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Abstract10

We present a fast reconstruction algorithm for hyperspectral images, utilizing a small11

amount of data without the need for any training. The method is implemented with a dual12

disperser hyperspectral imager, and makes use of spatial-spectral correlations by a so-called13

separability assumption which assumes that the image is made of regions of homogenous spec-14

tra. The reconstruction algorithm is simple and ready-to-use, and does not require any prior15

knowledge of the scene. A simple proof-of-principle experiment is performed, demonstrating16

that only a small number of acquisitions are required, and the resulting compressed data-cube17

is reconstructed near instantaneously.18

1 Introduction19

Hyperspectral (HS) imagers provide precise spectral information for every pixel in a scene, and20

are useful for a range of applications - e.g. deep space or earth observation, material analysis, gas21

detection, etc. The time taken to obtain the 3D HS data-cube can be long, particularly for scanning22

type imagers, necessitating several acquisitions with a 2D sensor, and the volume of data produced23

is large. Often much of the information in the HS datacube is redundant, given that a real world24

scene contains a considerable amount of spectral-spatial correlations [1, 2]. These correlations lead25

to the field of compressed sensing, which reduces the amount of data needed to reconstruct the HS26

datacube, based on the assumption of an underlying sparse dictionary [3, 4, 5, 6, 7]. More recently,27

neural networks have been trained to reconstruct a HS cube using a similarly small amount of28

data [8, 9, 10]. But these methods either require significant time during the reconstruction, or a29

learning phase which make them not straightforward and ready-to-use. In this paper we present30

an alternative method requiring no training or prerequisite knowledge of the scene. The amount31

of data required for this algorithm is similarly small, and the reconstruction time is very short.32

A fundamental point is that we do not attempt to reconstruct the entire hyperspectral datacube,33

that is to reconstruct the spectrum for each pixel of the scene. The key idea of our approach is to34

observe that nearby pixels often share the same spectrum with only a small panchromatic intensity35
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difference, for example due to slightly different lighting conditions. If two pixels have differing36

spectra, the difference in the panchromatic intensity will likely be more significant. Therefore the37

scene can be divided into spectrally homogenous regions using information from the panchromatic38

image, and we need only assign a spectrum to each region.39

Paper outline: the next section depicts how the reconstruction problem for a dual disperser HS40

imager is given by a least square minimization, augmented with a spectral regularization. Section 341

presents the experimental setup, how the scene ground truth is recovered, and the metric used to42

asses the performance of our approach. Section 4 analyzes experimental results for one simple and43

one more complex scene, and in Section 5 we discuss how to remove reliance on segmentation of the44

panchromatic image.45

2 Methodology46

Due to spectral-spatial correlations within a HS scene, adjacent pixels are likely to share the same
spectra. Following this logic, we can separate any hyperspectral scene into spectrally homogenous
regions, defined as spatially connected areas where the spectra for every pixel is the same, apart
from a multiplication factor which depends on the intensity. The whole homogenous region can thus
be described by one single spectrum and an intensity map given by the panchromatic intensity. We
denote this assumption as the separability assumption (SA). If a homogenous region in the scene
consists of K pixels indexed by k ∈ {1 . . .K}, the HS information ok of pixel k in the region is
given by:

ok = Pks, (1)

where s is the normalized spectrum of the region made of W spectral bands, Pk the panchromatic47

intensity of that pixel, and the index k corresponds to all the pixels of the region. Therefore, the48

hyperspectral information o of the whole region can be written:49

o =


o1

o2

...
oK

 =


P1s
P2s

...
PKs

 =


P1I
P2I

...
PKI

 s (2)

where I is the identity matrix of size W .50

The measurement is implemented using a dual disperser HS imager [11], illustrated in Figure 1.51

For this architecture each camera pixel is co-registered with a scene pixel, so the resulting measure-52

ment value on each camera pixel is a linear combination of the spectral bands present at the scene53

pixel. The weights in this linear combination vary across the scene and are determined by a spatial54

filter placed in the imaging plane between the two dispersive 4-f lines, as explained in [12]. Dual55

disperser imagers are often used with reconfigurable spatial masks, for example digital micromirror56

devices (DMDs), so with different mask configurations, we make N coded measurements of the57

scene.58

For each region in the scene, a measurement mn corresponding to the values of the camera59
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Figure 1: Simplified schematic of the dual disperser architecture and the programmable filtering H
implemented by the DMD mask.

pixels in the region can be written as60

mn = Hno = Hn


P1I
P2I

...
PKI

 s = Gns (3)

where the measurement matrix Hn of dimension K×W is given by the spatial filter for acquisition61

n ∈ {1 . . . N}, and the measurement mn is a vector of length K. In other words the measurement62

value corresponding to pixel k is a linear combination of the wavelength bands w for that pixel,63

with weights defined by the kth row of Hn and multiplied the panchromatic intensity Pk.64

For N such acquisitions we can concatenate the results, giving65

m =


m1

m2

...
mn

 =


H1

H2

...
Hn

o =


H1

H2

...
Hn



P1I
P2I

...
PKI

 s =


G1

G2

...
Gn

 s = Gs (4)

We obtain the panchromatic information Pk via one acquisition with the spatial filter completely66

open. The spectrum s for the homogeneous region can then be reconstructed using the measure-67

ments m and this panchromatic information Pk with a simple least squares procedure. However,68

as matrix G can be ill-conditioned, we propose to use a Tikhonov regularization along the spectral69

dimension [13, 14]. The estimated spectrum for the region is thus calculated by70

ŝ = arg min
s
||m−Gs||2Γ−1 + µλ||Dλs||2 (5)

= (GtΓ−1G + µλD
t
λDλ)−1GtΓ−1m (6)
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where Dλ is a first order difference operator, µλ is a regularization parameter and the weighting71

matrix Γ = diag {m} accounts for the noise variance which is proportional to the intensity for72

a Poisson counting noise. As the system of Eq. (6) is overdetermined when K × N > W , the73

regularization parameter µλ can be set to zero if matrix GtΓ−1G is well-conditioned. Note that for74

a constant regularization parameter µλ, the regularization is naturally weaker for large regions than75

for small regions as the number of elements in the first term of Eq. (5) is larger, while the number76

of elements in the second term (ensuring the regularization) stays constant. Finally, the value of77

the estimated spectrum can take on negative values, which if necessary can be avoided by imposing78

positive values using a non-negative least squares procedure, at an additional computational cost.79

From a computational point of view, the solution can be directly computed using Eq. (6), as80

the linear system to solve only has W unknowns. Note that solution of the linear system has a81

constant computation cost regardless of the number of pixels K in the region and the number of82

acquisitions N . Moreover, the computation costs of the matrix GtΓ−1G and the vector GtΓ−1m83

are linear with respect to K and N.84

Additionally, as each region can be computed independently, the algorithm is paralellizable,85

giving the potential for extremely fast reconstruction overall.86

One important consideration for this algorithm is how the image can be divided into homo-87

geneous regions, given no prior knowledge of the scene. We can consider that if two pixels have88

different spectra, there will likely be a difference in the panchromatic intensity, if we assume the89

presence of adjacent metamers is unlikely. For two adjacent but spectrally distinct regions, the dif-90

ference in intensity is visible on the panchromatic as an edge, and thus some form of segmentation91

algorithm applied on the panchromatic image can be used to divide the image into regions. As92

segmentation is an ill-defined and non-trivial problem, we expect that this method will be most93

reliable for simple scenes that are easily segmented and obey the separability assumption e.g. a94

scene that is not highly textured, blurred and does not contain adjacent metamers or smooth spatial95

changes in spectra.96

3 Experiment97

The algorithm was tested experimentally using the dual disperser system described in [12], with an98

additional lens before the input. The scene has W = 110 spectral bands in the range 425-650 nm,99

with 400 by 400 spatial pixels, and the spatial filtering is implemented using a DMD. Due to the100

orientation of the DMD, as well as size mismatch between the DMD mirror and pixel, the matrix101

H contains non-binary values. Whilst one would imagine that a fully 2D randomized DMD mask102

gives the best conditioning of equation (6), in practice the geometry mismatches lead to significant103

mixing of the data resulting in a less accurate reconstruction. To compensate for this effect, we104

are obliged to use a simpler mask design with only a 1D variation in the direction of dispersion.105

Consequently more acquisitions will be required than for an ideal 2D randomized mask, as there106

is less variation in the measurement data. The mask is designed according to [15], where long107

sequences of on or off mirrors are avoided to maximize variation in the information and improve108

conditioning of equation (6). This paper does not perform an extensive study into the ideal ratio109

of open mirrors (ROM), but we obtained good results with using ROM = 0.1, with some scope for110

further optimization. The regularization parameter was chosen to be µλ = 103. A typical procedure111

to implement this algorithm consists of an acquisition of the panchromatic image, followed by one112

or more coded acquisitions with a 1D random mask.113
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3.1 Slit Scanning114

To evaluate the reconstruction method, ideally one would compare to the underlying ‘Ground Truth’115

of the scene. However, for an experimental system this is not possible, so instead we compare to116

the reconstruction obtained via a straightforward slit scanning approach.117

The data for both Slit Scanning (SS) and the Separability Assumption (SA) approaches are118

obtained with the same exposure time on the camera. The gray level on the DMD for the SS data119

was at its maximum value of 255. As SA combines several bands, the acquired images are brighter120

than for SS, so for the SA data the gray level of the DMD was reduced so as not to saturate the121

camera. We chose to keep the acquisition time constant to ease the comparison between SS and122

SA and avoid any nonlinearity at the camera level. In practice, the camera exposure time could123

be reduced for the SA data acquisition which would provide a further bonus with a reduction in124

terms of acquisition time. The SS reconstruction is limited by the dynamic range of the camera125

and its accuracy is limited for darker regions within the scene, where the signal to noise ratio is low,126

or where the signal is below the background level of the camera. Therefore, the SS data used for127

comparison to SA combines two data sets, with slit width of 1 mirror and slit width of 2 mirrors, to128

increase the dynamic range of the measurement. When the panchromatic intensity of the scene falls129

below a given threshold, the acquisition data from the wider slit is used to reconstruct the spectrum130

(further details in Supplemental Document). The reconstruction with slit width of 2 mirrors will131

incidentally reduce the spectral resolution.132

Similarly to compressed sensing approaches, the nature of the data acquisition also gives us133

the Fellgett’s advantage: compared to the SS acquisition, the SA acquisition has a higher SNR in134

darker regions.135

To compare the two reconstructions we use the Spectral Angle Mapper (SAM), which measures
the similarity of two spectra independent of their amplitude:

SAM(r, c) =

∣∣∣∣arccos

(
o(r, c)T · ô(r, c)

‖o(r, c)‖ · ‖ô(r, c)‖

)∣∣∣∣ (7)

At a given position (r, c) in the scene, the SAM is equal to zero when the spectra are identical,136

and equal to π/2 when the spectra are exactly orthogonal. The SAM is an ideal metric for this137

approach as it measures the spectral correspondence, rather than the spatial correspondence which138

is easily preserved by the geometry of the system.139

3.2 Segmentation of the panchromatic image140

Many segmentation algorithms are available, the latest of state of the art resorting to neural net-141

works [16, 17, 18, 19]. However, the focus of this paper is not on the segmentation algorithm itself,142

and we would ideally like that the method is robust enough that obtaining the exact segmentation is143

not crucial for the quality of the results (see Section 5). In practice, the panchromatic image is seg-144

mented into homogeneous closed regions using the classical watershed algorithm [20], implemented145

using MATLAB functions watershed. To alleviate noise, we first used an anisotropic diffusion algo-146

rithm [21], implemented using MATLAB function anisodiff2D, with gradient modulus threshold147

κ = 2×10−3, and 50 iterations. Anisotropic diffusion denoises the image, while preserving the con-148

tours, followed by a morphological gradient to improve the region-oriented segmentation, removing149

the gradients below a threshold T, which varies the segmentation sensitivity. The segmentation al-150

gorithm returns the detected homegenous regions in the scene, which are bounded by a contour that151

5



is one pixel wide. The contours are likely to contain a spectral mixture of the two adjacent regions,152

but to focus primarily on the separability assumption they are discarded during the reconstruction153

of the HS image.154

4 Results155

4.1 Simple Scene156

We performed initial tests on a simple and easily segmented scene, consisting of a plastic brick wall157

illuminated with a white LED, shown in Figure 2a. The RGB image from the slit scanning (SS)158

reconstruction is shown in Figure 2b, and from the SA algorithm in Figure 2c, for N = 5 coded159

acquisitions, the region contour highlighted in white. The DMD gray level was 255 for the SS160

acquisition and 140 for the SA acquisition. The panchromatic image was normalized between 0161

and 1 and then segmented with a threshold of T = 1 × 10−2. Two examples of the reconstructed162

spectra are shown in Figure 3, showing a good correspondence especially for the bright regions163

(Figure 3a). Figure 4 displays the histogram and average of the pixel-by-pixel SAM values in the164

scene, dependent on the number of acquisitions. As one can see, only a few acquisitions are required165

for the results to converge to a good accuracy, with a low average SAM.166

The reconstructed data cube has a total of Q = 360 regions, which means that the number167

of data points required to represent the scene is (Q ×W ) + (R × C) = 2 × 105, whereas the full168

datacube has size to R × C ×W = 1.76 × 107, pixels. This gives a total compression factor of 88169

for the hyperspectral data cube. In terms of data acquisitions, the SA method requires N + 1 = 6,170

compared to a normal slit scan with W = 110 acquisitions (i.e. not high dynamic range), so the171

compression factor for the acquisition data is W/(N + 1) ' 18. In terms of overall acquisition time172

for the whole sequence of images SA is 18 times faster. The reconstruction time for the SA method173

was 15 seconds, using non-optimized Matlab code.174

This example also illustrates well the two main failure modes of the SA; firstly via regions that175

are too small to contain enough information, and secondly via adjacent metamers.176

For very small regions (such as the bottom left of Figure 2c), we can see on the RGB that the177

reconstructed spectra are inaccurate, as the reconstruction problem is under-determined, despite178

the regularization.179

For adjacent metamers, Figure 5 shows spectra for two different pixels in the same region,180

although by looking at the RGB image we can see that they are actually from different colored181

bricks (points (c) and (d) in Figure 2b). When the scene contains two spectrally different zones,182

which are combined into a single region during segmentation, the reconstructed spectrum is a183

mixture of the spectra of the two individual zones. This is clear when we compare the spectrum184

constructed by SA (dotted red line in Figure 5) to the average spectral value for that region found185

by SS (solid red line in Figure 5).186

4.2 Complex Scene187

Now we examine the performance with a more complex scene. The scene consists also of plastic188

bricks but has a 3D structure, gradients in light and dark due to shadows, and specular reflections,189

so is difficult to segment accurately. The DMD gray level was 255 for the SS acquisition and 125190

for the SA acquisition. The RGB reconstruction of the scene using the slit scanning data is shown191
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(a)

a

bc

d

(b) (c)

Figure 2: (a) Panchromatic image, and RGB image for (b) slit scanning and (c) the SA method
with N = 5 acquisitions for the simple brick scene.
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Figure 3: Comparison of reconstructed SA spectra to the SS spectra, for pixels labelled (a) and (b)
in Figure 2c.
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Figure 4: Histogram of SAM values with number of acquisitions.

8



450 500 550 600 650
Wavelength (nm)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

N
or

m
al

iz
ed

 In
te

ns
ity

SA
SS pixel (c)
SS pixel (d)
SS region average

Figure 5: Comparison of reconstructed SA spectra to the SS spectra for pixels (c) and (d) labeled
in Figure 2c, and for the average SS spectrum over the region.

in Figure 6a. Figures 6b, 6c and 6d show the reconstructed RGB results for the SA algorithm with192

varying segmentation thresholds.193

Figure 7a shows the SAM histogram and average SAM as a function of the number of acquisi-194

tions, similar to the simple scene, although now as there are more small regions the convergence195

with N is somewhat slower. For N = 5, Figure 7b shows that the reconstruction accuracy does196

not change much with the segmentation threshold, and there is a broad optimum region between197

T = 0.001 and T = 0.015. For an over segmented scene we would expect more small regions which198

do not contain enough information to be reconstructed accurately, whereas for the under segmented199

scene we are more likely to have two different regions merged into one, so the resulting spectra is200

a mixture of the two. Figure 7c shows how the average SAM of the region depends on the size of201

the region K, showing a large increase in the value and the variation in SAM as the region gets202

smaller. For a fully 2D mask we know the reconstruction problem can be over determined when203

K > W/N = 22, i.e. for regions with more that 22 pixels we should have enough information to204

accurately reconstruct the spectrum. However, as we are using only a 1D mask, we should expect205

the limit on K to be somewhat higher, depending on the shape of the region. Of course, regular-206

ization over the spectrum reduces the limit, depending on the smoothness of the spectra and the207

regularization parameter chosen. These results indicate that obtaining perfect scene segmentation208

is not vital to the success of the algorithm.209

For the best segmentation, the reconstructed data cube has a total of 1138 regions, which means210

that the number of data points required to represent the scene is (Q×W ) + (R×C) = 2.85× 106,211

giving a total compression factor of 6.2 for the hyperspectral data cube. As for the simple scene,212

SA method permits a ×18 reduction in the amount of data needed for reconstruction compared to213

the SS method. The reconstruction time for the SA method was 11 seconds (Matlab code).214
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Slit Scanning

(a)

SA - Best Segmentation

(b)

SA - Over Segmented

(c)

SA - Under Segmented

(d)

Figure 6: RGB images of the complex brick scene using (a) SS method, and (b-c) the SA method
with N = 5 acquisitions and segmentation threshold (b) T = 0.008 (best segmentation in terms of
average SAM), (c) T = 0.001 (over-segmented), and (d) T = 0.02 (under segmented).
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Figure 7: Histogram of SAM values: (a) as a function or the number of acquisitions N for T = 0.008,
and (b) as a function of the segmentation threshold for N = 5; (c) For N = 5, average SAM over a
region as a function of the region size.
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Region size = 10 x 10 pixels, average SAM= 0.24
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Figure 8: RGB reconstruction using SA methods on square regions or ’superpixels’, region size (a)
10× 10 pixels, and (b) 20× 20 pixels, and N = 5 acquisitions. (c) the average SAM plotted against
the residual error R of a region, for 10× 10 regions.
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5 Beyond Panchromatic Segmentation215

As we have seen, the results are somewhat insensitive to the segmentation, and it may be possible216

to avoid panchromatic segmentation entirely. For example, Figures 8a and 8b show the results for217

the SA approach when we arbitrarily divide the scene into 10 × 10 or 20 × 20 square regions. We218

can gain information on how well each region is reconstructed spectrally using the residual error,219

given by220

R =

〈∣∣∣∣m−Gŝ

m + Gŝ

∣∣∣∣〉 (8)

Where the average 〈.〉 is over all the pixels of the region and over all the acquisitions. As Figure 8c221

shows, the residual gives us information on how well a region is reconstructed, although there is a222

large variation in the results. We could use the residual error to post-process the reconstruction223

and improve the segmentation and overall accuracy of the reconstruction. We could also rely on224

the residual error to devise a split/merge strategy to refine the SA reconstructed HS cube, starting225

from some arbitrary division into regions. This paves the way towards implementation of SA that226

do not suffer from the limitations induced by segmentation of the panchromatic image.227

6 Conclusion228

The reconstruction algorithm is based on the particular properties of the dual disperser hyperspec-229

tral imager, namely the property of co-registration, and relies on spectral-spatial correlations in the230

scene. The algorithm reconstructs simple real-world scenes accurately and quickly using a small231

amount of data, also with an acquisition time much shorter than for a slit scanning acquisition.232

Full parallelization of the computation could theoretically reduce the computation time by a fac-233

tor equal to the number of regions. Experimental improvements allowing a 2D mask, as well as234

investigation into the optimum ROM could reduce the number of acquisitions necessary or allow235

smaller regions to be reconstructed. Currently, due to the reliance on panchromatic segmentation,236

this method may not be well suited to challenging scenes that are difficult to segment e.g. highly237

textured scenes or with lots of metamers. However, preliminary tests using arbitrary division of the238

scene into regions show good results, and demonstrates that we can use the residual error as a met-239

ric on reconstruction accuracy. Future work involves avoiding reliance on imperfect segmentation240

algorithms, instead utilizing the residual errors to improve the reconstruction and the segmentation241

itself.242
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