furthermore, a Bayesian
approach is proposed in which the matrices M, are assumed to be
random with some prior distribution. We consider two different
assumptions for M. In a fully Bayesian framework, M, is
assumed to be random with a given prior distribution. Under this
assumption, we derive the minimum mean-square error (MMSE)
estimator of M, which is implemented using a Gibbs-sampling
strategy. Moreover, a simpler scheme based on a weighted sample
covariance matrix (SCM) is also considered. The weights mini-
mizing the mean square error (MSE) of the estimated covariance
matrix are derived. Furthermore, we consider estimators based
on colored or diagonal loading of the weighted SCM, and we
determine theoretically the optimal level of loading. Finally, in
order to relax the a priori assumptions about the covariance
matrix M, the second part of the paper assumes that this matrix
is deterministic and derives its maximume-likelihood estimator.
Numerical simulations are presented to illustrate the performance
of the different estimation schemes.

Index Terms—Covariance matrices, estimation, heteroge-
neous environment, maximum-likelihood estimation, minimum
mean-square error (MMSE) estimation, Monte Carlo methods.

I. INTRODUCTION

STIMATION of covariance matrices is a fundamental
E issue in most adaptive detection problems, where a known
signal (up to a scaling factor) embedded in noise (whose
statistics are unknown) has to be detected in a cell under
test (CUT). When the noise is Gaussian distributed and its
covariance matrix M, is known, the optimal detector consists
of a whitening step followed by matched filtering. When the
covariance matrix M, is unknown, it is natural to estimate it
and to substitute M, for its estimate in the optimal detector [1].
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Consequently, estimation of M, is of utmost importance. In
space-time adaptive processing (STAP) for radar applications,
one usually resorts to training samples obtained from range
cells adjacent to the CUT, with the underlying assumption
that these samples will more or less share the same statistical
properties as the noise in the CUT. In an ideal case, where all
training samples are independent, Gaussian distributed with
the same covariance matrix M p» using the SCM as an estimate
results in an adaptive filter whose performance is independent
of M, and only depends on the number of training samples and
the number of array elements [1]-[3]. Indeed, Reed, Mallet,
and Brennan have shown that the output signal-to-noise ratio
(SNR) of this adaptive filter, normalized to the optimum SNR,
has a beta distribution. Moreover, the SNR loss is less than
3 dB as soon as 2m training samples are available, where m
stands for the dimension of the observation space. In STAP
applications, m corresponds to the number of array elements
times the number of pulses in a coherent processing interval,
and can, thus, be quite large. It then becomes complicated to
have m training samples which are completely homogeneous
with the CUT.

It is widely recognized that clutter environments are most
often heterogeneous [4], [5]. Heterogeneity can stem from the
terrain itself, e.g., complex scattering environments (such as
urban areas), clutter transitions (e.g., land-sea), presence of dis-
cretes in some range cells, etc. It can also be a direct conse-
quence of the array geometry. For example, in the case of a for-
ward-looking radar, it is known that the clutter is distributed
along an ellipse in the angle-Doppler plane, and that this el-
lipse varies with distance, especially at short ranges [6]. Hetero-
geneous environments adversely affect detection performance,
and using the sample covariance matrix of the training sam-
ples results in significant performance degradation, if no fur-
ther processing is used. In order to mitigate the deleterious ef-
fects of heterogeneous environments, knowledge-aided (KA)
processing has recently gained significant attention [7], [8]. KA
processing consists of improving conventional adaptive detec-
tion schemes via some a priori information, obtained, e.g., from
digital elevation maps, synthetic aperture radar imagery. In most
studies so far, this a priori information is embedded in the co-
variance matrix of the noise in the CUT. In other words, some
approximate value M, of M, is assumed to be available, and
then used to design a KA adaptive filter, see, e.g., [9]-[12] and
references therein. However, these approaches do not neces-
sarily use a statistical model that would relate the training sam-
ples to this a priori covariance matrix, with a view to derive an
optimal estimator. In such a case, a Bayesian model seems to



be appropriate as it allows one to formulate in a theoretically
sound manner such a relation. Covariance matrix estimation in
a Bayesian framework is an old topic. However, the applica-
tion of these results to array processing has recently received
much attention [13], [14]. These references present a very com-
prehensive discussion about the Bayesian framework and so-
lutions for estimating the covariance matrix in homogeneous
environments. In [15], see also [16], we proposed a Bayesian
approach to model nonhomogeneous environments. More pre-
cisely, we assumed that both M, and the common covariance
matrix of the training samples, say M ., were random with some
appropriate joint distribution. Additionally, and following KA
processing ideas, we assumed that M, had a prior distribution
with known mean M p- This framework established a clear sta-
tistical relation between the training samples and M ,,, which
was used to derive optimal estimators of M,,. Moreover, both
the degree of heterogeneity and the level of a priori knowledge
were tuned through scalar variables, resulting in a very flexible
model. This paper extends the results of [15] by considering that
the training samples are not homogeneous between themselves,
i.e., they do not necessarily share the same covariance matrix.
More precisely, we assume that the secondary data can be clus-
tered into K groups characterized by different random covari-
ance matrices My, k = 1, ..., K. These random matrices have
prior distributions denoted as f(M|M,). Similarly to [15],
we first assume that M, has a prior distribution with known
mean M p- We then extend the results of [15] and propose an ex-
tended Gibbs-sampler to obtain the minimum mean-square error
(MMSE) estimate of M. Additionally, we derive an optimal
SCM-type estimator, with possibly diagonal or colored loading,
see below for details. A second approach is also proposed re-
laxing the previous assumptions on M, and assuming that M,
is an unknown deterministic matrix. The maximum-likelihood
estimator (MLE) of M, is then naturally studied.

II. DATA MODEL

As explained previously, we assume that the secondary data
can be clustered into K groups, each of them containing Ly
samples and sharing the same covariance matrix M. The par-
ticular case K = 1 corresponds to the scenario considered in
[15]. The extreme case Ly = 1 for k = 1,..., K would cor-
respond to a situation where all training samples would have a
different covariance matrix. In the case where heterogeneity is
due to the terrain, the snapshots could be segmented according
to some a priori geographic information, provided, e.g., by dig-
ital elevation data or digital land classification data [8], [17]. Let
{z1¢} fzkl denote the snapshots of the kth group. We assume that
the 2, ¢ are independent and Gaussian distributed, with covari-
ance matrix My, i.e., the distribution of Z, = (251 - -- 2k,1, ],
conditionally to M, is

F(Z M) = 7B My et {-M 202} ()

where . denotes the Hermitian transpose, |.| and etr{.} stand
for the determinant and the exponential of the trace of the ma-
trix between braces, respectively. We denote this distribution as
Zy My ~CN 1, (0, My, I1,) asin[3] to emphasize that the
columns of Zj, are independent. The matrices M, are assumed

to be independent conditionally to M,,. Moreover, they are dis-
tributed according to an inverse Wishart distribution with mean
M p and v, degrees of freedom, i.e.,

MM, ~ W (v — m)M,,v,) . 2)

The distribution of M, conditionally to M, is then given by
[18]

F (M| M) ox | My, | | M|~ ¢4 ™ete{ — (v —m) M5 M, |
3)

where o means proportional to. The scalar v allows one to ad-
just the distance between M, and M, the larger vy, the closer
M, to M, see [15] for details and [18] for general results on
Wishart and inverse Wishart distributions. In a radar scenario,
one could choose increasing vys as the cells corresponding to
Z, are closer to the CUT. Note that (2) is the conjugate prior of
(1), a common choice enabling one to obtain analytical expres-
sions for the posterior distributions. We refer the reader to [14]
for a comprehensive discussion about the choice of a prior.
This paper considers two different approaches to model M,
1) afully Bayesian approach in which M, is a random matrix
whose prior distribution is Wishart, with mean M pand g
degrees of freedom, i.e.,

F(M,) o [ M|~ etr {_,LMPM; 1} . @

We denote this distribution as M,|M, ~
CWm(uflMp,u) and we assume that Mp is known.
Observe that the statistical mean of M, is £{M,} = M,
where £{.} stands for the mathematical expectation,
and that the distance between M, and M, decreases as
i increases [18]. However, these two matrices will be
different with probability one. The matrix M p can be
obtained from various sources of information, including
digital terrain maps or digital land classification data [8],
[17]. Accordingly, the clutter covariance matrix model
derived by Ward [19] could be used to obtain M, see
[10], [12] for such an approach. Within this framework,
we extend the results of [15] and derive the MMSE
estimate of M, using a Gibbs sampler. Furthermore, we
consider a simpler scheme, namely a SCM-type estimator
where each matrix Z,Z, is weighted by a possibly
different scalar wy. We then derive the values of w;, that
result in a MMSE. Accordingly, we consider estimators
based on diagonal or colored loading (with M. p as the
loading matrix) of the weighted SCM, and we derive the
optimal values of the loading levels.

2) a mixed approach relaxing the previous assumptions and
assuming that M, is a deterministic and unknown matrix.
In this case, the MLE of M p 1s derived.

In the sequel we let Z = [Z; ... Z k] denote the whole sec-

ondary data matrix.

III. BAYESIAN APPROACHES WITH RANDOM M,

In this section, we assume that M, is a random matrix, whose
prior distribution is defined in (4). We successively consider the



MMSE estimator and weighted SCM (with possibly loading)
estimators.

A. MMSE Estimation

The MMSE estimator of M, is computed from the posterior
distribution f(M,|Z). We start with the joint posterior distri-
bution of M,,, {M},}, conditionally to Z. Under the stated hy-
potheses, one can write

f (M AM}Z) o f(Z|M,,{M}) ﬁ f(MkIMp)]
MR
x ﬁ IM| Fretr {_Mglzsz}
k=1
K
x T 1M, 17| My =t
X Ztrl{—(l/k - m)MpM,;l} M, |1
% etr {—uMpM,Zl}- (5)

The posterior distribution f(M,|Z) can be obtained by inte-
grating (5) over the { M.}, which yields

f(M,|Z)
:/.../f(Mp./{MkHZ)dMl...dMK
o |Mp|“—m+2i<:1 Yk ety {—MMI,M;I}

K
i s
k=1

X etr {—M,;l [(yk — m)M,+Z, 2" ] } M,
x |Mp|“_m+2f:1 Yretr {—,LLMI,M;I}

K
<11
k=1

where, to obtain the last equality of the equation, we used the
fact that the integral in the middle of the equation is proportional
to the integral of an inverse Wishart distribution with parameter
matrix (v, — m)M, + Z1Z kH and vy, + Ly, degrees of freedom.
The MMSE estimate can in theory be obtained by averaging (6),
which amounts to calculating the integral

—(vi+Ly)
(v = m)M,, + Z,. 2| ©)

[ M0, 1Z)aM,. @

Unfortunately, there does not exist any analytical expression for
this integral, and, hence, it must be approximated somehow.
As we discussed in [15], a natural approximation can be ob-
tained by generating matrices distributed according to f (M, |Z)
using Markov chain Monte Carlo MCMC) methods. These ma-
trices are then averaged to approximate (7). The posterior dis-
tribution f(M,|Z) defined in (6) does not belong to a clas-
sical family of distributions. This paper proposes to implement
a completion Gibbs sampler (see [20, p. 374] for more details)

which generates matrices M, and {M,} distributed according
to the joint posterior distribution f(M,,{M}}|Z). The Gibbs-
sampler will successively generate random matrices M), and
{M}} distributed according to their full conditional distribu-
tions. More precisely, assuming that M S’) and M ,(CZ) are avail-
able at the sth iteration, the generation of M ,(:H) and M SH)
is achieved as follows:
e fork=1:K

generate M EJH) according  to  f(My] M}(f) 7
(M Yoz, Z)
end

 generate MI(f'H) according to f(Mp|{M,(:)},Z).
Using (5), we have
f(M,{M}}, Z)
oc | My [P 2

K
X etr {— l/LM;I + Z(z/k - m)MEll Mp} 8)

k=1
f (M| My, {M}er, Z)
x |Mk|7(Vk+Lk+m)

X etr{— [(I/k —m)Mp—}—ZkaH} M,:l} )
and, hence, the conditional distributions can be expressed as

M,|{M,},Z

K -1
~CWh, lﬂMpl +) (- m)M,:I] ,

k=1

(10)

K
w+ Z Vk)
k=1
MM, {M} ez, Z
~ WL ((uk —m)M, + Z: 27 v + Lk) . an

The Gibbs sampler will, thus, iterate between (10) and (11).
Observe that since M, [respectively, M ] is generated from a
Wishart [respectively, inverse Wishart] distribution, these ma-
trices are guaranteed to be Hermitian positive definite along the
iterations. As usual, the first [V;; generated matrices (belonging
to the so-called burn-in period) are not used for the estimation
of M, and only the N, last matrices are used, yielding the fol-
lowing MMSE estimate:

MMSE 1 Ve
Y A (4)
M, =N Z M. (12)
1=Npi+1

The proposed sampling strategy can be viewed as K Gibbs steps
similar to those derived in [15]. This strategy naturally reduces
to the algorithm proposed in [15] for K = 1.

B. Optimal SCM-Type Estimation

This section focuses on a class of estimators that are simpler
to implement than the previous MMSE estimator, for the sake of



computational savings. More precisely, we consider estimators
of M, defined by

K K
k=1 k=1

where the wy,’s are real-valued parameters. This class of estima-
tors thus consists of a weighted sum of the sample covariance
matrices of each group. Note that the classical sample covari-
ance matrix estimator

(14)

K -1 K
<Z Lk> > 2.2y
k=1 k=1

-1
corresponds to uniform weighting, i.e., w, = (Zszl Ly)

Under the stated assumptions, we derive the MSE of S, i.e., the
squared Frobenius norm of S — M p» and show that there exists
an optimal value of w = [wy - - - wg |7 which results in MMSE
(herein .7 denoting the transposition operator). More precisely,
in the Appendix we prove the following result. ~

Proposition 1: The conditional and unconditional MSE of S
are given by

e{IIS-M,[*1M, }
2

(é kak> 1) m{m;}

K Tr i M? +(vg—m)Tr{M,}?
+3 w3 { p} !
k=1

(vik—m+1)(vp—m—1)
K (
+ szLk
k=1

v —m)Tr {M;}-I—(l/k —m)2Tr{Mp}2
(vik—m+1) (v, —m—1)

15)
and
e{I8 -, I}
2
= (lé kak> -1 [Tr {MIQ;} + /LilTr{Mp}Z}
K

2 (l/k + Ly — m)Lk
+;wk(uk—m+l)(yk—m—l)
x [(vk —m + p 1) Tr{M,}?

+ [u_l(uk —m)+1] Tr {MIZ)H

=c[w'L- 1]2 +w Tw

(16)

where L = [L; --- Li]%, and the definitions of the constant ¢
and the diagonal matrix I" follow immediately from (16).

Observe that c is a scalar and I is a diagonal matrix which
depend on M, wand v, Ly, for k = 1,..., K. Since these
quantities are known, it is possible to find the value of w that
yields the MMSE. Two routes can be taken to achieve this goal:

* the first solution consists of minimizing (16) with respect

to w, without any constraint on w. It is straightforward to
show that the minimizing argument of the MSE in (16) is

'L

= —" . 17
1+ cL'I 'L {an

w, = ¢[l' + ¢cLL" 'L

* as an alternative, the MSE can be minimized with the con-

straint that w? L = 1. This amounts to enforce that S is

an unbiased estimate of M, whatever M,,, see (35). In

this case, wT T'w should be minimized under the constraint

that w” L = 1. The solution to this constrained optimiza-
tion problem is well-known and is given by

'L
L't 'L
The weight vectors (17) and (18) can, thus, be calculated
and used in (13) to yield the weighted SCM estimators. It
should be observed that the optimal weights in (17), (18)
depend on M, only through Tr{M 12)} and Tr{M,,}2. Note
also that the weighted SCM estimators will differ from the
SCM estimator provided that the parameters vy, are dif-
ferent; indeed, if all v, and Ly, are equal, the three estima-
tors are identical. In contrast, if there are differences among
the vy, the weights are likely to be different, giving more
importance to the groups of snapshots that are most homo-
geneous with the CUT. ~
Remark 1: The conditional MSE of S given M, is of the
form ¢/[wT L — 1]2 +wTT w, where ¢ and I depend on M, 11
and vy, Ly, fork = 1,..., K, see (15). Therefore, it is possible
to obtain the vector w which minimizes £{||S — M,||*|M,}.
However, this vector depends on M ,, which is unknown. Thus,
the practical implementation of such an estimator is not feasible.

(13)

Wy

C. Estimation Based on Loading of the Weighted SCM

In adaptive beamforming and detection, diagonal loading
[21], [22] is recognized as an efficient means to compensate
for various types of errors in covariance matrix estimation.
Diagonal loading consists of adding a scaled identity matrix
to the SCM, and can be viewed as a regularization of the
SCM, resulting in enhanced performance with limited number
of samples. Accordingly, colored loading, which consists of
adding a colored covariance matrix to the SCM, has recently
been proposed in the context of KA-STAP [10], [12]. In these
references, it was shown that adding a matrix proportional
to M p to the SCM enables one to significantly improve the
performance of adaptive detectors. Following this route, we
now consider estimates of M, of the form

K
Mp = wOMp + ZwkaZf = ngp +8.
k=1

19)



Our goal is to obtain the values of wy and w that result in
MMSE. Using (15) along with (35), we can write

e{IiM, - M, ||, }
=& {|lwoM, + 5 - M,|’IM, }
= {8 - M, |2|M, } + | B, |
+ 2001 {& {(8 - M), M, } }
= {5 - M, *|1M, }
+ wi|| My ||* + 2woTr { (w" L — 1)M, M, } . (20)

Next, we average the previous equation with respect to the prior
distribution of M, to obtain

£ {||Mp - Mp||2} = cfw”L - 12 + w'Tw

o2

w2 || M, |2 + 2wo(w” L — 1)Tr {Mp} el

Since E{M,|M,} = woM, + (wL)M,,, it is no longer pos-
sible to have an unbiased estimate of M, for all M,, and,
hence, we minimize the MSE in (21) without any constraint on
wo and w. Differentiating (21) with respect to wq and w, and
equating the result to zero, we obtain the following set of equa-
tions:

(22a)
(22b)

Tw + ¢(LL"w — L) + woL'Tr {Mﬁ} -0
wo + 'wTL =1.

It follows that the optimal values of w, and w are given by

<w> _ (1‘+CLLT Tr{Mi}L>_1<clL>_ -

Wo LT 1

Equation (23) provides the optimal loading level wyg, as well as
the optimal weights to be applied to each matrix Z;Z kH in order
to achieve a MMSE. Similarly to the SCM-type estimators, we
observe that these weights depend on M, only through Tr{ M 12)}
and Tr{M,}2.

A similar procedure can be applied to obtain the best esti-
mator based on diagonal loading of the weighted SCM. Toward
this end, let us now consider the following estimator:

K
M, =wol +Y wpZ,Z; = wol + 8.
k=1

(24)

The conditional MSE of such an estimate is given by
e {14, - M,||M, | = & {|lwol + 5 - M, |*|M, }
=& {115 - M, |2IM, } + mu
+ 2wy Tr {5 {(S‘ - Mp)|Mp}}
= & {118 - M, [*1M, } + mu

+ 2wo(wTL — 1)Te{M,}. (25)

Taking the expectation with respect to f(M), we end up with
the following expression for the unconditional MSE:

£ {||Mp - M,,||2} = cfw” L — 12 + w'Tw + mw?
+2wo(wTL — 1)Tr{M,}. (26)

In order to minimize this MSE, we equate to zero the derivative
of (26) with respect to wg and w, yielding

Tw + ¢(LL"w — L) + woLTr{M,} =0 (27a)
mwo +w? LTr{M,} =Tr{M,}. (27b)

The optimal values of w, and w are, hence

w) _(T+cLL” T{M,L\™' ([ L
wy ) \ Tr{M,}L" m Tr{M,}

(28
which provides the optimal (diagonal) loading level and SCM
weights.

Remark 2: Conventional diagonal loading would amount to

consider estimates of the form

K
M, =wl+ L' 2,2 = wl +L'S
k=1

where L = 2521 L. Doing so, the conditional MSE becomes
e{Int, - M, |12|M, }
=¢£ {||w0I+ LS — Mp||2|Mp}
=£ {||L_1S — Mp||2|Mp} + mawd
+ 2w Tr {E {(L_IS — Mp)|Mp}}
=£ {HL_lS - Mp||2|Mp} + mw(z)
> E{ILT'S — M,|*IM,, }

asE{(L7'S—M,)|M,} = 0,see (35). In other words, as far as
covariance matrix estimation is concerned, the MSE cannot be
decreased compared to that of the conventional SCM estimator.
This is why it is necessary to consider a weighted SCM in the
case of diagonal loading.

Remark 3: In what precedes, the MSE, i.e., the square of
the Frobenius norm of the estimation error, was used to as-
sess the performance of the various estimators. Although this is
the common choice in estimation theory, it should be observed
that one is concerned here with the estimation of a covariance
matrix, which is Hermitian positive definite. Consequently, this
matrix belongs to the quotient space P,, = Gl(m,C)/U(m),
where GI(m, C) denotes the general linear group and U(m) is
the Lie group of unitary matrices [23]. As advocated in [23],
the natural metric on P,,, which involves the generalized eigen-
values of the covariance matrix and its estimate, could be used
instead of the Frobenius norm. Our experience is that it does
not fundamentally modify the hierarchy between the estimators
compared to the MSE criterion, except for the diagonal or col-
ored loading estimators. The latter perform rather well with re-
gards to the MSE criterion, see the next section. In contrast, with
the metric of [23], they do not provide a significant improvement
compared to the SCM-type estimators.



IV. MAXIMUM-LIKELIHOOD ESTIMATION WITH A
DETERMINISTIC M,

The fully Bayesian approaches described previously rely on
the assumption that M, has a Wishart distribution with known
mean M p- In order to relax such hypothesis, we now consider
that M, is deterministic and thus we do not make any specific
assumption about it. Since M, is assumed to be deterministic
and unknown, we turn to the derivation of the maximum-likeli-
hood estimate of M,,. Towards this end, we first need to derive
an expression for f(Z|M,). Under the stated assumptions, we
have

(Z\M,)
- / / £ (Z){My}) f ((M,}|M,)dM, - dM

K
= [+ [ TLHZ0M) £ (MLIM, ) iM - M
k=1
K .
(AR AR
k=1 -
-1 H
X etr {—Mk [(uk—m)Mp—i—Zka ] } M,

K
X H |Mp|”k
k=1

The log-likelihood function is, thus

K
A(Z|M ) = const. + <Z l/k> In|M,|

k=1

+Ly)

—(
(v — m)Mp—}—Zka’ (29)

K
Z l/k-l-Lk ln‘ l/k—m)Mp-l-ZkZ]Ij . (30)
k=1

Differentiating A(Z|M)) with respect to M, gives the fol-
lowing result:
ON(ZIM,)
oM,

= (EK: ,,k) M,!

k=1
K

(I/k-f—Lk) |:Mp+(1/k —m)’lszf}
k=1

K
=- ZLk) M, + M,

k=1

K
X [Z I/k+Lk l/k—m)ilzk

k=1

-1

-1
x[I+(I/k—m)—1szglzk] ZE]Mpl.m)

Therefore, the MLE of M, satisfies the following equation
K K
(Z Lk) Mp = Z(l/k + Lk)(l/k — m)ilzk
k=1 k=1

-1
X [I—i—(uk—m)_lZfM;le} z2 (32

This is an implicit equation of the type M, = g¢g(M,,Z).
In order to solve it, we gropose an iterative scheme. Starting
with an initial value M the new value of M, is updated as
M 1()”1) g(M¢ » 7). Note that this kind of iterative solutions
has already been encountered in different problems, see, e.g.,
[24]-[27]. For instance, [25] considers the Expectation-Max-
imization (EM) algorithm for covariance matrix estimation
with compound-Gaussian clutter, and ends up with a similar
implicit equation. As mentioned in [25], there is no guarantee
that the EM algorithm converges, and the same observation
applies to our MLE. Accordingly, care is to be taken when
choosing an initial estimate as it may impact the final estimate.
In fact, proving that such a scheme converges, and moreover to
a unique point, is rather intricate. A proof of convergence to a
unique solution for a similar iterative scheme was given in [26]
and [27]. However, this proof cannot be easily adapted to the
matrix equation (32). Hence, we can only conjecture that the
same property may apply here. However, we did not encounter
any convergence problem in our numerical experiments.

V. NUMERICAL SIMULATIONS

We now illustrate the performance of the various estimation
schemes introduced in the previous sections. In all simulations,
we consider an array with m = 8 elements and the covari-
ance matrix M, is of the form M, (k, E) = 0.9/*=*l, The total
number of training samples is set to Z k=1 Lk = 3m = 24 but
we vary the number of groups K. More specifically, we con-
sider three cases with K = 2, K = 3 and K = 6, respec-
tively. This means that there exist 2, 3 or 6 different covariance
matrices among the training samples with different degrees of
homogeneity specified by the values of the parameters vy, for

k=1,..., K. The three cases are defined by:
e Case 1: L =[16 8]T and v = [, 10]T;
e Case2: L =[888]T and v = [v; 10 24]T;
e Case3: L=[444444T andv = [v; 10 1216 20 24]T.

The value of v is varied between 10 and 24. In the first case, the
second group with eight samples is rather heterogeneous com-
pared to the CUT (i.e., M5 may be far from M), and the de-
gree of heterogeneity of the first group is varied, resulting in
training samples being more homogeneous with the CUT as v
increases. In the second scenario, the second group of samples is
rather heterogeneous compared to the CUT while, for the third
group, M3 may be quite close to M. The degree of hetero-
geneity of the first group varies as previously. In the third sce-
nario, the K groups have K different degrees of heterogeneity.
We consider two different values for p, i.e., p = 10 or yr = 20
adjusting the importance of the a priori information used in the
model. In the former case, the prior knowledge about M. p s not
very informative while, in the latter case, M, will be closer to
M,

A. Convergence of the Gibbs Sampler

We first study the convergence of the Gibbs sampler and show
how to determine the values of Np; and NN, that are sufficient to
ensure convergence of the Gibbs sampler. Usually, a two-step
procedure is used [28]. First, a rough estimate of Np; and N,
is obtained by observing the MSE along the iterations of the
Gibbs sampler. More precisely, one begins with large values of



Ny; and N,., so that a reference estimate is obtained. In order to
determine NV,., the MSE between this reference and the estimate
obtained from [V, iterations is computed. The number of itera-
tions IN,. is selected as the value above which this MSE is suffi-
ciently small. In our case, we observed that [V,, = 200 iterations
were sufficient to obtain a small MSE. Keeping this value of N,.,
we next computed the MSE for different values of the number
of burn-in iterations Np;. We observed that a very short burn-in
period was sufficient, and that the MSE was approximately con-
stant as soon as Ny; > 20. Therefore this value was retained.
Once Ny; and N,. are chosen, there exists a rigorous procedure
to assess convergence [28]. It consists of running M chains in
parallel, each one of length (N;, N,.) but with different initial
values, and to observe the variability of the @s_timates within and
between the chains. More precisely, let M’ ]()” ) be the matrix ob-
tained at the 4th iteration of the jth chain and let us note

() Nyi+Ny o
M7 =N ST MUY

4
1=Np;+1

M)
. L
M, =My M,

i=1

where M ;"]) corresponds to the MMSE for the jth chain, and

M p is the average value over the M chains. Let B and W be the
between-sequence and within-sequence covariance matrices for

the M Markov chains, whose (p, ¢) element are defined as

Bl =3 ([M“] - [Mp]pq)2

=1

1 & 1
Wl =37 25—
]:

Np;+Nr

2
7.7 " (1)

< (], - ] )

1=Np;+1 pq

The convergence of the Gibbs sampler can be monitored by the
multivariate potential scale reduction factor, which is defined as
[29]

M+1
N, T MN,

Amax (W' B) (33)
where Amax(.) denotes the largest eigenvalue of the matrix be-
tween parentheses. Fig. 1 below shows the value of p in case 1
for 100 independent realizations. As can be observed, the av-
erage value of p is around 1.12, which is deemed sufficient
to conclude that the Gibbs sampler effectively converges with
Np; = 20 and N, = 200 (a value of p below 1.2 is recom-
mended for convergence in [28]). Therefore, in the sequel we
will use these values.

B. Performance Analysis

We now study the performance of the various estimators de-
rived in Sections IIT and IV, namely:

* the new heterogeneous Gibbs sampler operating on the ma-

trices { My}, see (10), (11), and the Gibbs sampler of [15]

Multivariate potential scale reduction factor

1.17
1146 F L=[16 8], v=[16 10], u=10, Nj,;=20, N;=200, M=20
1:15
114
113
1.12
111
1.1 [
1.09
! '080 1 b 2.0 3IO 4‘0 5IO 6‘0 7‘0 8IO 9IO 100

Independent realizations

Fig. 1. Multivariate potential scale reduction factor in case 1.

which assumes that all training samples share the same co-
variance matrix M ;

* the SCM-type estimators, more precisely the conventional
SCM of (14), and the weighted SCM estimators of (17) and
(13);

* the estimates based on diagonal loading, cf. (24) and (28),
or colored loading, see (19) and (23);

¢ the MLE obtained as the solution of (32).

All simulations were conducted with 5000 Monte-Carlo runs
and the MSE of each estimator was estimated from these 5000
trials. The MLE is initialized with the SCM, and the number of
iterations in the MLE procedure is set to 50. The MSE of all es-
timates is displayed in the following way. The MMSE estimator
appears in solid lines while the method of [15] appears with a
circle. The SCM, weighted SCM with w,, and weighted SCM
with w, appear with a square, a star, and a cross marker, respec-
tively. Diagonal [respectively, colored] loading is displayed by
a triangle (up) [respectively, triangle (down)]. Figs. 2 — 7 com-
pare the performance of all estimators. From inspection of these
figures, the following observations can be made.

» The proposed heterogeneous Gibbs sampler always pro-
vides the smallest MSE. The improvement compared to the
Gibbs sampler of [15] which assumes that all training sam-
ples have the same covariance matrix is about 1 dB. This
shows that it is beneficial to take into account the fact that
the covariance matrices of the Z; may be different. How-
ever, in the present case, the improvement is not very im-
portant, mainly because all covariance matrices M, have
the same average value, namely M,,. Hence, assuming that
all snapshots Zj, share the same covariance matrix M,
with average value M, does not result in a significant
degradation. In contrast, the performance is expected to be
more degraded as soon as the average value of each M, is
different.

* The MSE of the heterogeneous Gibbs sampler is between 4
and 8 dB lower than that of the weighted SCM estimators,
which is significant. However, the latter perform quite well
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Fig. 2. Performance of the various estimation schemes versus v in case 1.
© = 10.

given that they are very simple schemes. Using w, instead
of w, results in a 1-dB gain; hence, enforcing unbiased-
ness of S for any M, may not be the best strategy, at least
when the MSE is concerned.

* More importantly, loading of the weighted SCM appears to
be a very effective solution, notably colored loading. Diag-
onal loading is slightly superior to the best weighted SCM,
and colored loading offers a considerable improvement,
between 6 and 8 dB compared to diagonal loading. In some
cases, especially when the number of groups increases, col-
ored loading happens to be better than the method of [15]
which assumes that all training samples share the same
covariance. The MSE of the colored loading estimator is
also only 1 to 3 dB above that of the MMSE. This makes
colored loading an interesting scheme as it offers an ex-
cellent tradeoff between performance and computational
complexity.

* The performance of the MMSE, the weighted SCM and
colored loading estimators is approximately constant when
vy varies. An explanation is that only one over K values
of v, is varied, and, hence, the overall set of data does
not undergo important modifications. Also, all algorithms
know the value of v, and, hence, take it into account to
achieve a nearly constant MSE.

» Using a priori information results in significant gain. This
is for instance illustrated by the fact that the weighted SCM
estimators perform better than the MLE (although being
simpler): this is due to the fact that they use M, in contrast
to the MLE. Therefore, a priori knowledge turns out to be
useful as it enables one to have more accurate estimates
while keeping the computational complexity lower.

* As p goes from p = 10 to 4 = 20 (i.e., as M, is closer
to M) the MSE of the MMSE and colored loading esti-
mators decreases by about 1.3 dB. This corresponds to the
improvement provided by a more and more reliable a priori
information, i.e., M p being closer to M -
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To summarize this section, the MMSE was observed to be
the most performant method, at the price of high computational
complexity due to the implementation of a Gibbs sampler. Two
other methods can be seen as competitors: the weighted SCM
with optimal weight w, and colored loading. Both of them are
simple from a computational point of view. The latter is more
performant but it assumes knowledge of M p while the former
depends on M, only through Tr{MIQ,} and Tr{M,}2. There-
fore, it may be more robust to imprecise knowledge of M, an
issue that is addressed in Section V-C.

C. Robustness Analysis

In this section, we study the robustness of the estimators to
imprecise knowledge of the parameters describing the a priori
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information. Since these parameters are numerous, we focus on
case 1, and we consider a possible mismatch in vy or Mp. In
order to test the robustness towards a mismatch of v, the data
was generated with 1 = 16 and the algorithms were run with
an assumed value of v;, which varies between 10 and 24. In
other words, the algorithms do not use the correct value of 1
which rules the degree of heterogeneity of the first group of
snapshots. For the sake of readability and because they offer the
best performance, we only consider here the MMSE estimator,
the optimal weighted SCM and colored loading. Fig. 8 displays
the MSE of these three methods versus the assumed value of v;.
As can be observed, the estimation schemes are rather robust to
an imprecise knowledge of v;: their MSE does not significantly
vary, which is an appealing feature.

In Fig. 9 we test the robustness of the algorithms to an im-
precise knowledge of M p- Towards this end, the data is gener-
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ated with the same M, as in previous simulations. In order to
simulate an error in M p» We generate a random matrix drawn
from a Wishart distribution with mean the true M. » and g de-
grees of freedom. In other words, the algorithms are used with a
wrong value of M, randomly distributed around the true M. p-
For the sake of notational convenience let us denote by M;
this matrix. As q increases, the distance between the two ma-
trices decreases, and, hence, the mismatch level decreases. In
order to give an order of magnitude, the MSE between M. p and
M, is 8, 4.2, and 1 dB for ¢ = 10, ¢ = 24, and ¢ = 50, re-
spectively. Given that, for known M, the MSE of the MMSE
estimator is about 4 dB, see Fig. 2, ¢ = 10 is a very severe
case, i.e., a strong mismatch. ¢ = 24 corresponds to a situa-
tion where the mismatch in M. p 1s comparable to the MSE for
known M p» and the mismatch is reasonably small for ¢ = 50.
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The results are shown in Fig. 9. The weighted SCM is seen to
be quite insensitive to variations in q: this is due to the fact
that it depends on M’ ; only through Tr{M;}Q and Tr{Mf}.
However, in the scenario considered, & {Tr{M}} = Tr{M,}
and E{Tr{Mf}} = Tr{Mi} + ¢ 'Tr{M,}?. Hence, even if
there is a mismatch between the actual M, and its presumed
value, the impact is not necessarily serious, as one does not
make a large error on Tr{ M i} and Tr{M,}2. In contrast, col-
ored loading appears to be more sensitive to M. Compared to
its MSE for known M p» it exhibits a loss of about 2.3 dB for
q = 10 and 0.7 dB for ¢ = 50. The MMSE estimator is the most
sensitive estimator, hence, the least robust, as one can observe a
loss of 4.9 dB [respectively, 0.83 dB] for ¢ = 10 [respectively,
q = 50] compared to its MSE for known M. p- For some values
of g—but these values correspond to a very imprecise a priori
knowledge—colored loading is even better than the MMSE es-
timator, indicating that the latter needs a more accurate knowl-
edge of M, than the former.

VI. CONCLUSION

This paper extended the model presented in [15] to the case
where the training samples do not share a common covariance
matrix. Within this new framework, we presented a Gibbs
sampling strategy to implement the MMSE estimator, and we
derived optimal sample covariance matrix type estimators.
Furthermore, in order to have the less a priori knowledge about
M, we also considered it as a deterministic quantity, and we
derived its MLE. Numerical results indicate that the MMSE
estimator implemented with the heterogeneous Gibbs sampler
outperforms the estimators presented in [15], when there exist
heterogeneities between the groups of snapshots. It was also
shown that the simple weighted SCM estimators provide a

rather good performance. Moreover, they can be improved in a
straightforward manner by considering either diagonal loading,
or better colored loading. The latter scheme was shown to
provide an excellent tradeoff between performance and com-
putational complexity. Another important conclusion is the
impact of a priori knowledge on the estimation performance.
Bayesian methods using prior information provide significantly
better performance than the MLE which does not use this prior
information. Accordingly, the weighted SCM-type estimators,
with possibly loading, which also use a priori information,
although simpler than the MLE perform better. Finally, it was
observed that the proposed estimation schemes were rather
robust to a mismatch with respect to the knowledge of the
degree of heterogeneity but less robust to a mismatch of M -
Possible extensions of this work deals with modeling of more
heterogeneous environments for which the covariance matrices
M. may have a different average value.

APPENDIX
PROOF OF (15) AND (16)

In this appendix, we derive the theoretical MSE of the
weighted SCM 8 defined in (13). Toward this end, we proceed
in two steps. First, we derive the MSE of S conditionally to
M ,; this enables us to obtain the optimal value of w for any
M,,. Of course, this optimal weight vector is hypothetical as
M, is unknown. Next, we average the MSE for a given M,
over the density of M, in order to obtain the final MSE. First
note that

{118 - M,|21M, } = T {£(88" 1M, }}
—ome {e(SIM, M, b+ e { My} 34y

However, since Zi|M; ~
E{M;M,} = M,, we have
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k=1

K
ZE{Mk}|MP {Z kakMk}

k=1

K
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(35)

~ - H
Let us now turn to the average value of §S , conditionally to
M,,. From the definition of S, one can write that
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Using the fact that Zy|Mj, ~ CN,, 1, (0, My, I, ), we have
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and, hence

(88" M} - (i kake{MmMp})

k=1

3Rl (€ {MiiM, } - (MM, )]
k=1

K
+ ) wiLpE {Tr{M,} MM} .

k=1

(38)

Since My|M,, ~ CW,.}((vix — m)M,,, 1), it can be readily
shown [18] that, for v, > m + 1

e{MiM, }
(v —m)? M + (v, — m)Tr{M,} M,
B (vk—m+1)(vy—m—1) (39)
€ {Tr{Mi}*|M,}
(v —m)Tr {Mﬁ} + (v — m)>Tr{M,}?
— . (40)
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Therefore, it follows that:
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Finally, the MSE of S, conditionally to M, is given by
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(42)

We now average the previous equation with respect to the prior
distribution of M,,. Since M,|M,, ~ CW,,(n 1M, 1), we
have from [18]

e, {T{M = {0} 4 oM, @)
En, {Te{M,}?} =~ Tx {M;} T {M,}% (44)

Reporting these values in the conditional MSE, and after some
straightforward manipulations, we end up with

£{1IS - M, |}
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K
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+ [u_l(yk —m)+ 1] Tr {M;H (45)

which concludes the proof.
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