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Introduction

Functional data analysis (FDA) can be seen as a important field of statistics that has reached a certain maturity. FDA methods have been applied quite broadly in medicine, science, business, engineering, . . . , while new theoretical and methodological developments regularly appear. For a more comprehensive treatment of FDA theory and methods, readers are referred to the classic monographs (Ramsay andSilverman, 2002, 2005;[START_REF] Ramsay | Functional Data Analysis with R and MATLAB[END_REF], recent monographs [START_REF] Hsing | Theoretical foundations of functional data analysis, with an introduction to linear operators[END_REF][START_REF] Srivastava | Functional and Shape Data Analysis[END_REF][START_REF] Kokoszka | Introduction to functional data analysis[END_REF] and review papers [START_REF] Morris | Functional regression[END_REF][START_REF] Wang | Review of functional data analysis[END_REF].

The functional linear model with scalar response in which a functional random variable is used to predict a real random variable has been the object of considerable attention in the literature. Several procedures have been proposed to the prediction and estimation problems under this model including, for example, functional principal component regression [START_REF] Febrero-Bande | Functional principal component regression and functional partial least-squares regression: An overview and a comparative study[END_REF].

This procedure has been considered by many authors [START_REF] Cardot | Spline estimators for the functional linear model[END_REF]; [START_REF] Hall | On properties of functional principal components analysis[END_REF]; [START_REF] Cai | Prediction in functional linear regression[END_REF]; [START_REF] Hall | Methodology and convergence rates for functional linear regression[END_REF] and [START_REF] Wang | Review of functional data analysis[END_REF]. Considering the functional linear regression methodology described in Ramsay and Silverman (2005, Chapter 10), we observe the sample D n fi tpX 1 , Y 1 q, . . . , pX n , Y n qu, where the X i 's are centered independent and identically distributed with the same law as a random function X taking values in the space L 2 pI q of square integrable functions defined on an interval I Ă R, and the real responses Y i 's are generated by the regression model

Y i " α `żI θptqX i ptqdt `εi , (1.1)
for all i " 1, . . . , n. Here, α is a constant corresponding to the intercept of the model, and θ is a square integrable function belonging to L 2 pI q, representing the slope function. It is supposed that the errors ε i 's are independent and identically distributed with finite variance and zero mean and independent from the explanatory variables X i 's.

The functional principal component regression methodology is based on spectral expansions of both the covariance operator of X and its estimator. We define the empirical cross covariance operator p ∆ n given by p ∆ n u " 1 n ř n i"1 xX i , uyY i for all u P L 2 pI q, the empirical covariance operator p Γ n given by p Γ n u " 1 n ř n i"1 xX i , uyX i for all u P L 2 pI q. Denoting p p φ j q j"1,...,kn the eigenfunctions associated to p Γ n corresponding to the k n highest eigenvalues p λ 1 ą . . . ą p λ kn ą 0 (where k n is an integer depending on n), we define the orthogonal projection operator p Π kn onto the subspace Spanp p φ 1 , . . . , p φ kn q by p Π kn u " ř kn j"1 x p φ j , uy p φ j for all u P L 2 pI q. Considering ηpXq fi α `żI θptqXptqdt,

we first estimate η based on a training sample D n . Let n be a functional data fit that measures how well η fits the data. Then, the functional principal component regression estimator p η n of η is given by p η n fi argmin η 0 p n pη 0 | D n qq , where the minimization is taken over " η 0 | η 0 pXq " α 0 `żI θ 0 ptqXptqdt : α 0 P R, θ 0 P Span ´p φ 1 , . . . , p φ kn ¯* .

The most common choice of the functional data fit is the mean square error

n pη 0 | D n q fi 1 n n ÿ i"1 pY i ´η0 pX i qq 2 .
In general, n is chosen such to be convex in η 0 and Ep n pη 0 qq in uniquely minimized by η.

Equivalently, the minimization can be taken over pα 0 , θ 0 q to obtain estimates for both the intercept and slope, denoted by p θ and p α , as follows p θ " kn ÿ j"1 p s j p φ j , with p s j " 1

n p λ j n ÿ i"1 xX i , p φ j yY i , (1.2) and p α " Y " 1 n ř n i"1 Y i .
In this work, we focus on the prediction problem. Let p η n be a prediction rule given by

p η n pX new q fi p α `żI p θptqX new ptqdt,
where X new is a copy of X independent of X 1 , . . . , X n . The prediction accuracy can be naturally measured by the excess risk

E pp η n qpX new q fi E ‹ pp η n pX new q ´ηpX new qq 2 " E ‹ ´p α `xp θ, X new y ´α ´xθ, X new y ¯2 ,
where E ‹ stands for the expectation with respect to X new .

Earlier works on functional data focused in large part on regular functional data where data are fully observed. This may not always be the case, and missing data appear in many situations, for example when the measuring device breaks down. Many methods for the imputation of missing values have been developed. They can be divided into two branches, single imputation and multiple imputation. Single imputation consists in creating a single imputed value to replace a missing value. This procedure does not reflect the uncertainty about the prediction of the missing values during the imputation process. Multiple imputation is a statistical technique designed to take advantage in imputing a missing data several times. Each missing value is replaced by two or more imputed values in order to represent the uncertainty of the value to be imputed. For a comprehensive review of missing data mechanism and imputation methods, we refer the readers to a non-exhaustive list of monographs giving an overview of this topic: [START_REF] Rubin | Multiple imputation for nonresponse in surveys[END_REF]; [START_REF] Graham | Missing data analysis and design[END_REF]; [START_REF] Little | Statistical analysis with missing data[END_REF]; [START_REF] He | Multiple imputation of missing data in practice: Basic theory and analysis strategies[END_REF].

In recent years, applications producing partially observed functional data have emerged. Sometimes each individual trajectory is collected only over individual-specific subintervals, densely or sparsely, within the whole domain of interest. Several recent works have begun addressing the estimation of covariance functions for short functional segments observed at sparse and irregular grid points, called functional snippets [START_REF] Lin | Mean and covariance estimation for functional snippets[END_REF][START_REF] Lin | Basis expansions for functional snippets[END_REF] or for fragmented functional data observed on small subintervals [START_REF] Delaigle | Estimating the covariance of fragmented and other related types of functional data[END_REF]. For densely observed partial data, existing studies have focused on estimating the unobserved part of curves [START_REF] Kneip | On the optimal reconstruction of partially observed functional data[END_REF][START_REF] Kraus | Ridge reconstruction of partially observed functional data is asymptotically optimal[END_REF], prediction [START_REF] Goldberg | Predicting the continuation of a function with applications to call center data[END_REF], classification [START_REF] Kraus | Classification of functional fragments by regularized linear classifiers with domain selection[END_REF][START_REF] Park | Robust probabilistic classification applicable to irregularly sampled functional data[END_REF], functional regression [START_REF] Gellar | Variable-Domain functional regression for modeling ICU Data[END_REF], and inferences [START_REF] Kraus | Inferential procedures for partially observed functional data[END_REF][START_REF] Park | Robust inference for partially observed functional response data[END_REF].

To go further, we describe two types of missing data mechanisms that will be the subject of our paper. The first one is related to the real response and the second one is related to the functional covariate. Concerning the missing data mechanism on the real response, we consider a dichotomous random variable δ rY s leading to the sample pδ rY s i q i"1,...,n such that δ

rY s i " 1 if the value Y i is available and δ rY s i " 0 if the value Y i is missing, for all i " 1, . . . , n.
We consider that the data in the response is missing at random (MAR): the fact that the value Y is missing does not depend on the response of the model, but can possibly depend on the covariate, that is,

Ppδ rY s " 1 | X, Y q " Ppδ rY s " 1 | Xq.
MAR assumption implies that the distribution of Y is the same for units such that δ rY s i " 1 (observed units) as for those such that δ rY s i " 0 (non-observed units), conditionally on X. As a consequence, the variable δ rY s (the fact that an observation is missing or not) is independent of the error of the model ε. In the following, the number of missing values among Y 1 , . . . , Y n is denoted

m rY s n " n ÿ i"1 1 ! δ rY s i "0
) .

Concerning the missing data mechanism on the functional covariate, we adopt the paradigm of partially observed functions as in [START_REF] Kneip | On the optimal reconstruction of partially observed functional data[END_REF] or [START_REF] Kraus | Components and completion of partially observed functional data[END_REF]. More precisely, for each curve X i , i " 1, . . . , n, we consider the observed part O i Ď I of X i and the missing part M i " I O i . The observed part O i refers to an interval (or several intervals) where the curve X i is observed at some measure points of O i . Based on the punctual observations, the whole curve can be reconstructed on O i with usual methods (e.g. smoothing splines, regression splines, local polynomial smoothing, . . . ). On the contrary, no information is available on the missing part M i . For the rest of paper, we write "O" and "M " to denote a given production of O i and M i . In addition, we denote the observed and missing parts of X i by X O i and X M i . As an example, we consider a data set from energy economics presenting demand and prices of the German power market which is shown in Figure 1. The data consist of partially observed price functions. The observation period corresponds to 241 working days from March 15, 2012 to March 14, 2013. Price curves can be seen as partially observed curves, as some prices cannot be observed with respect to some residual demand values. Here, the price-demand functions are observed on different domains. This distinguishes our functional data set from classical functional data sets, where all functions are observed on a common domain. We consider a standardized domain where the standardization can be achieved as follows: for i " 1, . . . , 241, we consider a sequence from min 1ďjďp t ij to max 1ďjďp t ij with a regular step pb ´aq{p, where a :" min

1ďiď241 min 1ďjďp t ij and b :" max 1ďiď241 max 1ďjďp t ij .
The objective of this paper is to predict a new value of the response Y given a new test observation on the explanatory variable X once the partially observed curves X have been reconstructed and the missing data Y have been imputed with the multiple imputation method. More precisely, we want to obtain convergence rates for this prediction error, and we want to analyze how these convergence rates depend on the convergence rates of the reconstruction of the missing parts of the covariate and the convergence rates of the imputation error. We show the difference between the deterministic regression imputation, the random regression imputation and the multiple regression imputation, and its effect on the mean square error of prediction.

In the following, we give in section 2 theoretical results of the partially observed covariate. Then, in section 3, we study different methods of imputation and the prediction error when the covariate is partially observed and some observations of the real response are affected with missing data. Next, in section 4 we give theoretical results related to the prediction error. In section 5, we present some simulation results to show the behavior of the methods in practice. Section 6 is devoted to a real dataset application. Finally, all the proofs are postponed to section 7.

Reconstruction of partially observed covariate

In this work, we have to deal with the situation in which some of the real responses of a data set generated from the functional linear model with scalar response are missing at random. This situation has been only considered in [START_REF] Crambes | Regression imputation in the functional linear model with missing values in the response[END_REF][START_REF] Febrero-Bande | Estimation, imputation and prediction for the functional linear model with scalar response with responses missing at random[END_REF]. Other recent works explore this context but in a nonparametric setting [START_REF] Wang | A nonparametric inverse probability weighted estimation for functional data with missing response data at random[END_REF][START_REF] Rachdi | kNN local linear regression for functional and missing data at random[END_REF] or in a functional partial linear regression setting [START_REF] Ling | Semi-functional partially linear regression model with responses missing at random[END_REF][START_REF] Zhou | Estimation for functional partial linear models with missing responses[END_REF] or while the response is not missing at random [START_REF] Li | Functional linear regression models for nonignorable missing scalar responses[END_REF]. More recently, [START_REF] Crambes | Functional linear model with partially observed covariate and missing values in the response[END_REF] are interested in a more general case of missing data in functional linear regression: when the covariate is partially observed and when the response is affected by missing data. Following this latter paper [START_REF] Crambes | Functional linear model with partially observed covariate and missing values in the response[END_REF], Subsection 2.1 and Subsection 2.2), p η n can be calculated using the curve reconstruction method of Kneip and Liebl (2020, Section 2). We give here some essential elements for our work: we consider a reconstruction problem relating the missing part of the curves to the observed part, writing

X M i psq " LpX O i ptqq `Zi psq,
for all t P O and s P M , where L : L 2 pOq Ñ L 2 pM q is a linear reconstruction operator and Z i P L 2 pM q is the reconstruction error. Then, the optimal linear reconstruction operator, minimizing the following expected risk

E ´`X M i puq ´LpX O i qpuq
˘2¯, for all u P M, is given by L pX O i qpuq. This operator is estimated in Kneip and Liebl (2020, Section 2) by x L kn pX O i q, where the truncation parameter k n is a positive integer that can be fixed automatically with a grid search. Note that the data structure implies that we are faced with two simultaneous estimation problems. One is efficient estimation of L pX O i qpuq for u P M , the other one is the best possible estimation of the function X O i ptq for t P O observed at p discretization points ppW i1 , t i1 q, . . . , pW ip , t ip qq with W ij " X O i pt ij q for i " 1, . . . , n and j " 1, . . . , p, where t ij P O. In order to estimate the curve X O i and the covariance function γ s ptq " CovpX M i psq, X O i ptqq a nonparametric curve estimation by local polynomials smoothers is used. Let κ 1 be a kernel and h X be a bandwidth of the local linear smoothers of the curve X O i . Moreover, let κ 2 be a bivariate kernel and h γ be a bandwidth of the local linear smoothers of the covariance function γ s .

The goal is to rebuild a reconstruction function that allows us to recover the full functions from their partial observations. Coming back to the introducing example, Figure 2 shows the reconstructed curves with the method from [START_REF] Kneip | On the optimal reconstruction of partially observed functional data[END_REF].

In the following, we consider the whole sample r with possibly reconstructed explanatory curves

D n fi ! pX ‹ 1 , δ rY s 1 , Y 1 q, . . . , pX ‹ n , δ rY s n , Y n q ) ,
X ‹ i ptq " $ & % X O i ptq if t P O, x L kn pX O i qptq if t P M.
(2.1)

Once the curves are reconstructed, we complete missing values in the response with deterministic and random imputation.

Multiple regression imputation

We may classify regression imputation methods into two classes : deterministic (or simple) and random. Deterministic regression method yields to a fixed imputed value given the observed sample if the imputation process were repeated as opposed to random methods that do not necessarily yield to the same imputed value. The deterministic method strengthens the relationships in the data and may lead to imputations which seem to be perfect for the model generated from the observed data. However, once the imputation is done, analyses then typically proceed as if the imputed values were the truth. This leads to overly optimistic measures of uncertainty and the potential for substantial bias [START_REF] Buuren | Flexible imputation of missing data[END_REF]. To deal with this problem, we consider the random regression imputation that can be seen as a deterministic regression imputation with a random noise ε ‹ (Haziza, 2009, Subsection 2.2). This is a powerful concept, which also builds the basis of many modern missing values imputation approaches, as it takes into account the inherent uncertainty about missing values. The random noise, ε ‹ , is drawn from the observed standardized residuals observed of the prediction errors.

In the following, we are interested in multiple imputation. This method consists in repeating q times the random regression imputation with q ě 2. Multiple imputation creates multiple predictions for each missing value, the corresponding statistical analysis takes into account the uncertainty in the imputations and hence, yields to a more reliable standard error. In simple terms, if there is less information in the observed data regarding the missing values, the imputations will be more variable, leading to higher standard errors in the analysis. However, if the observed data allow to predict the missing values, the imputations will be more consistent across the multiple imputed data sets, resulting in smaller and more reliable standard errors [START_REF] Greenland | A critical look at methods for handling missing covariates in epidemiologic regression analyses[END_REF]. Finally, we will predict a new value under the functional linear model as the mean of all the predictive values.

Deterministic regression imputation

In this section, we follow the same steps as in [START_REF] Crambes | Functional linear model with partially observed covariate and missing values in the response[END_REF]. Using the exponent notation "obs" to make reference to the units for which the response is observed, we define the covariance operator with the reconstructed curves (2.1) as follows

p Γ obs n,rec " 1 n ´mrY s n n ÿ i"1 xX ‹ i , .yδ rY s i X ‹ i .
Let 

r η n fi argmin r η 0 ´r n ´η0 | r D n ¯¯,
where the minimization is taken over

" η 0 | η 0 pX ‹ q " α 0 `żI θ 0 ptqX ‹ ptqdt : α 0 P R, θ 0 P Span ´p φ obs 1,rec , . . . , p φ obs kn,rec ¯* , and 
r n pη 0 | r D n q fi 1 n ´mrY s n n ÿ i"1 δ rY s i pY i ´η0 pX ‹ i qq 2 .
Equivalently, the minimization can be taken over pα 0 , θ 0 q to obtain estimates for both the intercept and slope, for imputation, denoted by r α and r θ such that 

r α " Y obs " 1 n ´mrY s n n ÿ i"1 δ rY s i Y i , ( 3 
Y ,imp " r η n pX ‹ q fi r α `kn ÿ j"1 r s j xX ‹ , p φ obs j,rec y.
Finally, we obtain the complete sample pX ‹ i , Y ‹ i q for i " 1, . . . , n, with

Y ‹ i " δ rY s i Y i `´1 ´δrY s i ¯Yi,imp . (3.4)
The imputation accuracy is measured by the excess risk

E pr η n qpX q " E ‹ ´r α `xr θ, X ‹ y ´α ´xθ, X ‹ y ¯2 ,
where E ‹ stands for the expectation with respect to X .

Random regression imputation

We define the missing value Y

r Y " q η n pX ‹ q fi Y ,imp `ε‹ , (3.5) 
where ε ‹ is drawn in the set

# e i | e i " r e i ´e, i " 1, . . . , n, δ rY s i " 1 + , ( 3 
.6) using (3.3) and (3.4), we have

r e i " r σ ´1 ´Y ‹ i ´p Y i ¯, r σ " 1 n ´mrY s n n ÿ i"1 δ rY s i ´Y ‹ i ´p Y i ¯2 , and 
e " 1 n ´mrY s n n ÿ i"1 δ rY s i r e i .
This method is nonparametric as no distribution is assumed for the distribution of the standardized residuals observed e i 's. Finally, we obtain the complete sample pX ‹ i , q Y ‹ i q for i " 1, . . . , n, with

q Y ‹ i " δ rY s i Y i `´1 ´δrY s i ¯r Y i .
Here, the imputation accuracy is measured by the excess risk E pq η n qpX q " E ‹ ´r α `xr θ, X ‹ y `ε‹ ´α ´xθ, X ‹ y ¯2 .

Multiple regression imputation

Let i be an index for the observed cases and be an index for the incomplete cases. The multiple imputation algorithm is sketched as follows:

Algorithm 1 The multiple imputation algorithm

Step Step 4. Repeat Steps 2 to 3 independently q times to create multiple sets of imputations (w " 1, ..., q). Finally, we obtain the multiple sets of complete data pX ‹ i , Y ‹pwq i q, for w " 1, . . . , q, with

Y ‹pwq i " δ rY s i Y i `´1 ´δrY s i ¯r Y pwq i .
Here, the imputation accuracy is measured by the excess risk

E p ( η n qpX q " E ‹ ˜1 q q ÿ w"1 `r α `ă r θ, X ‹ ą `ε‹pwq ˘´α ´xθ, X ‹ y ¸2 .

Prediction

Once the whole database has been reconstructed, we obtain estimates for both the intercept and slope, denoted by pp α ‹ , p θ ‹ q and pq α ‹ , q θ ‹ q respectively after deterministic regression imputation and after random regression imputation such that 

p α ‹ " 1 n n ÿ i"1 Y ‹ i , p θ ‹ " kn ÿ j"1 p s ‹ j p φ ‹ j,rec , with p s ‹ j " 1 n p λ ‹ j,rec n ÿ i"1 xX ‹ i , p φ ‹ j,rec yY ‹ i , (3.7) q α ‹ " 1 n n ÿ i"1 q Y ‹ i , q θ ‹ " kn ÿ j"1 q s ‹ j p φ ‹ j,rec , with q s ‹ j " 1 n p λ ‹ j,rec n ÿ i"1 xX ‹ i , p φ ‹ j,rec y q Y ‹ i , ( 
Y ‹pwq i and p θ pwq " 1 n n ÿ i"1 kn ÿ j"1 xX ‹ i , p φ ‹ j,rec yY ‹pwq i p λ ‹ j,rec p φ ‹ j,rec " kn ÿ j"1 p s pwq j p φ ‹ j,rec , (3.9) 
with

p s pwq j " 1 n p λ ‹ j,rec n ÿ i"1 xX ‹ i , p φ ‹ j,rec yY ‹pwq i
.

For a new curve X new , we predict the response value as follows

p Y new " 1 q q ÿ w"1 p Y ‹pwq new , where p Y ‹pwq new " p α pwq `xp θ pwq , X ‹ new y.
An asymptotic behavior of the prediction error is given in [START_REF] Crambes | Functional linear model with partially observed covariate and missing values in the response[END_REF] when the missing parts of the covariate are reconstructed and the missing values on the response are imputed by deterministic regression imputation. In the next section, we will study the convergence rate of this prediction error with multiple regression imputation.

Theoretical results

Assumptions

In this subsection, we give the assumptions needed for our theoretical results. Some assumptions are used in [START_REF] Kneip | On the optimal reconstruction of partially observed functional data[END_REF] and [START_REF] Crambes | Functional linear model with partially observed covariate and missing values in the response[END_REF] in order to control the curve reconstruction of the covariate.

(A.1) Let np Ñ 8 when n Ñ 8 and p " ppnq. We assume p " n η 1 with 0 ă η 1 ă 8 in the following.

(A.2) For any subinterval O Ď I , we assume that the eigenvalues λ 1 ą λ 2 ą . . . ą 0 have multiplicity one. Moreover, we assume that there exist a O ą 1 and 0

ă O ă 8 such that (i) λ O k ´λO k`1 ě c O k ´aO ´1, (ii) λ O k " Opk ´aO q, (iii) 1{λ O k " Opk a O q as k Ñ 8.
(A.3) For any subinterval O Ď I , we assume that there exists 0 ă D O ă 8 such that the eigenfunctions satisfy sup tPI sup kě1

› › › r φ O k ptq › › › ď D O , where r φ O k psq " xφ O k , γ s y{λ O k .
(A.4) The bandwidth h X satisfies h X Ñ 0 and pph X q Ñ 8 as p Ñ 8. For instance, we assume that h X " 1 n η 2 with 0 ă η 2 ă η 1 . The bandwidth h γ satisfies h γ Ñ 0 and pnpp 2 ´pqh γ q Ñ 8 as npp 2 ´pq Ñ 8. For example, we can take h γ " 1 n η 3 with 0 ă η 3 ă 2η 1 `1.

(A.5) Let κ 1 and κ 2 be nonnegative, second order univariate and bivariate kernel functions with support r´1, 1s. For example, we can use univariate and bivariate Epanechnikov kernel functions with compact support r´1, 1s, namely κ 1 pxq " 3 4 p1 ´x2 q1 r´1,1s pxq and κ 2 px, yq " 9 16 p1 ´x2 qp1 ´y2 q1 r´1,1s pxq1 r´1,1s pyq.

(A.6) The random variables X and Y are almost surely bounded, respectively in L 2 pI q and R.

Assumption (A.1) is mild and can be satisfied even if the number of observation points p does not go fast to infinity. Assumptions (A.2) and (A.3), related to eigenvalues and eigenfunctions of the covariance operator of X, are given in [START_REF] Kneip | On the optimal reconstruction of partially observed functional data[END_REF] in order to control the curve reconstruction for the covariate. In particular, a polynomial decrease of the eigenvalues is required, allowing a large class of eigenvalues for the covariance operator of X. Assumptions (A.4) and (A.5) are classic in the context of local polynomials smoothers. For Assumption (A.6), we can find in practice a large enough interval such that it is satisfied.

Asymptotic result

To start this subsection, we give the main result from [START_REF] Crambes | Functional linear model with partially observed covariate and missing values in the response[END_REF] for the prediction error when the missing parts of the covariate are reconstructed and the completion of the missing data in the response is done by deterministic imputation. Let Y new be the predicted value of the response given a new observation X new of the covariate. Proposition 4.1. Under assumptions (A.1)-(A.6), and k n " p 1{pa O `2q and p " n η 1 with η 1 ď 1{2, the prediction error, based on the deterministic regression imputation, is

E ´p α `xp θ, X ‹ new y ´α ´xθ, X ‹ new y ¯2 " O p ˜n´η 1 pa O ´1q{p2pa O `2qq `nη 1 {pa O `2q n ´mrY s n ¸.
In the particular case where η 1 " 1{2, the first term in the convergence rate is

O p `n´pa O ´1q{p4pa O `2qq ˘.
This result shows that the prediction error rate with the deterministic regression imputation in the response is subordinate to the reconstruction error of the covariate. We now give our main result.

Theorem 4.2. Under assumptions (A.1)-(A.6), if we additionally take k n " p 1{pa O `2q and p " n η 1 with η 1 ď 1{2, as well as m rY s n " O `n1´η 1 pa O `3q{4pa O `2q ˘, the prediction error, based on the multiple regression imputation, is

E ´p Y new ´α ´xθ, X ‹ new y ¯2 " O p ˜n´η 1 pa O ´1q{p2pa O `2qq q `nη 1 {pa O `2q qpn ´mrY s n q ¸.
This result, giving the convergence rate of the prediction error after q random imputations, is asymptotically comparable to the convergence rate obtained in Proposition 4.1 in the case of a deterministic regression imputation. We let the value of q appear in the convergence rate to highlight the fact that the constant when the convergence rate should be better in the case of several random imputations instead of a single deterministic one.

Remark 4.3. Theoretical results are generally obtained under assumptions concerning the rate of convergence of the integer k n . In practice, this integer is selected by minimizing a certain empirical criterion. We chose the Generalized Cross Validation (GCV) procedure, known to be computationally fast. The GCV criterion is given below for imputation

GCVpk n q " pn ´mrY s n q n ÿ i"1 ´r α `xr θ, X ‹ i y ´α ´xθ, X ‹ i y ¯2δ rY s i ´pn ´mrY s n q ´kn ¯2 ,
and the analogous criterion for prediction

GCVpk n q " n n ÿ i"1 ´p α pwq `xp θ pwq , X ‹ i y ´α ´xθ, X i y ¯2 ´n ´kn ¯2
, for w " 1, . . . , q.

5 Simulations

Methodology

We generated the functional covariate in a similar way to that adopted in [START_REF] Hall | Methodology and convergence rates for functional linear regression[END_REF]. More specifically, the functional covariates were identically and independently generated as:

X i ptq " 150 ÿ j"1 ζ ij j φ j ptq, i " 1, . . . , N,
where φ 1 " 1, φ j`1 " ? 2 cospjπtq, for j ě 2, the j 's are defined by j " p´1q j`1 pjq ´2 and the ζ j 's are independently sampled from the uniform distribution on r´?3, ? 3s. The covariance function writes covpXptq, Xpsqq " 150 ÿ j"1 2 j 4 cospjπtq cospjπsq.

These covariates are sampled at p " 100 equally spaced points between 0 and 1. The responses are generated from (1.1), where α " 3 and θ defined, for all t P r0, 1s, by θptq "

50 ÿ j"1 b j φ j ptq,
where b 1 " 0.3 and b j " 4p´1q j`1 j ´2 for all j ą 1. The random errors, ε i 's, are generated as ε i " N p0, σ 2 ε q with σ 2 ε " 0.2. In each simulation replicate we randomly generate n " 4 5 N independent copies of pX i , Y i q for training and n 1 " 1 5 N copies for testing, with N " 1400. To better assess prediction performance of model, we repeat the simulation procedure S " 250 times.

To deal with partially observed curves for the covariate, we adopted the missing data simulation scenario from [START_REF] Crambes | Functional linear model with partially observed covariate and missing values in the response[END_REF] such that ' 70% (respectively 55%) of the curves are fully observed on r0, 1s, ' for the 30% (respectively 45%) of partially observed curves, the curve X i is fully observed on rA i , B i s Ă r0, 1s with A i drawn with uniform law on the interval r0, As and B i " A i `B, with A " 3{8 and B " 6{8.

We simulate the number of missing data on the response Y and the indicator δ rY s by the logistic functional regression. The variable δ follows the Bernoulli law with parameter ppXq such that log

´ppXq 1 ´ppXq ¯" c, X `ct,
where c " sinp2πtq for all t P r0, 1s and ct is a constant allowing to take different levels of missing data. For exemple ct " 1 for around 26.903% of missing data, ct " 0.2 for around 44.941% of missing data and ct " ´0.2 for around 54.793% of missing data.

We estimate the parameters of the model and we obtain the predicted values of the response with imputation methods. Notice that, we use a smoothed version of the different estimators (1.2), (3.2), (3.7), (3.8) and (3.9) based on the Smooth Principal Components Regression (SPCR). Let us remark that, with appropriate conditions, all the theoretical results obtained in our work will also apply when using the SPCR estimation. We use a regression spline basis with 20 knots, a degree 3 and the order of derivation 2. The choice of these parameters is not crucial in our study, especially in comparison with the choice of the number of principal components. The choice of this optimal tuning parameter is made on a growing sequence of dimension k n " 2, . . . , 22.

Criteria

Our objective is to predict the response in the test samples. We use two criteria.

' Criterion 1: the average mean square prediction error

M SP E " 1 S S ÿ j"1 M SP Epjq,
where M SP Epjq " 1 n 1 ř n`n 1 "n`1 ´p α `xp θ, X ‹,j y ´α ´xθ, X ‹,j y ¯2 is the mean square prediction error computed on the j th simulated sample, j P t1, . . . , Su. The criterion M SP E tends to zero when the sample size tends to infinity. ' Criterion 2: the average ratio respect to truth, based on a deterministic regression imputation,

RT " 1 S S ÿ j"1 RT pjq,
where RT pjq "

ř n`n 1 "n`1 pp α `xp θ,X j y ´Y j q 2 ř n`n 1 "n`1 p j q 2
is the ratio between the mean square prediction error and the mean square prediction error when the true parameters are known, computed on the j th simulated sample. The criterion RT tends to one when the sample size tends to infinity.

Results

Tables (1) and (2) presents the criteria for the complete dataset (FULL) and the imputation methods presented in this paper, with reconstructed curves :

• DETER IM : Deterministic regression imputation, as described in subsection 3.1.

• RAND IM : Random regression imputation, as described in subsection 3.2. • RAND NORM IM : Parametric approach of random regression imputation, where the error term ε ‹ is drawn from the distribution of the residuals, here assuming the residuals are normally distributed, thus ε ‹ " N p0, p σ 2 ε ‹ q, with p σ 2 ε ‹ being estimated from the residuals of the formerly fitted functional linear model. This parametric method is easy to implement. It seems natural to test the performance of this method on simulations.

• MUL IM : Multiple regression imputation with different values of q (q " 5, 10, 30, 100), as described in subsection 3.3.

• MUL NORM IM : Parametric approach of multiple regression imputation with different values of q (q " 5, 30, 100). Here, the error term ε ‹ is drawn as described above, thus ε ‹ " N p0, p σ 2 ε ‹ q.

• MEAN IM : Mean imputation,

• RANDO IM : Random imputation (imputation by a random response drawn in the set of observed values),

• ZERO IM : Zero imputation (imputation by zero).

Moreover, we propose two other cases :

• REM Y : Reconstruct X and remove all the missing values in Y from the sample,

• REM X,Y : Either a partially observed curve or a missing response are removed from the sample.

As it can be expected, the errors increase as the percentage of missing values in X and Y increase. Moreover, when the number of iterations q increases, we recover the M SP E and RT of the deterministic imputation (DETER IM). Furthermore, when q is large enough (q " 30 and q " 100), our method (MUL IM) behaves better than the other imputation methods, specially where we delete the missing values (REM Y and REM X,Y). Comparing (MUL IM) and (MUL NORM IM), we notice that (MUL NORM IM), behaves better for small values of q while (MUL IM) behaves better for larger values of q.

6 Real dataset study Our experimental study is based on two steps. In the first treatment step, we do not observe the price-demand functions directly but we have to estimate each price-demand function by a local polynomial smoother estimator. Here, we choose the Gaussian kernel and we consider a cross validation criterion to select the optimal tuning bandwidth parameter from a grid of parameter values in the interval [1070,35000]. In the second step, we reconstructed the missing parts of the differents curves. Now, X i , i " 1, . . . , 241, is the daily electricity price curve on day i (function of the residual demand), and Y i is the value of electricity production (in MWh) on day i. The production data come from https://www.agora-energiewende.de1 . Only a graphic (with numerical values marked at the observation points) was available on this website to collect a data (neither a table nor an Excel file). It can be possible to use a software to get numerical values from a graphic (see https://automeris.io2 ). However, this software is not completely reliable and some numerical values, being not possible, can be considered as missing data for the response variable. In our case, the percentage of missing data is 13.26%.

We split the initial sample into a learning sample (the index set is denoted I L ) with size 181 and a test sample with size 60 (the index set is denoted I T ). Firstly, we reconstructed the missing parts of the differents curves and, on the learning sample, we imputed the missing values on the response. We tested the residuals normality, the shapiro test gives a p-value equal to 0.905, hence the normality of the residuals cannot be rejected. Then, on the test sample, we computed the prediction values for the response. In order to evaluate the quality of the prediction, we calculated, for q " 100, the mean squared prediction error M SP E " 1 60 ř iPI T pY i ´p Y i q 2 " 40.440 and the mean absolute prediction error M AP E " 1 60 3) gives the M SP E and the M AP E for different imputation methods.

ř iPI T |Y i ṕ Y i | " 5.349. Table (
Comparing (MUL IM) and (MUL NORM IM), we notice that (MUL NORM IM) behaves better for larger values of q, even if the differences are sometimes slight, because the normality of the residuals. Notice finally that, in this situation, the method (REM X,Y) would not be possible since all the curves are partially observed and this would cause removing all individuals in the sample.

Missing values are imputed directly from the regression model, reducing the prediction error with respect to the missing rate but not taking into account the uncertainty of missing values or unseen data. Multiple regression imputation takes this into account by adding a random error term from the regression model residual distribution. This does not reduce the mean square prediction error but when the number of iteration increases, we can recover that of the deterministic regression imputation. Furthermore, multiple imputations are more realistic depending on the quality of the training data set the regression model was trained under. 
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 1 Figure 1: Daily electricity price curves in function of the residual demand.

Figure 2 :

 2 Figure 2: Reconstructed daily electricity price curves in function of the residual demand.

  1. Estimating parameters r α and r θ from the functional linear model using complete sample pX ‹ i , Y i , δ

	rY s		
	i		rY s i	) " 1 , as in (3.6), for
	P r D rY s n .
	Step 3. Drawing the imputed values of missing data, as in (3.5), from
	r Y	pwq " r α `ă r θ, X ‹ ą	`ε‹pwq ,
	for P r D m .		

" 1q, for i " 1, . . . , n, as in (3.1) and (3.2).

Step 2. Drawing ε ‹pwq from the set of ! e i | e i " r e i ´e, i " 1, . . . , n, δ m , where r D m is the set of missing responses of size m

  In multiple regression imputation setting, for w " 1, . . . , q, given either the observed values or the random imputations Y

					3.8)
	where p φ ‹ 1,rec , . . . , p φ ‹ kn,rec and p λ ‹ 1,rec , . . . , p λ ‹ kn,rec represent respectively the k n first eigenfunctions
	and eigenvalues of the covariance operator p Γ ‹ n,rec " 1 n	ř n i"1 xX ‹ i , .yX ‹ i .
	‹pwq 1	, . . . , Y	‹pwq n	, we estimate the parameters α and θ in model
	(1.1) with			
		p α pwq "	1 n

n ÿ i"1

Table 1 :

 1 Mean and standard deviation errors for the predicted values based on 250 simulation replications with different levels of missing data and a sample size N " 1400. Partially observed curves are fully observed on r3{8, 6{8s and the error ε is a Gaussian noise: ε " N p0, σ 2 ε q with σ ε " 0.2.

	Rate of missing	26.903	26.877	44.941	45.218	54.793	55.109
	data in Y in %	(1.298)	(1.409)	(1.563)	(1.515)	(1.337)	(1.460)
	Rate of missing	30.047	44.952	29.995	45.030	30.086	45.164
	data in X in %	(1.112)	(1.230)	(1.238)	(1.280)	(1.216)	(1.317)
	(FULL) M SP E ˆ10 3	17.602	16.785	18.145	16.960	19.150	18.055
		(16.058) (15.640) (15.990) (13.681) (16.149) (15.709)
	RT ˆ10	14.421	14.231	14.639	14.144	14.733	14.580
		(4.337)	(3.887)	(4.134)	(3.405)	(4.042)	(4.096)
	(DETER IM) M SP E ˆ10 3	30.786	29.748	51.942	48.223	66.907	70.525
		(28.722)	(27.327)	(47.172)	(44.261)	(57.530)	(67.268)
	RT ˆ10	17.751	17.540	23.320	21.925	26.695	27.758
		(7.624)	(6.914)	(12.195)	(10.902)	(14.482)	(16.921)
	(RAND IM) M SP E ˆ10 3	45.463	45.833	67.350	65.721	85.999	90.581
		(36.723)	(39.229)	(50.395)	(49.144)	(66.256)	(73.653)
	RT ˆ10	2.138	2.160	2.716	2.623	3.139	3.286
		(0.959)	(1.018)	(1.304)	(1.219)	(1.664)	(1.878)
	(RAND NORM IM) M SP E ˆ10 3	30.732	29.927	52.298	48.412	67.055	70.693
		(28.284)	(27.798)	(47.330)	(44.427)	(58.103)	(67.278)
	RT ˆ10	17.735	17.589	23.411	21.981	26.721	27.799
		(7.505)	(7.024)	(12.237)	(10.972)	(14.605)	(16.941)
	(MUL IM (q=5)) M SP E ˆ10 3	34.405	31.449	55.165	52.568	69.329	74.675
		(29.976)	(28.133)	(48.511)	(44.218)	(56.368)	(69.281)
	RT ˆ10	18.663	17.978	24.166	23.058	27.310	28.763
		(7.875)	(7.147)	(12.561)	(10.911)	(14.194)	(17.467)
	(MUL NORM IM (q=5)) M SP E ˆ10 3	30.819	29.698	51.988	48.054	66.978	70.689
		(28.606)	(27.233)	(47.249)	(44.095)	(57.747)	(67.771)
	RT ˆ10	17.756	17.526	23.332	21.885	26.713	27.797
		(7.603)	(6.895)	(12.206)	(10.829)	(14.550)	(17.032)
	(MUL IM (q=10)) M SP E ˆ10 3	30.998	30.255	53.437	49.395	68.639	73.111
		(28.554)	(27.931)	(47.390)	(44.601)	(56.621)	(67.923)
	RT ˆ10	17.807	17.667	23.692	22.224	27.125	28.386
		(7.640)	(7.053)	(12.223)	(10.934)	(14.196)	(17.100)
	(MUL NORM IM (q=10)) M SP E ˆ10 3	30.680	29.627	51.890	48.178	66.629	70.699
		(28.664)	(27.221)	(47.210)	(44.347)	(57.206)	(67.557)
	RT ˆ10	17.721	17.510	23.304	21.915	26.620	27.801
		(7.601)	(6.891)	(12.200)	(10.926)	(14.392)	(16.982)

Table 2 :

 2 Mean and standard deviation errors for the predicted values based on 250 simulation replications with different levels of missing data and a sample size N " 1400. Partially observed curves are fully observed on r3{8, 6{8s and the error ε is a Gaussian noise: ε " N p0, σ 2 ε q with σ ε " 0.2.

	(MUL IM (q=30)) M SP E ˆ10 3	30.326	29.207	51.259	48.253	66.384	71.054
		(28.978)	(26.953)	(47.133)	(44.117)	(56.415)	(67.691)
	RT ˆ10	17.627	17.419	23.149	21.919	26.547	27.884
		(7.713)	(6.837)	(12.183)	(10.857)	(14.189)	(17.048)
	(MUL NORM IM (q=30)) M SP E ˆ10 3	30.695	29.731	51.951	48.029	66.812	70.553
		(28.701)	(27.490)	(47.299)	(44.102)	(57.459)	(67.418)
	RT ˆ10	17.726	17.538	23.324	21.876	26.669	27.765
		(7.619)	(6.954)	(12.226)	(10.867)	(14.467)	(16.957)
	(MUL IM (q=100)) M SP E ˆ10 3	30.114	29.130	51.605	47.395	66.611	70.374
		(28.662) (27.545)	(47.355)	(43.987)	(57.918)	(67.553)
	RT ˆ10	17.574	17.392	23.225	21.719	26.620	27.730
		(7.614)	(6.953)	(12.234)	(10.835)	(14.573)	(16.988)
	(MUL NORM IM(q=100)) M SP E ˆ10 3	30.700	29.693	51.913	48.110	66.742	70.507
		(28.663)	(27.370)	(47.154)	(44.196)	(57.487)	(67.309)
	RT ˆ10	17.727	17.527	23.314	21.897	26.652	27.755
		(7.608)	(6.924)	(12.192)	(10.884)	(14.474)	(16.929)
	(MEAN IM) M SP E ˆ10 3	30.913	30.746	54.404	53.923	74.127	74.266
		(24.018)	(23.151)	(37.310)	(37.364)	(44.807)	(45.275)
	RT ˆ10	17.755	17.820	23.961	23.374	28.672	28.768
		(6.199)	(6.153)	(9.777)	(9.314)	(11.481)	(11.631)
	(RANDO IM) M SP E ˆ10 3	30.870	30.909	54.121	54.127	73.924	73.478
		(24.108)	(23.192)	(37.878)	(37.973)	(45.867)	(44.904)
	RT ˆ10	17.740	17.852	23.885	23.433	28.622	28.568
		(6.214)	(6.312)	(9.897)	(9.480)	(11.771)	(11.563)
	(ZERO IM) M SP E ˆ10 2	72.025	71.648	194.283	195.935	283.638	287.324
		(8.039)	(7.951)	(14.874)	(14.811)	(15.420)	(17.570)
	RT ˆ10	191.134	190.669	501.892	501.050	728.003	736.894
		(24.954)	(28.526)	(55.713)	(58.105)	(71.678)	(70.364)
	(REM Y) M SP E ˆ10 3	40.047	37.844	78.278	72.577	94.632	100.989
		(34.437)	(32.908)	(58.280)	(61.814)	(71.559)	(81.000)
	RT ˆ10	20.052	19.568	29.985	28.085	33.687	35.381
		(8.923)	(8.399)	(15.204)	(15.412)	(18.126)	(20.334)
	(REM X,Y) M SP E ˆ10 3	48.448	60.808	91.500	90.137	117.749	135.675
		(47.901)	(61.016)	(74.047)	(81.080)	(94.352)	(126.053)
	RT ˆ10	22.284	25.280	33.257	32.779	39.728	44.123
		(13.086)	(15.150)	(18.983)	(20.142)	(24.442)	(31.855)

Table 3 :

 3 The mean square prediction error and the mean absolute prediction error with standard deviation errors for deterministic, random and multiple imputation methods. " 50) 40.448 p45.624q 5.354 p3.461q MUL NORM IM (q " 50) 40.269 p45.474q 5.345 p3.450q MUL IM (q " 100) 40.440 p45.625q 5.349 p3.461q MUL NORM IM (q " 100) 40.211 p45.363q 5.343 p3.443qWe obtain from[START_REF] Crambes | Functional linear model with partially observed covariate and missing values in the response[END_REF] the convergence rate for the first term of the decompositionE ˜p α pwq `1 n ˜n´η 1 pa O ´1q{p2pa O `2qq `nη 1 {pa O `2qFor the second term, we first use the boundedness of X and Y , which allows to bound ε As a consequence, with the assumptionsk n " n η 1 {pa O `2q and m rY s n " O ´n1´η 1 pa O `3q{4pa O `2q Op ´n´η 1 pa O ´1q{p2pa O `2qq ¯,and the second term in the decomposition of p Y ‹pwq new ´α ´xθ, X ‹ new y is negligeable with respect to the first one. As a result, we obtainE ´p Y ‹pwq new ´α ´xθ, X ‹ new y ¯2 " O p ˜n´η 1 pa O ´1q{p2pa O `2qq `nη 1 {pa O `2qFinally, the mean over q iterations of the random imputation gives E ´p Y new ´α ´xθ, X ‹ new y ¯2 "

	Imputation methods	M SP E	M AP E
	DETER IM	40.443 p45.615q 5.354 p3.461q
	RAND IM	40.468 p45.662q 5.356 p3.462q
	RAND NORM IM	40.533 p46.097q 5.363 p3.463q
	MUL IM (q " 5)	40.452 p45.613q 5.355 p3.461q
	MUL NORM IM (q " 5)	40.479 p45.577q 5.357 p3.460q
	MUL IM (q REM Y	40.543 p45.947q 5.354 p3.475q
	7 Proof of Theorem 4.2
	Considering the decomposition of p θ pwq , we write
	p θ pwq "	1 n	δ	n ÿ i"1 i "1 rY s	kn ÿ j"1	xX ‹ i , p φ ‹ j,rec yY i p j,rec λ ‹	p φ ‹ j,rec
	`1 n	δ	n ÿ i"1 i "0 rY s	kn ÿ j"1	xX ‹ i , p φ ‹ j,rec y ´Yi,imp j,rec λ ‹	`ε‹pwq i	p p φ ‹ j,rec
	"	1 n	n ÿ i"1	kn ÿ j"1	xX ‹ i , p φ ‹ j,rec yY ‹ i p j,rec λ ‹	p φ ‹ j,rec
	`1 n	δ	n ÿ i"1 i "0 rY s	kn ÿ j"1	xX ‹ i , p φ ‹ j,rec y ´Yi,imp j,rec λ ‹	`ε‹pwq i	p p φ ‹ j,rec ,
	hence						
	p Y ‹pwq new ´α ´xθ, X ‹ new y " p α pwq `1 n	n ÿ i"1	kn ÿ j"1	xX ‹ i , p φ ‹ j,rec yY ‹ i p j,rec λ ‹	x p φ ‹ j,rec , X ‹ new y ´α ´xθ, X ‹ new y
	`1 n	δ	n ÿ i"1 i "0 rY s	kn ÿ j"1	xX ‹ i , p φ ‹ j,rec y ´Yi,imp j,rec λ ‹	`ε‹pwq i	p x p φ ‹ j,rec , X ‹ new y.

2 " p ˜n´η 1 pa O ´1q{p2pa O `2qq q `nη 1 {pa O `2q qpn ´mrY s n q ¸.

https://www.agora-energiewende.de/en/service/recent-electricity-data/chart/power generation/15.03.2012/14.03.2013/

https://automeris.io/WebPlotDigitizer/