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A Bayesian Approach to Adaptive Detection in
Nonhomogeneous Environments

Stéphanie Bidon, Student Member, IEEE, Olivier Besson, Senior Member, IEEE, and
Jean-Yves Tourneret, Member, IEEE

Abstract—We consider the adaptive detection of a signal of in-
terest embedded in colored noise, when the environment is non-
homogeneous, i.e., when the training samples used for adaptation
do not share the same covariance matrix as the vector under test.
A Bayesian framework is proposed where the covariance matrices
of the primary and the secondary data are assumed to be random,
with some appropriate joint distribution. The prior distributions of
these matrices require a rough knowledge about the environment.
This provides a flexible, yet simple, knowledge-aided model where
the degree of nonhomogeneity can be tuned through some scalar
variables. Within this framework, an approximate generalized like-
lihood ratio test is formulated. Accordingly, two Bayesian versions
of the adaptive matched filter are presented, where the conventional
maximum likelihood estimate of the primary data covariance ma-
trix is replaced either by its minimum mean-square error estimate
or by its maximum a posteriori estimate. Two detectors require gen-
erating samples distributed according to the joint posterior distri-
bution of primary and secondary data covariance matrices. This is
achieved through the use of a Gibbs sampling strategy. Numerical
simulations illustrate the performances of these detectors, and com-
pare them with those of the conventional adaptive matched filter.

Index Terms—Adaptive detection, Bayesian model, covariance
matrix estimation, heterogeneous environment, maximum a poste-
riori (MAP) estimation, minimum mean square error estimation,
Monte Carlo methods.

I. INTRODUCTION

DETECTION of a signal of interest in a background of
noise is a fundamental task in many applications, including

radar, communications or sonar [1]. This is especially the case
for radar systems whose core task is to detect a target amongst
clutter, thermal noise and possibly jamming [2]–[5]. Typically,
the presence of a target, with given space and/or time signature ,
is sought in a (range) cell under test (CUT), given an observation
vector —the primary data—that corresponds to the output of an
array of sensors. In the Gaussian case, when the covariance ma-
trix of the noise in the CUT is known, the optimal processor
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consists of a whitening step followed by matched filtering [1].
However, the noise statistics are usually unknown and, in order
to estimate them, training samples , which contain noise
only, are used. These training samples, also referred to as the
secondary data, are usually obtained from range cells adjacent
to the CUT. The principle that underlies this approach is that
information about noise in the primary data can be inferred from
noise in the secondary data. This implies that the two sets of data
“share” some common features.

In an ideal situation, the are assumed to be independent
and Gaussian distributed with a covariance matrix which
equals . This scenario is often referred to as the homoge-
neous environment. Within this framework, the generalized
likelihood ratio test (GLRT) was derived by Kelly in the land-
mark paper [6]. Kelly’s GLRT is based on the whole set of
data, including primary and secondary data. Another reference
detector, namely the adaptive matched filter (AMF), was pro-
posed by Robey et al. in [7]. The AMF first proceeds as if the
noise covariance matrix was known, and derives the GLRT for
this case. Then, the true covariance matrix is substituted for its
maximum likelihood estimate (MLE), based on secondary data.
The performances of these two detectors have been evaluated
thoroughly on simulated data in [6] and [7] as well as on real
data, see e.g., [8] and [9]. Furthermore, their robustness to
steering vector mismatches has been evaluated, see e.g., [10]
and [11].

However, it has been evidenced that the homogeneous
assumption is an idealized situation [4], [12], and that nonho-
mogeneous environments are more commonly encountered.
Nonhomogeneities include a covariance mismatch between
the primary and secondary data (i.e., ), or the fact
that the ’s may even not share a common covariance matrix.
There exist many different reasons for which the environment
may not be homogeneous. This can be due for example to
the terrain: dense scattering environments (e.g., urban areas),
land-sea clutter interfaces, power level fluctuations among the
various patches of clutter. Accordingly, the secondary data may
be contaminated by signals with signatures close to that of the
target, or by unintentional temporally sporadic electromagnetic
interference. Nonhomogeneous environments can also be the
consequence of the array geometry. For instance, it is known
that, with forward-looking or bistatic configurations, the clutter
covariance matrix is not stationary in range [4]. In such non-
homogenous environments, adaptive detectors based on the
homogeneous assumption incur a serious loss of performance.
Thorough theoretical performance analyses of a large class of
detectors (including Kelly’s GLRT and the AMF) in case of



a covariance mismatch (but under the Gaussian assumption)
can for example be found in the work by Richmond [13]–[15]
or Blum and Mc Donald [16], [17]. These analyses provide
insightful results about the performance loss incurred under
nonhomogeneity. Moreover, they highlight the parameters that
contribute to performance loss, and enable one to study the
robustness of conventional detectors. Reference [18] focuses
on the effect of secondary data signal contamination on the
performance of Kelly’s GLRT. Finally, the performances of
these conventional detectors have also been assessed on real
data, see e.g., [9], [19]. However, these analyses do not provide
a means to combat nonhomogeneity, by designing a detector
that can take nonhomogeneity into account. For instance, in
[14], the generalized eigenrelation is advocated to analyze the
performance of various adaptive detection algorithms; however,
it is not clear how to design a detector under this assumption.

In order to mitigate the effects of nonhomogeneity, two main
approaches can be taken. The first consists of selecting the
training samples that are most homogeneous with the CUT,
and to use only the retained samples to estimate the noise
covariance matrix. This approach has gained a lot of interest
recently. Usually, a test statistic is computed using the training
samples and compared to a threshold. The training samples
that do not pass the threshold are censored, and the remaining
are used to estimate the primary data covariance matrix. Sev-
eral test statistics have thus been proposed, including power
selection criteria [20], [21], the generalized inner-product [22],
[23], the adaptive power residue [24] or the nonhomogeneity
detector [25]. These selection strategies result in significant
performance improvement. However they may require a large
number of initial samples.

In this paper, we take the second approach which consists of
taking into account the nonhomogeneity at the design stage of
the detector. The principle behind this approach is to formulate
the hypothesis testing problem so that it includes explicitly the
nonhomogeneity in terms of a statistical model for and . A
key issue for such an approach is thus to have a relevant model
for these environments. A first attempt to take into account non-
homogeneity is to assume that is only proportional to ,
while maintaining the Gaussian assumption for the data. In this
case, the reference detector is the adaptive coherence estimator
(ACE), originally proposed in [26] as an adaptive version of
the constant false-alarm rate (CFAR) matched subspace detec-
tors of [1]. The ACE was shown to be the GLRT [27] as well
as the uniformly most powerful invariant (UMPI) test [28], in
this partially homogeneous environment. For arbitrary covari-
ance mismatch and under the Gaussian assumption, a method
is proposed in [17] where a large class of detectors, parameter-
ized by a scalar , is analyzed under steering vector and co-
variance mismatches. For instance, specific values of the scalar

lead to Kelly’s GLRT, the AMF or the ACE. The paper pro-
poses a way to find an optimal , i.e., an that would result
in the highest probability of detection for a given probability
of false alarm. The optimal depends on and through
some function , and thus cannot be selected as these
matrices are not known. However, if a range of variations for

is known, then a close-to-optimal value of can
be found. This is one of rare attempts to design an adaptive

detector that can handle arbitrary covariance mismatch, under 
the Gaussian assumption. A more widely used and physically 
motivated model for nonhomogeneous clutter (especially with 
high-resolution radars) is the compound-Gaussian model, see 
e.g., [29], [30] or [31] and references therein. This model has 
been assessed on experimental data, either in the X-band or the
L-band and with various types of clutter, including lake, sea or
agricultural terrain clutter [32]–[34]. It allows to model local
clutter power fluctuations along the range cells. Adaptive detec-
tors able to handle this type of heterogeneity have been proposed
in the literature, see e.g., [30], [35]–[37] and [31] for a rather
exhaustive list of references. However, the compound-Gaussian
model does not cover all types of nonhomogeneity. In particular,
it is not suitable for modelling a clutter that is nonstationary in
range due to the array geometry. Another widely used model for
the clutter covariance matrix is proposed in [12], [38]. It consists
of writing the clutter covariance matrix, at each range, as the
integral -over clutter patches uniformly distributed in azimuth
on an iso-range curve- of the covariance matrix of each clutter
patch, weighted by the radar illumination pattern and the ground
reflectivity (possible refinements include covariance matrix ta-
pering as well). This model is physically motivated and allows
one to compute the covariance matrix at each range. Hence
it is a useful tool to simulate clutter data. Moreover, it has a
great potential use as an a priori information in the so-called
knowledge-aided space time adaptive processing (KA-STAP)
[39], which is recognized as one of the potentially most effi-
cient way to handle heterogeneities. KA-STAP consists of im-
proving the performance of adaptive detection schemes using
additional (a priori) information, such as digital elevation and
terrain data, synthetic aperture radar imagery [40]. Some KA
schemes have already been presented, see [40] for an overview
and [41]. For instance, in [42]–[44], the model of the clutter co-
variance matrix described in [12], [38] is used as an a priori
value of the actual clutter covariance matrix (CCM), and a ro-
bust adaptive beamformer is designed, based on this knowledge.
The beamformer uses colored loading where the loading matrix
is the model-based CCM; equivalently, it can be viewed as a
prewhitening step followed by adaptation. A similar informa-
tion was also used in [45]. However, the drawback of this CCM
model is that it does not yield a direct relation between and

. In addition, it does not provide a statistical model relating
and , which could be used to design an appropriate detector.
In this paper, we consider the problem of detecting a signal

of interest in a nonhomogeneous environment, i.e., when
. Clearly, a key issue for such a problem is to have a rela-

tion between these two covariance matrices, so as to infer
from observation of samples whose covariance matrix is .
Our goal in this paper is to present a simple, yet flexible sta-
tistical model to handle nonhomogeneous environments. At the
same time, we want to use some a priori information, similarly
to what is done in KA-STAP. Towards this end, a Bayesian ap-
proach is naturally advocated, as it is a relevant framework to
handle uncertainties and to include a priori information. Ad-
ditionally, it provides a theoretically sound way to define the
relation between and . More precisely, we assume that
these two matrices are random, and that the distribution of
given is known. Furthermore, we assume that has an



a priori distribution with a known mean, see below for details.
This framework allows us to obtain a general and flexible, yet
simple, model of nonhomogeneous environments, without very
restrictive assumptions. It enables us to derive robust detectors,
i.e., detectors that take into account covariance mismatches. Be-
fore closing this section, we would like to point out that such
a Bayesian approach with Wishart or anti-Wishart priors has
already been advocated, see e.g., [46] and [47]. In particular,
[47] addresses a very general problem of adaptive detection in
low-rank interference using a Bayesian approach to model the
interference covariance matrix. The present work is related to
[48] where we proposed a similar model, with the difference
that the prior knowledge is about the average value of in
[48], and not about the average value of as in the present
paper. It turns out that the model of [48] allows one to derive a
simple expression of the maximum a posteriori (MAP) estimate
of , leading to a detector which amounts to colored loading
of the sample covariance matrix, similarly to what is proposed
in [42] and [44]. As will be shown next, the MAP and minimum
mean-square error (MMSE) estimates of obtained in this
paper result in rather different detection schemes.

The paper is organized as follows. Section II describes
formally the detection problem at hand, along with the corre-
sponding hypotheses. In Section III, we focus on the problem
of estimating . First, we derive the MMSE estimate of

. As the latter cannot be obtained in closed-form a Gibbs
sampling strategy is advocated. Then, a closed-form expression
for the MAP estimate is presented. The estimates obtained in
Section III are in turn used for detection purposes in Section IV.
An approximate GLRT for this detection problem is derived, as
well as two Bayesian versions of the AMF where the MLE of

is replaced either by the MMSE estimate of or by its
MAP estimate. Section V presents numerical results illustrating
the performance of these detectors and comparing them with
those of the conventional AMF. Conclusions and perspectives
are drawn in Section VI.

II. PROBLEM STATEMENT

A. Notations

We briefly introduce the notations used in the paper, notably
those concerning the probability density functions (p.d.f.) that
will be used in the sequel. A vector is said to have a
multivariate complex normal distribution with mean and co-
variance matrix if its p.d.f. is given by

(1)

where stands for the determinant of a matrix. The standard
notation will be used in what follows. A com-
plex matrix of dimension is said to have a central
complex Wishart distribution with degrees of freedom
and covariance matrix if

(2)

with

(3)

and where stands for the exponential of the trace of the
matrix between braces. Accordingly, has an inverse complex
Wishart distribution with degrees of freedom and posi-
tive definite parameter matrix if its p.d.f. can be written as

(4)

The following properties will be used repeatedly [49]. First, note
the equivalence:

(5)

Next, if and , then [49]

(6a)

(6b)

(6c)

(6d)

where stands for the statistical mean, and is

defined here as (i.e., it does
not denote the usual covariance matrix of the vector formed by
stacking the columns of ).

B. Detection Problem

The detection problem considered herein is a conventional
binary composite hypothesis testing problem, defined as

(7)

In (7), is the -length space-time snapshot for the CUT, while
are the training samples, obtained from adjacent range cells.

The vector is the known space-time signature of the
target (referred to as the steering vector) which is usually a
known function of the target’s direction-of-arrival and radial ve-
locity. The scalar stands for the amplitude of the target, which
is assumed to be deterministic and unknown.

As for the noise, we assume that the vectors are in-
dependent and identically distributed (i.i.d.),

, , where is an unknown
covariance matrix. The density of conditionally to can
thus be written as

(8)

Since the ’s are independent, the joint density of
, conditionally to , is

(9)



where

(10)

denotes the sample covariance matrix of the secondary data. The
noise vector is assumed to have a Gaussian distribution with
zero mean and covariance matrix . As a consequence, the
distributions of the vector under hypotheses and are
given by

(11)

Moreover, and are assumed to be independent conditionally
to and .

This paper proposes to model the heterogeneity between the
primary and secondary data by assuming that . How-
ever, the matrix is supposed to be “close” to . Indeed,

must be somehow related to so as to have information
about from the observation of secondary data whose co-
variance matrix is (otherwise the training samples would
be useless). Herein, we propose to model the relation between

and by assuming that the conditional distribution of
is an inverse complex Wishart distribution with de-

grees of freedom, whose mean is :

(12)

where means proportional to. Using the notations intro-
duced in the previous section, we thus have

. Note that the inverse complex Wishart
distribution is the conjugate prior for parameter , which will
significantly simplify the analysis. Note also that (12) implies
that, “on the average”, the environment is homogeneous as

; however, these two matrices will be
different with probability one. The parameter allows one to
adjust the degree of heterogeneity between and . In
fact, using (6d), one can show that

(13)

Therefore, the distance between and decreases as
increases (and hence, is closer to ), which corresponds
to an environment which is more and more homogeneous. In
contrast, for small values of , may significantly differ from

. In any case, the two covariance matrices will be different,
and thus the scenario is that of an heterogeneous environment.

Let us now turn to the a priori p.d.f. of . The choice of
this prior is of course a delicate issue. It is usually dictated by
two seemingly conflicting arguments. On one hand, the prior

should reflect our knowledge about the primary data co-
variance matrix, or our absence of knowledge, which can be re-
cast through a non informative prior. On the other hand, com-
putational complexity is an important issue. Consequently, the

prior distribution of is usually chosen in order to provide 
tractable posterior densities. We refer the reader to [50], [51] 
for a very comprehensive discussion about the choice of a prior 
for covariance matrices. In our context, we assume that we have
some rough knowledge about the average value of denoted
as . In STAP problems, can be obtained from the sim-
plified model of the CCM, i.e., can be computed as [38]

(14)

where is the number of clutter patches evenly distributed in
azimuth, is the power of the th clutter patch, denotes its
space-time signature, and is a covariance matrix taper which
accounts for intrinsic clutter motion, calibration errors, etc. As
already stated in the introduction, using in (14) as an a priori
information has been advocated in e.g., [42]–[45]. In this paper,
we assume that , i.e.,

(15)

The average value of is thus and, using
(6b), the covariance matrix of is given by

(16)

As increases, is closer to , and thus the prior den-
sity is very informative. On the other hand, for small

, may significantly depart from , which results in a
vague prior density . Hence, the scalar enables us to
tune the amount of a priori knowledge we have about . Fur-
thermore, it should be stressed that will anyway differ from

. Therefore, the framework we propose offers a blend of
knowledge-aided processing—through the (not too restrictive)
assumption about —and robustness to covariance ma-
trix uncertainties, as rather heterogeneous environments can be
considered. It is important to note that the proposed statistical
model only requires to specify the values of the parameters
and . These parameters allow one to adjust the importance of
heterogeneity and the amount of prior information regarding the
covariance matrix of primary data, respectively.

Of course, we do not pretend that our model follows directly
from a physical reasoning, as could be the case e.g., for the
compound-Gaussian model. However, it is a rather realistic
model. Indeed, in (14) has a meaningful physical inter-
pretation and the p.d.f. in (15) simply states that
may be different from . Additionally, even if we do not
have a direct model for , the problem here is to model
nonhomogeneous environments, i.e., environments for which

. Therefore, the issue is more to relate to
than to have accurate models for and . Since the

difference between and is unpredictable and random, a
logical way to express this difference is through the conditional
p.d.f. in (12).



III. ESTIMATION

A preliminary and crucial step to designing a detector is to
obtain estimates of the unknown parameters of the model, and
more specifically in our case, estimates of the primary data co-
variance matrix. In this section, we focus on this issue. As will
be explained below, the detectors of Section IV will require cal-
culating integrals of the form where

is the a posteriori density of given , or esti-
mating . In either case, it is necessary to derive the a poste-
riori distribution and to generate matrices distributed
according to this distribution. Hence, we first derive .
Observe that, in a Bayesian framework, all information about

is embedded in its posterior distribution , whose
derivation is thus very natural. Next, we derive the MMSE and
MAP estimates of . For the sake of readability, we recast the
statistical assumptions of the paper, i.e.,

(17a)

(17b)

(17c)

(17d)

where under , under , and is a known
vector. We assume that is a deterministic and unknown ampli-
tude, which would be tantamount to assuming that is a random
variable with a flat prior.

A. Posterior Distribution of

We first concentrate on obtaining an analytical expression for
. Under the hypotheses stated in (17), we have

(18)

Using (18) along with (12) and (15), one obtains

(19)

where, to obtain the third line, we used the fact that the integral
in the second line is the integral of an inverse Wishart distribu-
tion with parameter matrix and degrees
of freedom. Equation (19) provides, up to a multiplicative con-
stant, a closed-form expression for , which can be now
used to derive estimates of .

B. MMSE Estimation

The MMSE estimate of is given by

(20)

Unfortunately, there are no analytical expressions for the in-
tegrals in (20), and one must approximate them numerically.
More generally, in the sequel, it will be required to evaluate in-
tegrals of the form for some function

. Deterministic methods are not appropriate here since
these integrals involve functions of high dimensions ( is of
size ). In such situation, it is thus usual to resort to sto-
chastic integration methods such as Markov chain Monte Carlo
(MCMC) methods. These methods consist of generating sam-
ples distributed according to the posteriors of interest -in this
case - and to use these samples to approximate the in-
tegrals to be computed. Hence, in order to obtain the MMSE
estimate of , we resort to such a method (namely a Gibbs
sampler, see Section IV for details) which consists of gener-
ating matrices (for ) distributed according
the posterior distribution , and of averaging these ma-
trices. More precisely, after forgetting the first matrices be-
longing to the so-called burn-in period, the MMSE estimate can
be approximated by averaging the “last” matrices generated by
the Gibbs sampler, yielding the following MMSE estimate:

(21)

C. Gibbs Sampling

We now present our strategy to generate matrices dis-
tributed according to . First, note that the generation of
matrices distributed according to (19) is not straightforward, as

does not belong to any familiar class of distributions.
Instead, this paper proposes to generate matrices distributed ac-
cording to the joint distribution using a Gibbs
sampling strategy. This recursive strategy has been described
in several textbooks such as [52, p. 326]. Having the matrix

at the th iteration, the generation of and
is achieved as follows:

• generate according to ;

• generate according to .

In order to obtain the distributions and
, we use (18). Considering as a given quan-

tity in (18), it follows that

(22)

Similarly, if is fixed in (18), then

(23)



Therefore, the conditional distributions of and
can be expressed as

(24)

(25)

Consequently, the Gibbs sampling strategy generates iteratively
random matrices and drawn from (24) and (25). In other
words, an initial value of is chosen. Then, a matrix
drawn from the Wishart distribution (24) is generated with this
initial value of . Next, a new matrix is drawn from the
inverse Wishart distribution (25) with the matrix generated
previously. The scheme is repeated until convergence. Observe
that generating matrices according to Wishart or inverse Wishart
distributions is straightforward.

The convergence properties of the Gibbs sampler are well
known (see, for instance, [52, p. 325] and [53, p. 181]). Indeed,
the matrices generated with the previous algorithm
are asymptotically distributed according to .
Therefore, the MMSE estimate can be approximated by aver-
aging the “last” matrices generated by the Gibbs sampler, as
was described previously. More precisely, the first matrices
belonging to the so-called burn-in period are not used for the
estimation, and the MMSE estimate of can be obtained as
in (21). Accordingly, if it is required to calculate integrals of
the form , they can be approximated

by averaging over the matrices . An

additional advantage of this approach is that it enables us to
obtain the MMSE estimates of both and ; the latter can

be obtained from the matrices generated by

the Gibbs sampler. This may be of interest, e.g., to characterize
the secondary data and the degree of heterogeneity between the
primary and the secondary data.

Remark 1: The MMSE estimate of introduced above
uses the secondary data only. In principle, could be esti-
mated using both and . However, this approach has some
drawbacks, as briefly explained below. Under the stated hy-
potheses, it is straightforward to show that the posterior density
of given is given by

(26)

It ensues that is still given by (25), and thus
does not bring any additional information regarding . In

contrast, we now have

(27)

Therefore, has not a simple Wishart distribution. 
Consequently, the generation of matrices drawn from (27) is 
more problematic when compared to the case where we use sec-
ondary data only. Moreover, this p.d.f. depends on which is 
unknown. As a consequence, it is easier to use only to esti-
mate , even though contains information about .

D. MAP Estimation

Since obtaining the MMSE estimate is rather complicated,
we now turn to the MAP estimator, which can be obtained by
maximizing . Using (19), it follows that:

(28)

Differentiating the previous equation and equating the result to
zero yields

(29)

The previous equation is recognized as a quadratic matrix equa-
tion. In the Appendix, we show that there exists a unique solu-
tion to (29), which is given by

(30)

where stands for the Hermitian square-root of ,
is a diagonal matrix with diagonal entries , is

the matrix of the eigenvectors of

and

(31)

It is interesting to comment on the form of . First, a (quasi)

prewhitening step —with as the whitening matrix—is
applied. Next, instead of using the quasi-whitened sample co-
variance matrix, the latter is slightly modified. More precisely,
its eigenvectors are retained while its eigenvalues are modi-
fied. It is interesting to note that the technique which consists
of modifying the eigenvalues of the sample covariance matrix
has already been proposed in the statistical literature, within the
framework of robust covariance matrix estimation under Stein’s
loss, see e.g., [54] and [55]. Hence, the MAP estimate in (30)
belongs to a known class of covariance matrix estimators. Note
also that, in contrast to the MMSE estimator, the MAP estimator
can be obtained in closed-form, which is very appealing from a
computational point of view. It remains to evaluate whether its
performance will be comparable to that of the MMSE estimator.

IV. DETECTION

This section focuses on the problem of deciding between hy-
potheses and in (7), under the assumptions stated in (17).



First, an approximate GLRT for the problem at hand is derived.
Next two AMF-like detectors are proposed which are obtained
after deriving the GLRT for known , and replacing by
its MMSE estimate or its MAP estimate.

A. Approximate GLRT

The GLRT for the detection problem 7 is given by [1]

(32)

where, for notational convenience, we have used subscripts
and to denote the distributions under and , respectively.
Using the hierarchical structure between , and ,
the density is given by

(33)

The density can be obtained by setting in (33).
For the sake of notational convenience, let us momentarily note

. In order
to obtain the MLE of , one should differentiate with
respect to . Using (33), one obtains

(34)

Therefore, the MLE of must satisfy

(35)

The previous equation is implicit in as the right-hand side de-
pends on . There does not exist a closed-form solution for and
one should resort to iterative techniques to find the MLE of .
As this is expected to be very complicated, we propose an ap-
proximate GLRT. It is well known [6] that

(36)

and is achieved for . Therefore,

(37)

with

(38)

Our approximation consists of replacing the numerator in (32)
by its upper-bound in (37). Doing so, our approximate GLRT
(AGLRT) can be written as

(39)

Note that, if was known, would be a Dirac function,

and the AGLR would boil down to ,
which is the GLRT for known . Under the Bayesian frame-
work used here, this test statistic is weighted and averaged over
the density of .

In practice, implementation of the AGLRT requires evalu-
ating the integrals in (39). As is well-known it is preferable to
rewrite these integrals as a function of the a posteriori p.d.f.

rather than a function of the a priori p.d.f. , as
the former bears more information. Using the relation between

and in (19), it is straightforward to show that
the AGLRT can be rewritten as

(40)

where

(41)

As already explained, obtaining analytical expressions for
these integrals is not feasible, and numerical deterministic
methods are not appropriate. In contrast, the Gibbs sam-
pler provides random matrices drawn from the a posteriori
distribution . Therefore, we propose to imple-
ment the AGLRT by calculating the average values of both

and over this set
of matrices. In other words, the AGLR test statistic is computed
practically as

(42)



B. Bayesian AMFs

As an alternative to the AGLRT, AMF-like detectors can be
investigated, where instead of replacing by its MLE (under
a frequentist framework), it is replaced by its MMSE or MAP
estimate based on secondary data. In order to obtain the MMSE
estimate of , the Gibbs sampler will be used, see (21). Once
the MMSE of is obtained, the Bayesian-AMF de-
tector is given by

(43)

The previous detector will be referred to as the BAMF-MMSE.
Examining (40), it can be observed that the BAMF-MMSE is
an approximation of the AGLRT, considering that the posterior
p.d.f. is highly concentrated around . Indeed,
under this assumption

and the AGLRT reduces to the BAMF-MMSE. An alternative to
using the MMSE estimator is to use the MAP estimator, which
results in

(44)

We will refer to (44) as the BAMF-MAP detector.

V. NUMERICAL EXAMPLES

In this section we first study the convergence of the Gibbs
sampler. Then we illustrate the performances of the AGLRT
and the Bayesian AMF detectors, and compare them with
that of the AMF, which is designed under the assumption
that the environment is homogeneous. In all simulations,
we consider a simplified scenario. We assume an array with

elements and the signature of the signal of interest is
. Moreover, the nominal primary data

covariance matrix is with , and the
number of training samples is .

A. Convergence of the Gibbs Sampler

It is known that the Gibbs sampler provides random matrices
that are asymptotically distributed according to the target dis-
tribution. However, a critical issue is to determine the numbers
of iterations and (for burn-in and computation, respec-
tively) that are sufficient to have an accurate estimate of

Fig. 1. Influence of the number of iterations on the convergence of the Gibbs
sampler. � = m + 1, � = m, and K = 2m.

Fig. 2. Influence of the number of burn-in iterations on the convergence of the
Gibbs sampler. N = 100, � = m+ 1, � = m, and K = 2m.

with (21). A first ad hoc method consists of assessing conver-
gence by evaluating the MSE through the iterations. More pre-
cisely, in order to find , large values of and are first
chosen, which provides a reference estimate. Next, the MSE be-
tween the estimate obtained from iterations and this refer-
ence is computed. The number of iterations is selected as
the value above which the MSE is deemed to be sufficiently
small. Such a procedure was applied in our case and the result
is reported in Fig. 1. As can be observed, the MSE decreases
smoothly along the iterations. In order to save computational
time, and since it provides accurate estimates of , the value

is retained and will be used in the sequel. A similar
procedure is applied to obtain . Fig. 2 shows the evolution of
the MSE as a function of when . It indicates that a
very short burn-in period is enough to ensure a good estimation



Fig. 3. Potential scale factor.N = 20,N = 100, andM = 20.� = m+1,
� = m, and K = 2m.

of . In the sequel, we set . Once these parameters
have been chosen, a rigorous way to assess convergence is to use
the between-within variance criterion. The principle is to run
parallel chains of length , with different initial values.
Let be the matrix obtained at the th iteration of the th
chain and let us note

where corresponds to the MMSE for the th chain, and
is the average value over the chains. The between-se-

quence and within-sequence variances for the Markov chains
corresponding to the element of (denoted as and

respectively), are defined by

The convergence of the Gibbs sampler can be monitored by the
so-called potential scale factor defined as [52, p. 332]

A value of less than 1.2 is recommended for convergence
assessment in [52, p. 332]. Fig. 3 displays the value of
when , and . The experiment was
run a hundred times and the values of are plotted for these
100 independent realizations. It is clearly seen that these values

Fig. 4. Empirical a posteriori distribution of the (1; 1) element of the matrices
MMM generated by the Gibbs sampler. � = m+ 1, � = m, and K = 2m.

of and ensure convergence of the Gibbs sampler, which
validates our selection.

As a final illustration of the Gibbs sampler properties, Fig. 4
shows the estimated posterior distribution of com-
puted from an histogram of the entry of the matrices ,

. This posterior distribution—or more
generally the estimated posterior distributions computed from

—can be used to provide information on the significance
of the estimates (such as confidence intervals, variances, …). It
should be observed that the a posteriori density does not seem to
be symmetric around its maximum, and hence one may expect
some difference between the MAP and the MMSE estimators.

B. Detection Performance

This section compares the performance of our detectors with
that of the conventional AMF. For both the AGLRT and the
BAMF-MMSE, the Gibbs sampler was used with and

, as validated previously. In all simulations below, the
probability of false alarm is set to . The thresh-
olds for each detector were obtained from 200,000 simulations,
with different values of and drawn from
and at each run. The probability of detection was
obtained from 100,000 Monte Carlo runs. Figs. 5–8 display
as a function of the signal to noise ratio (which is defined as

) for different values of and . Exam-
ining these figures, the following observations can be made.

• In all cases, both the AGLRT and the Bayesian AMFs
outperform the AMF. For , the difference be-
tween the AGLRT and the AMF varies from 1.2 to 4.7 dB,
which is significant. The BAMF-MMSE is seen to per-
form slightly worse than the AGLRT (the difference is
about 0.6–0.7 dB) but also outperforms the conventional
AMF. The BAMF-MMSE is 0.6–0.7 dB better than the
BAMF-MAP. The Bayesian detectors introduced thus con-
stitute a useful solution in this nonhomogeneous scenario.
Note also that the level of performance increases with the
complexity of the detector.



Fig. 5. Probability of detection versus SNR. � = m+ 1 and � = m.

Fig. 6. Probability of detection versus SNR. � = m+ 1 and � = 2m.

• The performance gain of Bayesian detectors versus the
conventional AMF detector is more pronounced when
increases. This can be seen as a logical consequence of the
a priori knowledge, namely , which is more important
as increases.

• The detection improvement resulting from the proposed
Bayesian model is more significant when decreases, that
is, as the environment is less homogeneous. Note however
that the AMF is quite close to the BAMFs, whatever ,
when is small. Hence, in our setting, the AMF turns out
to be rather robust. This can be explained by the fact that

, and hence, on the average, the envi-
ronment is homogeneous.

• The parameter with most influence is clearly . When
goes from to , the difference between the
AGLRT and the AMF increases by about 3 dB, while when

goes from to , it only increases by 0.7 dB.
This clearly indicates that is the parameter which con-
tributes most to improvement. Hence incorporating a priori

Fig. 7. Probability of detection versus SNR. � = 2m and � = m.

Fig. 8. Probability of detection versus SNR. � = 2m and � = 2m.

knowledge is a very effective means to improve perfor-
mance in nonhomogeneous environments.

To summarize this section, we proposed three detection
schemes. The first two, the AGLRT and the BAMF-MMSE, re-
quire a rather numerically intensive Gibbs sampling procedure
while the third detector, the BAMF-MAP, is less computa-
tionally intensive, as it makes use of a closed-form expression
for the MAP estimate of the primary-data covariance .
The performance of the detectors is in inverse relation to their
computational cost, with the AGLRT performing best, and
the BAMF-MAP performing least among the three. That said,
the BAMF-MAP still performs quite well against the standard
AMF, particularly when we are given reliable prior information
about the covariance, see Figs. 6 and 8.

VI. CONCLUSION

This paper provided a Bayesian model and knowledge-aided
detectors for nonhomogeneous environments. Towards this end,
a statistical relation between primary data and training samples



was proposed. More precisely, we assumed that the covariance
matrices of the primary and secondary data are random, with
some appropriate joint distribution. This model is rather flex-
ible as both the importance of the a priori knowledge and the
degree of heterogeneity can be tuned through scalar variables.
Within this framework, we derived an approximate GLRT and
two Bayesian versions of the AMF. Their implementation was
conducted using an appropriate Gibbs sampler. The new detec-
tors were shown to perform better than conventional detectors
in nonhomogeneous scenarios. The importance of incorporating
a priori information about the primary data covariance matrix
was illustrated. Of course, some issues need to be further exam-
ined. One issue concerns the model itself. As it stands, the pro-
posed model provides a good way of modeling information in
the prior. However, modeling inhomogeneity between primary
and secondary data could be improved; indeed the simulations
showed that heterogeneity had less impact on the performance
than prior information. Therefore, there seems to be a need to
search for a different model that could handle other types and
degrees of heterogeneity. A second issue concerns the compu-
tational complexity which, at this stage, still remains high. Fu-
ture efforts should be devoted to more computationally efficient
detection schemes. However, the proposed Bayesian detectors
provide a reference to which suboptimal detectors can be com-
pared. Finally, the robustness of these detectors should be tested
in more realistic scenarios or real data. Accordingly, there is
a need to derive detectors which would require less a priori
knowledge.

APPENDIX

DERIVATION OF THE MAP ESTIMATE OF

In this appendix, we derive the MAP estimate of the primary
data covariance matrix. As indicated previously, the MAP esti-
mate of is obtained by solving

(45)

For the sake of notational convenience, let us note
, and

. Accordingly, let us define
and , where

is the inverse of the square root of . With these new
variables, (45) can be rewritten as

(46)

Let us notice that . Let

. . .
(47)

denote the eigenvalue decomposition of and let be an
eigenvector of , associated with eigenvalue . Then,
postmultiplying (46) by , we obtain

(48a)

(48b)

(48c)

(48d)

However, since and , the polyno-
mial has two real roots, one
being positive, the other being negative. Since the eigenvalues
of must be positive, they are necessarily in the set

(49)

Let be the eigenvector associated with . Then, using (48a),
we have

It is straightforward to show that cannot be equal to
zero: using (49), implies that

, which is impossible. Therefore

(50)

where, to obtain the last equality, we made use of (48d). Con-
sequently, is the eigenvector of associated with . Since

is positive definite, the solution to (46) is thus unique and
is given by

(51)

This means that and share the same eigenvectors but have
different eigenvalues. Equivalently, can be written as

(52)

Finally, the MAP estimate of is given by
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