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Multiple imputation in the functional linear model with

partially observed covariate and missing values in the response

Christophe Crambes: and Chayma Daayeb:,; and Ali Gannoun: and Yousri Henchiri;,6,∗

August 5, 2022

Abstract

Missing data problems are common and difficult to handle in data analysis. Ad hoc

methods such as simply removing cases with missing values can lead to invalid analysis

results. In this paper, we consider a functional linear regression model with partially

observed covariate and missing values in the response. We use a reconstruction operator

that aims at recovering the missing parts of the explanatory curves, then we are interested

in regression imputation method of missing data on the response variable, using functional

principal component regression to estimate the functional coefficient of the model. We

study the asymptotic behavior of the prediction error when missing values in an original

dataset are imputed by multiple sets of plausible values.

Keywords. Functional linear model, Missing data, Functional Principal Components, Missing At

Random, Multiple imputation.

1 Introduction

Functional data analysis (FDA) can be seen as a important field of statistics that has reached

a certain maturity. FDA methods have been applied quite broadly in medicine, science,

business, engineering, . . . , while new theoretical and methodological developments regularly

appear. For a more comprehensive treatment of FDA theory and methods, readers are referred

to the classic monographs (Ramsay and Silverman, 2002, 2005; Ramsay et al., 2009), recent

monographs (Hsing and Eubank, 2015; Srivastava and Klassen, 2016; Kokoszka and Reimherr,

2018) and review papers (Morris, 2015; Wang et al., 2016).
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The functional linear model with scalar response in which a functional random variable

is used to predict a real random variable has been the object of considerable attention in the

literature. Several procedures have been proposed to the prediction and estimation problems

under this model including, for example, functional principal component regression (Febrero-

Bande et al., 2017).

This procedure has been considered by many authors Cardot and Sarda (2003); Hall and

Hosseini-Nasab (2006); Cai and Hall (2006); Hall and Horowitz (2007) and Wang et al. (2016).

Considering the functional linear regression methodology described in Ramsay and Silverman

(2005, Chapter 10), we observe the sample Dn fi tpX1, Y1q, . . . , pXn, Ynqu, where the Xi’s are

centered independent and identically distributed with the same law as a random function X

taking values in the space L2pI q of square integrable functions defined on an interval I Ă R,

and the real responses Yi’s are generated by the regression model

Yi “ α`

ż

I
θptqXiptqdt` εi, (1.1)

for all i “ 1, . . . , n. Here, α is a constant corresponding to the intercept of the model, and

θ is a square integrable function belonging to L2pI q, representing the slope function. It is

supposed that the errors εi’s are independent and identically distributed with finite variance

and zero mean and independent from the explanatory variables Xi’s.

The functional principal component regression methodology is based on spectral expan-

sions of both the covariance operator of X and its estimator. We define the empirical cross

covariance operator p∆n given by p∆nu “
1
n

řn
i“1xXi, uyYi for all u P L2pI q, the empiri-

cal covariance operator pΓn given by pΓnu “
1
n

řn
i“1xXi, uyXi for all u P L2pI q. Denoting

ppφjqj“1,...,kn the eigenfunctions associated to pΓn corresponding to the kn highest eigenvalues
pλ1 ą . . . ą pλkn ą 0 (where kn is an integer depending on n), we define the orthogonal pro-

jection operator pΠkn onto the subspace Spanppφ1, . . . , pφknq by pΠknu “
řkn
j“1x

pφj , uypφj for all

u P L2pI q. Considering

ηpXq fi α`

ż

I
θptqXptqdt,

we first estimate η based on a training sample Dn. Let `n be a functional data fit that measures

how well η fits the data. Then, the functional principal component regression estimator pηn

of η is given by

pηn fi argminη0 p`n pη0 | Dnqq ,

where the minimization is taken over

"

η0 | η0pXq “ α0 `

ż

I
θ0ptqXptqdt : α0 P R, θ0 P Span

´

pφ1, . . . , pφkn

¯

*

.

The most common choice of the functional data fit is the mean square error
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`npη0 | Dnq fi
1

n

n
ÿ

i“1

pYi ´ η0pXiqq
2 .

In general, `n is chosen such to be convex in η0 and Ep`npη0qq in uniquely minimized by η.

Equivalently, the minimization can be taken over pα0, θ0q to obtain estimates for both the

intercept and slope, denoted by pθ and pα , as follows

pθ “
kn
ÿ

j“1

psj pφj , with psj “
1

npλj

n
ÿ

i“1

xXi, pφjyYi, (1.2)

and pα “ Y “ 1
n

řn
i“1 Yi.

In this work, we focus on the prediction problem. Let pηn be a prediction rule given by

pηnpXnewq fi pα`

ż

I

pθptqXnewptqdt,

where Xnew is a copy of X independent of X1, . . . , Xn. The prediction accuracy can be

naturally measured by the excess risk

E ppηnqpXnewq fi E‹ ppηnpXnewq ´ ηpXnewqq
2

“ E‹
´

pα` xpθ,Xnewy ´ α´ xθ,Xnewy

¯2
,

where E‹ stands for the expectation with respect to Xnew.

Earlier works on functional data focused in large part on regular functional data where

data are fully observed. This may not always be the case, and missing data appear in many

situations, for example when the measuring device breaks down. Many methods for the impu-

tation of missing values have been developed. They can be divided into two branches, single

imputation and multiple imputation. Single imputation consists in creating a single imputed

value to replace a missing value. This procedure does not reflect the uncertainty about the

prediction of the missing values during the imputation process. Multiple imputation is a

statistical technique designed to take advantage in imputing a missing data several times.

Each missing value is replaced by two or more imputed values in order to represent the un-

certainty of the value to be imputed. For a comprehensive review of missing data mechanism

and imputation methods, we refer the readers to a non-exhaustive list of monographs giving

an overview of this topic: Rubin (1987); Graham (2012); Little and Rubin (2020); He et al.

(2022).

In recent years, applications producing partially observed functional data have emerged.

Sometimes each individual trajectory is collected only over individual-specific subintervals,

densely or sparsely, within the whole domain of interest. Several recent works have begun

addressing the estimation of covariance functions for short functional segments observed at
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sparse and irregular grid points, called functional snippets (Lin and Wang, 2020; Lin et al.,

2021) or for fragmented functional data observed on small subintervals (Delaigle et al., 2020).

For densely observed partial data, existing studies have focused on estimating the unobserved

part of curves (Kneip and Liebl, 2020; Kraus and Stefanucci, 2020), prediction (Goldberg

et al., 2014), classification (Kraus and Stefanucci, 2018; Park and Simpson, 2019), functional

regression (Gellar et al., 2014), and inferences (Kraus, 2019; Park et al., 2022).

To go further, we describe two types of missing data mechanisms that will be the subject

of our paper. The first one is related to the real response and the second one is related to

the functional covariate. Concerning the missing data mechanism on the real response, we

consider a dichotomous random variable δrY s leading to the sample pδ
rY s
i qi“1,...,n such that

δ
rY s
i “ 1 if the value Yi is available and δ

rY s
i “ 0 if the value Yi is missing, for all i “ 1, . . . , n.

We consider that the data in the response is missing at random (MAR): the fact that the

value Y is missing does not depend on the response of the model, but can possibly depend

on the covariate, that is,

PpδrY s “ 1 | X,Y q “ PpδrY s “ 1 | Xq.

MAR assumption implies that the distribution of Y is the same for units such that δ
rY s
i “ 1

(observed units) as for those such that δ
rY s
i “ 0 (non-observed units), conditionally on X. As

a consequence, the variable δrY s (the fact that an observation is missing or not) is independent

of the error of the model ε. In the following, the number of missing values among Y1, . . . , Yn

is denoted

mrY sn “

n
ÿ

i“1

1!
δ
rY s
i “0

).

Concerning the missing data mechanism on the functional covariate, we adopt the paradigm

of partially observed functions as in Kneip and Liebl (2020) or Kraus (2015). More precisely,

for each curve Xi, i “ 1, . . . , n, we consider the observed part Oi Ď I of Xi and the missing

part Mi “ I rOi. The observed part Oi refers to an interval (or several intervals) where the

curve Xi is observed at some measure points of Oi. Based on the punctual observations, the

whole curve can be reconstructed on Oi with usual methods (e.g. smoothing splines, regres-

sion splines, local polynomial smoothing, . . . ). On the contrary, no information is available

on the missing part Mi. For the rest of paper, we write ”O” and ”M” to denote a given

production of Oi and Mi. In addition, we denote the observed and missing parts of Xi by XO
i

and XM
i . As an example, we consider a data set from energy economics presenting demand

and prices of the German power market which is shown in Figure 1. The data consist of

partially observed price functions. The observation period corresponds to 241 working days

from March 15, 2012 to March 14, 2013. Price curves can be seen as partially observed curves,

as some prices cannot be observed with respect to some residual demand values. Here, the

price-demand functions are observed on different domains. This distinguishes our functional
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Figure 1: Daily electricity price curves in function of the residual demand.

data set from classical functional data sets, where all functions are observed on a common

domain. We consider a standardized domain where the standardization can be achieved as

follows: for i “ 1, . . . , 241, we consider a sequence from min1ďjďp tij to max1ďjďp tij with a

regular step pb´ aq{p, where a :“ min
1ďiď241

min
1ďjďp

tij and b :“ max
1ďiď241

max
1ďjďp

tij .

The objective of this paper is to predict a new value of the response Y given a new test

observation on the explanatory variable X once the partially observed curves X have been re-

constructed and the missing data Y have been imputed with the multiple imputation method.

More precisely, we want to obtain convergence rates for this prediction error, and we want to

analyze how these convergence rates depend on the convergence rates of the reconstruction

of the missing parts of the covariate and the convergence rates of the imputation error. We

show the difference between the deterministic regression imputation, the random regression

imputation and the multiple regression imputation, and its effect on the mean square error

of prediction.

In the following, we give in section 2 theoretical results of the partially observed covariate.

Then, in section 3, we study different methods of imputation and the prediction error when

the covariate is partially observed and some observations of the real response are affected with

missing data. Next, in section 4 we give theoretical results related to the prediction error. In

section 5, we present some simulation results to show the behavior of the methods in practice.

Section 6 is devoted to a real dataset application. Finally, all the proofs are postponed to

section 7.
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2 Reconstruction of partially observed covariate

In this work, we have to deal with the situation in which some of the real responses of a data

set generated from the functional linear model with scalar response are missing at random.

This situation has been only considered in Crambes and Henchiri (2019); Febrero-Bande et al.

(2019). Other recent works explore this context but in a nonparametric setting (Wang et al.,

2019; Rachdi et al., 2020) or in a functional partial linear regression setting (Ling et al.,

2019; Zhou and Peng, 2020) or while the response is not missing at random (Li et al., 2018).

More recently, Crambes et al. (2022) are interested in a more general case of missing data in

functional linear regression: when the covariate is partially observed and when the response

is affected by missing data. Following this latter paper (Crambes et al., 2022, Subsection 2.1

and Subsection 2.2), pηn can be calculated using the curve reconstruction method of Kneip

and Liebl (2020, Section 2). We give here some essential elements for our work: we consider

a reconstruction problem relating the missing part of the curves to the observed part, writing

XM
i psq “ LpXO

i ptqq `Zipsq,

for all t P O and s P M , where L : L2pOq Ñ L2pMq is a linear reconstruction operator and

Zi P L2pMq is the reconstruction error. Then, the optimal linear reconstruction operator,

minimizing the following expected risk

E
´

`

XM
i puq ´ LpX

O
i qpuq

˘2
¯

, for all u PM,

is given by L pXO
i qpuq. This operator is estimated in Kneip and Liebl (2020, Section 2)

by xLknpX
O
i q, where the truncation parameter kn is a positive integer that can be fixed

automatically with a grid search. Note that the data structure implies that we are faced

with two simultaneous estimation problems. One is efficient estimation of L pXO
i qpuq for

u PM , the other one is the best possible estimation of the function XO
i ptq for t P O observed

at p discretization points ppWi1, ti1q, . . . , pWip, tipqq with Wij “ XO
i ptijq for i “ 1, . . . , n and

j “ 1, . . . , p, where tij P O. In order to estimate the curve XO
i and the covariance function

γsptq “ CovpXM
i psq, X

O
i ptqq a nonparametric curve estimation by local polynomials smoothers

is used. Let κ1 be a kernel and hX be a bandwidth of the local linear smoothers of the curve

XO
i . Moreover, let κ2 be a bivariate kernel and hγ be a bandwidth of the local linear smoothers

of the covariance function γs.

The goal is to rebuild a reconstruction function that allows us to recover the full functions

from their partial observations. Coming back to the introducing example, Figure 2 shows the

reconstructed curves with the method from Kneip and Liebl (2020).

In the following, we consider the whole sample rDn fi

!

pX‹1 , δ
rY s
1 , Y1q, . . . , pX

‹
n, δ

rY s
n , Ynq

)

,
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Figure 2: Reconstructed daily electricity price curves in function of the residual demand.

with possibly reconstructed explanatory curves

X‹i ptq “

$

&

%

XO
i ptq if t P O,

xLknpX
O
i qptq if t PM.

(2.1)

Once the curves are reconstructed, we complete missing values in the response with de-

terministic and random imputation.

3 Multiple regression imputation

We may classify regression imputation methods into two classes : deterministic (or simple)

and random. Deterministic regression method yields to a fixed imputed value given the

observed sample if the imputation process were repeated as opposed to random methods that

do not necessarily yield to the same imputed value. The deterministic method strengthens

the relationships in the data and may lead to imputations which seem to be perfect for the

model generated from the observed data. However, once the imputation is done, analyses

then typically proceed as if the imputed values were the truth. This leads to overly optimistic

measures of uncertainty and the potential for substantial bias (Buuren, 2018). To deal with

this problem, we consider the random regression imputation that can be seen as a deterministic

regression imputation with a random noise ε‹ (Haziza, 2009, Subsection 2.2). This is a

powerful concept, which also builds the basis of many modern missing values imputation

approaches, as it takes into account the inherent uncertainty about missing values. The

random noise, ε‹, is drawn from the observed standardized residuals observed of the prediction

errors.
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In the following, we are interested in multiple imputation. This method consists in re-

peating q times the random regression imputation with q ě 2. Multiple imputation creates

multiple predictions for each missing value, the corresponding statistical analysis takes into

account the uncertainty in the imputations and hence, yields to a more reliable standard

error. In simple terms, if there is less information in the observed data regarding the missing

values, the imputations will be more variable, leading to higher standard errors in the analy-

sis. However, if the observed data allow to predict the missing values, the imputations will be

more consistent across the multiple imputed data sets, resulting in smaller and more reliable

standard errors (Greenland and Finkle, 1995). Finally, we will predict a new value under the

functional linear model as the mean of all the predictive values.

3.1 Deterministic regression imputation

In this section, we follow the same steps as in Crambes et al. (2022). Using the exponent

notation ”obs” to make reference to the units for which the response is observed, we define

the covariance operator with the reconstructed curves (2.1) as follows

pΓobsn,rec “
1

n´m
rY s
n

n
ÿ

i“1

xX‹i , .yδ
rY s
i X‹i .

Let pΠobs
kn,rec

be the projection operator onto the subspace Spanppφobs1,rec, . . . ,
pφobskn,recq where pφobs1,rec, . . . ,

pφobskn,rec
are the kn first eigenfunctions of the covariance operator pΓobsn,rec. With analogous notations,
pλobs1,rec, . . . ,

pλobskn,rec represent the kn first eigenvalues of pΓobsn,rec.

The functional principal component regression estimator rηn of η is given by

rηn fi argmin
rη0

´

r`n

´

η0 | rDn

¯¯

,

where the minimization is taken over

"

η0 | η0pX
‹q “ α0 `

ż

I
θ0ptqX

‹ptqdt : α0 P R, θ0 P Span
´

pφobs1,rec, . . . ,
pφobskn,rec

¯

*

,

and

r`npη0 | rDnq fi
1

n´m
rY s
n

n
ÿ

i“1

δ
rY s
i pYi ´ η0pX

‹
i qq

2 .

Equivalently, the minimization can be taken over pα0, θ0q to obtain estimates for both the

intercept and slope, for imputation, denoted by rα and rθ such that

rα “ Y obs “
1

n´m
rY s
n

n
ÿ

i“1

δ
rY s
i Yi, (3.1)

and

8



rθ “
kn
ÿ

j“1

rsj pφ
obs
j,rec, with rsj “

1

pn´m
rY s
n qpλobsj,rec

n
ÿ

i“1

xX‹i ,
pφobsj,recyδ

rY s
i Yi. (3.2)

For i “ 1, . . . , n such that δ
rY s
i “ 1, let pYi be the predicted value of Yi given by

pYi fi rα`

ż

I

rθptqX‹i ptqdt. (3.3)

Considering a missing value on the response, say Y`, such that δ
rY s
` “ 0, we define the

imputed value Y`,imp by

Y`,imp “ rηnpX
‹
` q fi rα`

kn
ÿ

j“1

rsjxX
‹
` ,

pφobsj,recy.

Finally, we obtain the complete sample pX‹i , Y
‹
i q for i “ 1, . . . , n, with

Y ‹i “ δ
rY s
i Yi `

´

1´ δ
rY s
i

¯

Yi,imp. (3.4)

The imputation accuracy is measured by the excess risk

E prηnqpX`q “ E‹
´

rα` xrθ,X‹` y ´ α´ xθ,X
‹
` y

¯2
,

where E‹ stands for the expectation with respect to X`.

3.2 Random regression imputation

We define the missing value Y`

rY` “ qηnpX
‹
` q fi Y`,imp ` ε

‹
` , (3.5)

where ε‹` is drawn in the set

#

ei | ei “ rei ´ e, i “ 1, . . . , n, δ
rY s
i “ 1

+

, (3.6)

using (3.3) and (3.4), we have

rei “ rσ´1
´

Y ‹i ´
pYi

¯

,

rσ “
1

n´m
rY s
n

n
ÿ

i“1

δ
rY s
i

´

Y ‹i ´
pYi

¯2
,

and

e “
1

n´m
rY s
n

n
ÿ

i“1

δ
rY s
i rei.
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This method is nonparametric as no distribution is assumed for the distribution of the

standardized residuals observed ei’s.

Finally, we obtain the complete sample pX‹i ,
qY ‹i q for i “ 1, . . . , n, with

qY ‹i “ δ
rY s
i Yi `

´

1´ δ
rY s
i

¯

rYi.

Here, the imputation accuracy is measured by the excess risk

E pqηnqpX`q “ E‹
´

rα` xrθ,X‹` y ` ε
‹
` ´ α´ xθ,X

‹
` y

¯2
.

3.3 Multiple regression imputation

Let i be an index for the observed cases and ` be an index for the incomplete cases. The

multiple imputation algorithm is sketched as follows:

Algorithm 1 The multiple imputation algorithm

Step 1. Estimating parameters rα and rθ from the functional linear model using

complete sample pX‹i , Yi, δ
rY s
i “ 1q, for i “ 1, . . . , n, as in (3.1) and (3.2).

Step 2. Drawing ε
‹pwq
` from the set of

!

ei | ei “ rei´ e, i “ 1, . . . , n, δ
rY s
i “ 1

)

, as in (3.6), for

` P rDm, where rDm is the set of missing responses of size m
rY s
n .

Step 3. Drawing the imputed values of missing data, as in (3.5), from

rY
pwq
` “ rα ` ă rθ,X‹` ą ` ε

‹pwq
` ,

for ` P rDm.

Step 4. Repeat Steps 2 to 3 independently q times to create multiple sets of imputations

(w “ 1, ..., q).

Finally, we obtain the multiple sets of complete data pX‹i , Y
‹pwq
i q, for w “ 1, . . . , q, with

Y
‹pwq
i “ δ

rY s
i Yi `

´

1´ δ
rY s
i

¯

rY
pwq
i .

Here, the imputation accuracy is measured by the excess risk

E p (η nqpX`q “ E‹
˜

1

q

q
ÿ

w“1

`

rα ` ă rθ,X‹` ą ` ε
‹pwq
`

˘

´ α´ xθ,X‹` y

¸2

.

3.4 Prediction

Once the whole database has been reconstructed, we obtain estimates for both the inter-

cept and slope, denoted by ppα‹, pθ‹q and pqα‹, qθ‹q respectively after deterministic regression

imputation and after random regression imputation such that

pα‹ “
1

n

n
ÿ

i“1

Y ‹i ,

10



pθ‹ “
kn
ÿ

j“1

ps‹j
pφ‹j,rec, with ps‹j “

1

npλ‹j,rec

n
ÿ

i“1

xX‹i ,
pφ‹j,recyY

‹
i , (3.7)

qα‹ “
1

n

n
ÿ

i“1

qY ‹i ,

qθ‹ “
kn
ÿ

j“1

qs‹j
pφ‹j,rec, with qs‹j “

1

npλ‹j,rec

n
ÿ

i“1

xX‹i ,
pφ‹j,recy

qY ‹i , (3.8)

where pφ‹1,rec, . . . ,
pφ‹kn,rec and pλ‹1,rec, . . . ,

pλ‹kn,rec represent respectively the kn first eigenfunctions

and eigenvalues of the covariance operator pΓ‹n,rec “
1
n

řn
i“1xX

‹
i , .yX

‹
i .

In multiple regression imputation setting, for w “ 1, . . . , q, given either the observed values

or the random imputations Y
‹pwq
1 , . . . , Y

‹pwq
n , we estimate the parameters α and θ in model

(1.1) with

pαpwq “
1

n

n
ÿ

i“1

Y
‹pwq
i

and

pθpwq “
1

n

n
ÿ

i“1

kn
ÿ

j“1

xX‹i ,
pφ‹j,recyY

‹pwq
i

pλ‹j,rec

pφ‹j,rec “
kn
ÿ

j“1

ps
pwq
j

pφ‹j,rec, (3.9)

with

ps
pwq
j “

1

npλ‹j,rec

n
ÿ

i“1

xX‹i ,
pφ‹j,recyY

‹pwq
i .

For a new curve Xnew, we predict the response value as follows

pYnew “
1

q

q
ÿ

w“1

pY ‹pwqnew ,

where

pY ‹pwqnew “ pαpwq ` xpθpwq, X‹newy.

An asymptotic behavior of the prediction error is given in Crambes et al. (2022) when

the missing parts of the covariate are reconstructed and the missing values on the response

are imputed by deterministic regression imputation. In the next section, we will study the

convergence rate of this prediction error with multiple regression imputation.
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4 Theoretical results

4.1 Assumptions

In this subsection, we give the assumptions needed for our theoretical results. Some assump-

tions are used in Kneip and Liebl (2020) and Crambes et al. (2022) in order to control the

curve reconstruction of the covariate.

(A.1) Let npÑ 8 when nÑ 8 and p “ ppnq. We assume p “ nη1 with 0 ă η1 ă 8 in the

following.

(A.2) For any subinterval O Ď I , we assume that the eigenvalues λ1 ą λ2 ą . . . ą 0 have

multiplicity one. Moreover, we assume that there exist aO ą 1 and 0 ă cO ă 8 such

that (i) λOk ´λ
O
k`1 ě cOk

´aO´1, (ii) λOk “ Opk´aOq, (iii) 1{λOk “ OpkaOq as k Ñ8.

(A.3) For any subinterval O Ď I , we assume that there exists 0 ă DO ă 8 such that the

eigenfunctions satisfy suptPI supkě1

›

›

›

rφOk ptq
›

›

›
ď DO, where rφOk psq “ xφ

O
k , γsy{λ

O
k .

(A.4) The bandwidth hX satisfies hX Ñ 0 and pphXq Ñ 8 as p Ñ 8. For instance, we

assume that hX “ 1
nη2 with 0 ă η2 ă η1. The bandwidth hγ satisfies hγ Ñ 0 and

pnpp2 ´ pqhγq Ñ 8 as npp2 ´ pq Ñ 8. For example, we can take hγ “
1
nη3 with

0 ă η3 ă 2η1 ` 1.

(A.5) Let κ1 and κ2 be nonnegative, second order univariate and bivariate kernel functions

with support r´1, 1s. For example, we can use univariate and bivariate Epanechnikov

kernel functions with compact support r´1, 1s, namely κ1pxq “
3
4p1´ x

2q1r´1,1spxq and

κ2px, yq “
9
16p1´ x

2qp1´ y2q1r´1,1spxq1r´1,1spyq.

(A.6) The random variables X and Y are almost surely bounded, respectively in L2pI q and

R.

Assumption (A.1) is mild and can be satisfied even if the number of observation points

p does not go fast to infinity. Assumptions (A.2) and (A.3), related to eigenvalues and

eigenfunctions of the covariance operator of X, are given in Kneip and Liebl (2020) in order

to control the curve reconstruction for the covariate. In particular, a polynomial decrease of

the eigenvalues is required, allowing a large class of eigenvalues for the covariance operator of

X. Assumptions (A.4) and (A.5) are classic in the context of local polynomials smoothers.

For Assumption (A.6), we can find in practice a large enough interval such that it is satisfied.

4.2 Asymptotic result

To start this subsection, we give the main result from Crambes et al. (2022) for the prediction

error when the missing parts of the covariate are reconstructed and the completion of the

missing data in the response is done by deterministic imputation. Let Ynew be the predicted

value of the response given a new observation Xnew of the covariate.
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Proposition 4.1. Under assumptions (A.1)-(A.6), and kn „ p1{paO`2q and p „ nη1 with

η1 ď 1{2, the prediction error, based on the deterministic regression imputation, is

E
´

pα` xpθ,X‹newy ´ α´ xθ,X
‹
newy

¯2
“ Op

˜

n´η1paO´1q{p2paO`2qq `
nη1{paO`2q

n´m
rY s
n

¸

.

In the particular case where η1 “ 1{2, the first term in the convergence rate is Op

`

n´paO´1q{p4paO`2qq
˘

.

This result shows that the prediction error rate with the deterministic regression imputa-

tion in the response is subordinate to the reconstruction error of the covariate. We now give

our main result.

Theorem 4.2. Under assumptions (A.1)-(A.6), if we additionally take kn „ p1{paO`2q and

p „ nη1 with η1 ď 1{2, as well as m
rY s
n “ O

`

n1´η1paO`3q{4paO`2q
˘

, the prediction error, based

on the multiple regression imputation, is

E
´

pYnew ´ α´ xθ,X
‹
newy

¯2
“ Op

˜

n´η1paO´1q{p2paO`2qq

q
`

nη1{paO`2q

qpn´m
rY s
n q

¸

.

This result, giving the convergence rate of the prediction error after q random imputations,

is asymptotically comparable to the convergence rate obtained in Proposition 4.1 in the case

of a deterministic regression imputation. We let the value of q appear in the convergence rate

to highlight the fact that the constant when the convergence rate should be better in the case

of several random imputations instead of a single deterministic one.

Remark 4.3. Theoretical results are generally obtained under assumptions concerning the

rate of convergence of the integer kn. In practice, this integer is selected by minimizing a

certain empirical criterion. We chose the Generalized Cross Validation (GCV) procedure,

known to be computationally fast. The GCV criterion is given below for imputation

GCVpknq “

pn´m
rY s
n q

n
ÿ

i“1

´

rα` xrθ,X‹i y ´ α´ xθ,X
‹
i y

¯2
δ
rY s
i

´

pn´m
rY s
n q ´ kn

¯2 ,

and the analogous criterion for prediction

GCVpknq “

n
n
ÿ

i“1

´

pαpwq ` xpθpwq, X‹i y ´ α´ xθ,Xiy

¯2

´

n´ kn

¯2 , for w “ 1, . . . , q.
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5 Simulations

5.1 Methodology

We generated the functional covariate in a similar way to that adopted in Hall and Horowitz

(2007). More specifically, the functional covariates were identically and independently gener-

ated as:

Xiptq “
150
ÿ

j“1

ζij%jφjptq, i “ 1, . . . , N,

where φ1 ” 1, φj`1 “
?

2 cospjπtq, for j ě 2, the %j ’s are defined by %j “ p´1qj`1pjq´2

and the ζj ’s are independently sampled from the uniform distribution on r´
?

3,
?

3s. The

covariance function writes

covpXptq, Xpsqq “
150
ÿ

j“1

2

j4
cospjπtq cospjπsq.

These covariates are sampled at p “ 100 equally spaced points between 0 and 1. The responses

are generated from (1.1), where α “ 3 and θ defined, for all t P r0, 1s, by

θptq “
50
ÿ

j“1

bjφjptq,

where b1 “ 0.3 and bj “ 4p´1qj`1j´2 for all j ą 1. The random errors, εi’s, are generated

as εi „ Np0, σ2εq with σ2ε “ 0.2. In each simulation replicate we randomly generate n “ 4
5N

independent copies of pXi, Yiq for training and n1 “
1
5N copies for testing, with N “ 1400. To

better assess prediction performance of model, we repeat the simulation procedure S “ 250

times.

To deal with partially observed curves for the covariate, we adopted the missing data

simulation scenario from Crambes et al. (2022) such that

‚ 70% (respectively 55%) of the curves are fully observed on r0, 1s,

‚ for the 30% (respectively 45%) of partially observed curves, the curveXi is fully observed

on rAi, Bis Ă r0, 1s with Ai drawn with uniform law on the interval r0, As and Bi “

Ai `B, with A “ 3{8 and B “ 6{8.

We simulate the number of missing data on the response Y and the indicator δrY s by the

logistic functional regression. The variable δ follows the Bernoulli law with parameter ppXq

such that

log
´ ppXq

1´ ppXq

¯

“
〈
c,X

〉
` ct,

where c “ sinp2πtq for all t P r0, 1s and ct is a constant allowing to take different levels of

missing data. For exemple ct “ 1 for around 26.903% of missing data, ct “ 0.2 for around

44.941% of missing data and ct “ ´0.2 for around 54.793% of missing data.
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We estimate the parameters of the model and we obtain the predicted values of the

response with imputation methods. Notice that, we use a smoothed version of the different

estimators (1.2), (3.2), (3.7), (3.8) and (3.9) based on the Smooth Principal Components

Regression (SPCR). Let us remark that, with appropriate conditions, all the theoretical results

obtained in our work will also apply when using the SPCR estimation. We use a regression

spline basis with 20 knots, a degree 3 and the order of derivation 2. The choice of these

parameters is not crucial in our study, especially in comparison with the choice of the number

of principal components. The choice of this optimal tuning parameter is made on a growing

sequence of dimension kn “ 2, . . . , 22.

5.2 Criteria

Our objective is to predict the response in the test samples. We use two criteria.

‚ Criterion 1: the average mean square prediction error

MSPE “
1

S

S
ÿ

j“1

MSPEpjq,

where MSPEpjq “ 1
n1

řn`n1
`“n`1

´

pα` xpθ,X‹,j` y ´ α´ xθ,X
‹,j
` y

¯2
is the mean square pre-

diction error computed on the jth simulated sample, j P t1, . . . ,Su. The criterionMSPE

tends to zero when the sample size tends to infinity.

‚ Criterion 2: the average ratio respect to truth, based on a deterministic regression

imputation,

RT “
1

S

S
ÿ

j“1

RT pjq,

where RT pjq “
řn`n1
`“n`1ppα ` xpθ,Xj

` y ´ Y j` q
2

řn`n1
`“n`1pε

j
`q

2 is the ratio between the mean square predic-

tion error and the mean square prediction error when the true parameters are known,

computed on the jth simulated sample. The criterion RT tends to one when the sample

size tends to infinity.

5.3 Results

Tables (1) and (2) presents the criteria for the complete dataset (FULL) and the imputation

methods presented in this paper, with reconstructed curves :

• DETER IM : Deterministic regression imputation, as described in subsection 3.1.

• RAND IM : Random regression imputation, as described in subsection 3.2.

15



Table 1: Mean and standard deviation errors for the predicted values based on 250 simulation repli-

cations with different levels of missing data and a sample size N “ 1400. Partially observed curves

are fully observed on r3{8, 6{8s and the error ε is a Gaussian noise: ε „ Np0, σ2
εq with σε “ 0.2.

Rate of missing 26.903 26.877 44.941 45.218 54.793 55.109

data in Y in % (1.298) (1.409) (1.563) (1.515) (1.337) (1.460)

Rate of missing 30.047 44.952 29.995 45.030 30.086 45.164

data in X in % (1.112) (1.230) (1.238) (1.280) (1.216) (1.317)

(FULL) MSPE ˆ 103 17.602 16.785 18.145 16.960 19.150 18.055

(16.058) (15.640) (15.990) (13.681) (16.149) (15.709)

RT ˆ 10 14.421 14.231 14.639 14.144 14.733 14.580

(4.337) (3.887) (4.134) (3.405) (4.042) (4.096)

(DETER IM) MSPE ˆ 103 30.786 29.748 51.942 48.223 66.907 70.525

(28.722) (27.327) (47.172) (44.261) (57.530) (67.268)

RT ˆ 10 17.751 17.540 23.320 21.925 26.695 27.758

(7.624) (6.914) (12.195) (10.902) (14.482) (16.921)

(RAND IM) MSPE ˆ 103 45.463 45.833 67.350 65.721 85.999 90.581

(36.723) (39.229) (50.395) (49.144) (66.256) (73.653)

RT ˆ 10 2.138 2.160 2.716 2.623 3.139 3.286

(0.959) (1.018) (1.304) (1.219) (1.664) (1.878)

(RAND NORM IM) MSPE ˆ 103 30.732 29.927 52.298 48.412 67.055 70.693

(28.284) (27.798) (47.330) (44.427) (58.103) (67.278)

RT ˆ 10 17.735 17.589 23.411 21.981 26.721 27.799

(7.505) (7.024) (12.237) (10.972) (14.605) (16.941)

(MUL IM (q=5)) MSPE ˆ 103 34.405 31.449 55.165 52.568 69.329 74.675

(29.976) (28.133) (48.511) (44.218) (56.368) (69.281)

RT ˆ 10 18.663 17.978 24.166 23.058 27.310 28.763

(7.875) (7.147) (12.561) (10.911) (14.194) (17.467)

(MUL NORM IM (q=5)) MSPE ˆ 103 30.819 29.698 51.988 48.054 66.978 70.689

(28.606) (27.233) (47.249) (44.095) (57.747) (67.771)

RT ˆ 10 17.756 17.526 23.332 21.885 26.713 27.797

(7.603) (6.895) (12.206) (10.829) (14.550) (17.032)

(MUL IM (q=10)) MSPE ˆ 103 30.998 30.255 53.437 49.395 68.639 73.111

(28.554) (27.931) (47.390) (44.601) (56.621) (67.923)

RT ˆ 10 17.807 17.667 23.692 22.224 27.125 28.386

(7.640) (7.053) (12.223) (10.934) (14.196) (17.100)

(MUL NORM IM (q=10)) MSPE ˆ 103 30.680 29.627 51.890 48.178 66.629 70.699

(28.664) (27.221) (47.210) (44.347) (57.206) (67.557)

RT ˆ 10 17.721 17.510 23.304 21.915 26.620 27.801

(7.601) (6.891) (12.200) (10.926) (14.392) (16.982)
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Table 2: Mean and standard deviation errors for the predicted values based on 250 simulation repli-

cations with different levels of missing data and a sample size N “ 1400. Partially observed curves

are fully observed on r3{8, 6{8s and the error ε is a Gaussian noise: ε „ Np0, σ2
εq with σε “ 0.2.

(MUL IM (q=30)) MSPE ˆ 103 30.326 29.207 51.259 48.253 66.384 71.054

(28.978) (26.953) (47.133) (44.117) (56.415) (67.691)

RT ˆ 10 17.627 17.419 23.149 21.919 26.547 27.884

(7.713) (6.837) (12.183) (10.857) (14.189) (17.048)

(MUL NORM IM (q=30)) MSPE ˆ 103 30.695 29.731 51.951 48.029 66.812 70.553

(28.701) (27.490) (47.299) (44.102) (57.459) (67.418)

RT ˆ 10 17.726 17.538 23.324 21.876 26.669 27.765

(7.619) (6.954) (12.226) (10.867) (14.467) (16.957)

(MUL IM (q=100)) MSPE ˆ 103 30.114 29.130 51.605 47.395 66.611 70.374

(28.662) (27.545) (47.355) (43.987) (57.918) (67.553)

RT ˆ 10 17.574 17.392 23.225 21.719 26.620 27.730

(7.614) (6.953) (12.234) (10.835) (14.573) (16.988)

(MUL NORM IM(q=100)) MSPE ˆ 103 30.700 29.693 51.913 48.110 66.742 70.507

(28.663) (27.370) (47.154) (44.196) (57.487) (67.309)

RT ˆ 10 17.727 17.527 23.314 21.897 26.652 27.755

(7.608) (6.924) (12.192) (10.884) (14.474) (16.929)

(MEAN IM) MSPE ˆ 103 30.913 30.746 54.404 53.923 74.127 74.266

(24.018) (23.151) (37.310) (37.364) (44.807) (45.275)

RT ˆ 10 17.755 17.820 23.961 23.374 28.672 28.768

(6.199) (6.153) (9.777) (9.314) (11.481) (11.631)

(RANDO IM) MSPE ˆ 103 30.870 30.909 54.121 54.127 73.924 73.478

(24.108) (23.192) (37.878) (37.973) (45.867) (44.904)

RT ˆ 10 17.740 17.852 23.885 23.433 28.622 28.568

(6.214) (6.312) (9.897) (9.480) (11.771) (11.563)

(ZERO IM) MSPE ˆ 102 72.025 71.648 194.283 195.935 283.638 287.324

(8.039) (7.951) (14.874) (14.811) (15.420) (17.570)

RT ˆ 10 191.134 190.669 501.892 501.050 728.003 736.894

(24.954) (28.526) (55.713) (58.105) (71.678) (70.364)

(REM Y) MSPE ˆ 103 40.047 37.844 78.278 72.577 94.632 100.989

(34.437) (32.908) (58.280) (61.814) (71.559) (81.000)

RT ˆ 10 20.052 19.568 29.985 28.085 33.687 35.381

(8.923) (8.399) (15.204) (15.412) (18.126) (20.334)

(REM X,Y) MSPE ˆ 103 48.448 60.808 91.500 90.137 117.749 135.675

(47.901) (61.016) (74.047) (81.080) (94.352) (126.053)

RT ˆ 10 22.284 25.280 33.257 32.779 39.728 44.123

(13.086) (15.150) (18.983) (20.142) (24.442) (31.855)
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• RAND NORM IM : Parametric approach of random regression imputation, where

the error term ε‹ is drawn from the distribution of the residuals, here assuming the

residuals are normally distributed, thus ε‹ „ Np0, pσ2ε‹q, with pσ2ε‹ being estimated from

the residuals of the formerly fitted functional linear model. This parametric method

is easy to implement. It seems natural to test the performance of this method on

simulations.

• MUL IM : Multiple regression imputation with different values of q (q “ 5, 10, 30, 100),

as described in subsection 3.3.

• MUL NORM IM : Parametric approach of multiple regression imputation with dif-

ferent values of q (q “ 5, 10, 30, 100). Here, the error term ε‹ is drawn as described

above, thus ε‹ „ Np0, pσ2ε‹q.

• MEAN IM : Mean imputation,

• RANDO IM : Random imputation (imputation by a random response drawn in the

set of observed values),

• ZERO IM : Zero imputation (imputation by zero).

Moreover, we propose two other cases :

• REM Y : Reconstruct X and remove all the missing values in Y from the sample,

• REM X,Y : Either a partially observed curve or a missing response are removed from

the sample.

As it can be expected, the errors increase as the percentage of missing values in X and

Y increase. Moreover, when the number of iterations q increases, we recover the MSPE and

RT of the deterministic imputation (DETER IM). Furthermore, when q is large enough

(q “ 30 and q “ 100), our method (MUL IM) behaves better than the other imputation

methods, specially where we delete the missing values (REM Y and REM X,Y). Compar-

ing (MUL IM) and (MUL NORM IM), we notice that (MUL NORM IM), behaves

better for small values of q while (MUL IM) behaves better for larger values of q.

6 Real dataset study

Our experimental study is based on two steps. In the first treatment step, we do not observe

the price-demand functions directly but we have to estimate each price-demand function by

a local polynomial smoother estimator. Here, we choose the Gaussian kernel and we consider

a cross validation criterion to select the optimal tuning bandwidth parameter from a grid

of parameter values in the interval [1070,35000]. In the second step, we reconstructed the

missing parts of the differents curves. Now, Xi, i “ 1, . . . , 241, is the daily electricity price
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curve on day i (function of the residual demand), and Yi is the value of electricity production

(in MWh) on day i. The production data come from https://www.agora-energiewende.de1.

Only a graphic (with numerical values marked at the observation points) was available on this

website to collect a data (neither a table nor an Excel file). It can be possible to use a software

to get numerical values from a graphic (see https://automeris.io2). However, this software

is not completely reliable and some numerical values, being not possible, can be considered

as missing data for the response variable. In our case, the percentage of missing data is 13.26%.

We split the initial sample into a learning sample (the index set is denoted IL) with size

181 and a test sample with size 60 (the index set is denoted IT ). Firstly, we reconstructed the

missing parts of the differents curves and, on the learning sample, we imputed the missing

values on the response. We tested the residuals normality, the shapiro test gives a p-value

equal to 0.905, hence the normality of the residuals cannot be rejected. Then, on the test

sample, we computed the prediction values for the response. In order to evaluate the quality

of the prediction, we calculated, for q “ 100, the mean squared prediction error MSPE “

1
60

ř

iPIT
pYi ´ pYiq

2 “ 40.440 and the mean absolute prediction error MAPE “ 1
60

ř

iPIT
|Yi ´

pYi| “ 5.349. Table (3) gives the MSPE and the MAPE for different imputation methods.

Comparing (MUL IM) and (MUL NORM IM), we notice that (MUL NORM IM)

behaves better for larger values of q, even if the differences are sometimes slight, because the

normality of the residuals. Notice finally that, in this situation, the method (REM X,Y)

would not be possible since all the curves are partially observed and this would cause removing

all individuals in the sample.

Missing values are imputed directly from the regression model, reducing the prediction

error with respect to the missing rate but not taking into account the uncertainty of missing

values or unseen data. Multiple regression imputation takes this into account by adding a

random error term from the regression model residual distribution. This does not reduce

the mean square prediction error but when the number of iteration increases, we can recover

that of the deterministic regression imputation. Furthermore, multiple imputations are more

realistic depending on the quality of the training data set the regression model was trained

under.

1https://www.agora-energiewende.de/en/service/recent-electricity-data/chart/power generation/15.03.2012/14.03.2013/
2https://automeris.io/WebPlotDigitizer/

19

https://www.agora-energiewende.de/en/service/recent-electricity-data/chart/power_generation/15.03.2012/14.03.2013/
https://automeris.io/WebPlotDigitizer/


Table 3: The mean square prediction error and the mean absolute prediction error with

standard deviation errors for deterministic, random and multiple imputation methods.

Imputation methods MSPE MAPE

DETER IM 40.443 p45.615q 5.354 p3.461q

RAND IM 40.468 p45.662q 5.356 p3.462q

RAND NORM IM 40.533 p46.097q 5.363 p3.463q

MUL IM (q “ 5) 40.452 p45.613q 5.355 p3.461q

MUL NORM IM (q “ 5) 40.479 p45.577q 5.357 p3.460q

MUL IM (q “ 50) 40.448 p45.624q 5.354 p3.461q

MUL NORM IM (q “ 50) 40.269 p45.474q 5.345 p3.450q

MUL IM (q “ 100) 40.440 p45.625q 5.349 p3.461q

MUL NORM IM (q “ 100) 40.211 p45.363q 5.343 p3.443q

REM Y 40.543 p45.947q 5.354 p3.475q

7 Proof of Theorem 4.2

Considering the decomposition of pθpwq, we write

pθpwq “
1

n

n
ÿ

i“1
δ
rY s
i “1

kn
ÿ

j“1

xX‹i ,
pφ‹j,recyYi

pλ‹j,rec

pφ‹j,rec

`
1

n

n
ÿ

i“1
δ
rY s
i “0

kn
ÿ

j“1

xX‹i ,
pφ‹j,recy

´

Yi,imp ` ε
‹pwq
i

¯

pλ‹j,rec

pφ‹j,rec

“
1

n

n
ÿ

i“1

kn
ÿ

j“1

xX‹i ,
pφ‹j,recyY

‹
i

pλ‹j,rec

pφ‹j,rec

`
1

n

n
ÿ

i“1
δ
rY s
i “0

kn
ÿ

j“1

xX‹i ,
pφ‹j,recy

´

Yi,imp ` ε
‹pwq
i

¯

pλ‹j,rec

pφ‹j,rec,

hence

pY ‹pwqnew ´ α´ xθ,X‹newy “ pαpwq `
1

n

n
ÿ

i“1

kn
ÿ

j“1

xX‹i ,
pφ‹j,recyY

‹
i

pλ‹j,rec
xpφ‹j,rec, X

‹
newy ´ α´ xθ,X

‹
newy

`
1

n

n
ÿ

i“1
δ
rY s
i “0

kn
ÿ

j“1

xX‹i ,
pφ‹j,recy

´

Yi,imp ` ε
‹pwq
i

¯

pλ‹j,rec
xpφ‹j,rec, X

‹
newy.
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We obtain from Crambes et al. (2022) the convergence rate for the first term of the

decomposition

E

˜

pαpwq `
1

n

n
ÿ

i“1

kn
ÿ

j“1

xX‹i ,
xφ‹j,recyY

‹
i

pλ‹j,rec
xpφ‹j,rec, X

‹
newy ´ α´ xθ,X

‹
newy

¸2

“ Op

˜

n´η1paO´1q{p2paO`2qq `
nη1{paO`2q

n´m
rY s
n

¸

.

For the second term, we first use the boundedness of X and Y , which allows to bound

ε
‹pwq
i , hence

E

¨

˚

˚

˚

˝

1

n

n
ÿ

i“1
δ
rY s
i “0

kn
ÿ

j“1

xX‹i ,
pφ‹j,recy

´

Yi,imp ` ε
‹pwq
i

¯

pλ‹j,rec
xpφ‹j,rec, X

‹
newy

˛

‹

‹

‹

‚

2

“ Op

˜

pm
rY s
n q2k2n
n2

¸

.

As a consequence, with the assumptions

kn „ nη1{paO`2q and mrY sn “ O

´

n1´η1paO`3q{4paO`2q
¯

,

we get

E

¨

˚

˚

˚

˝

1

n

n
ÿ

i“1
δ
rY s
i “0

kn
ÿ

j“1

xX‹i ,
pφ‹j,recy

´

Yi,imp ` ε
‹pwq
i

¯

pλ‹j,rec
xpφ‹j,rec, X

‹
newy

˛

‹

‹

‹

‚

2

“ Op

´

n´η1paO´1q{p2paO`2qq
¯

,

and the second term in the decomposition of pY
‹pwq
new ´α´xθ,X‹newy is negligeable with respect

to the first one. As a result, we obtain

E
´

pY ‹pwqnew ´ α´ xθ,X‹newy
¯2
“ Op

˜

n´η1paO´1q{p2paO`2qq `
nη1{paO`2q

n´m
rY s
n

¸

.

Finally, the mean over q iterations of the random imputation gives

E
´

pYnew ´ α´ xθ,X
‹
newy

¯2
“

1

q2

q
ÿ

w“1

E
´

pY ‹pwqnew ´ α´ xθ,X‹newy
¯2

“ Op

˜

n´η1paO´1q{p2paO`2qq

q
`

nη1{paO`2q

qpn´m
rY s
n q

¸

.
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