
 Informatica 31 (2007) 191–199 191

A Group Learning Management Method for Intelligent Tutoring
Systems
Eliane Pozzebon1,2, Janette Cardoso2, Guilherme Bittencourt1 and Chihab Hanachi2

1 Santa Catarina Federal University, DAS
88040-900 Florianópolis, Brazil,
E-mail: (eliane,gb@das.ufsc.br)

2 Université Toulouse 1, IRIT
F-31042 Toulouse Cedex, France
E-mail: (jcardoso, hanachi@univ-tlse1.fr)

Keywords: learning in group, collaborative learning, intelligent tutoring systems, multi-agents systems

Received: February 17, 2007

In this paper we propose a group management specification and execution method that seeks a
compromise between simple course design and complex adaptive group interaction. This is achieved
through an authoring method that proposes predefined scenarios to the author. These scenarios already
include complex learning interaction protocols in which student and group models use and update are
automatically included. The method adopts ontologies to represent domain and student models, and
object Petri nets to specify the group interaction protocols. During execution, the method is supported
by a multi-agent architecture.
Povzetek: Grupno učenje je podprto s scenariji, modeli, ontologijami, agenti, Petri mrežami.

1 Introduction
Although the research on Artificial Intelligence in
Education (AI-ED) can be traced back to the 80's,
when the first ideas on Intelligent Tutoring Systems
(ITS) were introduced, presently it is going through an
accelerated evolution process, mainly due to
innovative computer technologies, such as
hypermedia, Internet and virtual reality [1] [2].
Nevertheless, the conceptual gaps between authoring
systems and authors and between instructional
planning and tutoring strategy for dynamic adaptation
are challenges that have not yet been overcome [23].
These challenges are especially complex in Intelligent
Tutoring Systems in which one considers, beside an
individual interaction, a group interaction. In this case,
the ITS should not only support the domain
presentation for a single student, but also manage the
group interactions.

ITSs that allow group work present different
degrees of group interaction control. At one extreme,
we have systems that only make available the
communication tools that allow the group interaction
(chat, mail, forum, cooperative editors, etc), leaving
all the problem solving and coordination activities
under human responsibility. At the other extreme, we
have systems that control all the details of the group
interaction, following well defined and rigid protocols.
In the former, the author instructional planning task is
at least as hard as in traditional group work planning.
In the latter, the lack of flexibility makes it difficult to

achieve dynamic adaptation and to share and reuse
ITS components across domains.

In this paper we propose a group management
specification and execution method that seeks a
compromise between these two extremes. To provide
a reliable and flexible interaction mechanism, the
method includes a formal specification language that
allows the definition of arbitrarily complex learning
interaction protocols, here called scenarios. These
scenarios are specified by the authoring tool
developers. The group activity author only provides
the contents and customizes the chosen scenario using
an authoring interface. To provide an adaptive
behavior the method explores the structure of the
domain and student models of the underlying ITS.
This is possible because the method is intended to be
applied to ITSs created using the FAST multi-agent
ITS building tool [3] [15], in which these models are
specially designed to facilitate adaptiveness.

To tackle the compromise between simple group
activity design and complex adaptive group
interaction, the following project decisions were
adopted in the development: (i) an explicit
representation, using ontologies, of the knowledge that
describes the domain, student and group activity
models, including their relationship, (ii) the use of a
multi-level control process to increase the flexibility
of the behavior without sacrificing the specification
simplicity, (iii) the use of an expressive formalism,
Object Petri Nets (OPN) [25], to specify the group

192 Informatica 31 (2007) 191–199 E. Pozzebon et al.

interaction protocols. OPN are a formalism combining
coherently Petri nets (PN) theory and the Object-
Oriented (OO) approach. While PN are very suitable
to express the dynamic and possibly concurrent and
open behavior of a protocol, the OO approach permits
the modeling and the structuring of its active (actor)
and passive (information) entities. In our case, actors
correspond to teacher and students, while information
corresponds to domain and scenarios.

The paper is organized as follows: Section 2
presents an overview on the related work. Section 3
introduces the FAST ITS building tool. Section 4
explains how a group interaction scenario is specified
and Section 5 presents a simple example of a scenario,
discussing in particular what a group interaction is.
Finally, in Section 6, we present some conclusions and
future works

2 Related Work
Organization modelling is recognized as an essential
mechanism for structuring the design of Multi-Agent
Systems (MASs) and coordinating their executions.
Indeed, this approach provides high level concepts,
such as groups, roles, protocols or commitments,
useful to structure and rule, at a macro level, the
coordination of the different agents involved in a
MAS. All these reasons have led to an increased
development of agent methodologies (GAIA, MOISE,
AALADIN, etc.) structured around organizational
concepts (see [20] for a survey). In most of these
methodologies, protocols and groups are considered as
basic building blocks of an organizational oriented
approach of MASs. This is the approach we have
followed in this paper by structuring our MAS around
groups and protocols: while groups constitute an
interaction space for agents, protocols define the rules
to enter or leave a group and play a role within a
group. The concept of organization (also groups,
institutions, communities, etc.) within MAS has been
discussed in several papers [10], [13], [9], [11], [12],
[24], [19], [26], [16], [14], [28].

Regarding agent-based protocols, [7] provides an
interesting survey of the different specification
formalisms, and concludes that Petri Nets provide
good software engineering properties to specify,
validate and execute concurrent protocols. Our work is
also related to [16] in which the adequacy of the Petri
Net with Objects formalism, to describe real world
protocols, is shown. Systems focusing on the concept
of group have also been used in the context of ITS
[22], [14], [27], [21] and [18]. In this paper, we do not
address the automatic group formation problem. This
issue is treated, for example, in NetClass [21] using
the learner model, the author information and a
sociometric test (that measures the degree of cohesion
among students). In WhiteRabbit [27], the groups are
created from the analysis of the user model based on
the keywords (about his projects, experience, etc.) and
also on the conversations.

Among ITSs that share our goal of simplifying
course development, an interesting example is the
Cognitive Tutor Authoring Tools (CTAT) project. It
assists in the creation and delivery of ITS based on
model tracing [17]. The main goal of this project is to
provide tools to reduce the amount of artificial
intelligence (AI) programming expertise required to
implement ITSs. The project authoring tools support
the development of two types of tutors: Cognitive
Tutors and Example-Tracing tutors. Cognitive tutors
contain a cognitive model that simulates the student
thinking in order to monitor student activities and to
provide pedagogical assistance during problem
solving. In contrast, Example-Tracing Tutors do not
contain a cognitive model: to develop a tutor of this
kind, the author needs to specify a recording of
possible student actions and corresponding feedback
messages. Although Example-Tracing Tutors do not
require IA programming, they are specific to the given
set of problems and cannot deal with student actions
which are not pre-specified by the author [17], i.e.
they lack adaptiveness.

An example of an ITS that uses multi-agent
technology is the DOCTA [5] system. It uses
intelligent agents for collaborative learning to support
collaboration in a learning scenario on gene
technology. Agent system consists of two
components: a Student Assistant agent (SA-agent) and
an Instructional Assistant agent (IA-agent). Both
agents observe and detect problems in the
collaboration and knowledge-building process among
students, but their presentations are different.

Another example is the COLER system [6]that
addresses both social and task-oriented aspects of
group learning. It helps students collaborate while
solving Entity Relationship modeling problems.
Unlike previous work, generally emphasizing dialogue
analysis or expert models, this work proposes a new
approach to support collaboration that identifies
learning opportunities based on the differences
between problem solutions and tracking levels of
participation. This work demonstrates how intelligent
agents can produce reasonable collaboration advice in
domains for which structured problem solutions exist
by using a few basic knowledge sources, and
illustrates several methods for knowledge evaluation
and reasoning of complex knowledge-based systems.

3 FAST ITS Building Tool
FAST [3] is a domain independent authoring tool to
implement multi-agent Intelligence Tutoring Systems.
Courses developed using FAST are based on the
conceptual model MATHEMA [8]. This model
proposes an ITS architecture that consists of three
modules (see Figure 1): the Tutoring Agent Society
(TAS), the Student Interface and the Instructor
Interface. The student interface provides access to the
system and the instructor interface allows the
monitoring of the course. The TAS consists of a multi-
agent system where each Tutor Agent (TA) contains a

A GROUP LEARNING MANAGEMENT... Informatica 31 (2007) 191–199 193

complete ITS focused on a sub-domain of the course
target domain. Each of the intelligent tutoring agents
in the TAS is responsible for one sub-domain.
MATHEMA provides a modeling scheme for these
sub-domains that is divided into two views: external
view and internal view.

Figure 1: MATHEMA System Architecture.

The external view is a domain knowledge partitioning
scheme, based on epistemological assumptions, that
guides the author during course development. This
partitioning is performed according to two main
dimensions: context and depth. Along the context
dimension the domain knowledge is partitioned
according to a set of different points of views about its
contents. For each particular context, the depth
dimension partitionates the domain knowledge
according to the methodologies used to deal with its
contents. Each pair context/depth is associated with a
sub-domain, to be dealt with by one of the TAS
agents.

The internal view proposes to organize the
knowledge associated with each sub-domain into a set
of curricula. Each curriculum is progressively refined
according to three levels of detail: pedagogical units,
problems and interaction support units. At the
pedagogical unit level, each curriculum, that describes
a possible sequence of sub-domain contents to be
presented to the student, is refined into a set of
partially ordered pedagogical units, possibly with
prerequisites relationships. At the problems level, each
pedagogical unit is refined into a set of problems, also
partially ordered and possibly with prerequisites
relationships. Finally, at the interaction support units
level each problem is associated with a set of
interaction units with the student, that support the
problem solving activities, such as explanations,
examples and exercises.

The domain knowledge of any ITS developed
using the FAST tool presents the structure defined by
this internal view. This fact allows the construction of
group interactions that, although not domain
dependent, can explore the domain structure, going
beyond the simple communication support between
group members and the instructor. This is possible
because these group interactions can use the same
problem solving activities already defined in the
context of the underlying ITS.

A further advantage is that the student model,
used in group interaction management, can be defined
as an extension of the student model in the underlying
ITS. In such a way that the group interaction manager
can explore the preferences and previous results
obtained by each student in the context of individual
learning during her/his interaction with the underlying
ITS. Both, domain and student models, are represented
using ontologies. These ontologies are briefly
described in the next subsections.

3.1 Domain Model
The domain model contains definitions of all the
concepts in the internal view of the MATHEMA
model. A course is represented as an instance of the
domain model and contains all the information
provided by the author. This information is of two
types: properties and contents. Examples of properties
are prerequisite relationships, degree of detail, level of
difficulty, etc. Contents is what is presented to the
student, typically an interactive page encoded into
predefined HTML pages templates.

The ontology described in [15] includes concepts
to define prerequisite order graphs, that can be used to
define the relationship among pedagogical units or
problems and concepts to represent specific types of
interaction support units, whose contents are also
specified by the author (see Figure 2). These concepts
correspond to the elements of the internal view of the
MATHEMA model.

Figure 2: Domain Model.

In particular, the Problem concept (and its sub-
concepts) is reused in the definition of the Content
Unit concept of the proposed group management
method (see Section 4.2).

194 Informatica 31 (2007) 191–199 E. Pozzebon et al.

3.2 Student Model
The student model, proposed in [15], contains
definitions of all the concepts necessary to
characterize a student and her/his history of
interactions with the system. Its contents include static
information, such as education level, based on a
preliminary test, and preferences; and also dynamic
information that consists of descriptions of the student
activities during all her/his sessions of interaction with
the system. This student model was extended to
include the information necessary to group interaction.
This also includes static information, such as
preferences, and dynamic information, such as the
record of the student performance during group
activities.

4 Group Management Method
The goal of the proposed group management method
is to allow the specification and execution of complex
group activities, without burdening the author with the
task of specifying how the student and group activity
models should be taken into account and updated
during the interaction. To support the proposed
method, the conceptual model proposed by the FAST
tool was extended to include the definition of group
activity. A group activity involves the developer who
specifies the scenario library where the group
activities are stored; the author who chooses and
instantiates a suitable scenario to build an actual group
activity; and the instructor who supervises the group
activity, determining the beginning and end of the
activity, and verifying student feedback. Each group
activity is necessarily based on an underlying
ITS built up using the FAST tool. It presents two

levels: the specification level and the execution level,
as shown in
Figure 3.

The specification level main concepts are Group
and Scenario. A group consists of a set of students. A
scenario consists of an operational definition of the
group activity. Scenarios are defined by the developer
and stored into a scenario library. They are built using
predefined activity units that can be reused in different
scenarios.

The execution level consists of a multi-agent
system that performs a group activity based on an
instance of the Scenario concept, as defined in the
specification level. To define such an instance, the
author chooses the more adequate scenario from the
scenario library, provides the contents, and customizes
the scenario parameters (e.g., student level
requirements, minimal and maximal number of group
members, etc). This information is compiled into an
OPN able to manage the group activity, in which the
tokens are instances of the Group concept. Once the
scenario and group instances are defined, the group
activity can be made available to the students to be
executed under the supervision of the instructor.

The concepts involved in these two levels of the
group activity are described in more detail in the next
subsections.

4.1 Specification Level
The concepts involved in the specification level (see
left side of
Figure 3) include: Group, Role, Scenario,
Prerequisites, Activity units (Management and
Content units), Prerequisites and Interaction Protocol.

Figure 3: Group Activity Model.

A GROUP LEARNING MANAGEMENT... Informatica 31 (2007) 193–201 195

The Group concept joins a set of students already
inscribed in the underlying ITS and, optionally an
instructor. The members of a group can be assigned to
different roles.

The Role concept structures the members of a
group into classes according to their participation in a
scenario. Each Role is defined by: its name; the
required skills (that an agent must meet to be
authorized to play that Role); and the casting
constraints (such as the maximum number of agents
that may play that role, the condition required to play
it, etc). Some examples of roles are: Team Leader, and
Plain Member.

The Scenario concept consists of an operational
definition of the group activity. It includes
prerequisites, activity units and an interaction
protocol.

The Prerequisite concept defines the initial
conditions for a given scenario, e.g., the minimal and
maximal number of group members, the situation of
these members with respect to the course of the
underlying ITS, etc.

The Activity Unit concept defines the different
activities that occur in a given scenario. There are two
types of activity units:
• Management units: used to define the typical

activities of group interactions, e.g., group
formation, problem distribution, wait for the first
solution, waiting for all solutions, group member
instruction, all group members instruction, etc; and

• Contents units: used to define the problem solving
tasks associated with a given scenario. These tasks
are defined using the Problem specification (that
includes Interaction Units) of the domain model of
the underlying ITS (see Section 3.1). The content
definitions are provided by the author, using the
authoring interface of the FAST tool [4] [15] and
can be used either in the context of group learning
or individual learning.

Figure 4: Specification of an Interaction Protocol.

The Interaction Protocol concept contains the
operational specification of the group activity, i.e., the

order in which the activity units are executed in a
given scenario. It is represented by a two level
hierarchical OPN. The specification of an instance of
an interaction protocol is a two step process (see
Figure 4). The first step consists in selecting a scenario
from the scenario library and instantiating all its
attributes.

The second step compiles this information to
produce the OPN that defines the interaction protocol.
The compilation process automatically integrates the
domain model of the underlying ITS and the use and
update of the student models into the conditions of the
Petri Net transitions. This integration provides the
adaptive character of the interaction protocol.

4.2 Execution Level
The execution level is defined by a multi-agent
architecture inspired by Ferber [07] and represented in
Figure 5. The concepts involved in the execution level
(see right side of
Figure 3) are: Agent, Student Agent, Group
Supervisor Agent and Coordinator Agent.

Figure 5: Multi-Agent Architecture.

A Student Agent (SA) represents a student and

has a role assigned to it. Each Student Agent stores
internally the information of the student model
relevant to the group management, e.g., the group
activities in which the student has participated,
statistics about the role of the student in these groups
(leader or not), the number of group communications
in which she was involved, etc. It can also consult the
student model stored in the TAS agents of the
underlying ITS (see Section 3.2).

A Group Supervisor Agent (GSA) supervises a
group activity according to the OPN associated with

196 Informatica 31 (2007) 191–199 E. Pozzebon et al.

the interaction protocol defined in the scenario
instance. In this OPN, the tokens are instances of the
Group concept. This allows the management units, in
the interaction protocol, to consult and update group
attributes. In a first step, students can be included as
group members. Once the student set is available, it
can be used to identify the associated student agents,
e.g., to allow a broadcast message to be sent or to
consult the student models stored in the TAs of the
TAS, e.g., to check the performance of the students in
a given content unit.

The Coordinator Agent is responsible for the
creation and destruction of Group Supervisor Agents
at run time, for the permanent storage of all the
relevant information about the group activities, and
also for monitoring individual learning in order to
detect opportunities for group learning activities. The
Coordinator Agent also provides an interface for the
instructor, through which she/he can monitor the
group activity.

5 An Example of a Group Activity
To clarify the notions introduced in the previous
section, we present an example of a simple group
activity and show how it can be instantiated into a
concrete group management process.

The group activity is intended to develop the
“divide-and-conquer” strategy in problem solving. It
supposes a problem that can be partitioned into a
certain number of sub-problems. Each sub-problem
may be solved independently and their solutions have
to be combined to solve the original problem.

5.1 General Description
According to the specification level of a group
activity, defined in Section 4.1, we must define the
following concepts: group, roles, scenario,
prerequisites, management units, content units and
interaction protocol.

Group: the activity needs at least one student per sub-
problem.

Roles: the activity includes two roles: sub-problem
solver and solution integrator. The solution integrator
role should be assigned to one or more students that
will be responsible for the integration of the sub-
problems solutions. The choice of these students can
be done dynamically, e.g., the first to complete a sub-
problem solution or the best graded in the underlying
ITS. Finally, the sub-problem solver role is assigned to
all the students that participate in the activity.

Scenario: it is defined by the following concepts.

Prerequisites: the members of the groups involved in
the activity should have the necessary background to
solve the problem being considered.

Management units: The following management units
are necessary to control the scenario:
• Group formation: assignment of the problem

solver roles associated with each sub-problem.
• Sub-problem distribution.
• Monitoring of the sub-problem solutions.
• Coordination of the interaction among group

members who incorrectly implemented the
interface between their solutions.

• Assignment of the integration group.

Content units: The contents of the scenario, to be
provided by the author through the FAST authoring
interface (see Section 3), consist of the following
problem descriptions:
• A general explanation of the problem and its sub-

problems.
• For each sub-problem:

 a detailed explanation.
 one or more examples of similar problem

solutions .
 two types of exercises: one that tests the

correctness of the sub-problem solution and
one that verifies whether the solution correctly
implements the expected interface with the
other sub-problem solutions.

• An exercise that tests the correctness of the
combined sub-problem solutions.
It should be noted that these contents are

instances of the problem (and interaction unit)
concepts of the domain model ontology described in
Section 3.1 and may also be used in the context of an
individual interaction with the underlying ITS.

Interaction protocol: The top level of the

interaction protocol corresponding to this scenario is
represented by the Petri Net shown in Figure 6.

In our context tokens contain an instance of the
group concept. For legibility reasons, we have omitted
the object dimension of a OPN that is the values of
tokens, the Preconditions, Actions and Emission Rules
of transitions. The resulting abstract OPN just keeps
the aspects related the behavioral structure of the
protocol. However, from this conventional abstract
structure, standard Petri net properties can be proved,
such as the presence of loops or cycle (sequences of
transitions that can be infinitely repeated, deadlocks
(blocking state from which no transition may occur),
the (un-)accessibility of a goal, final or a home state,
the boundness (infinite growing of the number of
tokens) or the lost of tokens in a hole place.

5.2 Scenario Instance
To instantiate the group activity for the “divide-and-
conquer” problem solving strategy, we implement a
group activity based on an already existing individual
learning ITS for the domain of Structure of
Information, an undergraduate discipline of the
Control and Automation Engineering course at the
Santa Catarina Federal University, Brazil [3]. This ITS

A GROUP LEARNING MANAGEMENT... Informatica 31 (2007) 191–199 197

 Formation

 and Subproblem

Distribution

Execution

Solution Monitoring

Coordination

Presentation

Begin

Group

Problem

Subproblem

Subproblem

Subproblem

Integration Group Assignment

Integration of subproblems

End

Integration

T

0

Management Unit

Content Unit

Figure 6: Petri net modelling the interaction protocol
of a scenario.

was built using the FAST tool and meets the
definitions given in Section 3.

The problem to be solved during the group
activity is defined as follows:
• Problem description: given a programming

language that supports integer arithmetic
operations, how can it be extended to support
operations for other types of numbers (rational,
float and complex).

• Sub-problems: arithmetic operation packages for
each of the three new types of numbers, including
appropriate conversion functions.

• Integration: a dispatch function package that
integrates all four types of numbers.
The implemented group activity is intended to be

developed during a presential course in which the
course teacher is the instructor. The instances of the
relevant concepts involved in the group activity
definition of Section 5.1 are defined as follows.

Roles: The sub-problem solver role is assigned to all
students in the class room and the solution integrator
role is assigned to the students that are members of the
first group to solve the assigned sub-problem
successfully.

Prerequisites: the students that participate in the
activity must have completed the necessary
pedagogical units (basic programming, abstract data
types).

Management units: the implemented activity uses a
synchronous group formation in which an invitation is
sent to all the students in the classroom. The students
should answer with the identification of their preferred
sub-problem. The system controls the maximum size
of each group automatically. The necessary
prerequisites are also verified for each student. The
Group Formation place in the top level OPN (see
Figure 6) is exploded into the bottom level OPN
shown in Figure 7. Problem distribution is generated
automatically. Monitoring of sub-problem solutions is

Figure 7: Petri Net Modelling the Group Formation
Protocol.

Begin

Exp Exa Exe

T1-2 T1-3 T1-4

T2-2

T3-2

T2-3

T4-3

T3-4

T5-4

T3-3 T4-4

T4-2

T2-4

T4-5

Interaction

End-out

Figure 8: Petri Net Modelling the Problem Solving
Protocol.

198 Informatica 31 (2007) 191–199 E. Pozzebon et al.

based on correctness exercises included in the contents
units. Interface problem coordination is performed
under the instructor responsibility, through a chat tool.
Content units: the bottom level OPN that implement
the sub-problem and integration problem units are
implemented using the FAST tool. Their general form
is shown in Figure 8, where Exp, Exa and Exe are
interaction units that present to the students,
respectively, explanations, examples and exercises.

6 Conclusion
This paper has presented a method, based on
ontologies and Petri nets, to allow the development of
group learning in the context of Intelligent Tutoring
Systems (ITSs). While ontologies represent domain
and student models in a shareable format, Petri nets
formally specify group interaction protocols. The
method is intended to be used with ITSs that are built
using the FAST authoring tool. This allows the
method to explore the student and domain models of
these ITSs to increase the adaptiveness of the
interaction. The method includes a library of group
activities scenarios, previously defined by the system
developers. To build a group activity instance, the
teacher chooses one scenario, customizes its
parameters and provides the contents of the activity.
This information is compiled into an object Petri net
that guides the group activity. The use and update of
the group activity and student models is automatically
included in the transitions of this Petri net.

Presently, the proposed method only allows
the management of intra group activities, coordinating
the tasks performed by the students that are member of
a group. We intend to extend the method to allow the
management of inter group activities, increasing the
complexity of possible scenarios. Ongoing work also
includes the enhancement of the student model
attributes that are relevant to group activities and the
development of further group activity scenarios.

As future work we intend to develop a
friendlier authoring tool to develop these group
activity scenarios.

Acknowledgements
This work was partially supported by CAPES/Cofecub
(processes 400/02 and 0212/05-9) and CNPq
(Brazilian National Research Council) (process
140005/2004-8).

References
[1] Alpert, S.R., Singley, M.K., Fairweather, P.G,

1999. Deploying intelligent tutors on the web:
An architecture and an example. JAIE, 10:183–
197.

[2] Brusilovsky, P. 2000, Adaptative hypermedia:
From intelligent tutoring systems to web-based
education. LNCS, Intelligent Tutoring Systems
2000.

[3] Cardoso, J., Bittencourt, G., Frigo, L.B.,
Pozzebon, E., Postal. A, 2004. MathTutor: A
multi-agent intelligent tutoring systems. In 1st
IFIP Conf. on AI Applications and Innovations,
WCC´04, pages 22-27.

[4] Cardoso J., Bittencourt,G., Frigo, L.B.,
Pozzebon,E., 2004. Petri nets for authoring
mechanisms. In XV Simpósio Brasileiro de
Informática na Educação (SBIE’2004), ISBN 85-
7401-161-4, pages 378–387, Manaus, AM,
Brazil.

[5] Chen, W. & Wasson, B. 2004. Intelligent Agents
Supporting Distributed Collaborative Learning.
In: Lin, O., red. Designing Distributed Learning
Environments with Intelligent Software Agents.
IDEA Publishing Group;

[6] Constantino-González M., Suthers, D., Santos,
J.E.G., Coaching Web-based Collaborative
Learning based on Problem Solution Differences
and Participation, in International Journal of
Artificial Intelligence in Education, 2003, vol 13,
263 - 299

[7] Cost R.S., Chen Y., Finin T., Labrou Y.and Peng
Y., Modeling Agent Conversations with Colored
Petri Nets, In Proc of the Workshop on
Specifying and Implementing Conversation
Policies, Seattle, May 1999, pp. 59-66.

[8] Costa, E.B., Lopes, M.A., Ferneda, E, 1995.
Mathema: A learning environment based on a
multiagent architecture. In LNAI - Advances in
Artifical Intelligence, volume 991, pages 141–
150.

[9] Coutinho, L., Sichman, J.S., Boissier, O, 2005.
Modeling Organization in MAS: A Comparison
of Models. in: First Workshop on Software
Engineering for Agent-oriented Systems,
Uberlândia.

[10] Cuesta, P., Gomez, A., Gonzalez, J.C.,
Rodrıguez, F., A Framework for Evaluation of
Agent Oriented Methodologies. The MESMA
Approach for AOSE. Proceedings of Fourth
Iberoamerican Workshop on Multi-Agent
Systems (Iberagents’2002), at IBERAMIA’2002,
the VIII Iberoamerican Conf. on Artificial
Intelligence, Malaga, Spain.

[11] Dignum, M.V., V´azquez-Salceda, J., Dignum,
F.P.M., 2004. OMNI: Introducing social
structure, norms and ontologies into agent
organizations. In P. Bordini & et al. (Eds.),
PROMAS 2004 (pp.183-200). Heidelberg:
Springer.

[12] Esteva, M., Padget, J., Sierra, C.,2001.
Formalizing a language for institutions and
norms. Proceedings of the Eighth International
Workshop on Agent Theories, Architectures, and
Languages (ATAL-2001), pp 106–119.

[13] Ferber, J., Gutknecht, O., Michel,F.,2003. From
Agents to Organizations: an Organizational View
of Multi-Agent Systems. 4th Int. Workshop on
agent-oriented software engineering, IV AOSE
2003, Melbourne, Australia.

A GROUP LEARNING MANAGEMENT... Informatica 31 (2007) 191–199 199

[14] Frasson, C., Martin, L., Gouarderes, G., Aimeur,
E.,1998. Lanca: A distance learning architecture
based on networked cognitive agents. In Lectures
Notes in Computer Science. Inteligent Tutoring
Systems. Procedings of 4th International
Conference, 1:594–603, August 1998.

[15] Frigo, L., Cardoso, J., Bittencourt. G., 2005.
Adaptive Interaction in Intelligent Tutoring
Systems. In : HT-2005, Intern. Workshop on
Combining Intelligent and Adaptive Hypermedia
Methods/ Techniques in Web-based Education
Systems, Salzburg, Autriche.

[16] Hanachi, C., Sibertin-Blanc, C.,2004. Active
Middle-Agents in Multi-Agent Systems. Dans :
Autonomous Agents and Multi-Agent Systems,
Kluve Academic PublishersNetherlands, V. 8 N.
3, p. 131 - 164, avril 2004

[17] Harrer, A., McLaren, B., Walker, E., Bollen, L.,
Sewall, J. (2005). Collaboration and Cognitive
Tutoring: Integration, Empirical Results, and
Future Directions. In C.-K. Looi et al. (Eds.),
Proceedings of the 12th International Conference
on Artificial Intelligence in Education (pp.266-
273). Amsterdam: IOS Press.

[18] Hernandez-Dominguez,A.,1998. An Architecture
of Cooperative Learning in a Distance Education
context International Conference on Engineering
Education, 1998, August 17-20, Rio de Janeiro,
Brazil.

[19] Horling, B., Lesser. V.,2004. Quantitative
Organizational Models for Large-Scale Agent
Systems. Proceedings of the International
Workshop on Massively Multi-Agent
Systems,Melbourne, LNCS 2935, pp 214-230,
December 2004. Kyoto, Japan

[20] Iglesias C., Garijo M., Gonzales J. C., A survey
of Agent-Oriented Methodologie", in J.P. Müller,
M..P. Singh and A. S. Rao, eds, Proceedings of
the Fifth International Worshop on Agent
Theorie, Architecture and Languages (ATAL
98), LNAI, vol 1555, Springer-Verlag,
Heidelberg, 1999.

[21] Labidi, S., Souza, C.M., Nascimento, E., 2004.
NETClass: Cooperative Learner Modeling in
Web-Based Environment 6th International
Conference on Computer Based Learning in
Science CBLIS, Nicosia.

[22] Miao, Y., Pinkwart, N., Hoppe,U.,2006.
Conducting situated learning in a collaborative
virtual environment. Proceedings of the 5th
International Conference on Web Based
Education, pp. 7-12. Anaheim, CA: ACTA Press.
2006

[23] Mizoguchi, R., Bourdeau, J.,2000. Using
ontological engineering to overcome common
AI-ED problems. J. of AI in Education,
11(2):107–121, (2000).

[24] Odell,J., Nodine, M., Levy,R.,2005. A
Metamodel for Agents, Roles, and Groups.
Agent- Oriented Software Engineering (AOSE)

V, James Odell, P. Giorgini, J¨org M¨uller, eds.,
LNCS, Springer, Berlin.

[25] Sibertin-Blanc, C., 1985. High-level Petri nets
with data structures. In EuropeanWorkshop on
Application and Theory of Petri Nets, pp 141–
170.

[26] Silva, V., Choren, R., Lucena, C.,2004.A UML
based approach for modeling and implementing
multi-agent systems. In [AAMAS 2004], pages
914.921.

[27] Thibodeau, M., Belander, S., Frasson, C., 2000.
White rabbit.matchmaking of user profiles based
on discussion analysis using intelligent agents.
Procedings of 5th International Conference, ITS
2000, 1:113–122, June 2000. Montreal/Canada.

[28] Zambonelli, F., Jennings, N., Wooldridge, M.,
2001. Organisational Abstractions for the
Analysis and Design of Multi-Agent Systems. In:
Ciancarini P.,Wooldridge, M. (eds.):
AgentOriented Software Engineering, LNCS
1957, Springer-Verlag.

