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Knowledge-Aided Bayesian Detection in
Heterogeneous Environments

Olivier Besson, Senior Member, IEEE, Jean-Yves Tourneret, Member, IEEE, and
Stéphanie Bidon, Student Member, IEEE

Abstract—We address the problem of detecting a signal of
interest in the presence of noise with unknown covariance matrix,
using a set of training samples. We consider a situation where
the environment is not homogeneous, i.e., when the covariance
matrices of the primary and the secondary data are different. A
knowledge-aided Bayesian framework is proposed, where these
covariance matrices are considered as random, and some infor-
mation about the covariance matrix of the training samples is
available. Within this framework, the maximum a priori (MAP)
estimate of the primary data covariance matrix is derived. It is
shown that it amounts to colored loading of the sample covariance
matrix of the secondary data. The MAP estimate is in turn used
to yield a Bayesian version of the adaptive matched filter. Numer-
ical simulations illustrate the performance of this detector, and
compare it with the conventional adaptive matched filter.

Index Terms—Bayesian detection, heterogenous environments,
knowledge-aided processing, maximum a posteriori estimation.

1. INTRODUCTION

fundamental task of any radar system is to detect the pres-
ence of a target, with given space and/or time signature,
in a cell under test (CUT), in the presence of noise which con-
sists of clutter, thermal noise, and possibly jamming [1]. In the
Gaussian case, when the covariance matrix M, of the noise in
the CUT is known, the optimal processor consists of a whitening
step followed by matched filtering [2]. However, the statistics
of the noise in the CUT (also referred to as the primary data) are
generally unknown and hence M), must be estimated. This goal
is generally achieved through the use of training samples (the
so-called secondary data), which consist of noise only, and whose
covariance matrix My would ideally be M ,. Training samples
are usually obtained from range cells adjacent to the CUT. When
M, = M,, M, can be substituted for the sample covariance
matrix computed from the secondary data in the optimal detector;
this is the principle of the adaptive matched filter (AMF) [3].
However, the assumption of an homogeneous environment,
ie, M, = M,,is somewhat idealistic. Indeed, it has been ex-
perienced with real data that this assumption can be seriously vi-
olated [4], [5]. Such heterogeneous environments can be due ei-
ther to the terrain (highly complex and nonstationary clutter) or

This work was supported by the Délégation Générale pour 1’Armement
(DGA) and by Thales Systemes Aéroportés. The associate editor
coordinating the review of this paper and approving it for publication was Dr.
Chong-Yung Chi.

O. Besson and S. Bidon are with the Department of Avionics and Systems,
ENSICA, 31056 Toulouse, France (e-mail: besson @ensica.fr; sbidon@ensica.
fr)..

J.-Y. Tourneret is with IRIT/ENSEEIHT, 31071 Toulouse, France (e-mail:
jean-yves.tourneret@enseeiht.fr).

to the geometry of the array (e.g., nonlinear arrays or non side-
looking configurations). In the case where M ; differs from M,
detectors based upon the assumption of an homogeneous envi-
ronment can incur a serious loss of performance, see e.g., [6],
[7] for thorough theoretical analyses. Despite this performance
degradation, there have been very few attempts to design detec-
tors that, from their formulation, take into account the fact that
M, # M,. Obviously, prior to that, one must first assume some
relation between M, and M ;. Observe that M, and M,, must
be somehow related; otherwise, secondary data would be useless
as nothing about M, could be inferred from observation of the
training samples. The most frequently used assumption to depart
from an homogeneous environment is to assume that M ; is only
proportional to M, ; this is often referred to as the partially homo-
geneous environment. Under this assumption, the adaptive co-
herence estimator (ACE) is the generalized likelihood ratio test
(GLRT) [8], and also the uniformly most powerful invariant test
[9]. Note that the ACE was also independently developed in
[10] in the case of compound-Gaussian noise, which can also
be viewed as an inhomogeneous environment.

The aim of this paper is to present a new approach to model
heterogeneous environments, and, accordingly, to derive new
detectors based on this model. Towards this end, a Bayesian
approach is advocated, in which the covariance matrices M,
and M, are assumed to be random, with some joint distribu-
tion. Moreover, we will assume that some a priori informa-
tion about M is available (see below for details). Therefore,
our approach enters the framework of knowledge-aided pro-
cessing [11], which is recognized as one of the potentially most
efficient way to handle heterogeneities. Knowledge-aided pro-
cessing consists of providing conventional adaptive detectors
with additional information (such as digital elevation and ter-
rain data, synthetic aperture radar images) so as to improve their
performance [12], [13]. This approach was used successfully,
e.g., in [14]-[16], where a simplified model for the clutter co-
variance matrix was used as a good approximation of the actual
clutter covariance matrix. Herein, we also assume such knowl-
edge, which is embedded in the a priori distribution of the co-
variance matrix of the secondary data.

II. PROBLEM STATEMENT

In this section, we introduce the detection problem to be
solved, as well as the model for heterogeneous environments.
The detection problem considered herein is a conventional
binary composite hypothesis testing problem, defined as

z=mn;
HO : {zk = Ny, k= 17...7K
H - { zZ=a8+mn;
Zp = My

k=1, .. K. M
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In (1), z is the m-length space and/or time snapshot for the CUT,
while zj, are the training samples. The mXx 1 vector s is the
known space and/or time signature of the target and the scalar
« stands for its amplitude, which is assumed to be deterministic
and unknown.

As for the secondary data, we assume that zj, are proper zero-
mean independent and Gaussian distributed noise vectors, with
covariance matrix M ,. Since the z;’s are independent, the joint
density of Z = [2; zr | is

f(ZIM,) = 77 KM | 7K etr {-M['S} 2)

where

K
S = szzkH €)]
k=1

denotes the sample covariance matrix of the secondary data, and
etr {.} stands for the exponential of the trace of the matrix be-
tween braces. Furthermore, we assume that we have some rough
knowledge about the average value M, of M ,. More precisely,
we assume that M has an inverse complex Wishart distribution
with . degrees of freedom and mean M, [17]

F(M) oc M|~ F™etr {—(n—m)M,'M,} (4

denoted as M s ~ CW,,! (1 — m)M, 11). Note that (4) is the
usual conjugate prior for M s, which will significantly simplify
the analysis. A few observations are in order about (4). The ma-
trix M, is the knowledge-aided part of the model and the pa-
rameter y controls the importance of this a priori knowledge.
Indeed, as p increases, the variance of M decreases and M ; is
closer to M. Therefore, the scalar 1+ enables us to “tune” the
level of a priori knowledge we have.

Let us now turn to the assumption about the noise in the
primary data. We assume that n is a zero-mean, proper com-
plex-valued Gaussian vector with covariance matrix M, so that

f(z|My) = 7= M etr {-M; (2 — 2)(z — 2)"} (5)

with Z = 0 under Hy and Z = as under H;. In order to ac-
count for an heterogeneous environment, we assume that M,
given M ; has a complex Wishart distribution, with v degrees of
freedom, whose mean is Mg, i.e.,

f(M,|M,) o< [Mp|"~™ M|~ etr {—vM,M;"}. (6)

This distribution will be denoted as M,|M, ~
CW,, (I/_IM 5 1/). The interpretation of (6) is as fol-
lows. On the average, £ {M,|M,} = M, which means that
the two covariance matrices are not too far from one another.
The scalar v controls the distance between the two matrices
M, and M,; as v increases, this distance decreases. Note
however that M, # M with probability one, and hence the
environment is heterogeneous. Therefore, the proposed model
enables us, in a theoretically sound and rather flexible way, to
account for nonhomogeneous environments.

III. DETECTION

As previously explained, we consider the problem of deciding
between Hy and H; in (1), under the following assumptions:

z|M, ~CN,, (2, M,) (7a)
zi|Ms ~CN,, (0, M) (7b)
M, M, ~CW,, (v 'M,,v) (7¢)
M, ~CW,! ((p —m)Ms, 1) . (7d)
When M, is known, the GLRT consists of comparing
|3HM;1:,:|2
THa -1 @)
s"M,"s

to an appropriate threshold depending on the probability of false
alarm. In an homogeneous environment, the AMF consists of
replacing M, above by its maximum likelihood estimate based
on Z, namely K —18. We take a similar route here, except that
a Bayesian framework is used to estimate M, differently. More
precisely, as it provides a closed-form and simple estimator,
we derive the maximum a posteriori (MAP) estimate of M,
using Z. In order to obtain the latter, the a posteriori distribu-
tion f(M,|Z) must be derived. Observe first that

f(Mp, M|Z)

< f(Z|Mp, M) f(M,|M,)f(M,)

x| M|~ Ketr {~M]'S}|M,|"~"|M,| " etr {~vM,M;"}
X [ M|~ M)ty {~(p—m)M; "M}

o [M |~ Hrtmt K A 1 = metr { - M T B} )

where

B=vM,+ S+ (u—m)M,. (10)

The a posteriori distribution of M, given Z can thus be written
as

f(M,)Z) = / (M, M.|Z) dM,

(M|~

:C—|B|V+N+K

(11)

where the constant C' is such that [ f(M,|Z) dM,, = 1. Taking
the logarithm of (11), we have

A(M,|Z) = const. + (v —m)In|M,| — (v+ pu+ K)In|B].

12)
Differentiating the previous equations yields
ON(M,|Z
éTP;J) =(v— m)M;1 —viv+p+ K)B_l. (13)

Equating this derivative to zero allows us to show that the MAP
estimate of M, is

M, = — Y™ S (e i),

P v(p+m+ K) (14



We would like to stress that the MAP estimator can be obtained
in closed-form and is thus a simple estimator. It is also inter-
esting to note that the MAP estimate is a combination of the
a priori information and the information provided by the sec-
ondary data. Observe that, when y increases, more importance
is allotted to M ,, as can be expected. Once the MAP estimate is
obtained, it is used to replace M, in (8), which yields our final
detector

—~1
|SHMp Z|2 Hy
— (15)

sHMp s Ho

Before closing this section, some remarks are in order.

Remark 1: In what precedes, a MAP approach was advocated
as it results in a simple estimate of M,. However, other ap-
proaches could be investigated, including the minimum mean-
square error (MMSE) estimate of M,,. Using (11), the MMSE
estimate of M, is given by

[ M)~ |B|~ O M, dM,
J M7= |B|=(4ntK) dM,

E{M,|Z} = (16)

where £ {.} is the mathematical expectation. Unfortunately,
there does not exist any closed-form expression for the above
integral, and the MMSE estimate cannot be obtained analyti-
cally. In such a case, it is usual to resort to stochastic integration
methods such as Markov chain Monte Carlo (MCMC) methods.
These methods consist of generating samples distributed ac-
cording to the posterior distribution f(M,|Z), and to use these
samples to approximate the integrals to be computed [18].
However, generating matrices distributed according to (11)
is not obvious. An alternative consists of generating matrices
M, and M, distributed according to the joint distribution
f(M,,M,|Z). This can be achieved by using a Gibbs sam-
pling strategy, generating iteratively matrices M, and M as
follows:

M, |M,,Z ~CW,, (v'M,,v)
M5|M1’7Z NCW;I (B7V+ .U’+ K)

(17a)
(17b)

where, to obtain the previous distributions, we made use of (9).
It is known [18, p. 325] that the matrices (M, M ;) generated
in this manner are asymptotically distributed according to
f(M,,M|Z). Therefore, the MMSE estimate can be obtained
by averaging the last matrices generated by the Gibbs sampler.
However, this approach results in a significantly increased
computational complexity. Moreover, we experimented that
replacing the MAP estimate by the MMSE estimate in (15) does
not result in any improvement in the detection performance.
Therefore, only the MAP estimate, due to its simplicity, is
retained.

Remark 2: 1t is interesting to note that the test statistic in
(15) is, up to a scaling factor, the output power of a beamformer
which corresponds to colored loading of the sample covariance
matrix S. The loading matrix is M and the loading level de-
pends on p, which controls the degree of a priori knowledge.
Interestingly, it has the same form as the beamformer designed

| | —8— AMF -
' =0~ KA Bayesian detector
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Fig. 1. Probability of detection versus SNR. v = m + 1 and g = m + 1.

in [14], [15] in a rather different framework. Indeed, in [14] and
[15], a beamformer w is designed under the quadratic constraint
that the output power corresponding to the a priori clutter co-
variance matrix, viz w® M ;w, is small. It turns out that the solu-
tion takes the form of colored loading of the sample covariance
matrix, with a loading matrix proportional to M. The loading
level is chosen so as to satisfy the quadratic constraint. Hence,
it has exactly the same form as here, despite the fact that the
statistical assumptions are very different. These coincident con-
clusions suggest that colored loading may be an effective means
to incorporate a priori knowledge, and to be robust to uncertain
environments.

IV. NUMERICAL SIMULATIONS

In this section, we illustrate the performance of our detector
and compare it with that of the conventional adaptive matched
filter [3]. In all simulations, we consider an array with m =
8 elements, and the signature of the signal of interest is s =
[1 1 1 ]T. The average secondary data covariance ma-
trix is M(k,¢) = 0.9/l The number of training samples
is set to K = 16. In all simulations below, the probability of
false alarm is set to Py, = 102, For every simulation, a dif-
ferent (random) matrix M ¢ is drawn from (4). Then, using this
value of M, a matrix M, is drawn from (6). Hence the two
matrices are different in each run, and therefore the environ-
ment is heterogeneous. The thresholds for each detector were
obtained from 200000 simulations. The probability of detec-
tion P; was computed from 100 000 simulations. Py is plotted
as a function of the signal-to-noise ratio, which is defined as
SNR = |a|*s"M"s.

Figs. 1-4 display the results obtained, with different values of
v and p. As can observed from these figures, the new detector
always improves over the conventional AMF; the improvement
is between 2.1 and 2.7 dB for P; = 0.7. This improvement
is slightly more pronounced as j increases, i.e., as the a priori
knowledge is more significant. In contrast, for fixed p, the dif-
ference between the new detector and the AMF remains nearly
constant when v varies. However, v has a significant impact on
the probability of detection; there is about 5-dB difference be-
tween v = m + 1 and v = 2m. This clearly indicates the effect
of nonhomogeneity on the performance of the detectors.
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V. CONCLUSIONS

We introduced a new Bayesian framework for knowledge-
aided adaptive detection in nonhomogeneous environments.
More precisely, we assumed that the covariance matrices of

the primary and secondary data were random, with some joint
distribution, and that the average value of the secondary data
covariance matrix was known. The distance between the two
matrices as well as the importance of the a priori knowledge
can be tuned through scalar variables. Under this model, a
Bayesian version of the adaptive matched filter was derived,
where the MAP estimate of the primary data covariance matrix
is used in place of the maximum likelihood estimate. It was
shown that the new detector amounts to colored loading of the
sample covariance matrix. Numerical simulations illustrated
the improvement achieved via this knowledge-aided Bayesian
detector, as compared to the conventional AMF.
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