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We study the three-dimensional turbulent Kolmogorov flow, i.e. the Navier-Stokes equations forced by a
single-low-wave-number sinusoidal force in a periodic domain, by means of direct numerical simulations.
This classical model system is a realization of anisotropic and non-homogeneous hydrodynamic turbulence.
Boussinesq’s eddy viscosity linear relation is checked and found to be approximately valid over half of the
system volume. A more general quadratic Reynolds stress development is proposed and its parameters
estimated at varying the Taylor scale-based Reynolds number in the flow up to the value 200. The case of
a forcing with a different shape, here chosen Gaussian, is considered and the differences with the sinusoidal
forcing are emphasized.

I. INTRODUCTION

In the late 1950s, A.N. Kolmogorov proposed to study
the stability properties of an incompressible flow de-
scribed by the Navier-Stokes equation forced by a sinu-
soidal shear force in a periodic domain. An answer was
put forward soon after1, indicating the existence of a crit-
ical Reynolds number R =

√
2, confirmed also later in2

(we will provide below the definition of Reynolds number
which was used in these works). Such a model system,
since then dubbed Kolmogorov flow (KF), is not straight-
forward to be realized in experiments. However, an im-
portant work published in the Russian literature3 and
discussed by A. N. Obukhov4 describes an experiment
using a thin layer of electrolyte in an external force field
capable to generate an analogous flow, for which the sta-
bility properties as well as the transition to the turbulent
state were studied. The results of this experiment, sup-
ported by a previous theoretical work5, have been taken
as an evidence that there exists in the KF a succession
of instabilities with increasing Reynolds numbers, until
reaching a fully turbulent state for Reynolds numbers of
the order of 10003,4. One the other hand, since the ad-
vent of computers and in particular since the introduc-
tion of the Fast Fourier Transform (FFT) algorithm the
Kolmogorov flow has become amenable to be explored
via numerical simulations, even in high-Reynolds number
conditions6. This makes the turbulent Kolmogorov flow
(TKF) possibly the simplest and most accessible proto-
type of open flow, i.e. a flow without boundaries, which
is at the same time statistically stationary, anisotropic,
and non-homogeneous (along one direction)6–11. As dis-
cussed by Musacchio and Boffetta11, the TKF can be
considered, to some respect, as a turbulent channel flow

a)Electronic mail: wenwei wu@sjtu.edu.cn
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(i.e. a pressure-driven parallel flow) without boundaries.
In recent years, the TKF has been mainly studied the-
oretically and numerically. The large-scale forcing was
originally proposed as a sinusoidal force, which, however,
is not a requirement, and rather constitutes a conve-
nient simplification for the theoretical analysis and for
numerical implementations (which are mostly based on
FFT). Other shapes for the large-scale forcing could be
imagined as well, see e.g.12. Many numerical studies de-
voted to KF and TKF have adopted a two-dimensional
configuration13–17, because of its reduced computational
cost. It is however known that 2D turbulence differs from
the 3D one due to the existence of an inverse energy cas-
cade. For this reason in this work we prefer to focus
on the more realistic three-dimensional case, i.e. fully
resolved Navier-Stokes incompressible turbulence forced
along the x direction by a large-scale sinusoidal force de-
pending solely on the z coordinate. As observed by Borue
and Orszag 6 , such flow is a convenient test ground for
transport models. Such a consideration motivates the
present study.
The structure of this article is as follows: After a section
introducing the present notations and numerical imple-
mentation, the theoretical framework of linear and non-
linear closure equation for the Reynolds stress tensor is
presented and adapted to the TKF model system. First,
we consider the classical turbulence closure based on
eddy-viscosity Boussinesq’s approach, where the trace-
less stress tensor is assumed to be proportional to the
mean strain-rate tensor. Such expression is at the ba-
sis of many turbulence models including k-ε, k-ω and all
eddy viscosity transport models18. We show the range
of applicability and limitations of this assumption in the
context of TKF. Second, a nonlinear quadratic Reynolds
stress development, that makes use of tensor invariants is
directly tested on TKF. This is performed along the lines
of previous direct test done for channel flows19,20, and for
various Reynolds numbers. We also compare the differ-
ent terms of the kinetic energy equation. In a following
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section a model flow system with a different forcing, non-
sinusoidal shape, is considered and its differences with
the original KF forcing are considered. The last section
is devoted to a discussion of the main findings and con-
clusions.

II. THE KOLMOGOROV FLOW MODEL SYSTEM

A. Equations of motion and numerical implementations

The governing equations for velocity field u(x, t) are
the incompressible Navier-Stokes equations,

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∆u + f , (1)

where p is the hydrodynamic pressure, ρ the fluid density
and ν is the kinematic viscosity. This flow is sustained
by a constant in time and spatially dependent force f of
the form:

f = A sin
(

2π
z

H

)
ex, (2)

where A is a constant, H is the length of the side of the
cubic domain, chosen here as the characteristic length
scale. Such a force, directed along the x direction and
depending only on the z coordinate, makes the turbulent
flow statistically anisotropic and non-homogeneous along
the z direction (but statistically homogeneous in the x-
y planes). It is convenient to introduce the following
reference scales for velocity and time:

U0 = (AH)
1/2

; (3)

T0 =
H

U0
=

(
H

A

)1/2

. (4)

From this, one can construct the Reynolds number as

Re =
U0H

ν
, (5)

which thus becomes the only dimensionless control pa-
rameter in the system. Let us mention that in stabil-
ity analyses2,5 another Reynolds number is used, which
in the present notation reads R = AH3/(ν2(2π)3). It
thus yields R = Re2/((2π)3), where the 2π factor orig-
inates from a slightly different choice of the reference
length: H as the characteristic length for a sine wave
sin(2πz/H) in the present case, L for a sine wave written

sin(z/L) in5. The stability criterion R >
√

2 becomes
Re > 21/4(2π)3/2 ' 18.7. In the following we will also
use the Reynolds number based on Taylor microscale,
Reλ = λu′/ν, where λ = u′

√
15ν/ε, ν is the kinematic

viscosity, u′ = 1
3

√
u′2 is the global root-mean square of

single component velocity, ε = ν
2

∑
i

∑
j(∂iuj + ∂jui)2 is

the global energy dissipation rate, and the overbar · · ·
denotes the global average (in time and all over the spa-
tial domain). The latter number is more convenient to

quantify the degree of turbulence realized in the system.
In the rest of this article, all the reported quantities are
dimensionless with reference to the units defined in (3)
and (4).

The Kolmogorov flow model system is numerically
simulated in a cubic tri-periodic domain. The dy-
namical equations (1) are solved numerically by means
of a pseudo-spectral code using a smooth dealiasing
technique21 for the treatment of non-linear terms in the
equations. Instead of the sudden cut-off used in the con-
ventional 2/3 rule approach, a filter of the high wave
number modes with a relatively smooth filtering func-
tion is performed for a the smooth dealiasing, which is
capable to reduce numerical high frequency instabilities.
The spatial resolution is chosen such that the condition

|~k|max · η > 1, where η is the global Kolmogorov scale
(which was checked to be nearly independent of the z

coordinate), |~k|max ≈ 0.41N is the maximum wave num-
ber amplitude kept by the dealiasing procedure, is always
satisfied. The time-marching scheme adopts a third or-
der Runge-Kutta method. The global non-dimensional
values of the key parameters for the simulations are re-
ported in table I. Two criteria have been proposed for the
convergence of Kolmogorov flow simulations22: first the
mean energy injection should be equal (within numeri-
cally accuracy) to the total dissipation, and second the
left-hand-side and right-hand-side of equation (8) must
be equal. It has been checked here that these two cri-
teria are satisfied in our simulations (the right-hand-side
of equation (8) is shown in figure 2(b)). The total inte-
gration time is chosen in such a way to have comparable
datasets for each run and to ensure the statistical con-
vergence of the measurements (see Table I).

B. Reynolds decomposition and velocity moments

Let us consider a Reynolds decomposition of the veloc-
ity into mean and fluctuating quantities u = 〈u〉+u′ (〈·〉
denotes the average over time and spatially along x and
y directions) and note the three cartesian components of
the velocity u = (u, v, w). Because of the periodicity in
x and y directions, the derivatives with respect to x and
y of mean quantities are 0. By taking the average 〈·〉
of the Navier-Stokes equations, one obtains the following
relations:

−∂zτ =
1

Re
∂2zU(z) + sin(2πz),

∂z〈w′2〉 = −∂z〈p〉,
(6)

where U = 〈u〉 = 〈u〉 and the shear stress is τ = −〈u′w′〉.
Using the first line of this relation, one can verify that
for laminar flows when τ = 0, the mean velocity profile
is sinusoidal while the pressure field is constant1.

For turbulent flows, it is well-known that the mean
velocity profile is also sinusoidal6. However, this is a
numerical result which has so far, to our knowledge, no
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TABLE I. Global key parameters in each simulation (all provided in the dimensionless units defined in eq.(3) and (4)). The

columns from left to right report respectively: the Run number; the Reynolds numbers Re = HU0
ν

, Reλ = λu′

ν
the Taylor-scale

based number, Re∗ = UH
2πν

= HκU0
2πν

(same as in Ref11); the kinematic viscosity ν; ε = ν
2

∑
i

∑
j(∂iuj + ∂jui)2 is the global energy

dissipation rate, · denotes the global average (in time and all over the spatial domain). N3 is the grid size; η = (ν3/ε)1/4 is

the global Kolmogorov scale; |~k|max · η is the spatial resolution condition, where |~k|max ≈ 0.41N is the maximum wave number
amplitude kept by the dealiasing procedure; Ttotal is the total simulation time and Tl is the large eddy turnover time18, which
thus implies that Ttotal/Tl denotes the number of large eddy turnover time spanned by the simulation in statistically steady
conditions; ∆t is the numerical time step; νT is the turbulent viscosity calculated according to Eq. (14).

No. Re Reλ Re∗ ν ε η N3 |~k|max · η Ttotal/Tl ∆t νT

1 787.5 38.7 126.24 0.0013 0.51 0.008 1283 2.64 462.5 0.0015 0.0239

2 984.4 43.5 160.37 0.001 0.52 0.0067 1283 2.22 445.0 0.0014 0.0237

3 1211.5 49.3 197.87 0.00083 0.52 0.0058 1283 1.90 427.1 0.0014 0.0239

4 1575.0 57.4 261.36 0.00063 0.52 0.0047 1283 1.56 403.5 0.0013 0.0236

5 2099.9 66.9 358.34 0.00048 0.54 0.0038 1283 1.25 761.2 0.0013 0.0231

6 3149.9 83.9 565.77 0.00032 0.57 0.0028 2563 1.82 259.4 0.00058 0.0221

7 6299.8 123.4 1132.53 0.00016 0.56 0.0016 2563 1.08 386.0 0.00054 0.0223

8 15749.6 198.3 2817.24 6.3e-05 0.56 0.00083 5123 1.09 70.2 0.00025 0.0225

direct analytical explanation. We obtain the following
z-dependence for U :

U(z) = κ sin(2πz). (7)

where κ is a coefficient whose numerical estimation, at
varying the Reynolds number, is plotted in figure 1(b).
The maximum value of the mean turbulent velocity is
of the order of the characteristic velocity built using the
forcing values, since we obtain values of κ between 1.01
and 1.12, increasing with the Reynolds number (figure
1(a) and Table II). The values of κ found here are com-
patible with the value of κ = 1.1 reported by Borue and
Orszag 6 (however, this work makes use of hyperviscosity
of the 8th order and the value of the Reynolds number is
not provided). In the work by Musacchio and Boffetta 11 ,
the dependence of the friction coefficient f (written as
f = AH

2πκ2 in the present notation), on the Reynolds num-
ber based on the forcing scale and mean velocity (denoted
here Re∗, which writes Re∗ = κ

2πRe in our notation) was
investigated. Such dependence is also plotted in the inset
of figure 1(a): the friction coefficient values obtained in
our simulations are comparable with those reported by
Musacchio and Boffetta 11 in the same range of Reynolds
numbers.

For large Reynolds numbers, using equations (6) and
(7) we find that ∂zτ is proportional to sin(2πz), obtaining
finally:

τ =
1

2π

(
1− (2π)2

κ

Re

)
cos(2πz). (8)

The first and second moments of the velocity obtained
after averaging Navier-Stokes equations are shown in fig-
ures 2 a) and b). We observe that only one component
of the mean velocity is non-zero; concerning second mo-
ments, only the shear stress term 〈u′w′〉 is non-zero. The
turbulence is globally anisotropic since all normal stress

components of the stress tensor are different. Specifically,
〈u′2〉 > 〈w′2〉 > 〈v′2〉 (see figure 3). The diagonal terms
have twice the spatial frequency of the forcing. Since
cos(2θ) = 2 cos2 θ − 1, they can be written as:

〈u′2〉 = α1 + β1 cos2(2πz),

〈v′2〉 = α2 + β2 cos2(2πz),

〈w′2〉 = α3 + β3 cos2(2πz),

(9)

where (αi, βi) are numerical coefficients expressing the
common shape of the three normal stresses, as visible in
figure 3. The estimated values of such coefficients for the
different runs are listed in table II, which will be impor-
tant for the quadratic closure done in the next section.
Consequently, we can write also the evolution of the mean
kinetic energy:

K(z) = α+ β cos2(2πz). (10)

The mean kinetic energy profiles are presented in figure
4, from which we can see that the increase of Reynolds
number leads to the global growth of the kinetic energy.
The coefficients α and β as functions of Reλ are plotted
in figure 1(b). The values found for the highest Reynolds
number values are in good agreement with the values
reported in6 (α = 0.391 and β = 0.138) for simulations
of TKF with hyper-viscosity.

C. Kinetic energy balance equation

We next consider the kinetic energy balance equation,
giving23:

0 =τU ′(z)− ε− 1

ρ
< p′w′ > +ν

d2K

dz2

− d

dz

(
< w′u′2 > + < w′v′2 > + < w′3 >

) (11)
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TABLE II. The numerical values of the coefficients in Eq. 9 for each run.

No. α1 β1 α2 β2 α3 β3 κ

1 0.2247± 0.0003 0.1121± 0.0004 0.1483± 0.0002 0.0837± 0.0002 0.2279± 0.0004 0.0498± 0.0002 1.0084± 0.0006

2 0.2291± 0.0003 0.1155± 0.0004 0.1545± 0.0002 0.0885± 0.0002 0.2271± 0.0004 0.0504± 0.0002 1.0253± 0.0006

3 0.2282± 0.0003 0.1152± 0.0004 0.1622± 0.0002 0.0886± 0.0002 0.2378± 0.0004 0.0553± 0.0002 1.0273± 0.0006

4 0.2327± 0.0003 0.1141± 0.0004 0.1665± 0.0002 0.0920± 0.0003 0.2483± 0.0004 0.0587± 0.0002 1.0438± 0.0006

5 0.2385± 0.0001 0.1223± 0.0002 0.1704± 0.0001 0.0951± 0.0001 0.2489± 0.0002 0.0643± 0.0001 1.0734± 0.0004

6 0.2422± 0.0004 0.1291± 0.0007 0.1749± 0.0003 0.1034± 0.0004 0.2674± 0.0009 0.0772± 0.0004 1.1288± 0.0012

7 0.2605± 0.0003 0.1394± 0.0005 0.1749± 0.0002 0.1092± 0.0003 0.2678± 0.0006 0.0744± 0.0003 1.1325± 0.0009

8 0.2766± 0.0019 0.1364± 0.0027 0.1811± 0.0013 0.1092± 0.0016 0.2590± 0.0027 0.0714± 0.0013 1.1242± 0.0049

where the different terms represent respectively the pro-
duction of kinetic energy, the dissipation, the pressure
work, the viscous transport and turbulent transport.
These terms have been computed for run 7, and are
shown in figure 5. It is visible first that the viscous trans-
port and pressure works are negligible compared to other
terms. There is a balance between production and dissi-
pation added to turbulent transport. The dissipation is
almost constant, with a small modulation, as already no-
ticed in previous works11. The production is close to 0 at
two positions corresponding to vanishing velocity shears.
At these positions, the kinetic energy is minimum (see fig-
ure 4) and also its transport is negative. The production
is larger for strong shear zones, where the mean veloc-
ity shear is the larger. At these positions, the turbulent
transport is also the larger.

III. EXPRESSION OF THE REYNOLDS STRESS ONTO
A TENSOR BASIS

In this section we aim at deriving a relation express-
ing the Reynolds stress in terms of the gradients of the
mean velocity flow. Such a relation, also known as tur-
bulence closure equation, allows to have a self-contained
model for the description of the mean flow. To this
end, we introduce the Reynolds stress tensor defined as
T = −〈u′ ⊗ u′〉 (with ⊗ denoting the dyadic product).
The anisotropic stress tensor is R = −T + 2

3KI, where
K is the kinematic energy and I is the identity tensor.
The mean velocity gradient tensor A = ∂〈ui〉/∂xj , and
the mean strain-rate S and rotation-rate W tensors are
also introduced as:

S =
1

2

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)
, (12)

W = A− S. (13)

A closure for the turbulence equations corresponds to
expressing the Reynolds stress tensor using mean quan-
tities, e.g. when the closure is local, using the tensors
S and W. Below we first consider the simplest linear
closure and estimate the eddy-viscosity, and later on we
address a nonlinear expression using a quadratic consti-
tutive equation.

A. Boussinesq’s eddy-viscosity hypothesis and its
assessment

It is seen from equations (7) and (8) that the only non-
zero non-diagonal term in the stress tensor has the same
z-dependence as the mean gradient term. This leads to
an eddy-viscosity of the form:

νT =
τ

U ′(z)
=

(
1

(2π)2κ
− 1

Re

)
. (14)

The eddy-viscosity does not depend on z, but depend on
the Reynolds number and the coefficient κ. The values
of νT provided by this equation are shown in Table I;
these values are in agreement with results at compara-
ble Reynolds number11 and imply that νT /ν = O(102).
However, the estimation of an eddy-viscosity does not
validate the linear closure. The Boussinesq’s hypothe-
sis, which is at the basis of all eddy-viscosity turbulence
models, corresponds to a linear proportionality between
tensors24 :

R = 2νTS. (15)

For the flow considered here, there are some symmetries
so that the strain as well as the stress have a simplified
form:

S =
a

2

 0 0 1

0 0 0

1 0 0

 (16)

and

R =

 2
3K − σ

2
u 0 τ

0 2
3K − σ

2
v 0

τ 0 2
3K − σ

2
w

 , (17)

where a = U ′(z), σ2
u = 〈u′2〉 and the same for σ2

v and σ2
w.

It is then clear, as also the case for turbulent chan-
nel flows18,25,26, that such linear relation between ten-
sors can be realized only when diagonal terms are zero,
i.e. in an isotropic situation. However, the Kolmogorov
flow is anisotropic and as seen in figure 3, the three
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FIG. 1. (a) Amplitude of mean velocity profile, κ in Eq. 7,
as function of Reλ. The inset panel shows the dependence
of the friction coefficient (f) on Re∗ (blue), in comparison
with the result obtained by Musacchio and Boffetta 11 (red).
The dashed black line in the inset panel shows the curve of
f = 0.124+5.75/Re∗, which fits the red dots in the large Re∗

range Musacchio and Boffetta 11 . (b) The global dissipation
rate (ε) and the coefficients obtained by fitting the profiles
of kinetic energy, α and β in Eq. 10, as function of Reλ.
The horizontal dotted red and green lines represent the values
α = 0.391 and β = 0.138, respectively, obtained by Borue
and Orszag 6 . The horizontal black dotted line represents the
global dissipation rate (expressed in the dimensionless form
used in this work) reported by Musacchio and Boffetta 11 for
Re∗ = 2000.

normal stresses are all different, which means that a
precise proportionality does not exist. In such frame-
work, eddy-viscosity models will only properly capture
the shear stress component, and cannot represent the
normal stresses. The relative importance of these differ-
ent components is considered below by using an align-
ment indicator. For this, we consider the inner prod-
uct between tensors: A : B = {AtB} = AijBij , where
{X} is a notation for the trace of X. The norm is then
||A||2 = A : A. As a direct test of Boussinesq’s hypoth-
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FIG. 2. (a) The adimensional mean quantities of each com-
ponent of the velocity of Run 8. The only non-zero term is
〈u〉, having a maximum value of κ, where κ = 1.12. The
black dotted line shows the curve of κ sin(2πz). The inset
plot shows the deviation of 〈u〉 from κ sin(2πz) estimated by
|〈u〉−κ sin(2πz)|

κ
. (b) The different adimensional shear stress

terms of Run 8. The only non-zero term is 〈u′w′〉, whose z
dependence is given by relation (8). The black dotted line

shows the function −νT d〈u〉dz , where νT = 0.023 is the turbu-
lent viscosity (Eq. (14)) for the Run 8.

esis, we first represent here the normalized inner product
of R and S tensors (which is similar to the cosine of an
“angle” between vectors, see19,27):

ρRS =
R : S

||R|| ||S||
. (18)

The ratio ρRS is thus a number between −1 and 1, which
characterizes the validity of Boussinesq’s hypothesis: it
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FIG. 3. The different normal stresses with 〈u′2〉 > 〈w′2〉 >
〈v′2〉. The z-dependence is given by the fits of equation (9).
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is 1 when this hypothesis is valid, and when close to 0
it corresponds to the case of “orthogonal” tensors. The
behaviour of this quantity is shown in figure 6. It is
seen that a plateau close to the value one appears in
certain regions; in particular the Boussinesq’s hypothesis
is approximately valid when the mean velocity gradient
is large, whereas it fails dramatically for some range of
values around the positions where the mean velocity gra-
dient vanishes.

More quantitatively, from Run 7, we find ρRS = 0.93
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FIG. 5. The amplitudes of the terms of the kinetic energy
transport equation (11) for Run 7. The mean velocity profile
is also shown as dotted line, for reference.

for z = 1/2 and by choosing a threshold value at
ρRS = 0.9, we find that 0.9 ≤ ρRS ≤ 1 for z ∈
[0, 0.13] ∪ [0.39, 0.59] ∪ [0.87, 1]. Hence for about half of
the volume (46%) the linear relation between strain and
stress tensor is approximately valid with ρRS larger than
0.9, while for the rest of the flow such linear relation fails
to a large extent.

Furthermore, by considering figure 5 providing the dif-
ferent energy transport terms, we see that Boussinesq’s
hypothesis is closest to validity at positions where the
turbulent production is larger, and is totally failing at
positions where there is almost no production and a neg-
ative turbulent transport term, meaning that the local
dissipation is the result of a transport of kinetic energy.

B. A quadratic development for the Reynolds stress

We have seen above that the linear closure model can-
not produce an anisotropic Reynolds stress tensor for
anisotropic flows such as the Kolmogorov flow. Pope28

has proposed to use the invariant theory in turbulence
modeling, to represent the stress tensor as a develop-
ment into a tensor basis composed of symmetric and
traceless tensors expressed as polynomial based on the
mean strain and rotation tensors. Originally it was on the
form R =

∑10
i=1 aiTi with 10 basis tensors. By consider-

ing a quadratic development, only three tensors are used,
which is complete for two dimensional flows28, and is also
a good approximation for fully 3-dimensional flows29. As
it was used for channel flows20,30 and for a tube bundle31,
we propose here to use it also for the TKF.

In this framework, the anisotropic stress tensor writes
as a three-terms development which is also a nonlinear
constitutive equation:

R = a1T1 + a2T2 + a3T3, (19)
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FIG. 6. Simulation results for the test of the validity of
Boussinesq’s hypothesis, representing the alignment ρRS be-
tween R and S. The mean velocity profile is superposed in
dotted line for reference.

where the three tensors of the basis are all symmetric
and traceless28:

T1 = S, T2 = SW −WS,

T3 = S2 − 1
3η1I .

(20)

The coefficients ai can be written using scalar invari-
ants of the flow, which correspond to scalar fields whose
values are independent of the system of reference. In-
variants can be defined as the traces of different tensor
products32. Some of the first invariants are the following:
η1 = {S2}, η2 = {W2}, η3 = {S3}, η4 = {SW2},η5 =
{S2W2}, µ1 = {R2}, µ2 = {RS}, µ3 = {RSW}, and
µ4 = {RS2}. All these invariants can be here estimated
numerically. The coefficients a1, a2 and a3 can be ex-
pressed using the above invariants by projecting the con-
stitutive equation (equation (19)) onto the tensor basis:
successive inner products of this equation with tensors
Ti provides a system of scalar equations involving the
invariants29. For two-dimensional mean flows such as
the KF, we have η3 = 0 and η5 = η1η2/2, and the sys-
tem of scalar equations is inverted to provide finally the
quadratic constitutive equation using invariants:

R =
µ2

η1
S− µ3

η1η2
T2 + 6

µ4

η21
T3 (21)

where the invariants write for the TKF:

η1 =
a2

2
; η2 = −a

2

2
; µ2 = aτ (22)

µ3 =
a2

4

(
σ2
u − σ2

w

)
, (23)

µ4 =
a2

4

(
σ2
v −

2

3
K

)
. (24)

The two remaining tensors of the tensor basis are:

T2 =
a2

2

 −1 0 0

0 0 0

0 0 1

 (25)

and

T3 =
a2

12

 1 0 0

0 −2 0

0 0 1

 . (26)

The quadratic constitutive equation finally writes, re-
placing invariants in equation (21):

R =
2τ

a
S +

(
σ2
u − σ2

w

) 1

a2
T2 +

(
6σ2

v − 4K
) 1

a2
T3. (27)

Equation (27) is a quadratic constitutive equation
which expresses a nonlinear closure of the turbulent
Kolmogorov flow; the first constant coefficient is twice
the eddy-viscosity (τ/a = νT ), whereas the other co-
efficients are space-dependent. Such expression be-
longs to nonlinear-eddy viscosity models (NEVM)25,26,28;
it is also related with another well-known family of
models called explicit algebraic Reynolds-stress mod-
els (EARSM), which are based on slightly different
assumptions33–36.

Equation (27) can also be seen as a mathematically
simple relation, obtained from a projection onto a three
tensor basis; however, even if mathematically simple, it
provides new and interesting information on the relative
importance of the different terms of this tensorial devel-
opment according to the position considered. In NEVM
and EARSM, the coefficients of such nonlinear develop-
ment are expressed using other quantities such as e.g. K
and ε, which are computed in the domain considered us-
ing transport equations37. Here we are not building such
a model but the assessment of the relative importance of
each term in the development will be useful for modelling
studies.

When a = U ′(z) ' 0, for z ' 1/4 and z ' 3/4,
cos(2πz) = 0 and all S, T2 and T3 vanish, but in the
three-terms development of R, the second term and the
third are non-zero constants, since the coefficients diverge
(the a2 terms cancel). In those positions, we see that R is
a diagonal tensor which is not vanishing: figure 7 shows
that the second term is also very small and that the third
term is dominant. This means that in those positions,
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FIG. 7. The amplitudes of the terms at the right hand side
of Eq. (27) as function of z. The mean velocity profile is also
represented as a dotted line, for reference. The horizontal
red dotted lines mark the 0 value for the amplitudes. The
simulation results of Run 1, 3, 5, 7 are shown here.

the Boussinesq’s linear eddy-viscosity approximation is
no longer appropriate and the anisotropic stress tensor
is a constant perpendicular to the linear term and ap-
proximately proportional to T3 = S2 − 1

3η1I. We have
also noted above that at those positions, the production
of kinetic energy is very small and the kinetic energy
dissipation at those positions is produced elsewhere and
transported.

IV. PERIODIC FLOW WITH NON-SINUSOIDAL
FORCING

As we have seen, the Kolmogorov flow, in its original
definition, is sustained by a monochromatic sinusoidal
forcing. The resulting mean flow profile is also sinusoidal
with the same shape of the force term, both in laminar
and in turbulent flow conditions. This peculiar property
is of great help in the analysis of the turbulent flow and,
as we have seen, it simplifies the formulation of a closure
relation. It is therefore of interest to ask what happens
when the shape of the force is changed to other periodic
or quasi-periodic shapes38. Here we investigate a forcing
having a Gaussian shape. Although this function is non-
periodic and has an unbounded support, one can adjust
its width in such a way that its value and its derivative
becomes sufficiently small at the borders. Furthermore,
the Gaussian has the advantage to be easily implemented
in spectral space. Here we test only one given Reynolds
number, as this is sufficient to contrast the qualitative

differences with the sinusoidal forcing case. The dimen-
sionless viscosity for this case are 0.00063, the same as
the Run 4 with sinusoidal forcing, while the Taylor based
Reynolds number is 44.1.

The Gaussian-type forcing is of the form of:

f = (A exp

(
− (z − 0.5)2

2`2

)
+ C)ex, (28)

where A is the forcing parameter, C is a constant to make
f = 0 in equation (1) and ` = 0.1 (in H units), which
is equivalent to the standard deviation, and controls the
width of the Gaussian shape.

Figure 8 shows the Reynolds stress components: the
shear stress and normal stresses. The normal stresses
have a shape that can not be fitted with known func-
tions and only the numerical result is shown here. It is
visible that normal stresses are again anisotropic, with
σ2
u > σ2

w > σ2
v at all positions. The shear stress

τ = −〈u′w′〉 is as in the TKF the only non-zero shear
stress, and is proportional to U ′(z), with a coefficient
νT = 0.016 (it was found of the same order, 0.0236, in
Run 4 wih sinusoidal forcing according to Eq. (14)).

This shows that here also the eddy-viscosity is a con-
stant, as was found for the sinusoidal forcing. From equa-
tion (6), introducing this numerical result τ = νTU

′(z)
we obtain

U ′′(z) = − Re

νT /ν + 1
f . (29)

This shows that the mean velocity profile is proportional
to twice the integral of the forcing. The primitive of the
Gaussian is non-analytical and involves the error func-
tion; it can be estimated numerically, as shown in figure
9. An excellent superposition is found. The shape of the
mean velocity is still Gaussian-like, but its precise ana-
lytical expression is given by the function whose second
derivative is a Gaussian.

The alignment between the tensors of R and S (as
defined in Eq. (18)) is also examined for the case with
Gaussian forcing, as shown in Fig. 10. We observe also
in this case the plateaus obtained at the position where
the mean velocity gradient is large. Qualitatively, we find
that 0.9 ≤ ρRS ≤ 1 for z ∈ [0.12, 0.4] ∪ [0.6, 0.88], corre-
sponding totally to about 56% of the considered domain.

Next, the quadratic development given by equation
(27) is tested and shown in figure 11. It is seen that
the linear term is dominant in part of the domain, and
vanishes at the central position, where the mean velocity
is null; in this position the two nonlinear terms do not
vanish. Globally all three terms are needed to achieve
the closure of the stress tensor.

V. CONCLUSION

We have considered here the closure relation for the
Reynolds stress in a numerically simulated turbulent Kol-
mogorov flow. As the simplest realization of turbulence
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FIG. 8. (a) The normal stresses; (b) The shear stresses and

the function of −νT d〈u〉dz (black dotted line), where νT is the
turbulent viscosity (Eq. (14)) and numerically found as 0.016
here, for the case with Gaussian forcing (same parameters
with Run 4).
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and the double integral of the forcing (black dotted line) for
the case with Gaussian forcing (same parameters with Run
4). The coefficient of Re

νT /ν+1
is numerically found as 61.27.

The black dashed line represents the Gaussian profile forcing
(28). The profiles of 〈v〉 and 〈w〉 are very close to zero and
almost superposed.

with a spatially dependent mean flow, such model sys-
tem is a convenient test ground for turbulent transport
models. With a forcing of the form sin(2πz), it was found
that the mean velocity profile has the same form, with a
damping of a factor κ with respect to the mean velocity
value calculated from forcing terms. The value of κ was
found to increase with the Reynolds number, and of the
order of 1.01 to 1.12 for the range of Reynolds numbers
considered here. The only non-zero shear stress term
is proportional to cos(2πz) as expected, and the normal
stress components all involve a square cosine expression
of the form α + β cos2(2πz/H), where the parameters α
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FIG. 10. Estimation of the alignment ρRS between R and
S, for the case with Gaussian forcing (same parameters with
Run 4). The mean velocity profile is superposed in dotted
line for reference.
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and β are numerically estimated and found to saturate
for the largest Reynolds numbers considered here. The
normal stresses, i.e. 〈u′2〉, 〈w′2〉, 〈v′2〉, are all different in
amplitude, showing that the turbulence is anisotropic.

It was also shown that a quadratic nonlinear constitu-
tive equation can be proposed for this flow. Specifically a
linear term and two nonlinear terms in the form of trace-
less and symmetric tensors SW−WS and S2 − 1

3{S
2}I

are involved and their coefficients are here numerically
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estimated. For about half of the flow domain, the linear
term is dominating, whereas for the vanishing mean ve-
locity regions a constant term is the only one remaining.
Hence an effective viscosity coefficient can indeed be es-
timated for the Kolmogorov flow, but contrary to what
has been indicated previously12 this type of turbulence
without boundaries does not generate an effective dif-
fusion of momentum, since nonlinear terms are needed:
globally all linear and nonlinear terms are needed for the
complete Reynolds stress closure.

The values obtained here are in agreement with previ-
ous works6,11. Using 8 different runs with different grid
sizes from 1283 to 5123, and with Reynolds numbers from
Reλ = 39 to 198, the Reynolds number dependence of in-
volved parameters has been checked with expected con-
vergence toward the largest Reynolds number considered.

Finally a periodic flow with non-sinusoidal forcing has
been considered, with the choice of a Gaussian shape. It
was found that the shear stress term τ is proportional
to the mean velocity derivative, indicating that for such
forcing also the eddy-viscosity does not depend on z.
With such numerical result, we obtain that the mean
velocity profile is twice the integral of the forcing. The
shape of the normal stresses in this case is non-trivial and
can not be precisely fitted. A quadratic development of
the constitutive equation can also be proposed for this
flow.

We may qualitatively compare here the turbulent flows
sustained by the sinusoidal forcing (TKF) and the Gaus-
sian forcing. In both cases the eddy-viscosity is found to
be constant. We observe that the relation stating that U ′′

is proportional to the forcing (29), is in fact also valid for
the TKF case. Such constant eddy-viscosity found here
for two very different types of forcing is not to be taken
as a coincidence: we hypothesize here that this is a gen-
eral property of such boundary free periodic flows. We
shall note here that for such flows the classical expres-
sion of the eddy-viscosity νT = Cµk

2/ε does not hold,
as demonstrated in Figure 12 plotting νT ε

K2 for Run 7 and
Gaussian forcing cases, showing that Cµ is not a constant
for both flows. There are however, two main differences
between the two forcing cases. The first lies in the shape
of the mean velocity profile. For the TKF, since the sec-
ond integral of the forcing is proportional to the forcing,

equation (29) directly gives the mean velocity profile, as
being proportional to the forcing. In the Gaussian forc-
ing case, the mean velocity is a non-analytical function,
obtained as the second integral of the Gaussian. The sec-
ond difference is in the shape of normal stresses, whose
expression could be fitted using cos2 terms for the TKF,
while no known analytical fit for the Gaussian forcing is
available.

It is also worth mentioning that the linear or non-
linear eddy-viscosity modelling that were considered in
this work all rely on a local expression of the velocity,
through derivatives of the mean velocity field. Such lo-
cal expression is known to be incomplete18,39,40 and non-
local models have been proposed, based on space and
time integrations of velocity gradients41,42, as reviewed
and discussed in a recent book43.

As a perspective let us mention the recent work44 de-
scribing a flow behind a grid in a wind tunnel as hav-
ing locally, close to the grid, sinusoidal variations. This
could provide ideas to perform measurements of a TKF
and to check experimentally the closure proposed in the
present study. A more systematic numerical study of
non-sinusoidal forcing in future work may also help to
provide a general expression for normal stresses, which
would be valid for all kind of forcing. It remains also to
be understood from analytical arguments why the eddy-
viscosity does not depend on z for such periodic flow,
contrary to what is found in similar bounded flow such
as the channel flow20 or the boundary-layer flow.
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