
HAL Id: hal-03610122
https://hal.science/hal-03610122

Submitted on 24 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

SHORE: a model-driven approach that combines goal,
semantic and variability models for Smart HOme

self-REconfiguration
Denisse Muñante, Bruno Traverson, Sophie Chabridon, Amel Bouzeghoub

To cite this version:
Denisse Muñante, Bruno Traverson, Sophie Chabridon, Amel Bouzeghoub. SHORE: a model-driven
approach that combines goal, semantic and variability models for Smart HOme self-REconfiguration.
MODELSWARD 2022: 10th international conference on Model-Driven Engineering and Software
Development, Feb 2022, Online, France. pp.328-335, �10.5220/0010907300003119�. �hal-03610122�

https://hal.science/hal-03610122
https://hal.archives-ouvertes.fr


SHORE: a model-driven approach that combines goal, semantic and
variability models for Smart HOme self-REconfiguration

Denisse Muñante1 a, Bruno Traverson2, Sophie Chabridon3 b and Amel Bouzeghoub3 c

1ENSIIE & SAMOVAR, Évry, France
2EDF R&D, Saclay, France

3SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, Evry, France
denisse.munantearzapalo@ensiie.fr, bruno.traverson@edf.fr, {sophie.chabridon, amel.bouzeghoub}@telecom-sudparis.eu

Keywords: Goal-orientation, ontology, feature models, Smart Home, self-reconfiguration

Abstract: Smart Homes, and more generally the Internet of Things (IoT), are gaining more and more audience, but this
kind of environment is still challenging on several aspects. Semantic representations, mainly ontologies, have
been used to cope with the complexity and lack of interoperability due to the wide variety of objects and
services. However, these semantic representations do not permit a fine description of variability and evolution
to achieve particular objectives. Therefore, in this paper, we introduce a model-driven approach, so-called
SHORE for Smart HOme self-REconfiguration, which addresses these limitations and covers the complexity
and variability of Smart Homes allowing automated reconfiguration guided by their goals. Thus, SHORE
includes artifacts, based on goal, semantic and feature models, that are used at design-time to conceptualise
Smart Homes, their variants and goals. Whilst, at runtime, SHORE exploits these artifacts to detect situations
that require reconfiguration, i.e., detect deviations from their goals, and then to calculate optimal reconfigu-
ration plans to cope with these situations. Finally, we present a case study which illustrates our approach and
highlights its expressiveness.

1 Introduction

A Smart Home relies on information and communi-
cation technologies for controlling household appli-
ances and other domestic equipments remotely. It is
becoming possible to adapt the behavior of a house
to the habits of its residents. Dynamic adaptation
can take place as soon as some change is detected,
like a decrease of the external temperature requiring
to switch on the heating system in order to keep in-
door temperature comfortable. The automation de-
gree of a Smart Home can be very high by defi-
ning elaborated rules and targeted goals, related to
the expected temperature of the house for instance,
in order to provide added-value services to the resi-
dents. Thus, self-regulation of the Smart Home ser-
vices could be a good means when any deviation from
the Smart Home goals is detected. Deviations from
goals are henceforth referred to as undesired situa-
tions and should be addressed.

a https://orcid.org/0000-0003-2621-8342
b https://orcid.org/0000-0002-1591-6754
c https://orcid.org/0000-0003-4890-9005

The dynamic adaptation of a system is con-
ceived as a way to avoid or correct the degrada-
tion of its quality of service during its execution,
which may be due to changes in environmental con-
ditions. A substantial research effort has been done
towards defining methods and techniques for manag-
ing self-adaptive systems (SASs). Model-driven ap-
proaches [Cámara et al., 2017] and in particular mo-
del@run.time methods have been proposed to spe-
cify how self-adaptive systems should react in dy-
namically changing runtime environments [Bencomo
et al., 2019, Erazo-Garzón et al., 2021]. Regarding
Smart Homes, self-adaptation is guided by ontolo-
gies, e.g., [Seydoux et al., 2016, Lork et al., 2019].
Ontologies allow to address the interoperability of the
wide variety of Smart Homes appliances and services.

However, challenges remain to reach a high ex-
pressiveness and ease of use of dynamic reconfigu-
ration both at design and execution times. Adaptation
rules should be expressed at a high level of abstrac-
tion to be understood by inhabitants and should be
managed dynamically to evolve with regards to mo-
difications in environment properties and user prefer-
ences. Also, even more importantly, in case of multi-



ple services operating in a same area of a Smart Home
and thus sharing a set of sensors and actuators, poten-
tially conflicting goals should be dealt with when the
Smart Home requires adaptation. One optimal solu-
tion should be elected among several alternatives in a
manageable and responsive way.

Therefore, our research objective concerns the
building of a tool-supported approach for the
Smart HOme services REconfiguration, so-called the
SHORE approach. Towards its definition, we inves-
tigate how to combine semantics, based on ontolo-
gies, for Smart Homes and their variability models,
and how to exploit the resulting models during the
whole life-cycle of the system, including design-time
and runtime phases. More specifically, in this paper
we focus on the following two research questions:

• RQ1 - How to define Smart Home variants at
design-time allowing reconfiguration at runtime?

• RQ2 - How to select an optimal Smart Home va-
riant to overcome undesired situations?

To answer the first research question, we start
from the state of the art of standardised se-
mantics (i.e., ontologies) for Smart Homes, e.g.,
SAREF [Smart Appliances, 2017]. Then, we inves-
tigate how to extend these standards to add notions
that allow the self-reconfiguration of Smart Home
systems, i.e., notions to define Smart Home goals,
e.g., i* [Yu, 1997], and variants using variability mo-
dels, e.g., feature models [Kang et al., 1990]. Con-
cretely, starting from a goal-orientation viewpoint, we
elicit the SHORE artifacts, which are used at design-
time. Thus, SAREF+ and FM+ were proposed as ex-
tensions of SAREF and feature models respectively.
SAREF+ allows to describe Smart Homes by adding
notions around their goals. Based on this descrip-
tion, automated rules to detect situations that require
adaptation can be formulated. Whilst FM+ comple-
ments this description by adding Smart Home va-
riants. Based on these variants, we can find correct
adaptations to cope with detected situations.

Concerning the second research question, we ex-
plore existing techniques to exploit gathered data
when taking reconfiguration decisions in order to deal
with conflicting goals. In particular, we use the op-
timisation approach based on grammar guided ge-
netic programming that was introduced in a previous
work [Kifetew et al., 2017a, Muñante et al., 2018].

This paper is organised as follows: Section 2
introduces the problem formulation for the self-
reconfiguration of Smart Homes services. Section 3
gives background on goal-oriented models, seman-
tic for Smart Homes, and variability modelling tech-
niques. Section 4 describes the SHORE approach to

support this reconfiguration. Section 5 discusses re-
lated works and Section 6 identifies next steps and
concludes the paper.

2 Problem Formulation

Roughly speaking, Smart Homes are composed of de-
vices (actuators) that offer services to make the life of
residents more pleasant. Thus, one crucial goal is to
keep user comfort high. However, Smart Homes have
been also created to accomplish other goals, for in-
stance to keep energy consumption low or at least un-
der control. These goals might be in conflict when
they cannot be reached at the same time. The po-
tential goal conflicts could be solved using priorities
and variants for services’ settings. These variants
may reach the goals at different levels of accomplish-
ment, being in the range from no compliance to full
compliance. While many techniques might be used
to manage conflicts, we focus on priorities as they
have widely shown their efficiency in other research
domains such as security [Breaux and Antón, 2008].

In this paper, we address the problem of Smart
Home self-reconfiguration at runtime, taking into
consideration priorities for Smart Homes goals and
variants for their services’ settings. This problem
involves choosing the configuration (variant) for the
Smart Home’s services that best respects the goals
and their priorities. Hence, the problem of Smart
Homes services configuration can be defined as fol-
lows. Given:
M goals for the Smart Home SmartHomegoals =
{goal1,goal2, ...,goalM},
M priorities for the Smart Home goals
(one priority per goal) SmartHomepriorities =
{prio1, prio2, ..., prioM},
R actuators that change the state of the Smart Home
SmartHomeactuators = {act1,act2, ...,actR},
P services offered by the Smart Home actu-
ators to achieve their goals (an actuator can
offer 1 or n services) SmartHomeservices =
{service1,service2, ...,serviceP}.
Services dependencies are twofold: i) inclusion de-
pendency: servicea includes/requires serviceb and
ii) exclusion dependency: servicea excludes/refuses
serviceb.
Each service contains a set of configuration variants.
For instance:
X variants for service A: serviceAvariants =
{variant1,variant2, ...,variantX}, and we com-
plete the configuration variants for the other P
services,



Then, the problem formulation of the Smart Home
services configuration is defined as the selection of
the P variants (one per service) that best respect the
M Smart Home goals and their priorities.

In order to select a good combination of variants
of the Smart Home services, we should define met-
rics that will be associated to these variants. Thus, the
above problem formulation is updated to add the men-
tioned metrics, henceforth called quality attributes
(QAs), as follows. Given:
S QAs associated to each configuration variant
SmartHomeQualityAttributes = {qa1,qa2, ...,qaS},
2 operators for evaluating the QAs {min,max}, i.e.,
minimise and maximise the values of QAs,

Then, the updated problem formulation is defined
as the selection of the P variants that best respect the
M Smart Home goals and their priorities with respect
to the evaluation (min or max) of the S QAs.

To tackle the problem of the Smart Home
services reconfiguration, we add the following
variables. Given: the current configuration
of the P Smart Home’s services Con f igcur =
{variantAm,variantBn, ...,variantPz}, the alert that
contains information on the deviation of any Smart
Home goal, and the current values of the S
QAs of the Smart Home’s services configurations
{cv1,cv2, ...,cvs} (cv1 corresponds to the current
value of qa1, .. and cvs corresponds to the current
value of qas,),

The decision-making for the Smart Home reconfi-
guration is to find a new configuration Con f ignew =
{variantAm′ ,variantBn′ , ...,variantPz′} of its ser-
vices, such that: Con f ignew is better than Con f igcur.
The definition of being “better” is based on a fitness
function which computes an aggregated value of the
QAs that reflects a configuration of the Smart Home
that increases the level of achievement of its goals.
Since QAs could have different natures, a normaliza-
tion technique is employed as shown in Equations 1
and 2 ([lv,rv] represents the interval from the minimal
to maximal values that could take a QA). The minimi-
sation problem is translated in a maximisation one.
Then, the aggregated fitness value of all the variants
in Con f ignew is calculated.

max(varx) =
m

∑
i=1

prioi ∗ (qai− lv)/(rv− lv) (1)

min(varx) =
n

∑
i=1

prioi ∗ [1− (qai− lv)/(rv− lv)] (2)

3 Background

3.1 Ontology-based approaches for
Smart Home

An ontology refers to the shared understanding of
some domain of interest which may be used as a uni-
fying framework to solve complex problems [Uschold
and Gruninger, 1996]. In the domain of Smart Home,
several ontologies have been proposed – see the study
presented by Bajaj et al. in [Bajaj et al., 2018] for an
in-depth survey of IoT ontologies. Among them, the
Smart Appliance REFerence SAREF1 is a reference
ontology for smart appliances. It was developed with
the support of the European Commission and is pub-
lished by ETSI [Smart Appliances, 2017].

SAREF mainly focuses on devices that are “tangi-
ble objects designed to accomplish a particular task in
households, common public buildings or offices” and
may be further refined as sensors or actuators. From a
user perspective, a device is designed to achieve a task
(Task) related to a feature of interest (Commodity)
using a specific strategy (Profile). In case of sen-
sors, devices make measurements (Measurement) re-
lated to some properties (Property) and in specific
units (Unit of measure). Devices are accessed via
an interface (Service) implemented on top of func-
tionalities (Function) that are composed of com-
mands (Command) and states (State).

SAREF is intended to be a core ontology that may
be extended for specific domains. Hence, extensions
have already been published in several domains like
Energy, Agriculture, Health, etc. However, some li-
mitations of SAREF can be identified. For instance,
devices are only described as atomic, i.e., they are not
composite, not allowing to include complex devices.
Also, services are not composable and are tightly cou-
pled to devices preventing a higher level of abstrac-
tion. Moreover, services cannot be customised, this
means that services cannot be configured/regulated
according to some parameters. Finally, potential con-
flicts between Smart Home goals cannot be managed.

3.2 Variability Models in the Software
Product Line

Software Product Line Engineering (SPL) follows the
principles of product lines to enable product mass
customisation. SPL rests on the idea of characterising
the products in terms of the features they offer, and
categorise them into common features that are part of
each product and variable features that are only part of

1https://forge.etsi.org/rep/SAREF



some products. The selection of a set of suitable fea-
tures when a product is configured is a crucial activity
that has been widely studied both in academia and in-
dustry. Such selection is typically made by exploring
the space of trade-offs along different attributes of in-
terest, for instance cost and value.

Feature models (FMs) [Kang et al., 1990] are of-
ten used in SPL to describe the commonalities and
variability of product families. In FMs, features are
hierarchically organised by means of parent-child and
tree constraint relations. Tree constraint relations are:
Mandatory, Optional, Alternative, and Or. If a fea-
ture has a Mandatory relation with its parent, it must
be included in all software configurations in which its
parent appears. If a feature has an Optional relation
with its parent, it can be optionally included in pro-
ducts in which its parent appears. A set of features
are grouped as Alternatives if exactly one of these
features has to be included when their parent appears
in the configuration. A set of features are grouped
using an Or relation if one or more of these features
can be included when their parent appears in the con-
figuration. An overview of it is shown in Figure 1 (a).

In addition to the previous relations, a FM may
also include cross-tree constraints between features:
Implies and Excludes. If featureA implies featureB,
and featureA appears in a product, then featureB must
be selected for the product. If featureA excludes fea-
tureB, and featureA appears in a product, then fea-
tureB must not be selected for the product.

[Batory, 2005] introduces a mapping between
FMs and grammars allowing to apply formal reaso-
ning. Our mapping from tree constraints in FMs to
grammars is summarised as follows:
Optional: OPTIONAL(F)→ <F_opt> ::= <F> | λ

Alternative: ALTERNATIVE(F1,F2) →
<F> ::= <F1> | <F2>
Or: OR(F1, F2) →
<F_or> ::= <F> <F_or> | <F> ;
<F> ::= <F1> | <F2>
And (*): AND(F1,F2)→ <F> ::= <F1> <F2>
(*) And was included to capture grouped features with
the same parent but without alternative/or relations.

Non-terminals are represented by names in angle
brackets while terminals are represented by quoted
strings. For the sake of simplicity, λ rules, which
mean empty, are represented by a |.

Cross-tree constraints in FMs could be suffixed
to the grammar so that they can be read and applied
by a program. In our case, we adopt the propositional
logic notation proposed by [Batory, 2005].

Attributes are associated to each feature so that
optimal product configurations can be derived using
the values of the attributes.

4 SHORE: An approach for Smart
HOme self-REconfiguration

[Weyns, 2019] introduces a conceptual model for
building SASs. It is mainly composed of the environ-
ment, managed system, managing system and adap-
tation goals components. We envision the SHORE
approach by leveraging the high level components of
Weyns’ model. The environment refers to the ex-
ternal world with which the SAS interacts. For in-
stance, the environment of a Smart Home includes the
weather, which can influence the levels of humidity,
temperature and illuminance. The managed System
comprises the application code that realises the sys-
tem domain functionality. For instance, in the case of
Smart Homes, services that switch on/off actuators or
configure their settings in order to accomplish a spe-
cific purpose such as the regulation of levels of tem-
perature, humidity or carbon emissions inside build-
ing spaces. The adaptation Goals are concerns of the
managing system over the managed system to pre-
serve certain conditions or qualities. For instance, an
adaptation goal of a Smart Home could be to keep re-
sidents comfort high. It can be translated as reaching
the acceptable values for the temperature, humidity
or level of carbon in a room. These acceptable values
could be established using standardised regulations or
users’ preferences. The managing System conducts
the managed system, it comprises the adaptation logic
that deals with one or more adaptation goals. Diffe-
rent terms may be used to refer to a managing system,
e.g., autonomic manager, adaptation engine, reflective
subsystem or controller.

The architecture of managing systems is usu-
ally based on the MAPE-K (Monitor, Analyse, Plan,
Execute, over shared Knowledge) loop [Kephart and
Chess, 2003]. Monitor allows to collect the sys-
tem environmental context, besides components of
the managed system. In a Smart Home, sensors col-
lect data about current levels of temperature, humidity
and carbon concentration in a room. Using the mon-
itored data, Analysis determines if the adaptation of
the managed system is needed or not. For instance,
if the specified goals (see the adaptation goals com-
ponent) are violated, an alert is sent. Next, Plan eva-
luates a set of system variants in order to choose the
most adequate one to address the situation alerted to
by the analysis. Finally, Execute takes into account
the architecture model of the managed system in or-
der to deploy the adaptation plan at runtime. In the
Smart Home context, we should take into account the
actuators present in the house, for instance an HVAC
(Heating, Ventilation, Air-Conditioning) system.

In the next subsections, we answer the research



Table 1: Variables needed for the Smart Home services self-reconfiguration. Where: min = minimisation, max = maximi-
sation, - means that the variable is not supported by the formalism, + means in addition to its predecessor, and ≡ means
equivalent to its predecessor. (*) Notice that profile measurement is related to profile and not to variants.

Variable SAREF FM SAREF+ FM+

Goals profile select new
configuration

≡ + optimising
(min, max) QAs

Priorities of Goals - - priority for profile weight of QAs
Actuator device feature actuator ≡
Service of Actuators service child features

of actuators
service / composite
service

≡

Dependency of services - imply, ex-
clude

- ≡

Variants for services - child features
of services

- ≡

QAs for variants - - profile measurement
for profile (*)

attribute where
attribute is QA

Values for QAs - - - default value of
QAs

Running configuration - feature conf. - ≡

questions. We thus present the SHORE artifacts that
are used at design-time and exploited at runtime. It
is worth to mention that SHORE mainly supports the
analyse and plan steps of the MAPE-K model.

4.1 RQ1:

How to define Smart Home variants at design-time
allowing reconfiguration at runtime?

To answer RQ1, we use the variables identified in
the problem formulation (see Section 2). Thus, the
variables used to semantically define the variants of
Smart Homes services are: goals, priorities of these
goals, actuators, services offered by actuators, va-
riants of services settings, quality attributes associ-
ated to these variants, the values for quality attributes
and the running/current Smart Home services config-
uration. Notice that for this paper, we only consider
the reconfiguration for services of actuators and not
for services of sensors. It is because we consider that
actuators are the only ones to be directly implied in
the changing of the state of Smart Homes. Whilst
sensors are required to evaluate Smart Homes states
gathering environmental contextual data.

Table 1 shows how to represent the identified vari-
ables using SAREF and/or FMs formalisms. As ob-
served, not all of the variables can be expressed by
one of the two formalisms. To fill this gap, we intro-
duce an extension of SAREF, called SAREF+ [Baghli
et al., 2018], and an extension of FMs, called
FM+ [Muñante et al., 2018], and we integrate them.
SAREF+ is mainly dedicated to define semantically
the Smart Home, whilst FM+ complements this def-
inition adding variants for the service configuration.

In SAREF+, actuators are explicitly defined.
The concept of service is central and is highly flex-
ible. It may be composed, a service can be a com-
position of multiple services, and even dedicated to
composition, e.g., an orchestrator service that arbi-
trates conflict among concurrent services. It may
be loosely coupled to objects (or composition of ob-
jects) enabling the implementation of a service on
a variety of objects matching the service specifica-
tion and dynamic replacement in case of failure or
other context evolution. On the other hand, in FM+,
actuators and services are represented as fea-
tures. Thus, services are child features of actuators.
Moreover, dependencies between services can be
expressed through the cross-tree constraints: imply
and exclude. Notice that, FMs tend to represent eve-
rything as features. In order to keep the domain spe-
cific terminology of Smart Homes, we need to use of
an ontology such as SAREF.

In SAREF+, a service is specified not only by
its interface but also by its dynamic behaviour using
SWRL rules. Static and dynamic aspects of services
may be customized using profile (goal) and profile
measurements, for instance priorities. A profile
measurement describes the metric used to evaluate the
achievement level of a certain profile. For instance,
in a profile such as energy efficiency or renewable
energy, profile measurements could be energy con-
sumption or type of energy source. In FM+, goals
are not explicitly represented but their achievement
are interpreted as the selection of an optimal configu-
ration that will be “better” than the current configura-
tion. To do that, a space of variants should be evalua-



ted. Variants are represented as features, and they
represent the alternatives for services configurations.
Thus, variants are child features of services. To se-
lect “better” configurations, we use quality attributes
(QAs) that are associated to variants. QAs and profile
measurements accomplish the same objective, how-
ever they are not applied at the same level of analysis.
Profile measurements are related to profile (see (*) in
Table 1) (i.e., goals), while QAs are related to va-
riants. The priorities of goals in FM+ are ex-
pressed as the weights for QAs, and the values for
QAs are defined using a default value of QAs. More-
over, the minimum range value and maximum range
value are used to compare QAs of different nature.

Finally, the current running configuration of the
Smart Home is only represented by the feature con-
figuration model derived from a FM+ model.

4.2 RQ2:

How to select an optimal Smart Home variant to
overcome undesired situations?

As observed, several variables are involved in the
Smart Home services self-reconfiguration. It quickly
makes the problem more complex to solve with the
exponential growth of variables when new actuators,
services and variants are added to the Smart Home.
Therefore, we address this problem as an optimi-
sation problem (an not an exact problem) allowing
the use of optimisation (meta-heuristic) techniques
widely adopted in the literature.

Changes originated by residents or the environ-
ment can provoke deviations from Smart Home goals
These deviations can be detected through SWRL
rules. If a rule antecedent holds true, it means that
an alert will be sent to the planning of the reconfigu-
ration. An alert contains information about the situ-
ation that we cope with, hence it contains constraints
to be respected. It is expressed as thresholds, for in-
stance an attribute value should be greater or less than
Xvalue. Therefore, SHORE not only finds good so-
lutions for the software configuration, in addition it
finds constrained optimal solutions for it.

For the plan step, given a FM, the software pro-
duct configuration problem involves the exploration
and selection of the set of products representing op-
timal trade-offs among the various attributes of the
FM. We propose to use the grammar guided genetic
programming (GGGP) [Kifetew et al., 2017b] for ex-
ploring the space of product configurations (see Fig-
ure 1 (a) and (b)). GGGP is a type of genetic pro-
gramming (GP) that provides a suitable representa-
tion of candidate solutions as trees that capture the re-
lationships among features imposed by the FM. Such

a representation facilitates the generation of candidate
solutions and evolving them to optimal solutions.

GP is part of Evolutionary Algorithms (EA). An
overview of a typical EA is shown in Figure 1 (a). An
EA starts by creating an initial population of individu-
als. It then evaluates each individual in the population
by means of an appropriate fitness function and as-
signs it a fitness value. Once individuals are assigned
fitness values, the EA proceeds by selecting individ-
uals (to become parents) from the current population
and subjects them to the process of recombination or
crossover resulting in offspring. The selection pro-
cess could be performed using a variety of methods
based on the fitness value. Commonly used selec-
tion procedures include fitness proportional selection,
tournament selection, and rank based selection. Once
offspring are produced via recombination, they could
further be subjected to a process of mutation with the
aim of introducing diversity into the population. The
EA then selects, from the combined pool of parents
and offspring, the individuals that form the new popu-
lation in the next generation (survivors). Survivor se-
lection could also be performed in a number of ways
(e.g., based on fitness of individuals or based on age).
This process continues to iterate until some stopping
condition is reached, in which case the EA terminates.

For the SHORE solution, as shown in Figure 1 (a),
the FM is first serialised into a grammar (as de-
scribed in Section 3), which is then fed to the GGGP-
based search module, which follows the evolution
cycle of a typical evolutionary algorithm, resulting
in a Pareto-optimal set of product configurations.
Given the nature of the problem at hand, we propose
multi-objective optimisation, in particular we adopt
the dominance-based approach as implemented in the
NSGA algorithm [Deb et al., 2000]. The steps execu-
ted by the SHORE solution are described as follows:
Candidate encoding and initialisation Each candi-
date solution is a set of features, represented as a
derivation tree based on the given grammar (an ex-
ample is shown in Figure 1 (b)). Collecting the leaves
of the tree, we get the set of features represented by
the candidate solution (i.e., the combination of va-
riants for the Smart Home services settings accord-
ing to SHORE). The population is initialised by ran-
domly generating candidates from the grammar follo-
wing the process of derivation [Kifetew et al., 2017b].
Candidate solutions are by definition valid with res-
pect to the FM (grammar).
Fitness evaluation The fitness function is computed
based on the values of QAs defined a priori. Then,
given a candidate configuration solution Con f ig =
{variant1.n,variantP.m} (see Figure 1 (b)), the fitness
value of Con f ig is composed of the aggregate values



Figure 1: The SHORE approach: (a) the optimisation process, and (b) a candidate evaluation.

of each QA in Con f ig. Each attribute is an objec-
tive to be optimised. For example, the sum of the
cost of all features (i.e., variants for the Smart Home
services settings) in Con f ig represents one objective,
while the sum of value levels constitutes another ob-
jective. Notice that, candidate solutions whose fitness
values or specific attributes do not respect restrictions
imposed by alerts and sent by the analysis step, are
discarded.
Search operators Since candidate solutions are en-
coded as trees, the operators we employ are sub-
tree crossover and subtree mutation [Kifetew et al.,
2017b]. In subtree crossover step is as follows: Given
two parents Parent1 and Parent2, subtrees of the same
type (rooted at the same grammar non-terminal) are
identified in each parent and swapped, producing the
offspring. In subtree mutation step, an individual
O f f spring2 is transferred to Mutant replacing a sub-
tree by a newly generated subtree from the grammar.

5 Related Works

Several mathematical proposals have been introduced
to manage energy consumption or user comfort for
Smart Homes [Tashtoush et al., 2005]. However, a
methodology supporting engineers when conceiving
Smart Homes since the evaluation of their goals using
metrics is rarely presented. SHORE aims to fill this
gap, nevertheless the integration of mathematical pro-
posals to SHORE can facilitate/improve the defining
of variants and their (quality) attributes.

Ontologies are employed to cope with the com-
plexity of Smart Homes. For instance, IOT-O [Sey-
doux et al., 2016] supports self-reconfigurable IOT
systems by combining state-of-the-art ontologies such
as Semantic Sensor Network (SSN). Thus, IOT-O can
be used in the MAPE-K control loop. Moreover,

in [Lork et al., 2019], an ontology-based framework
for the energy management in buildings is presented.
For this, a benchmarking module identifies situations
for the building energy inefficiency, and an evaluation
and control module determines and executes the ac-
tions that alleviate these situations. We differ from
these two referred works in the formulation of the
planner for the reconfiguration. While these works
focus on rule-based approaches without any strategy
for managing potential conflicts between the adapta-
tion goals, we address this issue by an heuristic algo-
rithm that manages conflicts and scales the problem
formulation.

Regarding quality metrics for self-adaptive sys-
tems, QoSMOS [Calinescu et al., 2011] defines a
service-based application as a Discrete Time Markov
Chain to identify the service configurations that sat-
isfy the quality goals. QoSMOS uses an exhaustive
verification limiting adaptation decisions to small-
scale settings. To address this problem of scalabil-
ity, MARTAS [Weyns et al., 2018] combines quality
models at runtime and statistical techniques to pre-
dict situations that require adaptation for IoT systems.
However, no details about the decision making pro-
cess for the planning adaptation were provided. The
work presented in [De Sanctis et al., 2019] is the clos-
est to SHORE. It allows to define QAs associated to
the devices settings that guide the selection of opti-
mal configurations. However, nothing is mentioned
about potential conflicts between adaptation goals and
the technique employed to implement the optimisa-
tion problem. SHORE includes priorities to manage
conflicts between adaptation goals and implements
a GGGP for the selection of optimal configurations.
GGGP generates valid candidates for the given gram-
mar, thus no validation steps is needed once candi-
dates are generated.



6 Conclusion and Next Steps

In this paper, we introduced a new approach called
SHORE. It is composed of a set of artifacts that al-
low the reconfiguration of Smart Home services set-
tings. SHORE enhances Smart Home automation by
combining the fine grain expressiveness of ontologies
together with feature models allowing to determine at
design-time different variants of a Smart Home be-
haviour by sharing and prioritising goals. At runtime,
when conflicting goals appear in candidate configu-
rations, genetic programming allows to automate fur-
ther the decision process. Our contributions include
extensions of the SAREF ontology and FMs, the for-
mulation of a genetic programming technique that ex-
ploits these formalisms, and their implementation for
a case study using a set of open-source tools.

We are currently working on complementing the
SHORE approach to determine at runtime undesired
situations as early as possible by a monitoring system
and also to translate a calculated configuration to the
target configuration of the involved appliance in the
execution step of the MAPE-K model. Furthermore,
empirical evaluations are part of our next steps to vali-
date the performance and usability of SHORE.

REFERENCES

Baghli, R., Najm, E., and Traverson, B. (2018). Defining
services and service orchestrators acting on shared
sensors and actuators. In 6th Int. Conf. MODEL-
SWARD, Funchal, Madeira.

Bajaj, G., Agarwal, R., Singh, P., Georgantas, N., and Is-
sarny, V. (2018). 4W1H in IoT Semantics. IEEE Ac-
cess, 6.

Batory, D. S. (2005). Feature Models, Grammars, and
Propositional Formulas. In 9th Int. Conf. on Software
Product Lines (SPLC), Rennes, France, pages 7–20.

Bencomo, N., Götz, S., and Song, H. (2019). Mo-
dels@run.time: a guided tour of the state of the art
and research challenges. Softw. Syst. Model., 18(5).

Breaux, T. D. and Antón, A. I. (2008). Analyzing regula-
tory rules for privacy and security requirements. IEEE
Trans. Software Eng., 34(1):5–20.

Calinescu, R., Grunske, L., Kwiatkowska, M. Z., Miran-
dola, R., and Tamburrelli, G. (2011). Dynamic QoS
Management and Optimization in Service-Based Sys-
tems. IEEE TSE, 37(3).

Cámara, J. et al. (2017). Self-aware Computing Systems:
Related Concepts and Research Areas. In Self-Aware
Computing Systems, pages 17–49. Springer.

De Sanctis, M., Spalazzese, R., and Trubiani, C. (2019).
Qos-based formation of software architectures in the
internet of things. In 13th ECSA, Paris, France, vol-
ume 11681 of LNCS. Springer.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.
(2000). A fast elitist multi-objective genetic algo-
rithm: NSGA-II. IEEE Trans. on Evolutionary Com-
putation, 6:182–197.

Erazo-Garzón et al. (2021). Models@ runtime and internet
of things: A systematic literature review. In 2d Intl
Conf. ICI2ST. IEEE.

Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson,
A. (1990). Feature-oriented domain analysis (FODA)
feasibility study. Technical Report CMU/SEI-90-TR-
21, CMU SEI.

Kephart, J. O. and Chess, D. M. (2003). The vision of auto-
nomic computing. Computer, 36(1):41–50.

Kifetew, F. M., Muñante, D., Gorroñogoitia, J., Siena, A.,
Susi, A., and Perini, A. (2017a). Grammar based ge-
netic programming for software configuration prob-
lem. In 9th Int. Symp. on Search Based Software Eng.
SSBSE, volume 10452 of LNCS. Springer.

Kifetew, F. M., Tiella, R., and Tonella, P. (2017b). Gen-
erating valid grammar-based test inputs by means of
genetic programming and annotated grammars. Em-
pirical SW Eng., 22(2):928–961.

Lork, C., Choudhary, V., Hassan, N. U., Tushar, W., Yuen,
C., Ng, B. K. K., Wang, X., and Liu, X. (2019).
An Ontology-Based Framework for Building Energy
Management with IoT. MDPI Electronics, 8(5).

Muñante, D., Kifetew, F. M., Gorroñogoitia, J., Schaniel,
R., Perini, A., and Susi, A. (2018). Model Driven Soft-
ware Reconfiguration by Exploiting Grammar Based
Genetic Programming. In 8th IEEE MoDRE@RE
Workshop, Banff, Canada.

Seydoux, N., Drira, K., Hernandez, N., and Monteil, T.
(2016). IoT-O, a Core-Domain IoT Ontology to Rep-
resent Connected Devices Networks. In 20th Intl.
Conf. EKAW, volume 10024 of Springer LNCS.

Smart Appliances (2017). SmartM2M; Smart Appliances;
Reference Ontology and oneM2M Mapping.

Tashtoush, B., Molhim, M., and Al-Rousan, M. (2005). Dy-
namic model of an HVAC system for control analysis.
Energy, 30(10):1729–1745.

Uschold, M. and Gruninger, M. (1996). Ontologies: prin-
ciples, methods and applications. Knowl. Eng. Rev.,
11(2):93–136.

Weyns, D. (2019). Software Engineering of Self-adaptive
Systems. In Handbook of Software Engineering,
pages 399–443. Springer.

Weyns, D., Iftikhar, M. U., Hughes, D., and Matthys, N.
(2018). Applying architecture-based adaptation to au-
tomate the management of internet-of-things. In 12th
ECSA, volume 11048 of LNCS. Springer.

Yu, E. S. K. (1997). Towards modeling and reasoning sup-
port for early-phase requirements engineering. In 3rd
IEEE Intl Symp. on Requirements Engineering (RE),
Annapolis, MD, USA.


