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The Rayleigh-Taylor instability of two-dimensional high-density vortices

We investigate the stability of variable-density two-dimensional isolated vortices in the frame of incompressible mixing under negligible gravity. The focus on a single vortex flow stands as a first step towards vortex interactions and turbulent mixing. From heuristic arguments developed on a perturbed barotropic vortex, we find that high-density vortices are subject to a Rayleigh-Taylor instability. The basic mechanism relies on baroclinic vorticity generation when the density gradient is misaligned with the centripetal acceleration field. For Gaussian radial distributions of vorticity and density, the intensity of the baroclinic torque due to isopycnic deformation is shown to increase with the ratio δ/δ ρ of the vorticity radius to the density radius. Concentration of mass near the vortex core is confirmed to promote the instability by the use of an inviscid linear stability analysis. We measure the amplification rate for the favoured azimuthal wavenumbers m = 2, 3 on the whole range of positive density contrasts between the core and the surroundings. The separate influence of the density-contrast and the radius ratio is detailed for modes up to m = 6. For growing azimuthal wavenumbers the two-dimensional structure of the eigen mode concentrates on a ring of narrowing radial extent centered on the radius of maximum density gradient. The instability of the isolated high-density vortex is then explored beyond the linear stage based on high Reynolds number numerical simulations for modes m = 2, 3 and a moderate density contrast C ρ = 0.5. Secondary roll-ups are seen to emerge from the non-linear evolution of the vorticity and density fields. The transition towards m smaller vortices involves vorticity exchange between initially-rotating dense fluid particles and the irrotational less-dense medium. It is shown that baroclinic enstrophy production is associated with the centrifugal mass ejection away from the vortex center.

Introduction

Baroclinic vorticity production has been identified as the counterpart of buoyancy forces in stratified geophysical flows where misalignment between the gravity acceleration field and the density gradient produces and destroys vorticity, see [START_REF] Turner | Buoyancy Effects in Fluids[END_REF]. The baroclinic vorticity production has been much less commented in high Froude number mixing flows. The transition stage of such flows have deserved some interest since the experimental evidence that low-density jets develop specific instability modes as in [START_REF] Monkewitz | Absolute instabilities in hot jets[END_REF]. The development of the Kelvin-Helmholtz instability in high-Froude number incompressible variable-density mixing layers was later subjected to numerical simulations by [START_REF] Soteriou | Effects of the free-stream density ratio on free and forced spatially developing shear layers[END_REF], revealing the crucial role of baroclinic vorticity sources. [START_REF] Reinaud | The baroclinic secondary instability of the two-dimensional shear layer[END_REF] found a secondary instability in the variabledensity mixing layer providing a two-dimensional spatial cascade towards smaller scales.

It was demonstrated to be related to the instability of the strained layer of vorticity and density-gradient. [START_REF] Turner | Buoyant vortex rings[END_REF] early mentioned the stabilizing effect of the centrifugal force due to rotation within vortex rings lighter than the surrounding medium. He compared it to the action of gravity on stably stratified shearing flows. Much later, [START_REF] Chomiak | Modeling variable density effects inturbulent flames -some basic considerations[END_REF] referred briefly to the instability of denser vortices into their variable-density turbulence model. The two-dimensional direct numerical simulations by [START_REF] Chassaing | Variable density mixing in kinematically homogeneous turbulence[END_REF] also confirmed the robustness of low-density vortices and the short life-time of high-density ones. Additional simulations of binary-mixing two-dimensional turbulence, summarized in [START_REF] Joly | Inertia effects in variable-density flows[END_REF], described the underlying process of mass-segregation by vorticity measuring negative correlation ξ 2 ρ , with ξ the vorticity and ρ the density fluctuation. Also displayed in [START_REF] Joly | Inertia effects in variable-density flows[END_REF] were accompanying non-linear simulations of isolated vortices showing axisymmetrization of a low-density vortex and the blow-up of a high-density one into fine-grained smaller structures. More recently, [START_REF] Miller | Visualizations of the dynamics of a vortical flow[END_REF] have observed such a two-dimensional mechanism in the case of an impulsively started density interface at high Schmidt number. After a first roll-up into a primary structure embedding folded density spirals, this mechanism was responsible for a secondary vorticity baroclinic generation. This secondary instability, resulting from the streamlines curvature, is of the same type as the one occurring in the case of an isolated, high-density vortex.

Besides, the stability of swirling flows has deserved much attention due to the interest in the breakdown of trailing vortices. Both axisymmetric and non-axisymmetric perturbations of swirling flows were analysed in the light of both asymptotic and normal-mode analysis. Though a sufficient condition for centrifugal instability has been extended to the compressible case by [START_REF] Eckhoff | A note on the instability of columnar vortices[END_REF] in the limit of large axial wavenumbers, it is demonstrated in a complementary paper by [START_REF] Sipp | Stability of a vortex with a heavy core[END_REF] that such a condition cannot be formulated for two-dimensional non-axisymmetric perturbations. Only an asymptotic analysis in the limit of vanishing density contrast and radius ratio, yields that vortices are unstable to non-axisymmetric perturbations if the density decreases radially somewhere. In contrast with these studies relying on the formulation of classical Sturm-Liouville eigenvalue problems, the present paper favours a heuristic approach and explores the mechanism of the two-dimensional instability of heavy vortices in the light of baroclinic vorticity generation associated with the centripetal acceleration field. This mechanism, originally discussed in [START_REF] Joly | Inertia effects in variable-density flows[END_REF], is demonstrated to be of the same nature as the Rayleigh-Taylor instability in the unstable atmosphere. It is explained in the preliminary part of §2 for a perturbed density field providing a tractable expression of the baroclinic torque associated with departure from barotropy. It succeeds in stressing the destabilizing role of density concentration near the vortex center. The second part of §2 is then devoted to the derivation of a inviscid linear stability analysis of the heavy Lamb-Oseen vortex. The growth rate and spatial structure of the eigen modes, corresponding to the more amplified first azimuthal wavenumbers, are detailed in §3. The separate influence of the radius ratio and density contrast are commented for modes up to m = 6. In §4, high Reynolds number numerical simulations are carried out beyond the linear stage. Based on these simulations, we describe the main features of the breakdown of a heavy vortex submitted to optimal perturbations with m = 2 and m = 3.

The statement of the problem

Equilibrium solutions to the variable-density Euler equations

In the description of inviscid incompressible flows under negligible gravity, the Navier-Stokes equations reduce to the Euler momentum equations supplemented with a purely convective continuity equation for the density :

∇• u = 0,
(2.1a)

d t u = - 1 ρ ∇P, (2.1b) d t ρ = 0, (2.1c)
where d t = ∂ t + (u • ∇) stands for the material derivative. Let χ = ∇ × u be the vorticity that reduces to (0, 0, ξ) in the two-dimensional case. Taking the curl of (2.1b) yields the transport equation for the vorticity scalar field

d t ξ = a × ∇ρ ρ = a × ∇(ln ρ/ρ 0 ). (2.2)
where a = d t u is the acceleration of the particle along a streamline and hereinafter the specific density gradient is quoted g = ∇(ln ρ/ρ 0 ) where ρ 0 can be any density reference.

The right-hand side of (2.2) exhibits one source term in contrast with the conservative nature of vorticity in homogeneous two-dimensional inviscid flows. The baroclinic torque b = a × g is felt when an inhomogeneous mass field is subjected to an acceleration not aligned with the local density gradient. A two-dimensional vortex with circulation Γ and characteristic radius δ is unsensitised to the gravity field if the the inertia force due to the vortex flow itself, ρu 2 θ /δ with u θ ∼ Γ/δ a characteristic azimuthal velocity, is large compared to the projection g ∆ρ of the buoyancy force on the vortex plane with ∆ρ a characteristic density difference between the vortex core and its surroundings. Defining the density contrast as C ρ ∼ ∆ρ/ρ, we form the Froude number Fr = Γ 2 /(δ 3 C ρ g ) and we consider Fr 1. A steady solution to the constant-density Euler equation will stand as a solution to the variable-density Euler equations if the density gradient is everywhere aligned with the pressure gradient and isopycnic or iso-density lines are globally invariant by advection. This is verified for any axisymmetric vorticity field associated with any centered axisymmetric density distribution where the baroclinic torque remains inactive as rings of fluids are moving around the vortex center on circular streamlines. We explore the effect of the density distribution on the stability characteristics of such equilibrium solutions that we term barotropic vortices. In the unperturbed diffusive situation, an initially barotropic vortex evolves as a barotropic vortex with the Schmidt number setting the relative spreading rate of density and vorticity fields.

The baroclinic torque distribution on a perturbed barotropic vortex

The purpose of this section is to give a heuristic explanation of the instability mechanism occurring on a high-density barotropic vortex. We give the expression of the baroclinic vorticity production resulting from an harmonic deformation of the otherwise circular density contours. The instability mechanism is demonstrated by considering vorticity sources and sinks as secondary vortices due to the loss of barotropy. We consider a Gaussian axisymmetric vortex of circulation Γ and core radius δ, defined by its vorticity in polar coordinates, Ω(r, θ) = Γ πδ 2 exp(-r 2 /δ 2 ).

(2.3) This vortex induces a purely azimuthal velocity u θ and a purely radial acceleration a r ,

u θ (r, θ) = [1 -exp(- r 2 δ 2 )] Γ 2π r
, and a r (r, θ) = -u 2 θ /r.

(2.4)

In order to obtain a tractable expression of the baroclinic torque in a particular case, we apply a harmonic deformation with amplitude e < 1 and azimuthal wavenumber m > 0 on a Gaussian axisymmetric density field with characteristic radius

δ ρ = δ/ε, ρ(r, θ) = ρ b + (ρ c -ρ b ) exp(- r 2 ρ (θ) δ 2 ρ ), and r ρ (θ) = r[1 + e cos(mθ)] (2.5)
where ρ b is the density of the background fluid and ρ c the density at the vortex center. Hence, the azimuthal component of the specific density gradient reads

g θ (r, θ) = 1 rρ ∂ρ ∂θ = (1 - ρ b ρ ) 2mer δ 2 ρ
[1 + e cos(mθ)] sin(mθ).

(2.6)

The radial profiles of these flow variables are illustrated on figure 1 for m = 2 and along the ray θ = π/4 where g θ is maximum and for two radius ratio ε = 1 and ε = 4. Increasing the radius ratio concentrates mass towards the vortex core and increases the peak value of g θ while the radius of maximum gradient decreases. The deformation of isopycnic lines yields the misalignment between density and pressure gradients resulting in the distribution, b, of baroclinic vorticity sources and sinks

b(r, θ) = a r g θ = 2 m e ε 2 u 2 θ δ 2 [1 + e cos(mθ)] ρ b -ρ ρ sin(mθ). (2.7)
The baroclinic torque is of the sign of (ρ b -ρ c ) sin(mθ) and its amplitude increases with the amplitude e of the isopycnic deformation, the azimuthal wavenumber m, the density contrast (ρ b /ρ c -1) and the circulation Γ. Both denser and less-dense vortices are considered on figure 2, where we illustrate the sign of vorticity sources and sinks in the four quadrants of the vortex perturbed on mode m = 2. On the interval θ ∈ [0, 2π[, the sign of sin(mθ) changes on (2m -1) rays. Therefore, a system of 2m alternate sign contributions corresponding to m counter-rotative dipoles are superimposed on the base vorticity field. Consequently, less-dense fluid particles are engulfed in and denser fluid particles are ejected off the vortex core between consecutive dipoles. Axisymmetrization of the density distribution is expected if the vortex core is less dense than the surrounding fluid, whereas vortices with a denser core are unstable to perturbations. The arbitrary harmonic deformation of the density field serves here as an illustration of the generic distribution of vorticity sources and sinks on a perturbed barotropic vortex. The instability of the massive vortex is the result of the departure from barotropy or, as developed in §2.1, proceeds from the loss of axisymmetry. The sensitivity of the baroclinic torque intensity to the mass-concentration ε towards the vortex axis is described on figure 3 in the case of a dense vortex. The harmonic deformation of the density iso-contours indicates that the Rayleigh-Taylor instability of the denser vortex is favoured by a characteristic density radius smaller than the vorticity radius.

This mechanism is similar to the one occurring in Rayleigh-Taylor instability where a quiescent, stratified medium is submitted to the external acceleration of the gravity field. There the acceleration is of constant direction and intensity, and the stability of the flow is governed by the misalignment between a fixed acceleration field and a perturbed density gradient. Here the acceleration field is due to the kinematics of the vortex flow which initially yields a purely radial acceleration. Figure 4 illustrates the analogy between the unstable atmosphere and the equivalent unrolled heavy vortex. This is the basic mechanism mentioned by [START_REF] Turner | Buoyant vortex rings[END_REF] and observed in another context by [START_REF] Miller | Visualizations of the dynamics of a vortical flow[END_REF]. Now we explore the parameter space of the isolated dense vortex with a normal mode linear stability analysis.

The equations for the inviscid stability analysis

The base flow is the Gaussian vortex with azimuthal velocity U (r) as given by (2.4). We superimpose the following density distribution R(r) also resulting from similarity solutions of the diffusive problem,

R = ρ b + (ρ c -ρ b ) exp(- r 2 δ 2 ρ
).

(2.8)

We choose the density contrast C ρ = (ρ c -ρ b )/(ρ c + ρ b ) as the relevant parameter, lying in [-1, 1], to explore the whole range of density ratios. This parameter, elsewhere invoked as an Atwood number, gives a straightforward logarithmic scale for the normalisation of relative density gradients in the equations. Denoting s = ρ c /ρ b the density ratio, both measures of the fluid inhomogeneity are of course equivalent by C ρ = (s -1)/(s + 1). Besides, the radius of the density Gaussian distribution provides a second length scale δ ρ that will be related to the vorticity radius by the ratio ε = δ/δ ρ . We will often refer to vortices larger then their associated density field for which ε > 1.

The variable-density Euler equations are linearised around the base flow for the velocity, pressure and density perturbations [û r , ûθ , p, ρ](r, θ, t). The perturbations are assumed to be of the form

[û r , ûθ , p, ρ] = [iu r (r), u θ (r), p(r), ρ(r)] exp[i(mθ -ωt)],
where m is the positive integer azimuthal wavenumber and ω is the complex disturbance phase speed. With γ = mU/rω, () * = () + ()/r and prime denoting r-differentiation, we write the set of equations for the disturbance amplitudes :

γρ + R u r = 0,
(2.9)

u * r + mu θ /r = 0, (2.10) R(γu r + 2U u θ /r) + U 2 ρ/r + p = 0, (2.11) R(γu θ + U * u r ) + mp/r = 0.
(2.12)

The loss of barotropy being associated with the loss of axisymmetry, there is no unstable modes for axisymmetric perturbation and hereafter m > 0. The eigenfunctions must vanish at r = ∞ and considering leading-order terms in the Taylor series we get the limit behaviour at r = 0:

u r , u θ ∼ O(r m-1 ), p, ρ ∼ O(r m ).
(2.13) We reduce the system (2.9)-(2.12) to a minimalist set of two coupled equations for the amplitudes of the radial velocity and the density perturbations:

γρ + R u r = 0, (2.14) (r 2 Rγ/m)u r + [2RU + r(rRγ) /m + 2rRγ/m -rRU * ] u r + [2RU/r -mRγ -(rRU * ) + (rRγ) /m] u r + (mU 2 /r) ρ = 0. (2.15)
Included in the function γ, the phase speed ω = ω r + i ω i appears linearly in the above system which forms an eigenvalue problem. The sign of the imaginary part of ω discriminates between stable vortices for negative ω i and unstable ones for positive ω i . We use a spectral collocation method on a basis of Chebyshev polynomials mapped algebraically on the interval [0, ∞]. This discretization produces a generalized eigenvalue problem under the matrix form Ax = ωBx that is solved by the QZ algorithm under Matlab. The number of Chebyshev modes for each variable is N which sets the dimension of matrices A and B to (2N ) 2 . Due to the presence of critical layers where γ = 0 the search of the frontier of neutral stability requires contouring the singularities in the complex plane, see [START_REF] Boyd | Complex coordinate methods for hydrodynamic instabilities and sturm-liouville eigenproblems with an interor singularity[END_REF]. Increasing the number of collocation points shrinks the discretization spectrum towards the real axis but does not succeed in unveiling the neutral limit. We use contour deformation according to the proposal of [START_REF] Leibovich | A sufficient condition for the instability of columnar vortices[END_REF] which deforms the discretization spectrum below the real axis. The real coordinate r is mapped to r = r[1 -iλγ (r)], where λ ∈ [0, 1] sets the intensity of the contour deformation. All real coefficients of the system (2.14),(2.15) are complexified by substitution of r to r. For the detection of the most amplified mode, we increase simultaneously the number of collocation points N and the displacement factor λ until one fixed point is detected in the (ω r , ω i ) plane. The invariance to the couple (N, λ) is judged to a relative accuracy of 10 -4 . This results in rapid convergence and N ∼ 60 for largely amplified modes remote to the neutral limit whereas marginally stable modes require a higher resolution raising up to N ∼ 300.

Topography of the instabilities

Figure 5 displays the contours of the amplification rate in the (C ρ , ε)-plane for modes m = 2 and m = 3 and positive values of the density contrast. As expected from above considerations no unstable modes are found for vortices less dense then the background fluid, i.e. for negative C ρ . We choose to apply a logarithmic scale to the radius ratio to stretch the range around unity. For m = 2 the neutral curve stands above ε = 1 for density contrasts below 0.5. The sharp transition around this value is due to weakly amplified modes detected for extremely dense vortices. For this azimuthal wavenumber the amplification rate peaks up to 0.48 in the upright corner of the (C ρ , ε)-plane. The map of the amplification rate for m = 3 is quite similar with a maximum amplification rate of 0.62 for unrealistic extreme density ratios (C ρ ∼ 1) and very small density cores (ε 1). Given a density contrast, the vortex is stable to small perturbations below a critical radius ratio. For moderate density ratios encountered in binary mixing and thermal mixing, instability will occur only if the denser core is smaller than the vortex core. This has to be related with the preliminary results displayed on figure 3, stressing the increase of the perturbation baroclinic torque with decreasing density radii. For a given density contrast, the density gradient increases when reducing the density radius and so does the cause of the Rayleigh-Taylor instability. For small enough dense cores the growth rate of the instability in the linear regime increases with the density contrast. Consequently the larger growth rates are found in the up-right corner of the (C ρ , ε)-plane.

These main conclusions are further illustrated on figure 6 where we separate the influences of the radius ratio and the density contrast for the first six modes. For a mean density contrast C ρ = 0.5, the critical radius ratio is seen to increase with the azimuthal wavenumber. The increase of the growth rate with increasing radius ratio saturates before ε = 10 when only one length scale, δ, becomes relevant to the base flow. The asymptotic value at saturation is seen to increase with the azimuthal wave number. As noticed for modes 2 and 3, the amplification rate increases with the density contrast for a given radius ratio. It is seen from figure 6 that for a radius ratio ε = 2 mode m = 2 is the most Table 1. Eigenvalues for the unstable mode of the vortex defined by Cρ = 0.5 and ε = 2.

unstable for moderate density contrasts below 0.35 and is superseded by mode m = 3 above that level.

Mode m = 1 exhibits much lower amplification rates than modes m = 2, 3 almost everywhere except in a small region of the parameter space lying around (C ρ , ε) = (0.2, 1.4). As also displayed in a complementary paper by [START_REF] Sipp | Stability of a vortex with a heavy core[END_REF], we found that when mode m = 1 is the most amplified mode, its amplification rate remains below 0.01. From [START_REF] Joly | The merger of two-dimensionnal radially-stratified high-froude number vortices[END_REF], it is seen that vortex interactions occurring in a typical twodimensional vortex merger are producing large scale perturbations similar to the m = 2 case. We focus here on these largely amplified modes likely to occur in viscous flows with vortex interactions.

From these results we select the vortex with a density core twice smaller than the vortex core, ε = 2, and C ρ = 0.5, corresponding to a density ratio of s = 3. This vortex is unstable to mode m = 1 to m = 7 with eigenvalues reported in table 1. The absolute value of the eigenfunctions of velocity and density perturbations is described on figure 7 for modes m = 2, 3, 4, 6. The asymptotic behaviour at the origin as prescribed by (2.13) is verified. In particular, the velocity eigenfunctions of mode m = 2 exhibit a linear growth from the origin. As m is increased, the velocity and density eigenfunctions spread over a region of narrowing radial extent. This region is centered on the characteristic radius r = δ ρ of the density distribution. The spatial structure of these modes is compared on figure 8 displaying the two-dimensional vorticity perturbation fields. The vorticity perturbation and density perturbation (not displayed) are organized as 2m spiral arms of alternate sign. In the next section, we investigate the development of eigen-modes m = 2, 3 beyond the linear stage.
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Non-linear simulations of the breakdown of a dense vortex

The numerical procedure

A viscous numerical simulation is carried out on the previously selected base field perturbed by the most unstable inviscid mode. In the limit of zero Mach number the divergence of the velocity field is due to the molecular diffusion of species only, and the continuity equation comes out as an advection-diffusion one. This is relevant to the mixing of two incompressible fluids with Fickian diffusion allowing the density to vary between the densities of the pure species, ρ c and ρ b . For the high Reynolds number flows consid-ered here, the divergent contribution of the viscous diffusion is discarded. We consider also constant diffusivities in order to retain first order density effects of inertial nature in a minimalist code avoiding contributions due to variations of the fluid properties, see [START_REF] Chassaing | Variable Density Fluid Turbulence[END_REF] for details. The characteristic scales are determined by the vortex circulation Γ, the vortex radius, the density contrast and the radius ratio. In particular, the time scale τ is the inverse of the maximum vorticity πδ 2 /Γ. Given a unitary Schmidt number and Re = Γ/ν = 20000 the Reynolds number based on the vortex circulation Γ, we solve the following normalized transport equations for the primitive variables ( , u), with = ln(ρ/ρ b ),

d t = 1 ReSc ∆ , (4.1a) d t u = - 1 ρ ∇p + 1 Re ∆u. (4.1b)
The numerical procedure is a two-third dealiased pseudo-spectral code based on a variable-density transpose of the projection method ensuring the diffusive nature of the velocity divergence. The non-solenoidal part of the velocity field is prescribed when solving the Poisson equation for the pressure by ensuring : ReSc∇ • u = -C ρ ∆ . The variables are time-advanced using a low-storage third-order Runge-Kutta scheme with semi-implicit treatment of right-hand-side terms. The time-step is variable and adjusted according to the current maximum of velocity ensuring the Courant-Friedrichs-Lewy condition is respected with CFL= ∆t/∆x × max(u) kept under 0.7. As will be described later, the spatial structure of the flow evolves towards much smaller length scales. We opted for a time-dependent spatial resolution to minimize the early-time simulation cost. Starting with a 2048 2 grid, a spectral sensor placed near the maximum wavenumber triggers the increase of the spectral radius raising the final resolution up to 5760 2 in the m = 3 case. At the initial time, the amplitude of the perturbation is normalized to represent 2% of the enstrophy of the base flow.

The boundary conditions are periodic in both directions resulting in a bias compared to the case considered in the stability analysis with an infinite spatial extent. As discussed by [START_REF] Pradeep | Effects of boundary conditions in numerical simulations of vortex dynamics[END_REF], periodicity of the boundary conditions yields zero normal and tangential velocities on the square computational boundaries and a zero circulation over the computational domain. Due to its slow radial decrease the azimuthal velocity of the base flow is the variable most affected by this constraint. The vorticity field is also added a background negative value ξ b such that ξ b × L x × L y = -Γ. The bias amplitude depends on the relative size of the computational domain compared to the vortex core. In the simulations commented here, the vortex circulation is π/4 while the domain is (2π) 2 with a vortex radius δ = 0.5. This corresponds to a distance of the vortex center to the domain boundary of a little more than 6 radius and a peak vorticity ξ p = 1 + ξ b . In this case ξ b = (16π) -1 which amounts to less than 2% of ξ p . This allows for a good compromise between representing the isolated vortex flow and the required spatial resolution of the very thin layers arising during the non-linear stage of the instability. But clearly the eigen-modes deduced from the stability analysis only approach the eigen-modes of the effective base flow as seen from the numerical simulation tool. The simulation of the linear stage thus suffers from the lack of representativity of the boundary conditions of the isolated vortex. However, in the non-linear stage, the instability mechanism produces baroclinically enhanced vorticity up to 10 times the initial peak value ξ p , or 1000 times the artificial background vorticity ξ b . Simulations were performed in worse conditions with a vortex radius twice the present one and exhibited vorticity and density field very similar to the ones that follow. We conclude that the non-linear stage is properly represented despite the periodization of the flow. Besides, the purpose of this numerical approach is to give a first illustration of this original instability mechanism beyond the linear stage. the vorticity and density perturbations by,

Description of the flow

ξ = (ξ -Ω)dxdy, ρ = (ρ -R)dxdy. (4.2)
The radius of the unperturbed Gaussian vortex is known to evolve as δ = δ 0 1 + 4πt/Re in normalized time units. Considering the very high Reynolds number of the simulation, the radius of the unperturbed field would have gained less than 1% of the initial value at t = 20. Figure 13 displays the time evolution of the perturbations amplitudes, normalized by their initial value. The exponential growth rates of these perturbations as predicted by the linear stability analysis are σ m=2 = 0.192 and σ m=3 = 0.204. We compare the effective growth rates to an average growth rate σ = 0.2. The vorticity and density perturbations are seen to grow after a few time units because of the non-optimal nature of the eigen-modes within the numerical frame. Then exponential growth is observed that compares well with the predicted rate despite the misrepresentation of the boundary conditions. On figure 13(b) the density perturbation of mode m = 3 is seen to grow faster than the density perturbation of mode m = 2 confirming the slight precedence of mode m = 3. From the evolution of the amplitude of vorticity and density perturbations, the saturation is seen to occur near t = 30 for both modes. The departure from the linear exponential growth is effective by t = 20. On figure 14(a), enstrophy production by the baroclinic torque is seen to peak at saturation time. The peak value is higher for mode m = 2 and approximately six times the initial value. In the development of mode m = 3, a secondary instability of the vortex sheets results in a small burst of enstrophy at t = 35. Then for both modes the enstrophy monotonously decreases due to viscous dissipation at high wavenumbers. The baroclinic vorticity generation has been proposed to be the basic mechanism of this instability yielding the centrifugal ejection of the denser fluid particle away from the vortex core. In order to prove this point, we measure the correlation between the radial velocity and the density difference relative to the mean density ρ, where the overbar denotes an average over the whole simulation domain. The correlation is normalized by their respective variances to form a correlation coefficient,

C ρur = (ρ -ρ)u r (ρ -ρ) 2 u 2 r 1/2 . (4.3)
From the time evolution of this correlation coefficient in figure 14(b), the ejection of high density fluid particles and convergence of low-density ones towards the vortex center is seen to be significant after several time units. It occurs sooner for mode m = 2 and reaches a value of 0.4 well before saturation time indicating a quite coherent mass ejection as seen from density iso-contours on figure 10 at t = 20, 25. After the two smaller vortices have formed far from the center of the domain, the radial velocity is not relative to a vortex center and C ρur is no more relevant. Mass ejection during the non-linear development of mode m = 3 is less violent and occurs later in two phases associated with the two peaks in enstrophy generation. After the first stage between t = 20 and t = 25, three small vortices are seen to rotate near the initial vortex center on figure 11 at t = 30. At this point the radial velocity from the domain center is still relevant to the global vortex system. Then another centrifugal mass ejection is observed by t = 30 signaled by a second increase of enstrophy and C ρur . The measure of the density at the center of the m smaller structures at t = 30 reveals a density ratio of s = 1.44 against the background medium, corresponding to a density contrast C ρ = 0.18. Due to the unitary Schmidt number the resulting roll-ups have similar density and vorticity radii, hence ε ∼ 0(1). We refer to figure 5 to conclude that these new vortices, slightly denser than the surrounding fluid, are stable pertaining to the Rayleigh-Taylor instability. From inspection of the contours of figures 10 and 12, we estimate that the characteristic length scale of the m generated vortices compared to the initial vorticity radius has been divided by 6 for m = 2 and by 10 for m = 3. Moreover, very high levels of vorticity have been generated and the pick values at the new vortex centers are ten times higher than the initial maximum vorticity for both cases. A clear picture of the situation after the completion of the Rayleigh-Taylor instability then emerges from these measurements. The baroclinic production of vorticity has produced smaller stable rollups of much higher vorticity. During the process, high-density samples of fluid have been shed forming strained lumps much more sensitive to molecular diffusion than the initial barotropic distribution.

Concluding remarks

The analysis of the linear inviscid stability of the variable-density isolated vortex has been derived. The heavy vortex is subjected to a Rayleigh-Taylor instability promoted by the concentration of dense fluid on a smaller radius than the vortex core. Low azimuthal wavenumbers, m = 2, 3 are seen to be the more amplified for moderate radius ratios and realistic density ratios. The maps of their growth rates have been established and the neutral curve delineated in the density-contrast versus radius-ratio parameter space. Non-linear numerical simulations of the breakdown of a vortex three times denser than the surrounding fluid have been carried out for eigen-perturbations derived for m = 2 and m = 3. The baroclinic torque is seen to produce thinning vorticity sheets partially nucleating into m robust smaller vortices of lower density and higher vorticity than the initial one. This relaxation towards a more stable flow proceeds from vorticity exchange between dense fluid particles from the vortex core and less-dense ones from the background irrotational field.

This mechanism shall be examined further as being central to variable-density mixing at high Froude-number. The instability of high-density vortices and the robustness of lowdensity ones are expected to result in mass-segregation by vorticity in two-dimensional flows resulting in low-density fluid particles near vortex centers and high-density fluid particles occupying the interlacing medium. Measuring the anti-mixing effect of the masssegregation mechanism should be addressed in turbulent flows where vortex interactions are crucial and lower the relevance of the isolated vortex configuration. However, the spectral reconditioning of the vorticity field towards higher wavenumbers associated to the breakdown of high-density vortices increases dissipation and mixing at small scales. The resulting strained high-density fluid lumps arising during the development of the Rayleigh-Taylor instability are more efficiently smeared out by molecular mass-diffusion. The resolution of this contradictory effects of the baroclinic torque on the mixing efficiency is the subject of ongoing efforts. The influence of the Schmidt number may well be of first importance in the discussion of such a question. In the perspective of variable-density turbulent situations, the two-dimensional and three-dimensional vortex interactions are also under consideration.

We acknowledge fruitful discussions with J.N. Reinaud and D.G. Dritschel. Numerical simulations were performed on the scalar resources of IDRIS center under project number 41552.

Figure 1 .

 1 Figure 1. Radial profiles along ray θ = π/4 of two perturbed dense barotropic vortices with Γ = π, δ = 1, ρc/ρ b = 3, m = 2 and e = 0.3: (a) azimuthal velocity u θ (solid) and density profile ρ-ρ b for ε = 1 (dashed) and ε = 4 (dot-dashed); (b) radial acceleration ar (solid) and azimuthal component of the specific density gradient g θ for ε = 1 (dashed) and ε = 4 (dot-dashed).

Figure 2 .Figure 3 .

 23 Figure 2. Sketch of the baroclinic torque contributions on Gaussian vortices bearing denser and less-dense elliptic density distributions.

Figure 4 .

 4 Figure 4. Analogy between the dense vortex and the unstable density stratification submitted to a downward gravity field (ρ1 > ρ2).

Figure 5 .Figure 6 .

 56 Figure 5. Contours of constant amplification rate ωi in the (Cρ, ln10(ε))-plane for azimuthal wavenumbers m = 2 (left), m = 3 (right). Increment between contours is 0.02 and the thick line is the neutral curve.

Figure 7 .

 7 Figure 7. Absolute value of the eigenfunctions of the denser vortex flow with Cρ = 0.5 and ε = 2: radial velocity ur (solid), azimuthal velocity u θ (dashed) and density ρ (dot-dashed). Normalisation is performed to ensure a unitary kinetic energy e = 1 2 R ∞ 0 (u 2 r + u 2 θ )dr.

Figure 8 .

 8 Figure 8. Two-dimensional structure of the vorticity perturbation corresponding to eigen-modes m = 2, 3, 4, 6 of the vortex with Cρ = 0.5 and ε = 2. Contour spacing : max( ξ)/6.

Figure 9 .

 9 Figure 9. Sequence of iso-vorticity contours for m = 2. Length scale δ is represented by the line segment at t = 0. Contour spacing 0.1/τ from t = 0, 5, 10, 15, 0.4/τ for t = 20, 25 and 0.8/τ for t = 30, 35. Contours at negative levels are dashed. N is the number of grid point along one direction of the squared simulation domain.

Figure 10 .

 10 Figure 10. Sequence of iso-density contours for m = 2. Length scale δρ is represented by the line segment at t = 0. Fixed contour spacing (ρcρe)/9.

Figures 9 -

 9 Figures 9-12 illustrate the time evolution of the vorticity and density fields of non-linear realizations of the Rayleigh-Taylor instability for modes m = 2, 3 of the vortex three times denser than the surrounding fluid. As the instability develops, the baroclinic torque

Figure 11 .

 11 Figure 11. Sequence of iso-vorticity contours for m = 3. Same legend as for m = 2 on figure 9.

Figure 12 .Figure 13 .

 1213 Figure 12. Sequence of iso-density contours for m = 3. Same legend as for m = 2 on figure 10.

Figure 14 .

 14 Figure 14. (a) Time evolution of the total enstrophy on the simulation domain z = R ξ 2 dxdy. (b) Time evolution of the correlation coefficient between the density fluctuation and the radial velocity.