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Abstract: We present in this paper a state of the art and an analysis of the recent research work1

and achievements performed in the domain of AI-based and vision-based systems for helping2

blind and visually impaired people (BVIP). We start by highlighting the recent and tremendous3

importance that AI has acquired with the use of convolutional neural networks (CNN) and with4

their ability to efficiently solve image classification tasks. We remind also that VIP have great5

expectations about AI-based system as a possible way to ease the perception of their environment6

and to improve their everyday life. Then we set the scope of our survey: we concentrate our7

investigations on the use of CNN or related methods in a vision-based system for helping VIP.8

We analyze the existing surveys and we study the current work (a selection of 30 case studies)9

along several dimensions such as acquired data, the learned models and the Human-Computer10

interfaces. We compare the different approaches and we conclude by analyzing the future trends11

in this domain.12

Keywords: blind and visually impaired people; assistive technologies; artificial intelligence13

1. Introduction14

According to the World Health Organization 285 million people suffer from impor-15

tant sight loss (39 million blind and 246 million with low vision), and the figures will16

keep rising up as the population grows older. Assisting blind and visually impaired17

persons in their everyday life has been a long time research topic, traveling being a par-18

ticular concern. Traditionally white canes and guide dogs have been acting as walking19

assistants, but recent advances in deep learning and computer vision technologies have20

widely broaden the spectrum of possibilities.21

Despite being a classical topic, investigated for decades, research teams are con-22

tinually innovating and lightning hope for a future where vision disability would not23

be anymore a constant struggle for those affected by it. From the radars in the mid24

20th century to the latest AI emerging nowadays, assistive technologies have used an25

exceptionally diverse set of technologies in designing tools for blind and visually im-26

paired people. The bloom of new, more performing algorithms are opening the path for27

tomorrow’s developments, becoming indeed essential aspects to focus our survey on.28

Beyond leading to important innovations, the numerous researches conducted over29

the last years have brought clearer classifications of the developed assistive tools that30

is now widely used to define them. Assistive technologies aiming at easing travel are31

often divided in three parts: Electronic Travel Aids, Electronic Orientation Aids, and32

Position Locator Devices respectively described by Elmannai et al. [1] as "devices that33

gather information about the surrounding environment and transfer it to the user", as34

"devices that provide pedestrians with directions in unfamiliar places" and as "devices35

that determine the precise position of its holder". Tapu et al. [2] proposes another36

classification, depending in the kind of skills involved, between perceptual tools that37
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replace vision (images and distances) by other sensory stimuli like acoustic or haptic38

signals, and conceptual ones that develop orientation strategies (spatial model or surface39

mapping) to represent the environment and prepare to unpredictable situations during40

navigation.41

Assistive systems need three modules to help blind and visually impaired people42

(later referred to as BVIP in this paper). The first is the navigation module, or wayfinding,43

defined by Kandalan and Namuduri [3] as "designing the set of efficient movements44

required to reach the desired destination, which benefits from the knowledge of the user’s45

initial location and constant update of the user’s orientation." This module should ideally46

provide the following services: path and surface description, selection of the optimal47

path taking several criteria into account (user’s preference, avoid hazardous zones, etc),48

an accident-free navigation as much as possible and in a reasonable amount of time.49

Ideally it must also work: indoor and outdoor, in various light conditions (night/day,50

sun/rain, etc), whether the location has already been met or not, and perform real-time51

analysis without sacrificing its robustness and accuracy. The second module performs52

object detection with two purposes. First it allows to avoid the obstacles that might53

cause harm to the user and warn him/her in a helpful way. It must be able to detect54

static and dynamic obstacles, as well as their location (preferably ahead), their nature55

and estimate their distance to provide timely feedback. Object detection will also be56

able to provide a scene description whenever the user asks, in order to let the BVIP57

to have a good understanding of his/her environment and build cognitive maps of a58

place. The last module is the human-machine interface that encompasses the tools that59

will be manipulated by the user. It is comprised of several devices meant to acquire60

data, process it and finally return the information to the user. A lot of combinations are61

possible and they must be chosen according to several criteria like algorithmic methods,62

user’s preferences or wearability of devices for example.63

Several surveys have been conducted in the last years about assistive technologies64

for BVIP, and the range of technologies available that could be used to develop them.65

Some of those articles have been read when preparing this paper, in order to understand66

the different ways in which this subject has been addressed in the past. In their articles67

Bhowmick and Hazarika [4], and Khan et al. [5] provided a detailed description of68

their research methodologies, highlighting the connections between the different fields69

pertaining to assistive technologies for BVIP. They spotted the most frequent keywords70

found in the papers they analyzed and their common sources, and stressed out the71

trends of research in this domain. Some papers concentrated on the technological72

aspects of navigation and object detection. Zhao et al. [6] and Jiao et al. [7] proposed a73

survey on object detection with deep learning, its history, its possible techniques and its74

current trends. Ignatov et al. [8] and Leo et al. [9] also reviewed recent deep learning75

techniques for processing images; Ignatov et al. concentrating on their use in assistive76

technologies and Leo et al. on the hardware and frameworks allowing to run them on77

Android smartphones. El-Zahraa El-Taher et al. [10] and Kandalan et Namuduri [3]78

described several techniques for constructing navigation systems, the tasks that need79

to be performed, the hardware available and the possible interfaces. They chose two80

different scopes: urban travel for El-Zahraa El-Taher et al. and indoor navigation for81

Kandalan and Namuduri. Several papers [1,2,11–14] provided an analysis of different82

systems aiming at assisting BVIP in their everyday moves. They did so through several83

analysis dimensions such as hardware components and techniques used (sensor or84

computer vision based systems), or types of interfaces, proposing more or less detailed85

description. Some also described current or future trends and challenges, or even gave86

recommendations for future development. It can be noticed that Plikynas et al. [13] and87

Tapu et al. [2] associated blind experts to conduct their surveys, and benefit from an end88

user’s point of view on the proposed assistive devices.89

This paper has tried to adopt an original approach. First only the most recent papers90

were analyzed to build this survey in order to highlight the most recent advances in91
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Figure 1. PRISMA selection diagram that explains the main steps of our survey methodology (see
text for explanations).

a constantly evolving research field. The whole development process was taken into92

account to understand all the aspects involved when helping BVIP, not concentrating on93

a single AI technologies or assistive function. Those aspects were highlighted separately94

to get a detailed overview of possibilities in this field, with statistics on the most common95

and relevant choices among the researchers.96

The main contributions of this paper are:97

• Bring a state-of-the-art survey based on the latest publications and updates,98

• Provide a detailed comparison of several possible configurations of assistive tools99

for BVIP,100

• Emphasize on AI techniques, especially the CNN methods.101

The rest of this paper is organized as follow: Section 2 presents the research method-102

ology. Sections 3, 4 and 5 provides papers’ analysis respectively on human-machine103

interface, AI technologies and testing methods. Finally Section 6 ends with a conclusion104

and some perspectives highlighting achievements and difficulties to solve.105

2. Method106

The survey was conducted with the following search methodology (see Figure 1):107

the first step was determining the scope of the survey. The selected articles should be:108

1. on assistive devices,109

2. preferably using Deep Learning technologies,110

3. aiming at fulfilling navigation, obstacle detection and/or object recognition tasks,111

4. designed for BVIP.112

It was also decided to favor the most recent articles, ideally ranging from 2017 until113

now, to keep only the latest technological advances in AI methods. Articles’ quality was114

particularly taken into account. All publications were assessed through the following115

tools:116
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• Qualis from the Computing Institute of the Federal University of Mato Grosso in117

Brasil 1, with venues ranked A1 or A2,118

• Core Conference Portal 2, with conferences ranked A or B,119

• Scimago Journal and Country Ranks 3, with journals or conferences ranked Q1 or120

Q2.121

The articles were found using Google Scholar browser and scanning through scien-122

tific databases such as IEEE Xplore, Elsevier ScienceDirect, ACM Digital Library and123

PubMed. The search was made using combination of the following keywords:124

• "assistive technologies" or "assistive devices", "navigation",125

• "obstacle detection" and/or "object recognition",126

• "artificial intelligence", "deep learning" or "computer vision",127

• "blind" and/or "visually impaired people".128

The 78 identified articles were first filtered by reading their abstract to estimate129

the correspondence with the chosen topics, thus excluding the unsuitable ones (33). A130

few more articles (12) were taken out the list after a quick reading, mostly due to being131

technologically inadequate with the subject of this survey. In this paper it was decided132

to concentrate on external assistive devices and to set aside the research studies based133

on vision replacement by medical bionic prosthetic systems like the project described by134

Ge et al. in [15]. 30 case studies, from 33 research papers, were finally incorporated in135

the analysis: papers [16–18] and [19,20] were considered as a sole entity, those papers136

being part of the same research study. Some more generalist articles were included to137

highlight the important steps and challenges when building assistive tools for BVIP.138

The analysis has been made following three main themes, divided in the following139

sections:140

• First, human-machine interface (data acquisition and processing, feedback trans-141

missions);142

• Second, Artificial Intelligence techniques (scope, algorithms, datasets, training143

techniques);144

• Third, testing methods (context, end-users participation).145

For each part, the results have been summed up in tables with their percentage of146

occurrence.147

3. Human-Machine Interfaces for data acquisition and user feedback148

In this section, we consider the interface between the BVIP and the AI-based149

assistive systems in a broad sense: it encompasses the data acquisition techniques, the150

data processing approach and the feedback to the user. Several aspects must be taken151

into account when designing such human-machine interface. First some general aspects152

need to be considered:153

• The overall interface must be robust and reliable, given that a failure of the system154

could potentially be very harmful (even physically) to the users, and capable of155

functioning over important time duration (effective energy consumption manag-156

ing);157

• The interface must be comfortable to wear, unobtrusive and discrete to avoid the158

stigmatization of the carrier;159

• The hardware components must be easily accessible and the total cost must stay160

affordable to the majority of the public;161

• The system must also be user-friendly and require minimum training from users, a162

too complex interface often resulting in people’s misusing or giving up the device.163

1 https://qualis.ic.ufmt.br/
2 http://portal.core.edu.au/conf-ranks/
3 https://www.scimagojr.com/journalrank.php
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3.1. Data acquisition and processing164

The acquisition and processing hardware must be adapted to the deep learning165

techniques chosen to perform the tasks (choice of sensors and cameras types, remote or166

wearable processors). Furthermore, the acquisition step, as in many computer vision167

research or application, is crucial. In the case of embedded assistive technologies, this168

data acquisition can be even more difficult because the user is often a part of the system169

(the user holds or worns the acquisition devices, while moving) and the conditions of170

acquisition cannot be easily controlled (day, night, rain, etc).171

3.1.1. Type of acquisition interface172

Acquisition device % of papers Ref. to papers
smart glasses 30 [19,21–28]

smart cane 6.7 [29,30]
smartphone 36.7 [31–36]

[18,37–39]
other wearable device 26.7 [40–47]

Table 1: The type of acquisition devices used in each paper

Several types of solutions are possible when designing the acquisition part of the173

interfaces (see Table 1), each having its own pros and cons. Smart glasses are frequently174

chosen as interface type because of their many advantages like being able to carry several175

acquisition tools or adopting the eyes’ points of view. They are also easy to wear by176

users and can be found quite easily (several models with built-in sensors, cameras and177

headsets are currently available). Their main drawback is their high cost, making them178

unaffordable to many people. Acquisition devices can also be mounted on white cane,179

with the main advantage of using a tool that is already used by most BVIP. The problem180

is that the electronic tools on the canes tend to make them quite heavy and uncomfortable181

to carry. The most common type of interface in the analyzed articles is the smartphone, a182

tool that is both very easy to find and already used by a majority of people. Smartphones183

are getting more and more technologically advanced and some models are now well184

equipped in sensors and high resolution cameras. Despite these advances, many older185

or cheaper models do not hold sufficient data acquisition tools and replacing them is186

sometimes a problem for some users. Some research teams have decided to create their187

own wearable interface to deal with the several issues mentioned above. For example,188

Chen et al.[40] designed an acquisition interface worn on a headband, while Wang et al.189

[41] and Malek et al. [46] opted for small bags worn across the chest.190

3.1.2. Data acquisition tools191

The types of sensors that acquire the data must be chosen carefully, taking several192

factors into account (see Table 2). A varied set of sensors will increase a system’s193

accuracy, which is crucial in obstacles and objects detection tasks. On the other hand,194

a huge amount of diverse data need to be processed and fused, thus increasing the195

computational cost and time of achievement of a task. When designing their systems,196

researchers must find the right balance between those points, depending on the purpose197

they chose to aim at. One of the most common solution is to use smartphones equipped198

with RGB-D or monocular cameras and position sensors (accelerometer, gyroscope199

and magnetometer), as shown in examples [24–26,30,39,43]. Another solution is the200

introduction of Infra-Red or laser sensors in the acquisition system, a choice made in201

articles [29,44,46]. For outdoor navigation, GPS is almost always chosen as navigational202

support, being easily accessible, cheap and with a very wide coverage.203



Version March 15, 2022 submitted to Journal Not Specified 6 of 16

Acquisition sensors % of papers Ref. to papers
monocular camera(s) 33.3 [25,33–35,44]

[18,36,37,39,45]
stereo vision (two cameras) 10 [23,28,47]

RBG-D camera 43.3 [21,22,24,30,40–42]
[19,26,27,38,43,46]

wide angle camera 6.7 [19,30]
GPS 10 [26,40,47]

position sensors 33.3 [24,29–31,40]
[25,26,39,43,47]

IR/laser 20 [19,28,29,43,44,46]

Table 2: Data acquisition tools. By "position sensors" we consider tech-
niques and sensors such as inertial measurement units, odometry, or accelerome-
ter/gyroscope/magnetometer from smartphone.

Type of device % of papers Ref. to papers
smartphone 23.3 [26,31,34,37–39] [45]*

tablet, laptop, etc 53.3 [21–24,30,33,40,41]
[19,27,35,36,42,43,46] [29]*

remote server 23.3 [16,25,28,44,47] [29,45]*

Table 3: The devices used for data processing. In some papers (mentioned with a "*"), a
hybrid client-server architecture is used (smartphone/laptop + remote server).

3.1.3. Types of processors204

Another choice to be made when designing the systems is through what ways the205

data is going to be processed and analyzed (see Table 3). Several papers have chosen206

a smartphone as sole processor, thus having limited treatment and energy capacities207

but a cheap and easily accessible solution. An other option is to use a remote server to208

analyze the data, a solution with high computation power but with important risks of209

failures due to connection issues, especially when navigating indoor. Among the papers210

analyzed in this survey, the most common method was the addition of another wearable211

device, such as a tablet or a laptop, to act as the processor. This solution offers better212

computational power than the smartphone, and no connection issues; although this213

option may cause a potential loss of comfort for users when carrying the system.214

Smartphone position % of papers Ref. to papers
in hand 20 [31–33,37–39]

worn 13.3 [18,34–36]

Table 4: How the smartphone is hold by the users. Not all systems have been imple-
mented on a smartphone.

When acquiring data, smartphones can be carried in two ways: in hand or worn on215

the body with a specific outfit (see Table 4). Despite being natural, keeping one hand216

busy with the phone may cause annoyance in every day life activities, not to mention the217

risk of accidentally dropping it, or the risk of being robbed. Wearing the device on the218

body may be more comfortable but the localization must be chosen carefully to avoid219

social stigma: Tapu et al. [35] and Sato et al. [16] opted for a system worn on a belt,220

while Neugebauer et al. [34] chose a specific headset to place the smartphone on top of221

the head.222
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3.2. Feedback223

The design of the feedback module must be carefully chosen to avoid difficult224

user’s experiences. Feedback is defined by El-Zahraa El-Taher et al. [10] as "the means225

used by the system to convey information to the blind and visually impaired people."226

To be efficient the navigation instructions must be delivered quickly and clearly. They227

must be adapted to the difficulty of the task performed (for example, scene description228

delivers more complex information than turn left or right instructions), but also to the229

type of environment encountered (level of noise). This module must respect the user’s230

knowledge (choice of symbolic representations that will be easy to understand) and231

avoid sensory overload (information’s prioritization). Developers must also make sure232

that the interface delivering the feedback will not have a negative impact on other senses233

and communication capabilities (by favoring bone-conducting headphones rather than234

traditional ones for example).235

3.2.1. Type of feedback236

Type of feedback % of papers Ref. to papers
speech 70 % [21,23,25,29,30,32,40]

[26,33–36,42,43]
[16,20,27,38,45–47]

in combination with other types 20 % [16,27,30,32,38,45]
vibrations 13.3 % [16,30,41,45]

sonification 13.3 % [22,24,32,38]
tactile 10 % [27,39,41]

Table 5: General methods and techniques for providing feedback to users. Some tools
have only been tested online and their types of feedback remain theoretical.

Feedback is essential in navigation tasks, especially when helping BVIP (see Table237

5). A wrong choice may result in hazardous, and potentially accident-prone situations238

for the user. The most popular choice is audio feedback through speech instructions or239

sonification guidance (use of sounds or music to depict the different elements present240

in a given scene). Tactile interface, like a Braille display [41], or haptic systems, such241

as a vibrating smartphone [16,39], are among the other possibilities. The most effective242

solution seems to be a combination of several feedback interfaces to adapt to the different243

situations encountered by the users. For example, audio feedback might not be the most244

adequate answer in noisy environments, but the best solution when many information245

need to be delivered, like in scene descriptions tasks. Combination of feedback types246

is illustrated by Bauer et al. [45] where navigational instructions (turn left or right) are247

delivered by vibrating smartwatches that can also perform an audio scene description;248

or by Li et al. [30] with two vibrating motors on a cane for turning left and right and an249

Android smartphone with text-to-audio software to provide more precise instructions.250

3.2.2. Feedback conveyors251

Audio-feedback devices % of papers Ref. to papers
earphones/headsets 46.7 [23,25,26,29,34,40,42]

[20,27,28,35,43,46,47]
bone-conducting earphones 16.7 [16,21,22,24,36]

phone/tablet 13.3 [30,33,37,38]

Table 6: Devices for audio feedback

Several tools are available to deliver audio feedback (see Table 6). In some cases the252

instructions can be transmitted directly by the smartphone, a method quite incompatible253

with the respect of users’ privacy. The use of headsets tends to be privileged by the254
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researchers: traditional ones are cheap and easily accessible, but they often disrupt255

the sense of hearing on which BVIP rely heavily to understand their environment.256

Another solution is the bone-conducting earphones, that allow to deliver the instructions257

without covering the ears, therefore not impairing sounds’ perception and possibility to258

communicate with other people.259

The devices for the other types of feedback are as follow: motors on a cane [30], vi-260

brating belt and Braille interface [41], two smartwatches [45], and smartphone vibrations261

[16,39].262

The users can also interact with the interface, either to choose a mode (wayfinding263

or scene description), or just to switch the system on or off. In most papers it is done264

with the smartphone, thanks to the built-in voice controllers (iOS’ Voice Control or Voice265

Over, Android’s Voice Access or TalkBack) to set up the system. In [41] instructions are266

given through a Braille tablet, or with smartwatches in [45].267

4. Artificial Intelligence Techniques268

As research on AI and Computer Vision keep expanding, more and more solutions269

are being available to develop assistive tools for BVIP. The technical choices are motivated270

by several factors and it is crucial for all the needed features to be previously known271

for the engineering process to be carried out smoothly. One of the aspect that will272

influence the technical choice is whether the system will be working indoor, outdoor or273

both, some tools having a limited usage range (like the GPS, only accessible outside).274

Development teams must also take into account the kind of tasks that will be performed275

by the system: sole wayfinding, additional scene description; and the available data276

sources and computational capabilities, both depending on the interface design. Some277

techniques, like RFID tags and BLE beacons, require installation of materials previous278

to the deployment of a system in a specific site, thus highly increasing the costs of279

usage and maintenance. After deciding which algorithm models will be employed,280

researchers must finally set up the training procedure with the appropriate datasets and281

data treatment techniques.282

4.1. Scope of system283

scope of systems % of papers Ref. to papers
indoor 30 [16,23,29–32,41,44,46]

outdoor 10 [21,28,33]
both 43.3 [22,24–27,36,40,42,45,48]

[20,39,47]

Table 7: Scope of assistive systems. Some studies do not clearly specify their targeted
scope.

Navigation systems can be designed to cover either indoor or outdoor navigation,284

thus only partially meeting the every day needs of BVIP (see Table 7). Almost half of285

the systems analyzed in this survey potentially proposes solution for both situations286

(although this double coverage has often only been tested in one situation so far).287

4.2. Machine or Deep Learning algorithms288

A lot of methods are currently available for developing tools based on navigation289

or object detection tasks (see Table 8). In the field of navigation and wayfinding the most290

popular methods in this survey are:291

• SLAM (Simultaneous Localization And Mapping) algorithms are used to construct292

maps of the encountered environment and localize the user within it. Several293

methods were experimented in the analyzed papers: semantic visual SLAM (ORB294

SLAM) in [40], 2-STEP Graph SLAM in [29], VSLAM in [26] and ORB-SLAM2 in295

[19].296
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method % to papers Ref. to papers
SLAM 16.7 [19,26,29,38,40]

Encoder/Decoder 16.7 [22,28,40,46,48]
RANSAC 16.7 [23,24,26,29,47]

A* 16.7 [19,25,26,29,30]
Kalman’s filter 16.7 [23,25,26,30,39]

YOLO 16.7 [32,33,35,42,45]
VGG 13.3 [25,28,36,44]

Inception 10 [37–39]
specific algorithm 20 [28,30,41,42,47,48]

Table 8: most frequent methods

• RANSAC (RANdom SAmple Consensus) is a method for detecting (and eliminat-297

ing) outliers, and was developed to solve the Location Determination Problem298

(extracting feature points and localize them on a projection).299

• A* is a search algorithm for wayfinding that uses heuristics to determine the path300

with the smallest cost.301

• Kalman filter algorithm (Linear Quadratic Estimation) is a method to estimate302

unknown variables from the observation of a series of measurements that can be303

employed for many tasks like pose estimation [23], obstacle motion estimation [30]304

or error reduction [39].305

Other architectures are available for dealing with object recognition tasks, mostly used306

in the papers to detect obstacles and to describe a scene’s content if needed:307

• YOLO (You Only Look Once) is a CNN designed for real-time object detection (it308

recognizes what objects are present in a scene, and where) created in 2015. Several309

updated versions are currently available (YOLOv1-v3).310

• VGG is deep CNN architecture derivating from AlexNet, developed and already311

trained (on ImageNet dataset) by Oxford University’s Visual Geometry Group. It is312

mainly designed for image classification and object recognition tasks and adapted to313

the transfer learning method. Two versions are available: VGG16 (16 convolutional314

layers) and VGG19 (19 layers).315

• Inception is a CNN classifier developed by Google (and named after the movie)316

that serves for analysis of images and object detection. Among the several versions317

that have been released, only Inceptionv2 [39] and v3 [37,38] are used in the papers.318

Others are: Inceptionv1 (aka GoogLeNet), Inceptionv4 and InceptionResNetv1 and319

v2 (hybrid Inception and ResNet architecture).320

To perform the complex tasks needed to build navigation and object recognition assistive321

tools, the Encoder/Decoder architecture is also a popular choice as shown in [22,28,40,322

46,48]. Of course numerous algorithms and architectures are possible when developing323

navigation and object detection systems, and only the most frequent (among the analyzed324

sample) have been described in this survey. Despite the wide range of possibilities325

currently available, some papers have opted for the development of specific algorithms326

tailored to their objectives of research. They are used to perform specific tasks of the327

overall development like list construction and object detection in [30], or object extraction328

and obstacle avoidance in [47].329

4.3. Choices of Datasets330

A wide range of datasets are currently available, the most popular in the described331

papers being ImageNet, followed by COCO and PASCAL ensembles (see Table 9).332

Those datasets are quite general and do not always fit the requirements of the systems333

developed. They are often used for pre-training the models, before using specific datasets334

created specifically for the project. This last option has been chosen in [28,33,35–37,39,44].335
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Datasets % of papers Ref. to papers
specific 36.7 [25,27,28,33,35–39,44,46]

ImageNet 30 [21,22,28,33,35–37,44,45]
PASCAL-VOC 10 [22,33,45]

COCO 13.3 [22,26,32,39]

Table 9: The most frequent image datasets

4.4. Data Processing Methods336

ML techniques % of papers Ref. to papers
data augmentation 6.7 [22,42]

transfer learning 16.7 [25,36–39]

Table 10: Techniques used for model training.

Often, when designing systems for a specific task, finding or creating the right337

dataset turns out to be an important obstacle (see Table 10). To train the models efficiently,338

researchers need to use special methods to overcome this problem. The most frequent one339

within the papers analyzed is transfer learning: the system is entirely pre-trained with340

an already available general dataset (like ImageNet), then the last layer(s) is(are) trained341

with a smaller, more specific one. The other method used here is data augmentation.342

New synthetic images are created from the original dataset with several techniques like343

random flipping, cropping, scaling, rotation and color jittering for [22], and rotation,344

skewing, mirroring, flipping, brightness and noise levels in [42].345

4.5. Type of Model Training346

Type of training % of papers Ref. to papers
incremental 16.7 [35–38,48]

offline 46.7 [21,22,25,31–33,42]
[26–28,36,37,39,45]

Table 11: Incrementality of learning procedures.

Two types of methods are possible when training a model (see Table 11). Most347

of the papers opted for an offline training: the model is trained once with pre-defined348

dataset(s) and then deployed. However 5 papers [35–38,48] chose incremental learning:349

the model keeps being trained with data acquired by the users themselves, in order to350

obtain an increasing accuracy and deal more easily with complex situations uncovered351

by the datasets.352

4.6. Solving Challenges353

Despite their promising results, these systems still have to be improved in order to354

be massively deployed on smartphones and small devices. As Berthelier et al. [49] state355

in their survey "deep learning based methods have achieved state-of-the-art performance356

in many applications such as face recognition, semantic segmentation, object detection,357

etc [. . . but] to run these applications on embedded devices the deep models need to be358

less-parametrized in size and time efficient." To address these issues, several compression359

techniques for CNNs are being currently studied:360

• Pruning, which consists in removing unused parameters of a network while still361

achieving state-of-the-art results;362

• Quantization, that approximates a neural network by reducing floating-point num-363

bers’ precision, with higher risks of error and lower accuracy;364



Version March 15, 2022 submitted to Journal Not Specified 11 of 16

• Hash methods that convert original features into low-dimensional hash codes,365

regrouping data according to similarity and avoiding redundancy. Some hashing366

systems are already available like HashedNets by NVIDIA;367

• Knowledge distillation, which is based on the process of transferring knowledge368

from a deep neural network to a shallow one, while keeping the same efficiency369

and learning capacities.370

Compression methods has been widely investigated in the past years, and are371

already proposed as part of several frameworks such as TensorflowLite or Apple’s Core372

ML.373

Another way of reducing computational needs is by optimizing the system’s archi-374

tecture itself. Several methods to reduce the cost of convolutional operations have been375

successfully tested like the conception of modules (with specifically organized and sized376

layers) or the use of separable convolutional layers. However the most promising results377

have emerged in the field of Neural Architecture Search (NAS) that aims to develop378

self-organized structures that would automatically shape their design to fit the targeted379

tasks (Neural gas methods, Neuroevolution, Network morphism, Supergraphs).380

Incremental learning is another crucial challenge for the research on assistive tech-381

nologies with CNNs. Its implementation on embedded devices represents an important382

step for BVIP as it is going to allow them to customize their system to detect personal383

belongings or recognize friends, colleagues and family members. Many research teams384

are currently developing solutions, and proposals are being made like the ones described385

by Luo et al. [50] in their recent survey. Indeed incrementality is even more difficult to386

implement on embedded devices because of their limited computational power.387

5. Testing Methods388

There are several ways of assessing an assistive system. First the testing phase389

can be theoretical (virtual scenarios performed on computer) and/or practical (pre-390

determined paths or real-life environments). Systems can be assessed with objective391

performance metrics evaluating for instance accuracy, time of response, best choice of392

path. Subjective evaluations can also be conducted to measure the level of acceptance393

and usefulness of the system for BVIP, with for instance wearability, appropriateness of394

feedback or integrability in everyday life.395

5.1. Types of Tests396

method % of papers Ref. to papers
only simulation 26.7 [28,31,32,35,39,44,46,48]

only on field 20 [16,20,24,34,41,43]
both 53.5 [21–23,25,26,29,30,33,40,42]

[27,36–38,45,47]

Table 12: Method of testing

Several phases of testing can be observed in the papers analyzed (see Table 12).397

Usually the system is first experimented theoretically on computer to check if its accuracy398

meets the standards, before passing to practical tests in a given environment (either in399

pre-set paths or buildings, or unknown real-life conditions). Some studies, probably less400

advanced in their development, only tested their proposed system online, while others401

skipped the theoretical phase to deploy their system directly in real conditions.402

5.2. End-Users Testing403

The majority of analyzed systems were tested directly by blind or visually impaired404

users, which is important to check whether the needs of the end users have been met or405

not (see Table 13). A third of papers were only tested by seeing people, blindfolded or406
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Tests with BVIP % of papers Ref. to papers
yes 56 % [21–25,30,33,41,42]

[16,20,26,27,34,36–38]
no 34 % [28,29,31,39,40,44–46,48]

[47]

Table 13: Tests with BVIP or not (in general blind folded people).

not, leaving uncertainty about the adequation between the proposed solution and the407

highlighted issues.408

5.3. Testing panel409

Nb of testers % of papers Ref. to papers
<5 10 [25,30,33]

[5 - 15] 26.7 [21,22,24,34,36–38,41]
>15 16.7 [16,23,26,27,42]

Table 14: Number of of VIP testers.

The number of visually impaired testers varies greatly between papers, depending410

on the possibilities of recruitment or time the researchers had to conduct their testing411

phase (see Table 14). Gathering enough end users to test the system is important when412

developing an assistive tool to check if all the requirements are met. Furthermore their413

unique feedback will allow to correct several aspects of the system, such as interface or414

wearability, in order to make it as easy and comfortable to use as possible.415

6. Conclusions and Perspectives416

6.1. Achievements417

In this paper we have studied the recent advances in the field of AI techniques for418

developing assistive technologies for BVIP. This survey has been made by assessing419

among the most recent case studies in the field with a well-defined research methodology.420

Several aspects of the proposed systems have been analyzed, including their human-421

machine interface (acquisition and processing hardware, feedback types and conveyors),422

the AI techniques chosen and the ways in which they have been assessed.423

Helping disabled people, like BVIP, has been a major research topic for a long424

time and the burst of technologies in our everyday life has dramatically accelerated425

the development of that field. Although lacking functions, several smartphone apps426

are already available for BVIP and are being adopted by many to ease their everyday427

activities. Some examples are:428

• Lookout (Android) and SeeingAI (iOS) to identify objects or people,429

• TapTapSee and VizWiz (iOS/Android) to identify elements in pictures taken by the430

user,431

• Ariadne GPS, Microsoft Soundscape and Blindsquare (iOS) that are GPS apps that432

provide customized environment descriptions,433

• Evelity (iOS/Android) to navigate in equipped buildings thanks to a specific GPS434

system,435

• MyMoveo (iOS/Android) to activate connected crosswalks and spot important436

elements (like entrance doors).437

Benefiting from the recent innovations of AI, assistive technologies have developed438

their possibilities while increasing their robustness and efficiency. In a very close future,439

it will be possible to propose safe and reliable wayfinding systems to BVIP, as well as440

detailed scene description and customized object recognition. Devices are also getting441

cheaper and more comfortable to wear, especially smartphones that are now equipped442
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with many sensors, such as cameras, gyroscopes, accelerometers, and endowed with443

enough computing capacities to run deep or machine learning algorithms.444

6.2. Limitations and challenges445

Despite varied and interesting proposals of robust and accurate systems, several446

challenges and perspectives must be studied and addressed. They are mainly related to447

the following points (as further discussed in this section):448

• most of the reviewed systems fail to become really operational, and reasons for this449

must be analyzed,450

• human factors are very important for BVIP, and they must be carefully understood451

and taken into account, raising challenges for user-centered AI approaches,452

• the use of embedded devices is mandatory but it raises important constraints on453

AI-based techniques, due to limited storage and computational resources, and to454

higher power consumption. In addition, incrementality becomes important for455

BVIP, as a way to adapt the object recognition step to specific objects, including456

personal ones,457

• in comparison to other general fields, the available image datasets or pre-trained458

CNNs specific to BVIP are not widely accessible (or even defined). The adaptation459

of such models to specific conditions (cultural, dynamic, etc) is difficult.460

In the majority of the studied papers, presented prototypes are not yet ready461

to be deployed. This difficulty to achieve the last step of development is caused by462

several factors that will have to be solved, the lack of complete and available solutions463

representing an additional difficulty for BVIP. Firstly, despite the continuing innovations464

in the field of AI and computer vision, researchers are still facing serious issues when465

developing navigation tools for BVIP. Many situations can be challenging for navigation466

systems:467

• obstacles situated at ground or head levels are still difficult to detect, and those are468

indeed very important for BVIP,469

• many elements present in urban environments are geographically or culturally470

dependent (New York yellow cabs are quite different from London black ones),471

• appropriate scene description is a quite subjective notion (what information is really472

important depends on the user and the current context).473

These lacks are due to the huge complexity of the problems, but also to the fact that some474

research fields have been more developed than others in the last years, and not for the475

specific case of BVIP. For example object detection and outdoor localization are much476

more advanced today than safe street crossings or environment mapping. In the past,477

salient object detection has been a major issue when developing assistive technologies478

for BVIP, that is now on the edge to be overcome thanks to recent innovations, such as479

the one described by Ji et al. in [51]. In addition, it might seem to be a minor point, but480

one should notice that most existing CNNs available for reuse are trained with images481

of objects or scenes that are not specific to BVIP. Many relevant objects or situations482

(for BVIP) are missing from training sets. Building such training sets and their specific483

CNNs and making them available to the scientific (and developers) community would484

certainly help to expand AI for BVIP.485

Also, the human factors are very important in such AI applications. There is often a486

gap between end-users’ needs and developers’ decisions. As shown in this paper, BVIP487

are not systematically implicated in the final testing phase, and even more rarely in488

the engineering process. Some important requirements often remain unfulfilled, thus489

leading the users into giving up the developed systems. Including BVIP as well as health490

professionals in the development process of AI-based systems is certainly mandatory491

to increase the chance of those systems to become operational. More generally, the492

human factors involved in such specific AI applications play a crucial role, are part of493

the user-centered AI approaches. Taking into account such factors raises challenging494
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issues. For instance, the design of human-machine interfaces does not always take into495

account the users’ relation to their environment. For example, many BVIP do not wish496

to be walking around with their smartphones in their hand, fearing of letting them fall497

or being assaulted and robbed. Also, scene description methods should get additional498

attention for BVIP who mostly rely on audio information.499

Running deep learning systems on small devices has become a central questions500

for researchers worldwide, as the demand for always more efficient, sophisticated and501

easily accessible AI applications grows up. Beyond the search on neural networks’502

compression and optimization, as described in Section 4.6, several developments have503

been made about more adequate hardware units to host those systems. The subject of504

customizing deep learning methods to fit their targeted tasks and types of hardware has505

been widely studied on the last years, especially the use of Graphics Processing Units506

(GPUs), Field Programmable Gate Arrays (FGPAs) and Application-Specific Integrated507

Circuits (ASICs), thus highlighting their pros and cons. The developments made in the508

last years have been analyzed and summarized by several authors: Seng et al. [52] for509

FPGAs, Moolchandani et al. [53] for ASICs and Ang et al. [54] for GPUs.510

Other aspects of deep learning models increase the difficulty of such applications:511

for instance, an incremental learning model is important, as it can allow the user to teach512

the AI with new objects to recognize. This can concern personal objects that belong to513

the user, objects that are culturally dependent, or even people (like family members) or514

pets. Incrementality raises the problem of dynamic learning, which becomes even more515

complex on an embedded device with limited resources.516

Finally, in the future, intelligent assistive technologies for BVIP will have to interact517

with connected areas, such as smart cities. Integrating people with disability and their518

assistants in the development of tomorrow’s environments is a question that need to be519

taken into account by researchers. A few proposals are already available like the ones520

proposed by Chang et al [55] in their recent article.521
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