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Abstract 
The Mediterranean is facing numerous socio-environmental challenges linked 
to global change, frequently compounded by rapid population growth. Within 
this framework, regional-scale Holocene temperature reconstructions are key 25 

to placing industrial-era warming into the perspective of natural climatic 
variability. Here, we present a new Mediterranean Sea Surface Temperature 
(SST) stack based on 54 records for the last 11,750 years, to evaluate 
millennial-to-centennial-scale climate variability and to contextualize present 
and future changes. The Holocene thermal maximum is reconstructed 9,400–30 

3,000 years ago and is estimated to have been an average of 0.47 ± 0.2°C 
warmer than the mean for 1900-1960, followed by the onset of long-term 
cooling beginning around 3000 years BP. The coolest temperatures during the 
last ten millennia are recorded during the Little Ice Age. We find that 
Mediterranean Sea temperatures have risen from near the coldest to warmest 35 
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levels of the Holocene within the past century, with decadal warming rates that 
are ~16 times greater than the closest interglacial analogue. The basin’s SSTs 
have consistently exceeded the full distribution of Holocene warmth since 
2011. 
 40 
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Introduction 
The Mediterranean comprises one of the world’s most prominent and vulnerable 

climate change “hotspots” due to its rapid response to atmospheric forcings (Tuel 45 

and Eltahir, 2020); current change and future scenarios consistently highlight the 

substantial and growing risks that the basin will face in coming decades (Guiot and 

Cramer, 2016; Tramblay et al., 2020). Within this context, Sea Surface Temperature 

(SST) is an important component of the Mediterranean climate system (Macias et al., 

2013) and knowledge of past, present and future trends in its SSTs is crucial for 50 

future climate scenarios and to improve understanding of thermal and dynamical 

interactions between the Mediterranean Sea, the atmosphere (Alexander et al., 2018; 

Pastor et al., 2018) and steric-driven sea-level changes (Vacchi et al., 2021). 

 

Climate change constitutes one of multiple drivers affecting Mediterranean 55 

anthroposcapes and human health (Cramer et al., 2018), either directly (e.g. through 

temperature extremes, drought and water security, storms) or indirectly 

(modifications in food provision and quality, air pollution, creation of urban heat 

islands). Future warming in the Mediterranean region is forecasted to exceed global 

rates by 25 %, with summer warming outpacing the global mean by 40 % (Lionello 60 

and Scarascia, 2018). In 2019, Mediterranean countries hosted >520 million people 

(United Nations, 2019) and population exposure to heat is increasing due to climate 

change and rapid rates of urbanization. For example, from 2000-2019, >65,000 

people died due to Mediterranean heatwaves (EM-DAT, 2020). This figure is 

particularly alarming because the frequency of Mediterranean heatwave days is 65 

projected to evolve from an average of about two days per summer for the period 

1961–1990 to around 13 days for 2021–2050 and 40 days for 2071–2100 (Fischer 

and Schär, 2010). The Mediterranean coastline, in particular, is extremely sensitive 
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to heatwaves and strong changes in ambient temperature and sea temperatures, 

notably the basin’s densely populated urban centers. 70 

 

Mediterranean SST data covering the Holocene can furnish crucial insight into 

natural decadal to centennial time-scale changes and put recent climate change into 

a longer-term perspective (McGregor et al., 2015; Abram et al., 2016). This is 

particularly important because semi-enclosed basins like the Mediterranean Sea are 75 

poorly resolved by the ~1° resolution of many global climate models. The 

Mediterranean’s rich archaeological record also emphasizes the importance of 

recurring socio-cultural changes/transitions and demonstrates that the region’s past 

societies faced climate-related challenges at various points during the Holocene 

(Kaniewski et al., 2017). Here, we place today’s regional SST changes into the 80 

broader temporal context of the Holocene using a consistent framework based on 

spatially averaged estimates of Mediterranean SSTs. Mediterranean Sea 

temperatures are now ~1.4°C higher than at the turn of the 20th century, compared 

with an increase of ~1.2°C worldwide (NOAA, 2020). Understanding future trends in 

SSTs is, therefore, of paramount importance for Mediterranean climate adaptation 85 

policies, including public health, land-use and the conservation of biodiversity. 

 

Methods 
The SST database gathers 54 records from 44 locations in the Mediterranean Sea 

(see Table 1). Figure 1 displays the spatial distribution of the archives used in the 90 

database. The records derive from marine cores and are based on the following 

proxy methods (Figures S1 and S2): alkenones (n=34), long-chain diols (n=2), 

Mg/Ca (n=11), TEX86 (n=5), δ18Ow foraminifera (n=1) and Ri OH-GDGTs (n=1). 

They range in temporal length from 0 to 244,350 years BP, but only the Holocene 

section of each record was retained for the database. Details regarding the 95 

collection, analysis and interpretation of individual records are provided in the original 

publications. A list of sites in the database, including basic metadata, is presented in 

Table 1. To facilitate comparison of information on a common chronological grid and 

for shared spectral resolutions, all records were annualized using nearest-neighbor 

interpolation. Each initial record was converted into SST anomalies (in °C) by 100 

subtracting the mean temperature from each sequence. This method also helps to 

reduce analytical biases associated with individual geochemical reconstruction 



 4 

techniques. The time series were subsequently summed and averaged to generate a 

spatially averaged Holocene record of Mediterranean SSTs. To quantify analytical 

uncertainties in the time series, we calculated Confidence Intervals, integrating the 105 

number of records at a given point in time, the reconstructed annual mean and the 

associated standard deviation (Figure S3). The mean CI for the entire time series is 

0.23°C. We also incorporated the varying chronological uncertainties (2σ) associated 

with each of the 54 time series used to construct the SST stack, by means of the 

initial age models. Figure S4 plots the 2σ error average of all records used to 110 

construct the SST record for each time point. The data are plotted at a resolution of 

50 years for clarity. Mediterranean SSTs for 1854-2019 were extracted from the 

International Comprehensive Ocean-Atmosphere Data Set (ICOADS) 

(https://icoads.noaa.gov; 55). All SST data are reported as average temperature 

anomalies. For data plotted on the B2K timescale, the year 2000 CE represents 0. 115 

Negative time values are post-2000 (e.g. 2010 = -10). 

 

To quantify the potential role of geographic location in influencing the overall signal 

we applied the following three-step analysis. (1) The initial 54 records were divided 

into three separate entities East (21°E to 36°E), Central (10°E to 20.9999°E) and 120 

West (-4.7496°W to 9.9999°E) Mediterranean. The SST data were transformed into 

percentages of the total signal. For each calculation, the mean was subtracted by 

geographic entity using these percentages. (2) Next, we took the number of 

sequences by geographic entity (East, Central and West) and transformed these 

numbers into percentages of the total signal. For each calculation, we also 125 

subtracted the mean (per geographic entity) using these percentages. (3) To weight 

the overall signal using the three different zones, we multiplied the percentages 

produced in step 1 with those from step 2. The level of signal variation is low, with the 

exception of the first ~200 years of the Holocene, giving us confidence in the overall 

quality of the SST stack as a robust palaeoclimate record (Figure S5). 130 

 

A homogeneity test was applied to the Holocene record of SSTs to detect shifts in 

the long-term dynamics. Each discordant period was categorized and its average 

indicated by “mu” (Figure 2). A polynomial regression was then applied (Figure 2) 

and a sinusoidal regression was calculated to model potential periodicities in the time 135 

series. The link between insolation and Mediterranean SSTs was tested, ranking the 
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insolation scores in ascending order and retaining the associated SST values. 

Averages were calculated and are plotted with their standard deviations (Figure 3). 

The same process was applied in testing the relationship between the Agassiz Ice 

Cap melt record and the SSTs (Figure 4A-B). Warming and cooling phases during 140 

the Holocene (expressed in °C per decade; Figures 5-7) were calculated by 

selecting the highest and lowest values for each climate episode. Rates were defined 

by subtracting the high and low values and dividing by time. A linear model was 

applied to present-day values to project warming values up to 2100, based on each 

of the past Holocene scenarios (with the associated standard deviation; Figure 7E). 145 

 

A short-time Fourier transform was applied to the last two millennia (window = 

rectangle; Figure S7) to determine the sinusoidal frequency and the phase content of 

sections of the SST signal over time. Boxplots of Mediterranean SST variability 

during the Holocene (Figure S8) were plotted to highlight the extent of Global 150 

Warming since the 19th century AD. Each chronological window was defined by a 

series of homogeneity tests. 

 

All of the raw data tables used to draft the figures are reported in the Excel file 

(Supplementary Material) accompanying the manuscript. 155 

 

Results and discussion 
Holocene evolution of Mediterranean SSTs 

Figure 2 plots average SST anomalies on the B2K timescale. The record has 

successfully captured both first- and second-order pacemakers. Change-point 160 

analyses highlight three statistically significant periods. (1) The reconstruction shows 

a strong SST warming trend between 11,700 to 9400 B2K characterized by warming 

of ~2.8°C at an average rate of 0.12°C per century. The temperature anomalies 

range from -2.75 ± 0.59°C to 0.03 ± 0.26°C with a mean of -1.02 ± 0.39°C. This early 

Holocene period was characterized by a much greater range of variability than seen 165 

over later millennia. (2) Around 9400 years ago, the rates of SST change slowed 

rapidly. Between 9400 to 3000 B2K, temperatures plateaued in a phase of sustained 

warming with SST anomalies ranging from -0.01 ± 0.2°C  to 0.58 ± 0.18°C, with an 

average anomaly of 0.32 ± 0.2°C. Maxima in the SST data occur at 4700-4950 B2K 

(average = 0.53 ± 0.23°C) and 7100-7200 B2K (average = 0.54 ± 0.19°C). (3) After 170 
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3000 BP, the reconstruction manifests an overall cooling trend of >1°C, from a 

maximum of 0.3 ± 0.19°C at 3000 B2K to a minimum of -0.77 ± 0.06°C at 110 B2K. 

 

Following the disappearance of the major Northern Hemisphere ice sheets between 

8000 B2K and 6000 B2K, the chief SST trends in the Mediterranean parallel the 175 

dominant climate forcings of the Holocene. Mediterranean SSTs during the last 8000 

years are characterized by an overall decrease in temperatures, consistent with 

insolation forcing associated with decreasing orbital obliquity. The strongly 

decreasing boreal summer insolation induced a progressive SST cooling of ~1.4°C 

(Figure 3). A southerly zonal shift in the mean position of the intertropical 180 

convergence zone (ITCZ; Schneider et al., 2014) allowed an expansion of the 

Siberian High over Eurasia, ultimately resulting in cooler, drier winters and springs in 

the Mediterranean (Peyron et al., 2017). Our reconstruction demonstrates that 

cooling only became well expressed in the past three millennia, accompanied by a 

marked transition in seasonality that is clearly attested in terrestrial records from 185 

around the Mediterranean, concomitant with a gradual precession-driven decrease in 

summer insolation versus increases in winter values (Peyron et al., 2011; Kaniewski 

et al., 2020). 

 

Superimposed on the insolation-based Holocene cooling of Mediterranean SSTs, the 190 

reconstruction manifests considerable variability linked to second-order forcing 

agents. Six periods of marked SST cooling are delineated at 8360-8100 B2K, 5400-

5100 B2K, 4220-3900 B2K, 3130-2800 B2K, 1470-1250 B2K and 670-140 B2K 

(Figures 4 and 5). Our analysis shows that these rapid Mediterranean cooling 

phases mesh with internal oceanic shifts in the North Atlantic during which ice rafting 195 

and meltwater outburst events from Greenland and North America cooled and 

freshened ocean surface waters, slowing and modifying the geography of deep-water 

formation and disrupting the northerly transport of warm low-latitude waters by the 

thermohaline circulation (Fisher et al., 2012; Figure 4). These major changes in the 

Atlantic Meridional Overturning Circulation (AMOC) significantly affected SSTs in the 200 

Mediterranean with broader implications for the basin’s palaeoclimates (Fletcher et 

al., 2013). Terrestrial-based records demonstrate that the cooling phases were 

frequently associated with reductions in precipitation and temperatures, and had 

wider social, cultural, and political consequences for some Mediterranean and West 
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Asian societies at key points during the mid to late Holocene (Weiss, 2016; Sinha et 205 

al., 2019). For instance, the Late Bronze Age to Early Iron Age transition in the 

Eastern Mediterranean was characterized by a 30-40% reduction in precipitation 

which appears to have engendered food shortages in parts of the Levant, Egypt and 

Greece, and marked the onset of the Iron Age Dark Ages (Kaniewski et al., 2013; 

Kaniewski et al., 2017). The archaeological record documents significant cultural and 210 

socio-economic shifts in the Levant and Egypt during the Late Bronze Age, and 

several sites from Syria, Israel and the Nile Delta show a transition to cooler and 

more arid conditions at ~1200 BC (Kaniewski et al., 2019). Egypt withdrew from its 

province in Canaan and experienced food shortages (Shaw, 2004). In Greece, the 

population was reduced, and the world of organized state armies, kings, officials, and 215 

redistributive systems disappeared. During the Early Iron Age, Greece was divided 

into independent regions organized by kinship groups and the oikoi or households, 

the origins of the later poleis. This model appears to have provided citizens with 

greater opportunities for political participation and rendered these societies more 

resilient to climate change. Later, around 1500-1250 B2K, rapid climate cooling of 220 

0.27°C coincided with the transformation of the eastern Roman empire into the 

Byzantine empire (Büntgen et al., 2016) and marked the end of a period of relatively 

stable climatic conditions during which Rome extended its hegemony over great 

swathes of Europe, the Near East and North Africa. 

 225 

The lowest SSTs during the past 10,000 years occurred during the 1600 to 1800s. At 

this time, many Mediterranean glaciers attained their maximum Holocene extent and 

even existed as far south as the High Atlas of Morocco and the Sierra Nevada of 

southern Spain (Hughes, 2018). All of the solar minima of the Little Ice Age are 

clearly captured by the Mediterranean SST stack. These cold episodes mesh with 230 

abrupt cooling events in the Bosphorus and colder winters in Istanbul (Turkey), both 

identified in historical data (Yavuz et al., 2007; Figure S7). Rapid temperature 

deviations are therefore important in fully comprehending the complex interplay 

between Mediterranean climate, landscapes and its societies. 

 235 

Climate change is not only manifest in mean SST trends but also in shifts in the 

anatomy of past abrupt warmings and coolings recorded in the Mediterranean SST 

stack. We probed the duration and amplitude of cooling/warming transitions in the 
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SST record, focusing on four warming phases and nine cooling episodes (Figure 6). 

We note large variability in the transition duration from one event to the other. The 240 

longest warming transition was for the Holocene Warm Period with a warming of 0.43 

± 0.17°C over ~510 years. The longest cooling-phase transition was the 3.2 Event 

characterized by cooling of -0.38 ± 0.19°C over ~320 years which contrasts markedly 

with the short cooling-phase transition during the Dalton Minimum of the Little Ice 

Age with cooling of -0.45 ± 0.23°C in just ~45 years. The absence of a systematic 245 

pattern in the duration of SST transitions could result from internal climate variability 

superimposed on broader forcing mechanisms. Nonetheless, our data do suggest 

that warming and cooling phases have been particularly rapid and of high amplitude 

during the past 1000 years. 

 250 

Present and future SSTs trends and implications 

Our results demonstrate that the mean of Mediterranean SSTs for the decade 2010–

2019 exceeds the warmest temperatures of the early to mid-Holocene (9000 to 3000 

BP) by 0.31 ± 0.09°C. By contrast, the decadal SST mean of the early 20th century 

(1900–1909) was cooler than 86% of the Holocene distribution. Mediterranean SSTs 255 

have therefore risen from near the coldest to the warmest levels of the Holocene 

within the past century (Figures 6 and 7), reversing the long-term cooling trend that 

began ~3000 years ago.  

 

During the past 46 years, Mediterranean SSTs have increased by ~1.54°C ± 0.09°C 260 

at an average warming rate of 0.33°C per decade. Prior to the ongoing Industrial-era 

warming, phases of rapid warming played out at 1070-705 B2K, 5350-4840 B2K and 

8300-7150 B2K (Figures 6 and 7), although, as we highlight above, the tempo of 

warming rates during these periods contrast markedly with the recent Industrial 

period. For instance, average warming rates were (i) 0.021°C per decade during the 265 

Medieval Climate Anomaly (0.36 ± 0.15°C in 172 years), (ii) as low as 0.008°C per 

decade during the Holocene Warm Period (0.43 ± 0.17°C in 510 years) and (iii) 

0.015°C per decade during the Holocene Climate Optimum (0.5 ± 0.2°C in 330 

years). To test to what extent current warming rate is unparalleled in relation to the 

last 11,750 years, we calculated temperature changes using moving 46-years 270 

windows for the entire sequence (Figure S9). The 46-year window corresponds to 

the present ongoing phase of rapid Industrial-era warming (1973 to 2019); our 
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analysis confirms that the current rate of Mediterranean Sea warming is without 

precedent at the Holocene timescale. 

 275 

These past warm periods are particularly relevant for modelling future changes in 

Mediterranean SSTs. Our reconstruction shows that Mediterranean SSTs have 

consistently exceeded the full distribution of Holocene warmth since 2011 (Figure 
7E). If the rates of temperature increases observed over the past five decades were 

to remain constant for the rest of the twenty-first century, Mediterranean SSTs could 280 

attain anomalies of around 3.59 ± 0.08°C by 2100. This analysis suggests that 

Industrial-era Mediterranean SST warming rates are unprecedented at the scale of 

the Holocene, with Mediterranean SSTs projected to warm ~16 times faster than the 

closest analogue during the past ~11,000 years. 

 285 

Conclusion 
Our analysis provides further evidence that low carbon emissions are critical to 

mitigate contributions of Mediterranean SST increases to local and regional sea-level 

rise. Our multi-millennial assessment also clearly proves the need to assimilate pre-

twentieth-century data into comprehensive assessments of industrial-era warming. At 290 

the scale of the Mediterranean, societal and economic impacts are likely to 

propagate in a nonlinear manner as climate-related hazards reach tipping points 

beyond which the affected physiological, anthropogenic, or ecological systems 

function less effectively or break down altogether. Many of these effects are likely to 

become even stronger in the near future because of the Mediterranean’s growing 295 

human population levels and economic activity, particularly in coastal areas. Our 

analysis demonstrates that there are no direct Holocene analogues to assess the 

resilience of human societies in the face of such rapid current warming. 
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Figure 1: Location of the 54 records included in the Mediterranean database of 

SSTs. The numbers correspond to the references in Table 1. 

 
Figure 2: Stack of Mediterranean Sea Surface Temperature (SST) anomalies for the 

Holocene. SST anomalies are the spatial average of the SST minus the mean of 310 

each individual time series in the database and are plotted on the B2K timescale. 

Change-point analysis was used to separate the time series into three periods: 

11,750 to 9426 B2K (mu3 = -1.03), 9425 to 2951 B2K (mu2 = 0.32) and 2950 B2K  to 

present (mu1 = 0.01). mu1-3 denote the averages for each statistically significant 

period. The light blue shading denotes the 68% Confidence Interval. 315 

 

Figure 3: A. Mediterranean SSTs for the past ~10,000 years. B. Mediterranean 

SSTs plotted against June-July-August (JJA) insolation (orange line and shading) 

and December-January-February (DJF) insolation (green line and shading). C. 
Correlation between grouped SSTs and insolation for JJA and DJF. These analyses 320 

underline the role of changing Holocene seasonality in driving SST changes. 

 
Figure 4: A. Mediterranean SST temperature anomalies (purple lines) plotted 

against Agassiz and Renland average temperature change record (in °C, green lines, 

record from Fisher et al., 2012) and Agassiz melt record (% melt, light-blue lines, 325 

record from Fisher et al., 2012). B. Grouped Mediterranean SST temperature 

anomalies versus grouped melting rates from the Agassiz record. The analysis 

demonstrates that increased meltwater inputs into the North Atlantic are correlated 

with cooling of Mediterranean SSTs. 
 330 

Figure 5: Industrial-era warming compared and contrasted with other Holocene 

phases of rapid cooling (blue) or warming (orange). 

 

Figure 6: A. Average annual rates of warming/cooling phases (in °C) for key 

Holocene periods. The analysis demonstrates that warming and cooling phases have 335 

been particularly rapid and of high amplitude during the past 1000 years. There are 

no direct Holocene analogues for the current rapid warming of Mediterranean SSTs. 

B. Onset and endpoints (dots) of key Holocene climate transitions (oblique lines) in 

Mediterranean SSTs. The vertical amplitude between the onset and the end of each 
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warming/cooling phase is in °C (positive for warming and negative for cooling), and 340 

represents the true T°C amplitude of change. 
 

Figure 7: A-D. Industrial-era SST warming rates compared to other periods of rapid 

Holocene warming, including the Medieval Climate Anomaly (B), the Holocene Warm 

Period (C) and the Holocene Climate Optimum (D). E. Modelled Mediterranean SSTs 345 

up to 2100 based on current and, for comparison, Holocene warming rates. The data 

suggest that decadal warming rates are ~16 times greater than the closest Holocene 

analogue and that Mediterranean SSTs have persistently exceeded the full 

distribution of Holocene warmth since 2011. 

 350 

Table 1: Basic metadata of the 54 records used in the Mediterranean SST 
compilation.  

 

Supplementary figures 
Figure S1: Location of the 54 records in the Mediterranean database, grouped by 355 

proxy type. 

 

Figure S2: A. Temporal length and proxy type of the 54 records used to construct 

the Mediterranean SST stack. B. Number of records used in the Mediterranean SST 

stack through time. 360 

 

Figure S3: A. Stack of Mediterranean Sea Surface Temperature (SST) anomalies for 

the Holocene, plotted on the B2K timescale. The light blue shading denotes the 68% 

Confidence Interval. The red line is a 200-year resampling, based on the coarsest 

chronological resolution of all the 2σ error margins used to construct the SST stack. 365 

The yellow line represents the 68% Confidence Interval associated with the 200-year 

time step. B. Same as (A) but excluding the annual resolution and associated 

Confidence Intervals. 

 

Figure S4: Stack of Mediterranean Sea Surface Temperatures (SST) for the 370 

Holocene, plotted at 50-year intervals. The light blue error bars denote the 68% 

Confidence Intervals. The green error bars denote the average 2σ error of all records 
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used to reconstruct the SST record at time point x. The grey inset is a boxplot of the 

2σ chronological errors in the initial 54 records (in years) used to construct the SST 

stack. 375 

 

Figure S5: Comparison between SST minus mean average (cold colours) and SST 

spatial average (warm colours). 

 

Figure S6: Potential role of geographic location in influencing the overall SST signal 380 

for the Holocene. A. Each SST record (West, Central and East Mediterranean) is 

presented as deviations from the mean. B. The number of sequences used per 

geographic location is shown as deviations from the mean. C. The weight of each 

geographic location in the final SST curve is subtracted (using A. x B.) and the 

resulting three curves (West, Central and East Mediterranean) are compared and 385 

contrasted with each other. 

 

Figure S7: A. Mediterranean SST anomalies during the past 2000 years and broad 

climatic periods. The stars denote freezing events in the Bosphorus and cold winters 

in Istanbul, based on historical records (Yavuz et al., 2007). B. Short-time Fourier 390 

transform of the data highlighting the periods of marked climatic variability. 

 

Figure S8: Boxplots of Mediterranean SST variability during the Holocene, 

highlighting the magnitude and rate of ongoing industrial-era warming. Recent 

warming contrasts markedly with long-term Holocene cooling of the Mediterranean 395 

Sea. 

 

Figure S9: Holocene changes in Mediterranean SST°C using moving 46-years 

windows for the complete sequence. The 46-year window corresponds to the current 

phase of rapid Industrial-era warming (1973 to 2019). The first value covers the 400 

temperature rise between 1973 and 2019, the second between 1972 and 2018, the 

third between 1971 and 2017 and so forth for the entire sequence. The associated 

confidence interval comprises the average of the confidence intervals for each 46-yr 

time-span. 

 405 
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Figure S1: Location of the 54 records in the Mediterranean database, grouped by proxy type.
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Figure S2: A. Temporal length and proxy type of the 54 records used to 
construct the Mediterranean SST stack. B. Number of records used in the 
Mediterranean SST stack through time.
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Figure S3: A. Stack of Mediterranean Sea Surface Temperature (SST) ano-
malies for the Holocene, plotted on the B2K timescale. The light blue shading 
denotes the 68% Confidence Interval. The red line is a 200-year resampling, 
based on the coarsest chronological resolution of all the 2σ error margins 
used to construct the SST stack. The yellow line represents the 68% Confi-
dence Interval associated with the 200-year time step. B. Same as (A) but 
excluding the annual resolution and associated Confidence Intervals.
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Figure S4: Stack of Mediterranean Sea Surface Temperatures (SST) for the 
Holocene, plotted at 50-year intervals. The light blue error bars denote the 
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of all records used to reconstruct the SST record at time point x. The grey inset 
is a boxplot of the 2σ chronological errors in the initial 54 records (in years) 
used to construct the SST stack.
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Figure S5: Comparison between SST minus mean average (cold colours) 
and SST spatial average (warm colours).
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Figure S6: Potential role of geographic location in influencing the overall SST 
signal for the Holocene. A. Each SST record (West, Central and East Mediter-
ranean) is presented as deviations from the mean. B. The number of 
sequences used per geographic location is shown as deviations from the 
mean. C. The weight of each geographic location in the final SST curve is sub-
tracted (using A. x B.) and the resulting three curves (West, Central and East 
Mediterranean) are compared and contrasted with each other.
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Figure S7: A. Mediterranean SST anomalies during the past 2000 years and 
broad climatic periods. The stars denote freezing events in the Bosphorus and 
cold winters in Istanbul, based on historical records (Yavuz et al., 2007). B. 
Short-time Fourier transform of the data highlighting the periods of marked 
climatic variability.
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Figure S8: Boxplots of Mediterranean SST variability during the Holocene, 
highlighting the magnitude and rate of ongoing industrial-era warming. Recent 
warming contrasts markedly with long-term Holocene cooling of the Mediterra-
nean Sea.
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Figure S9: Holocene changes in Mediterranean SST°C using moving 
46-years windows for the complete sequence. The 46-year window corres-
ponds to the current phase of rapid Industrial-era warming (1973 to 2019). The 
first value covers the temperature rise between 1973 and 2019, the second 
between 1972 and 2018, the third between 1971 and 2017 and so forth for the 
entire sequence. The associated confidence interval comprises the average of 
the confidence intervals for each 46-yr time-span.


