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We present in this paper a state of the art and an analysis of the recent research work 1 and achievements performed in the domain of AI-based and vision-based systems for helping 2 blind and visually impaired people (BVIP). We start by highlighting the recent and tremendous 3 importance that AI has acquired with the use of convolutional neural networks (CNN) and with 4 their ability to efficiently solve image classification tasks. We remind also that VIP have great 5 expectations about AI-based system as a possible way to ease the perception of their environment 6 and to improve their everyday life. Then we set the scope of our survey: we concentrate our 7 investigations on the use of CNN or related methods in a vision-based system for helping VIP. 8 We analyze the existing surveys and we study the current work (a selection of 30 case studies) 9 along several dimensions such as acquired data, the learned models and the Human-Computer 10 interfaces. We compare the different approaches and we conclude by analyzing the future trends 11 in this domain.

12

Position Locator Devices respectively described by Elmannai et al. [START_REF] Elmannai | Sensor-based assistive devices for visually-impaired people: current status, challenges, and future directions[END_REF] as "devices that 33 gather information about the surrounding environment and transfer it to the user", as 34 "devices that provide pedestrians with directions in unfamiliar places" and as "devices [START_REF] Tapu | Joint object detection, tracking and recognition with application to visually impaired navigational assistance[END_REF] that determine the precise position of its holder". Tapu et al. [START_REF] Tapu | Wearable assistive devices for visually impaired: A state of the art survey[END_REF] proposes another 36 classification, depending in the kind of skills involved, between perceptual tools that 

Method 106

The survey was conducted with the following search methodology (see Figure 1): 107 the first step was determining the scope of the survey. The selected articles should be: the analysis: papers [START_REF] Sato | NavCog3 in the wild: Large-scale blind indoor navigation assistant with semantic features[END_REF][START_REF] Murata | Smartphone-based indoor localization for blind navigation across building complexes[END_REF][START_REF] Sato | Navcog3: An evaluation of a smartphone-based blind indoor navigation assistant with semantic features in a large-scale environment[END_REF] and [START_REF] Bai | Virtual-blind-road following-based wearable navigation device for blind people[END_REF][START_REF] Bai | Smart guiding glasses for visually impaired people in indoor environment[END_REF] were considered as a sole entity, those papers 136 being part of the same research study. Some more generalist articles were included to 137 highlight the important steps and challenges when building assistive tools for BVIP.

138

The analysis has been made following three main themes, divided in the following 

259

The devices for the other types of feedback are as follow: motors on a cane [START_REF] Li | Vision-based mobile indoor assistive navigation aid for blind people[END_REF], vi-260 brating belt and Braille interface [START_REF] Wang | Enabling independent navigation for visually impaired people through a wearable vision-based feedback system[END_REF], two smartwatches [START_REF] Bauer | Enhancing perception for the visually impaired with deep learning techniques and low-cost wearable sensors[END_REF], and smartphone vibrations 261 [START_REF] Sato | NavCog3 in the wild: Large-scale blind indoor navigation assistant with semantic features[END_REF][START_REF] Lo Valvo | A Navigation and Augmented Reality System for Visually Impaired People[END_REF].

262

The users can also interact with the interface, either to choose a mode (wayfinding

263
or scene description), or just to switch the system on or off. In most papers it is done 264 with the smartphone, thanks to the built-in voice controllers (iOS' Voice Control or Voice

265

Over, Android's Voice Access or TalkBack) to set up the system. In [START_REF] Wang | Enabling independent navigation for visually impaired people through a wearable vision-based feedback system[END_REF] instructions are 266 given through a Braille tablet, or with smartwatches in [START_REF] Bauer | Enhancing perception for the visually impaired with deep learning techniques and low-cost wearable sensors[END_REF]. for the engineering process to be carried out smoothly. One of the aspect that will 272 influence the technical choice is whether the system will be working indoor, outdoor or 273 both, some tools having a limited usage range (like the GPS, only accessible outside).

274

Development teams must also take into account the kind of tasks that will be performed 275 by the system: sole wayfinding, additional scene description; and the available data 276 sources and computational capabilities, both depending on the interface design. Some to the deployment of a system in a specific site, thus highly increasing the costs of 279 usage and maintenance. After deciding which algorithm models will be employed, that serves for analysis of images and object detection. Among the several versions 317 that have been released, only Inceptionv2 [START_REF] Lo Valvo | A Navigation and Augmented Reality System for Visually Impaired People[END_REF] and v3 [START_REF] Kacorri | People with visual impairment training personal object recognizers: Feasibility and challenges[END_REF][START_REF] Ahmetovic | Recog: Supporting blind people in recognizing personal objects[END_REF] are used in the papers. 

Choices of Datasets

330

A wide range of datasets are currently available, the most popular in the described 331 papers being ImageNet, followed by COCO and PASCAL ensembles (see Table 9).

332

Those datasets are quite general and do not always fit the requirements of the systems 333 developed. They are often used for pre-training the models, before using specific datasets 334 created specifically for the project. This last option has been chosen in [START_REF] Dimas | Uncertainty-Aware Visual Perception System for Outdoor Navigation of the Visually Challenged[END_REF][START_REF] Lin | Simple smartphone-based guiding system for visually impaired people[END_REF][START_REF] Tapu | Joint object detection, tracking and recognition with application to visually impaired navigational assistance[END_REF][START_REF] Mocanu | Deep-see face: A mobile face recognition system dedicated to visually impaired people[END_REF][START_REF] Kacorri | People with visual impairment training personal object recognizers: Feasibility and challenges[END_REF][START_REF] Lo Valvo | A Navigation and Augmented Reality System for Visually Impaired People[END_REF][START_REF] Cornacchia | Deep learning-based obstacle detection and classification with portable uncalibrated patterned light[END_REF]. by Luo et al. [START_REF] Luo | An Appraisal of Incremental Learning Methods[END_REF] in their recent survey. Indeed incrementality is even more difficult to 386 implement on embedded devices because of their limited computational power. 

Datasets

Testing Methods

388

There are several ways of assessing an assistive system. First the testing phase 389 can be theoretical (virtual scenarios performed on computer) and/or practical (pre- Several phases of testing can be observed in the papers analyzed (see Table 12).

397

Usually the system is first experimented theoretically on computer to check if its accuracy 398 meets the standards, before passing to practical tests in a given environment (either in 399 pre-set paths or buildings, or unknown real-life conditions). Some studies, probably less 400 advanced in their development, only tested their proposed system online, while others 401 skipped the theoretical phase to deploy their system directly in real conditions. The number of visually impaired testers varies greatly between papers, depending 410 on the possibilities of recruitment or time the researchers had to conduct their testing 411 phase (see Table 14). Gathering enough end users to test the system is important when 412 developing an assistive tool to check if all the requirements are met. Furthermore their 413 unique feedback will allow to correct several aspects of the system, such as interface or 414 wearability, in order to make it as easy and comfortable to use as possible. are already available for BVIP and are being adopted by many to ease their everyday proposed by Chang et al [START_REF] Chang | Technology-Based Social Innovation: Smart City Inclusive System for Hearing Impairment and Visual Disability Citizens[END_REF] in their recent article.

14

 14 According to the World Health Organization 285 million people suffer from impor-15 tant sight loss (39 million blind and 246 million with low vision), and the figures will 16 keep rising up as the population grows older. Assisting blind and visually impaired 17 persons in their everyday life has been a long time research topic, traveling being a par-18 ticular concern. Traditionally white canes and guide dogs have been acting as walking 19 assistants, but recent advances in deep learning and computer vision technologies have 20 widely broaden the spectrum of possibilities. 21 Despite being a classical topic, investigated for decades, research teams are con-22 tinually innovating and lightning hope for a future where vision disability would not 23 be anymore a constant struggle for those affected by it. From the radars in the mid 24 20th century to the latest AI emerging nowadays, assistive technologies have used an 25 exceptionally diverse set of technologies in designing tools for blind and visually im-26 paired people. The bloom of new, more performing algorithms are opening the path for 27 tomorrow's developments, becoming indeed essential aspects to focus our survey on. 28 Beyond leading to important innovations, the numerous researches conducted over 29 the last years have brought clearer classifications of the developed assistive tools that 30 is now widely used to define them. Assistive technologies aiming at easing travel are 31 often divided in three parts: Electronic Travel Aids, Electronic Orientation Aids, and32

Figure 1 .

 1 Figure 1. PRISMA selection diagram that explains the main steps of our survey methodology (see text for explanations).
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147 3 .

 3 -machine interface (data acquisition and processing, feedback transmethods (context, end-users participation). 145 For each part, the results have been summed up in tables with their percentage of 146 occurrence. Human-Machine Interfaces for data acquisition and user feedback 148In this section, we consider the interface between the BVIP and the AI-based 149 assistive systems in a broad sense: it encompasses the data acquisition techniques, the 150 data processing approach and the feedback to the user. Several aspects must be taken 151 into account when designing such human-machine interface. First some general aspects 152 need to be considered:

267 4 .

 4 Artificial Intelligence Techniques 268 As research on AI and Computer Vision keep expanding, more and more solutions 269 are being available to develop assistive tools for BVIP. The technical choices are motivated 270 by several factors and it is crucial for all the needed features to be previously known 271

  277techniques, like RFID tags and BLE beacons, require installation of materials previous 278

318

  Others are: Inceptionv1 (aka GoogLeNet), Inceptionv4 and InceptionResNetv1 and 319 v2 (hybrid Inception and ResNet architecture). 320 To perform the complex tasks needed to build navigation and object recognition assistive 321 tools, the Encoder/Decoder architecture is also a popular choice as shown in [22,28,40, 322 46,48]. Of course numerous algorithms and architectures are possible when developing 323 navigation and object detection systems, and only the most frequent (among the analyzed 324 sample) have been described in this survey. Despite the wide range of possibilities 325 currently available, some papers have opted for the development of specific algorithms 326 tailored to their objectives of research. They are used to perform specific tasks of the 327 overall development like list construction and object detection in[START_REF] Li | Vision-based mobile indoor assistive navigation aid for blind people[END_REF], or object extraction 328 and obstacle avoidance in[START_REF] Elmannai | A highly accurate and reliable data fusion framework for guiding the visually impaired[END_REF].

  329

  387

402 5 . 2 .

 52 End-Users Testing403The majority of analyzed systems were tested directly by blind or visually impaired 404 users, which is important to check whether the needs of the end users have been met or 405 not (see

417

  In this paper we have studied the recent advances in the field of AI techniques for 418 developing assistive technologies for BVIP. This survey has been made by assessing 419 among the most recent case studies in the field with a well-defined research methodology. 420 Several aspects of the proposed systems have been analyzed, including their human-421 machine interface (acquisition and processing hardware, feedback types and conveyors), 422 the AI techniques chosen and the ways in which they have been assessed. 423 Helping disabled people, like BVIP, has been a major research topic for a long 424 time and the burst of technologies in our everyday life has dramatically accelerated 425 the development of that field. Although lacking functions, several smartphone apps 426

485

  Also, the human factors are very important in such AI applications. There is often a 486 gap between end-users' needs and developers' decisions. As shown in this paper, BVIP 487 are not systematically implicated in the final testing phase, and even more rarely in 488 the engineering process. Some important requirements often remain unfulfilled, thus 489 leading the users into giving up the developed systems. Including BVIP as well as health 490 professionals in the development process of AI-based systems is certainly mandatory 491 to increase the chance of those systems to become operational. More generally, the 492 human factors involved in such specific AI applications play a crucial role, are part of 493 the user-centered AI approaches. Taking into account such factors raises challenging issues. For instance, the design of human-machine interfaces does not always take into 495 account the users' relation to their environment. For example, many BVIP do not wish 496 to be walking around with their smartphones in their hand, fearing of letting them fall 497 or being assaulted and robbed. Also, scene description methods should get additional 498 attention for BVIP who mostly rely on audio information. 499 Running deep learning systems on small devices has become a central questions 500 for researchers worldwide, as the demand for always more efficient, sophisticated and 501 easily accessible AI applications grows up. Beyond the search on neural networks' 502 compression and optimization, as described in Section 4.6, several developments have 503 been made about more adequate hardware units to host those systems. The subject of 504 customizing deep learning methods to fit their targeted tasks and types of hardware has 505 been widely studied on the last years, especially the use of Graphics Processing Units 506 (GPUs), Field Programmable Gate Arrays (FGPAs) and Application-Specific Integrated 507 Circuits (ASICs), thus highlighting their pros and cons. The developments made in the 508 last years have been analyzed and summarized by several authors: Seng et al. [52] for 509 FPGAs, Moolchandani et al. [53] for ASICs and Ang et al. [54] for GPUs. 510 Other aspects of deep learning models increase the difficulty of such applications: 511 for instance, an incremental learning model is important, as it can allow the user to teach 512 the AI with new objects to recognize. This can concern personal objects that belong to 513 the user, objects that are culturally dependent, or even people (like family members) or 514 pets. Incrementality raises the problem of dynamic learning, which becomes even more 515 complex on an embedded device with limited resources. 516 Finally, in the future, intelligent assistive technologies for BVIP will have to interact 517 with connected areas, such as smart cities. Integrating people with disability and their 518 assistants in the development of tomorrow's environments is a question that need to be 519 taken into account by researchers. A few proposals are already available like the ones 520

Table 1 :

 1 The type of acquisition devices used in each paper Several types of solutions are possible when designing the acquisition part of the

	153		
	154	•	The overall interface must be robust and reliable, given that a failure of the system
	155		could potentially be very harmful (even physically) to the users, and capable of
	156		functioning over important time duration (effective energy consumption manag-
	157		ing);
	158	•	The interface must be comfortable to wear, unobtrusive and discrete to avoid the
	159		stigmatization of the carrier;
	160	•	The hardware components must be easily accessible and the total cost must stay
	161		affordable to the majority of the public;
	162	•	The system must also be user-friendly and require minimum training from users, a
			too complex interface often resulting in people's misusing or giving up the device.

192

factors into account (see

Table 2)

. A varied set of sensors will increase a system's 193 accuracy, which is crucial in obstacles and objects detection tasks. On the other hand, 194 a huge amount of diverse data need to be processed and fused, thus increasing the 195 computational cost and time of achievement of a task. When designing their systems, 196 researchers must find the right balance between those points, depending on the purpose 197 they chose to aim at. One of the most common solution is to use smartphones equipped 198 with RGB-D or monocular cameras and position sensors (accelerometer, gyroscope 199 and magnetometer), as shown in examples

[START_REF] Hu | A comparative study in real-time scene sonification for visually impaired people[END_REF][START_REF] Son | Crosswalk guidance system for the blind[END_REF][START_REF] Bai | Wearable travel aid for environment perception and navigation of visually impaired people[END_REF][START_REF] Li | Vision-based mobile indoor assistive navigation aid for blind people[END_REF][START_REF] Lo Valvo | A Navigation and Augmented Reality System for Visually Impaired People[END_REF][START_REF] Grayson | A dynamic AI system for extending the capabilities of blind people[END_REF]

. Another solution is the 200 introduction of Infra-Red or laser sensors in the acquisition system, a choice made in 201 articles

[START_REF] Zhang | An indoor wayfinding system based on geometric features aided graph SLAM for the visually impaired[END_REF][START_REF] Cornacchia | Deep learning-based obstacle detection and classification with portable uncalibrated patterned light[END_REF][START_REF] Malek | Real-time indoor scene description for the visually impaired using autoencoder fusion strategies with visible cameras[END_REF]

. For outdoor navigation, GPS is almost always chosen as navigational 202 support, being easily accessible, cheap and with a very wide coverage.

Table 2 :

 2 Data acquisition tools. By "position sensors" we consider techniques and sensors such as inertial measurement units, odometry, or accelerometer/gyroscope/magnetometer from smartphone.

	Type of device	% of papers	Ref. to papers
	smartphone	23.3	[26,31,34,37-39] [45]*
	tablet, laptop, etc	53.3	[21-24,30,33,40,41]
			[19,27,35,36,42,43,46] [29]*
	remote server	23.3	[16,25,28,44,47] [29,45]*

Table 3 :

 3 

	to papers

The devices used for data processing. In some papers (mentioned with a "*"), a hybrid client-server architecture is used (smartphone/laptop + remote server).

3.1.3. Types of processors

204

Another choice to be made when designing the systems is through what ways the 205 data is going to be processed and analyzed (see Table

3

). Several papers have chosen 206 a smartphone as sole processor, thus having limited treatment and energy capacities 207 but a cheap and easily accessible solution. An other option is to use a remote server to 208 analyze the data, a solution with high computation power but with important risks of 209 failures due to connection issues, especially when navigating indoor. Among the papers 210 analyzed in this survey, the most common method was the addition of another wearable 211 device, such as a tablet or a laptop, to act as the processor. This solution offers better 212 computational power than the smartphone, and no connection issues; although this 213 option may cause a potential loss of comfort for users when carrying the system.

214

Smartphone position % of papers Ref.

Table 4 :

 4 How the smartphone is hold by the users. Not all systems have been implemented on a smartphone.The design of the feedback module must be carefully chosen to avoid difficult 224 user's experiences. Feedback is defined by El-Zahraa El-Taher et al.[START_REF] El-Taher | A systematic review of urban navigation systems for visually impaired people[END_REF] as "the means 225 used by the system to convey information to the blind and visually impaired people."

	223	3.2. Feedback	
	226		
	227	To be efficient the navigation instructions must be delivered quickly and clearly. They
	228	must be adapted to the difficulty of the task performed (for example, scene description
	229	delivers more complex information than turn left or right instructions), but also to the
	230	type of environment encountered (level of noise). This module must respect the user's
	231	knowledge (choice of symbolic representations that will be easy to understand) and
	232	avoid sensory overload (information's prioritization). Developers must also make sure
	233	that the interface delivering the feedback will not have a negative impact on other senses
	234	and communication capabilities (by favoring bone-conducting headphones rather than
	235	traditional ones for example).	
	236	3.2.1. Type of feedback	
		Type of feedback	% of papers	Ref. to papers
		speech	70 %	[21,23,25,29,30,32,40]
				[26,33-36,42,43]
				[16,20,27,38,45-47]
		in combination with other types	20 %	[16,27,30,32,38,45]
		vibrations	13.3 %	[16,30,41,45]
		sonification	13.3 %	[22,24,32,38]
		tactile	10 %	[27,39,41]

When acquiring data, smartphones can be carried in two ways: in hand or worn on 215 the body with a specific outfit (see Table

4

). Despite being natural, keeping one hand 216 busy with the phone may cause annoyance in every day life activities, not to mention the 217 risk of accidentally dropping it, or the risk of being robbed. Wearing the device on the 218 body may be more comfortable but the localization must be chosen carefully to avoid 219 social stigma: Tapu et al.

[START_REF] Tapu | Joint object detection, tracking and recognition with application to visually impaired navigational assistance[END_REF] 

and Sato et al.

[START_REF] Sato | NavCog3 in the wild: Large-scale blind indoor navigation assistant with semantic features[END_REF] 

opted for a system worn on a belt, 220 while Neugebauer et al.

[START_REF] Neugebauer | Navigation aid for blind persons by visual-to-auditory sensory substitution: A pilot study[END_REF] 

chose a specific headset to place the smartphone on top of 221 the head.

Table 5 :

 5 

	250		
	251	3.2.2. Feedback conveyors	
		Audio-feedback devices	% of papers	Ref. to papers
		earphones/headsets	46.7	[23,25,26,29,34,40,42]
				[20,27,28,35,43,46,47]
		bone-conducting earphones	16.7	[16,21,22,24,36]
		phone/tablet	13.3	[30,33,37,38]

General methods and techniques for providing feedback to users. Some tools have only been tested online and their types of feedback remain theoretical.

Feedback is essential in navigation tasks, especially when helping BVIP (see Table 237

5). A wrong choice may result in hazardous, and potentially accident-prone situations 238 for the user. The most popular choice is audio feedback through speech instructions or 239 sonification guidance (use of sounds or music to depict the different elements present 240

in a given scene). Tactile interface, like a Braille display

[START_REF] Wang | Enabling independent navigation for visually impaired people through a wearable vision-based feedback system[END_REF]

, or haptic systems, such 241 as a vibrating smartphone

[START_REF] Sato | NavCog3 in the wild: Large-scale blind indoor navigation assistant with semantic features[END_REF][START_REF] Lo Valvo | A Navigation and Augmented Reality System for Visually Impaired People[END_REF]

, are among the other possibilities. The most effective 242 solution seems to be a combination of several feedback interfaces to adapt to the different 243 situations encountered by the users. For example, audio feedback might not be the most 244 adequate answer in noisy environments, but the best solution when many information 245 need to be delivered, like in scene descriptions tasks. Combination of feedback types 246 is illustrated by Bauer et al.

[START_REF] Bauer | Enhancing perception for the visually impaired with deep learning techniques and low-cost wearable sensors[END_REF] 

where navigational instructions (turn left or right) are 247 delivered by vibrating smartwatches that can also perform an audio scene description; 248 or by Li et al.

[START_REF] Li | Vision-based mobile indoor assistive navigation aid for blind people[END_REF] 

with two vibrating motors on a cane for turning left and right and an 249 Android smartphone with text-to-audio software to provide more precise instructions.

Table 6 :

 6 : traditional ones are cheap and easily accessible, but they often disrupt 255 the sense of hearing on which BVIP rely heavily to understand their environment.Another solution is the bone-conducting earphones, that allow to deliver the instructions 257 without covering the ears, therefore not impairing sounds' perception and possibility to

Devices for audio feedback

Several tools are available to deliver audio feedback (see Table

6

). In some cases the 252 instructions can be transmitted directly by the smartphone, a method quite incompatible 253 with the respect of users' privacy. The use of headsets tends to be privileged by the researchers256 258 communicate with other people.

Table 7 :

 7 Scope of assistive systems. Some studies do not clearly specify their targeted scope.Navigation systems can be designed to cover either indoor or outdoor navigation, 284 thus only partially meeting the every day needs of BVIP (see Table7). Almost half of

	282		
	283	4.1. Scope of system	
		scope of systems % of papers	Ref. to papers
		indoor	30	[16,23,29-32,41,44,46]
		outdoor	10	[21,28,33]
		both	43.3	[22,24-27,36,40,42,45,48]
				[20,39,47]
	285		
	286	the systems analyzed in this survey potentially proposes solution for both situations
	287	(although this double coverage has often only been tested in one situation so far).
	288	4.2. Machine or Deep Learning algorithms
	289	A lot of methods are currently available for developing tools based on navigation
		or object detection tasks (see Table 8). In the field of navigation and wayfinding the most

280 researchers must finally set up the training procedure with the appropriate datasets and 281 data treatment techniques. 290 popular methods in this survey are: 291 • SLAM (Simultaneous Localization And Mapping) algorithms are used to construct 292 maps of the encountered environment and localize the user within it. Several 293 methods were experimented in the analyzed papers: semantic visual SLAM (ORB 294 SLAM) in

[START_REF] Chen | A Wearable Navigation Device for Visually Impaired People Based on the Real-Time Semantic Visual SLAM System[END_REF]

, 2-STEP Graph SLAM in

[START_REF] Zhang | An indoor wayfinding system based on geometric features aided graph SLAM for the visually impaired[END_REF]

, VSLAM in

[START_REF] Bai | Wearable travel aid for environment perception and navigation of visually impaired people[END_REF] 

and ORB-SLAM2 in 295

[START_REF] Bai | Virtual-blind-road following-based wearable navigation device for blind people[END_REF]

.

298

(extracting feature points and localize them on a projection).

299

• A* is a search algorithm for wayfinding that uses heuristics to determine the path 300 with the smallest cost.

301

• Kalman filter algorithm (Linear Quadratic Estimation) is a method to estimate 302 unknown variables from the observation of a series of measurements that can be 303 employed for many tasks like pose estimation

[START_REF] Simões | Audio Guide for Visually Impaired People Based on Combination of Stereo Vision and Musical Tones[END_REF]

, obstacle motion estimation

[START_REF] Li | Vision-based mobile indoor assistive navigation aid for blind people[END_REF] 

304 or error reduction

[START_REF] Lo Valvo | A Navigation and Augmented Reality System for Visually Impaired People[END_REF]

.

305

Other architectures are available for dealing with object recognition tasks, mostly used 306 in the papers to detect obstacles and to describe a scene's content if needed: 307 • YOLO (You Only Look Once) is a CNN designed for real-time object detection (it 308 recognizes what objects are present in a scene, and where) created in 2015. Several 309 updated versions are currently available (YOLOv1-v3). 310 • VGG is deep CNN architecture derivating from AlexNet, developed and already 311 trained (on ImageNet dataset) by Oxford University's Visual Geometry Group. It is 312 mainly designed for image classification and object recognition tasks and adapted to 313 the transfer learning method. Two versions are available: VGG16 (16 convolutional 314 layers) and VGG19 (19 layers). 315 • Inception is a CNN classifier developed by Google (and named after the movie)

Table 9 :

 9 The most frequent image datasets

		% of papers	Ref. to papers
		specific	36.7	[25,27,28,33,35-39,44,46]
		ImageNet	30	[21,22,28,33,35-37,44,45]
		PASCAL-VOC	10	[22,33,45]
		COCO	13.3	[22,26,32,39]
	336	4.4. Data Processing Methods	
		ML techniques	% of papers Ref. to papers
		data augmentation	6.7	[22,42]
		transfer learning		16.7	[25,36-39]

Table 10 :

 10 Techniques used for model training.Often, when designing systems for a specific task, finding or creating the right

	345		
	346	4.5. Type of Model Training	
		Type of training % of papers	Ref. to papers
		incremental	16.7	[35-38,48]
		offline	46.7	[21,22,25,31-33,42]
				[26-28,36,37,39,45]

337

dataset turns out to be an important obstacle (see

Table 10)

. To train the models efficiently, 338 researchers need to use special methods to overcome this problem. The most frequent one 339 within the papers analyzed is transfer learning: the system is entirely pre-trained with 340 an already available general dataset (like ImageNet), then the last layer(s) is(are) trained 341 with a smaller, more specific one. The other method used here is data augmentation.

342

New synthetic images are created from the original dataset with several techniques like 343 random flipping, cropping, scaling, rotation and color jittering for

[START_REF] Yang | Unifying terrain awareness for the visually impaired through real-time semantic segmentation[END_REF]

, and rotation, 344 skewing, mirroring, flipping, brightness and noise levels in

[START_REF] Joshi | Efficient Multi-Object Detection and Smart Navigation Using Artificial Intelligence for Visually Impaired People[END_REF]

.

Table 11 :

 11 Incrementality of learning procedures.

	350	
	351	obtain an increasing accuracy and deal more easily with complex situations uncovered
	352	by the datasets.
	353	4.6. Solving Challenges
	354	Despite their promising results, these systems still have to be improved in order to
	355	be massively deployed on smartphones and small devices. As Berthelier et al. [49] state
	356	in their survey "deep learning based methods have achieved state-of-the-art performance
	357	in many applications such as face recognition, semantic segmentation, object detection,
	358	etc [. . . but] to run these applications on embedded devices the deep models need to be
		less-parametrized in size and time efficient." To address these issues, several compression

Two types of methods are possible when training a model (see

Table 11)

. Most 347 of the papers opted for an offline training: the model is trained once with pre-defined 348 dataset(s) and then deployed. However 5 papers

[START_REF] Tapu | Joint object detection, tracking and recognition with application to visually impaired navigational assistance[END_REF][START_REF] Mocanu | Deep-see face: A mobile face recognition system dedicated to visually impaired people[END_REF][START_REF] Kacorri | People with visual impairment training personal object recognizers: Feasibility and challenges[END_REF][START_REF] Ahmetovic | Recog: Supporting blind people in recognizing personal objects[END_REF][START_REF] Wang | DepthNet Nano: A Highly Compact Self-Normalizing Neural Network for Monocular Depth Estimation[END_REF] 

chose incremental learning: 349 the model keeps being trained with data acquired by the users themselves, in order to 359 techniques for CNNs are being currently studied: 360 • Pruning, which consists in removing unused parameters of a network while still 361 achieving state-of-the-art results; 362 • Quantization, that approximates a neural network by reducing floating-point num-363 bers' precision, with higher risks of error and lower accuracy; 379 tasks (Neural gas methods, Neuroevolution, Network morphism, Supergraphs). 380 Incremental learning is another crucial challenge for the research on assistive tech-381 nologies with CNNs. Its implementation on embedded devices represents an important 382 step for BVIP as it is going to allow them to customize their system to detect personal 383 belongings or recognize friends, colleagues and family members. Many research teams 384 are currently developing solutions, and proposals are being made like the ones described 385

Table 12 :

 12 Method of testing

	396		
	method	% of papers	Ref. to papers
	only simulation	26.7	[28,31,32,35,39,44,46,48]
	only on field	20	[16,20,24,34,41,43]
	both	53.5	[21-23,25,26,29,30,33,40,42]
			[27,36-38,45,47]

390

determined paths or real-life environments). Systems can be assessed with objective 391 performance metrics evaluating for instance accuracy, time of response, best choice of 392 path. Subjective evaluations can also be conducted to measure the level of acceptance 393 and usefulness of the system for BVIP, with for instance wearability, appropriateness of 394 feedback or integrability in everyday life. 395 5.1. Types of Tests

Table 13 )

 13 . A third of papers were only tested by seeing people, blindfolded or

	Tests with BVIP % of papers	Ref. to papers
	yes	56 %	[21-25,30,33,41,42]
			[16,20,26,27,34,36-38]
	no	34 %	[28,29,31,39,40,44-46,48]
			[47]

Table 13 :

 13 Tests with BVIP or not (in general blind folded people).

	407	not, leaving uncertainty about the adequation between the proposed solution and the
	408	highlighted issues.	
	409	5.3. Testing panel	
		Nb of testers % of papers	Ref. to papers
		<5	10	[25,30,33]
		[5 -15]	26.7	[21,22,24,34,36-38,41]
		>15	16.7	[16,23,26,27,42]

Table 14 :

 14 Number of of VIP testers.

  sensors, such as cameras, gyroscopes, accelerometers, and endowed with 443 enough computing capacities to run deep or machine learning algorithms.

	444		
	445	6.2. Limitations and challenges
	446		Despite varied and interesting proposals of robust and accurate systems, several
	447	challenges and perspectives must be studied and addressed. They are mainly related to
	448	the following points (as further discussed in this section):
	449	•	most of the reviewed systems fail to become really operational, and reasons for this
	450		must be analyzed,
	451	•	human factors are very important for BVIP, and they must be carefully understood
	452		and taken into account, raising challenges for user-centered AI approaches,
	453	•	the use of embedded devices is mandatory but it raises important constraints on
	454		AI-based techniques, due to limited storage and computational resources, and to
	455		higher power consumption. In addition, incrementality becomes important for
	456		BVIP, as a way to adapt the object recognition step to specific objects, including
			personal ones,
	466		
	467	systems:
	468	•	obstacles situated at ground or head levels are still difficult to detect, and those are
	469		indeed very important for BVIP,
		•	many elements present in urban environments are geographically or culturally
	477		
	478	salient object detection has been a major issue when developing assistive technologies
	427 479	for BVIP, that is now on the edge to be overcome thanks to recent innovations, such as
	428 480	activities. Some examples are: the one described by Ji et al. in [51]. In addition, it might seem to be a minor point, but
	429 481	• one should notice that most existing CNNs available for reuse are trained with images Lookout (Android) and SeeingAI (iOS) to identify objects or people,
	430 482	• of objects or scenes that are not specific to BVIP. Many relevant objects or situations TapTapSee and VizWiz (iOS/Android) to identify elements in pictures taken by the
	431 483	user, (for BVIP) are missing from training sets. Building such training sets and their specific
	432 484	• CNNs and making them available to the scientific (and developers) community would Ariadne GPS, Microsoft Soundscape and Blindsquare (iOS) that are GPS apps that
	433	provide customized environment descriptions, certainly help to expand AI for BVIP.
	434	•	Evelity (iOS/Android) to navigate in equipped buildings thanks to a specific GPS
	435		system,
	436	•	MyMoveo (iOS/Android) to activate connected crosswalks and spot important
			elements (like entrance doors).

437

Benefiting from the recent innovations of AI, assistive technologies have developed 438 their possibilities while increasing their robustness and efficiency. In a very close future, 439 it will be possible to propose safe and reliable wayfinding systems to BVIP, as well as 440 detailed scene description and customized object recognition. Devices are also getting 441 cheaper and more comfortable to wear, especially smartphones that are now equipped with many 457 • in comparison to other general fields, the available image datasets or pre-trained 458 CNNs specific to BVIP are not widely accessible (or even defined). The adaptation 459 of such models to specific conditions (cultural, dynamic, etc) is difficult. 460 In the majority of the studied papers, presented prototypes are not yet ready 461 to be deployed. This difficulty to achieve the last step of development is caused by 462 several factors that will have to be solved, the lack of complete and available solutions 463 representing an additional difficulty for BVIP. Firstly, despite the continuing innovations 464 in the field of AI and computer vision, researchers are still facing serious issues when 465 developing navigation tools for BVIP. Many situations can be challenging for navigation 470 dependent (New York yellow cabs are quite different from London black ones), 471 • appropriate scene description is a quite subjective notion (what information is really 472

important depends on the user and the current context).

473

These lacks are due to the huge complexity of the problems, but also to the fact that some 474 research fields have been more developed than others in the last years, and not for the 475 specific case of BVIP. For example object detection and outdoor localization are much 476 more advanced today than safe street crossings or environment mapping. In the past,

Version March 15, 2022 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://qualis.ic.ufmt.br/

http://portal.core.edu.au/conf-ranks/

https://www.scimagojr.com/journalrank.php

Funding: This research received no external funding.

529