Fast reconstruction of hyperspectral images from coded acquisitions using a separability assumption - Archive ouverte HAL
Article Dans Une Revue Optics Express Année : 2022

Fast reconstruction of hyperspectral images from coded acquisitions using a separability assumption

Résumé

We present a fast reconstruction algorithm for hyperspectral images, utilizing a small amount of data without the need for any training. The method is implemented with a dual disperser hyperspectral imager, and makes use of spatial-spectral correlations by a so-called separability assumption which assumes that the image is made of regions of homogenous spectra. The reconstruction algorithm is simple and ready-to-use, and does not require any prior knowledge of the scene. A simple proof-of-principle experiment is performed, demonstrating that only a small number of acquisitions are required, and the resulting compressed data-cube is reconstructed near instantaneously.
Fichier principal
Vignette du fichier
main_hal.pdf (4.51 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03610209 , version 1 (16-03-2022)
hal-03610209 , version 2 (28-07-2022)

Identifiants

Citer

Elizabeth Hemsley, Ibrahim Ardi, Tony Rouvier, Simon Lacroix, Hervé Carfantan, et al.. Fast reconstruction of hyperspectral images from coded acquisitions using a separability assumption. Optics Express, 2022, 30 (5), pp.8174-8185. ⟨10.1364/OE.448893⟩. ⟨hal-03610209v2⟩
182 Consultations
69 Téléchargements

Altmetric

Partager

More