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Abstract—In this paper, we consider the problem of single
channel blind source separation, for which a very common
and effective solution consists of applying non-negative matrix
factorization to the spectrogram of the mixture. We here propose
to replace the spectrogram by the modulus of the synchrosqueez-
ing transform (SST), which achieves a sharper time-frequency
representation. Then we introduce two methods for reconstruct-
ing the sources, one based on the direct reconstruction from
the synchrosqueezed representation, and the other on a two-
step procedure based on both the short-time Fourier transform
(STFT) and SST, the latter technique being introduced to deal
with large signals. Our experiments suggest that non-negative
matrix factorization applied to SST enables a better source
separation than when applied to the modulus of STFT, and
that the proposed two-step procedure using SST and STFT also
performs better than the classical technique based on STFT only.

Index Terms—Synchrosqueezing transform, Non negative ma-
trix factorization, Short-time Fourier transform, time-frequency
reassignment.

I. INTRODUCTION

Single channel blind source separation is the task of sepa-
rating a set of sources from a mixed signal without (or very
little) information on both the sources and the mixing process.
There exists many different techniques to perform this task
among which fast fixed-point independent component analysis
algorithms (FastICA) [1], principal component analysis (PCA)
[2] and non-negative matrix factorization (NMF) [3] are the
most popular. Traditionally, when the separation of the sources
is carried out with non-negative matrix factorization (NMF),
the algorithm operates on the time-frequency representation
(TFR) corresponding to the spectrogram [4], [5]. Such a
technique is used in many different domains of applications
as for instance in the analysis of electrocardiograms (ECGs)
[6], phonocardiograms [7] , audio signals [8] or to separate
the sources in a mixture in sound processing [9] and speech
enhancement [10].

However, when the sources (or modes) to be separated
are close in the time-frequency (TF) plane, the spectrogram
contains interference the NMF cannot get rid of. To deal
with this issue, TF reassignment techniques are therefore often
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used, in particular in music and speech signals to extract
some useful information such as the correct onset, musical
transients, the pitch of musical components [11], [12], or
the active components in unseen noisy speech [13]. Never-
theless, the reassigned spectrogram does not enable direct
source separation because phase information is missing. On the
contrary, the synchrosqueezing transform (SST), an alternative
reassignment technique, does not only perfectly localize the
sources in the TF plane but allows for their reconstruction
[14], [15].

Our goal in this paper is first to show the potential interest
of applying NMF to the modulus of SST rather than to
the spectrogram. Indeed, by reassigning first the TFR given
by STFT, one obtains a sparser TFR that should enable a
better mode separation by means of NMF. We thus define
masks based on NMF applied either to the spectrogram or
to SST, which we subsequently use for source separation.
Nevertheless, such a procedure when applied to SST is not
adapted to the separation of the modes of long signals since
mode reconstruction is not possible with SST when the hop-
size is larger than one. Therefore, to deal with large signals
while exploiting the good behavior of NMF with SST, we
propose a new two-step procedure based on both SST and
STFT for mode separation.

After having recalled, in Section II, the basics on TFR and
NMF, we first detail the algorithm for source separation based
on NMF applied to the moduli of STFT or SST, in Section III,
and then introduce the above mentioned two-step procedure in
Section IV. We finally illustrate, in Section V, the benefits of
the new proposed approaches.

II. BACKGROUND

A. Time-Frequency Representations

For a given signal f of length L and a window w € [0 :
N — 1], STFT is defined as
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where k € [0 : N —1] is the frequency index, H < N the hop-

size, N the frequency resolution, and f[l] = f (%) Assuming



the length of w is smaller than N, the signal is traditionally
reconstructed through overlap-add (OLA) [16]:

= > [l — nH} .
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To obtain a sharper time-frequency representation (TFR),
one can alternatively consider the synchrosqueezing transform
(SST) [15], [17], which consists of reassigning S}”[n,k] to

[n, [mhs[n, k]27], where [ X denotes the nearest integer to
X and in which:
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where w’ represents the derivative of window w and $(Z2)

the imaginary part of Z. Note that |m[n, k]] can be viewed

as the projection on the frequency grid of the instantaneous
n

frequency (IF) evaluated at time 7 and frequency % SST is
then defined as follows [15], [18]:
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where §; ; is the Kronecker symbol. Signal reconstruction is
then carried out as:

N—
Zéyznk (5)

B. Non Negative Matrix Factorization

NMF decomposes a given non negative data matrix X €
RY*L into two non negative matrices, the dictionary matrix
W ¢ RN*E and the activation matrix H € RE*L such
that X ~ WH. In that context, R stands for the number
of components in the dictionary. The decomposition is based
on minimizing the reconstruction error of X through WH,
which can be formulated as [19]

i j > > 0.
min D(X|WH) subjectto W >0,H>0. (g

)

The most popular cost functions D are the Euclidean distance,
Kullback-Leibler (KL) divergence and Itakura-Saito (IS) dis-
tance, which are special cases of S-divergence defined by

AP_BP_BB P Vp(A-B) BeR\{0,1}

B(B-1)
Ds(AIB) = { Ao log(AoB)+(A—-B),5=1
AoB-1log(AoB)-1,8=0,
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where © (resp. @) stands for the Hadamard product (resp.
division), and ’.” means entry-wise power. Note that (7) corre-
sponds to the matrix form of the divergence, and to obtain the
actual divergence, one has to sum the coefficient of the matrix
Ds(A|B). Note that 5 = 2 corresponds to Euclidean distance,
B8 = 1 to KL divergence and § = 0 to IS divergence. To
solve the problem defined in (6), a majorization-minimization

algorithm provides multiplicative updates [19] that are widely
used [20] and are given by
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III. SOURCE SEPARATION FROM SST

We first propose here to apply NMF to SST modulus rather
than STFT modulus. This helps us define TF masks which
we use for source separation exploiting the fact that SST is
invertible. We detail here the case when the hop-size H = 1
for which source separation is straightforward. Indeed, in that
case the SST is invertible from equation (5). One thus only
needs to compute soft masks for each individual source, which
can be seen as a Wiener filtering. First, individual source STFT
or SST moduli are estimated through NMF and then used
to make the corresponding soft masks, which are multiplied
point-wise with signal STFT or SST to obtain the TFR of
individual sources. This can be formally described by:

S =M OS, €))
where Sj represents the estimated STFT or SST of the k'"
source, the soft mask My, being defined by:

X
Mk = R )

> X,
r=1

(10)

where X, corresponds to the k*" source in NMF decomposi-
tion, namely W. ;H, .. Having defined Sj, one reconstructs
the modes using either STFT or SST by replacing S¥ by Sy
in (2) of in (4) respectively. In what follows, we call STFT-
NMF and SST-NMF the reconstruction processes based on
NMF applied to STFT and SST, respectively.

IV. SOURCE SEPARATION FROM STFT AND SST

Though the previous approach is interesting, it is somewhat
limited because reconstruction with SST is not tractable when
the hop-size is larger than 1, and is therefore not adapted
to the processing of large signals. For that purpose, we now
introduce a novel source separation procedure that exploits
the nice properties of SST while circumventing the limitation
regarding the hop-size. When H > 1, source recovery is not
straightforward, since SST is no longer invertible. Yet, this
case is of particular interest in audio processing where one
often has to deal with long signals.

To circumvent this limitation, we here introduce a two-
step approach: we first apply NMF to the SST and only keep
the corresponding activation matrix H, and then recompute a
dictionary matrix W from the spectrogram. With these new
matrices, we are able to build soft masks following (9), and
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Fig. 1. (a)-(c): Time representation of three different modes; (d): Signal made
of the sum of these modes (input SNR 20 dB); (e): First three columns of
matrix W corresponding to SST-NMF and STFT-NMF (the signal is assumed
to contain three modes) (f)-(h): rows of the activation matrices corresponding
to these methods

then proceed with source separation. The just mentioned two-
step procedure formally reads:

(W, H) = NMF(|SY|)
W' = NMF/(]S%|, H)
Xp =W’ Hy .,

where NMF’ denotes the NMF where H is fixed.

The rationale behind this procedure is the following: as SST
is sparser than STFT, it should enable better source separa-
tion, thus providing more accurate activation and dictionary
matrices. But these cannot be directly used to recover the
sources since SST is no longer invertible in that case. To
circumvent this limitation, we recompute a dictionary from
NMF applied to STFT modulus, and in which the activation
matrix corresponds to that of NMF based on SST. Such an
activation matrix is supposed to be consistent with STFT
since SST reassigns harmonic signals to the local maxima of
the spectrogram along the frequency axis. The last step of
the algorithm is a simple constrained problem, which should
converge faster than NMF and is convex if the divergence
is convex. In what follows, the technique is denoted by
STFT+SST-NMF.

V. NUMERICAL RESULTS

In this section, we investigate the behavior of the source
separation procedures introduced above when these are applied
to either synthetic or real signals.

A. Application to Synthetic Drum Sound Signals

We first consider a simple synthetic signal made to closely
mimic drum sound signals: its components have exponential
decay, correspond to different frequencies and have different
time durations. We display the modes making up such a
signal in Fig. 1 (a), (b) and (c), associated with respective
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Fig. 2. (a): Output SNR corresponding to the reconstruction of the individual
sources using either SST-NMF or STFT-NMF (denoted by STFT and SST
in the graph) for the signal of Fig. 1 (d) and for different input SNRs;(b):
Output SNR corresponding to the reconstruction of individual sources using
either STFT-NMF or STFT+SST-NMF (denoted by STFT and STFT+SST on
that figure), for the signal of Fig. 1 (d), for input SNR 20 dB and when the
percentage of overlap varies, the results are averaged over 20 realizations

frequencies 35 Hz, 100 Hz and 400 Hz. Finally, summing
these components and adding some white Gaussian noise with
input SNR equal to 20 dB results in the signal displayed in
Fig. 1 (d). Then, we perform STFT-NMF and SST-NMF on
that signal. The three columns of matrix W obtained with
both techniques are shown in Fig. 1 (e), highlighting a much
more peaky representation with SST-NMF than with STFT-
NME. In Fig. 1 (f)-(h) we finally display the rows of the
activation matrix in both cases, and notice that mode-mixing
is also visible on that related to STFT-NMF.

Then to investigate the influence of the noise on source
separation, we compute the output SNRs corresponding to the
reconstruction of each source making up the signal of Fig. 1
(d) and for different input SNRs. The results depicted in Fig. 2
(a), plead in favor of using SST-NMF rather than STFT-NMF
when the SNR is medium to high, while the two techniques
behave similarly when the noise level increases. It is worth
also noting that the improvement brought by SST-NMF is
less obvious for the third component of the signal, suggesting
that the sparsity of matrix W is important to improve source
separation.

We also investigate the performance of the two-step pro-
cedure called STFT+SST-NMF introduced in section IV for
H > 1 by comparing it with STFT-NMF, when the hop-size
varies and for the signal of Fig. 1 (d). As the hop-size is
relative to the window length, we prefer to display, in Fig. 2
(b), the reconstruction results with respect to the percentage of
overlap. To plot that figure, we consider an input SNR of 20
dB, so that an easy comparison can be made with the study of
the case H = 1 displayed in Fig. 2 (a). In this regard, along
with the results corresponding to STFT-NMF and STFT+SST-
NMF we plot the results obtained with SST-NMF in the case
H =1 (i.e. 100 % overlap). Looking at the results, we notice
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Fig. 3. first column: Mixture signal of KD, SD and HH components (a) with KD, SD and HH components displayed in (d),(g) and (h); second column :
STFT of the signals of the first column; third column: SST of the signals of the first column
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Fig. 4. Output SNR corresponding to the reconstruction of KD, SD and HH
components averaged over 60 drum loops with varying percentage overlaps
for the analysis window; (a) without noise; (b) for input SNR 20 dB; and when
the percentage of overlap varies, the results are averaged over 20 realizations

that while STFT+SST-NMF behaves slightly worse than SST-
NMF when H = 1, it remains much better than STFT-NMF
for a wide range of overlap values. Again we notice, that in
accordance with the results of Fig. 2 (a), STFT+SST-NMF
does not perform any better than STFT-NMF on the third
signal.

B. Performance Evaluation on Drum Source Separation (DSS)

We now evaluate the performance of STFT-NMF and
STFT+SST-NMF for DSS. The signals are sampled at 44.1 Kz
and the STFT is performed with the same Gaussian window
with length 1024 with width parameter o = 0.1s. The running

examples considered for this task are synthetic drum sounds
of a Roland TR-808 drum machine, of which an example is
shown in Fig. 3 (a). Such signals are composed of 3 different
types of components called kick drum (KD), snare drum
(SD) and hi-hat (HH) with very different time and frequency
behaviors ( Fig.3, second and third columns).

The experiments are conducted on publicly available
”Wavedrum02” subset of "IDMT-SMT-DRUMS” dataset [21].
It consists of 60 drum loops of each KD, SD and HH (oracle)
drum components in uncompressed 16-bit mono PCM WAV
format with 44.1 KHz sampling rate, and the corresponding
60 mixture signals. The advantage of using this data-set is that
it mimics real world break-beats and also that the ground truth
is available for the individual components.

As previously, we apply STFT-NMF and STFT+SST-NMF
techniques to the 60 “Wavedrum02” drum loops of "IDMT-
SMT-DRUMS?” dataset. For the first experiment we investigate
the decomposition of the noiseless signals and compute the
output SNRs for the three components, i.e. KD, SD and HH
for all the 60 drum loops, and finally compute the averaged
output SNR for all the three components. Observing the third
column of Fig. 3, SST leading to a highly concentrated TFR
for KD and SD components, it is quite expected to have
better source separation using STFT+SST-NMF as compared
to STFT-NMF for these components. This is confirmed in Fig.
4 (a), in which we also notice that this remains true when the
percentage of overlap varies. For the third component, namely
HH, the benefit of using STFT+SST-NMF rather than STFT-
NMF is less obvious. For the second experiment, we carry
out the comparison between STFT-NMF and STFT still on
the signal of Fig. 3 (a), but when some noise is added (20
dB input SNR). The results depicted in Fig. 4 (b) show that



the benefit of using the proposed STFT+SST-NMF instead of
STFT-NMF is even greater in that case than in the noiseless
case.

VI. CONCLUSION

In this paper, NMF based on STFT and SST were first com-
pared. We noticed that the latter provides more concentrated
dictionaries and observed that the overlapping between com-
ponents is also less important with SST-based NMF than with
its counterpart based on STFT. Performing source separation
using soft masks built from SST-based NMF then proved to
be more relevant than the same approach based on STFT. To
study long signals for which SST-based NMF is not relevant,
since SST is not invertible, we proposed a novel approach
we stamped STFT+SST-NMF, which proved to outperform
NMF based on STFT for the separation of the sources in real
and synthetic drum signals. In a near future, the behavior of
different variants of NMF such as non-negative matrix factor
deconvolution (NMFD) should be investigated and that of
NMF on SST variants should also be clarified.
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