
HAL Id: hal-03610006
https://hal.science/hal-03610006

Submitted on 16 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Randomized local network computing : Derandomization
beyond locally checkable labelings

Laurent Feuilloley, Pierre Fraigniaud

To cite this version:
Laurent Feuilloley, Pierre Fraigniaud. Randomized local network computing : Derandomization be-
yond locally checkable labelings. ACM Transactions on Parallel Computing, 2021, 8 (4), pp.1-25.
�10.1145/3470640�. �hal-03610006�

https://hal.science/hal-03610006
https://hal.archives-ouvertes.fr

Randomized local network computing∗
Derandomization beyond locally checkable labelings

LAURENT FEUILLOLEY, DII, Universidad de Chile, Chile

PIERRE FRAIGNIAUD, IRIF, Université de Paris and CNRS, France

We carry on investigating the line of research questioning the power of randomization for the design of

distributed algorithms. In their seminal paper, Naor and Stockmeyer [STOC 1993] established that, in the

context of network computing in which all nodes execute the same algorithm in parallel, any construction task

that can be solved locally by a randomized Monte-Carlo algorithm can also be solved locally by a deterministic

algorithm. This result however holds only for distributed tasks such that the correctness of their solutions can

be locally checked by a deterministic algorithm. In this paper, we extend the result of Naor and Stockmeyer to

a wider class of tasks. Specifically, we prove that the same derandomization result holds for every task such

that the correctness of their solutions can be locally checked using a 2-sided error randomized Monte-Carlo

algorithm.

CCS Concepts: • Theory of computation� Distributed computing models.

Additional Key Words and Phrases: Distributed algorithms, locality, derandomization.

ACM Reference Format:
Laurent Feuilloley and Pierre Fraigniaud. 20XX. Randomized local network computing: Derandomization

beyond locally checkable labelings. ACM Trans. Parallel Comput. 0, 0, Article 0 (20XX), 25 pages. https:

//doi.org/XXX

1 INTRODUCTION
1.1 Context and objective
In the framework of network computing, in which all nodes execute the same algorithm in parallel,

it is known that randomization helps, in the sense that randomized algorithms can solve tasks faster

than deterministic algorithms. However, the help provided by randomized algorithms is somewhat

limited. This is typically the case when considering the round complexity of algorithms running

in networks, which is essentially defined as the maximum distance between nodes exchanging

information during their executions. For instance, it has been shown [8] that the round-complexity

of a randomized algorithm solving a task in an 𝑛-node network cannot be smaller than the round-

complexity of a deterministic algorithm for the same task in networks with

√
log𝑛 nodes. Also, it

has been recently proved [42] that, for 𝑛-node networks, the class of tasks with randomized round-

complexity 𝑂 (polylog(𝑛)) is identical to the class of tasks with deterministic round-complexity

∗
A preliminary version of this paper appeared in the proceedings of the 27th ACM on Symposium on Parallelism in

Algorithms and Architectures (SPAA), Portland, USA, June 13-15, 2015.

Authors’ addresses: Laurent Feuilloley, feuilloley@dii.uchile.cl, DII, Universidad de Chile, Santiago de Chile, Chile; Pierre

Fraigniaud, pierre.fraigniaud@irif.fr, IRIF, Université de Paris and CNRS, Paris, 75205, France.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 20XX Association for Computing Machinery.

1539-9087/20XX/0-ART0 $15.00

https://doi.org/XXX

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

https://doi.org/XXX
https://doi.org/XXX
https://doi.org/XXX

0:2 Laurent Feuilloley and Pierre Fraigniaud

𝑂 (polylog(𝑛)). In other words, randomization does not help as far as polylogarithmic round-

complexity is concerned. All these results can be viewed as extensions of a seminal result by Naor

and Stockmeyer [40], who proved that any randomized algorithm solving a taks in a constant

number of rounds of communication can be derandomized, i.e., turned into a deterministic algorithm

also performing in a constant number of rounds.

The aforementioned derandomization results however apply under some specific assumptions.

Specifically, they apply to locally checkable labelings (LCL), that is, to tasks such that the correctness

of their solutions can be checked locally, i.e., by having every node inspecting solely its neighbor-

hood at distance 𝑂 (1). Stated differently, these derandomization results apply only to tasks such

that the (global) correctness of a solution is determined by the conjunction of local correctness
criteria. The class of LCL tasks is very large, and includes many classical graph problems such as

proper vertex or edge 𝑘-coloring, maximal matching, maximal independent set, etc. This class also

contains tasks such as odd-degree weak coloring [40] or fractional coloring [28], which can be

solved in a constant number of rounds. Nevertheless, other classical graph problems are outside

the range of application of currently known derandomization results, as they do not belong to the

class of LCL tasks. This includes various spanning tree construction problems (e.g., MST), as well

as most of the standard optimization problems (e.g., vertex cover, dominating set, etc.).

This paper questions whether LCL tasks is the ultimate class of tasks for which non-trivial

derandomization results such as the aforementioned ones hold. Specifically, we aim at revisiting

the power of randomization w.r.t. algorithms performing in a constant number of rounds. As we

mentioned before, these algorithms are of no help as far as LCL tasks are concerned [40]. We

therefore consider the class of tasks such that the correctness of their solutions can be checked

locally (i.e., in a constant number of rounds) by a randomized algorithm that is allowed to make

errors by rejecting correct solutions, and/or accepting incorrect solutions.

For instance, let us consider a data structure supposed to form a linked list (similar to, e.g.,

Blockchain), but for which it is acceptable that some branchings occur, as long as they are resulting

in up to 𝑘 leaves, for some fixed parameter 𝑘 ≥ 1. If the data structure is distributed, it is not

possible to check the correctness of the list locally as a branching at a node does not necessarily

make the data structure incorrect. However, distributed checking can be achieved by a randomized

algorithm performing in zero rounds. In the algorithm, every leaf is accepted with probability 𝑝 ,

and rejected with probability 1− 𝑝 , where 𝑝 is the unique root of 𝑥𝑘+1 + 𝑥𝑘 − 1 in (1
2
, 1). Every legal

instance, i.e., a linked list with ℓ ≤ 𝑘 leaves, is accepted with probability 𝑝ℓ , that is, with probability

at least 𝑝𝑘 . In contrast, every illegal instance, i.e., a linked list with ℓ > 𝑘 leaves, is rejected with

probability 1 − 𝑝ℓ , that is, with probability at least 1 − 𝑝𝑘+1 = 𝑝𝑘 . The success probability of such a

randomized distributed decision algorithm is therefore 𝑝𝑘 > 1

2
, where the latter inequality holds as

otherwise 𝑝𝑘 (𝑝 + 1) − 1 ≤ 𝑝−1
2

< 0. More generally, this randomized algorithm can check whether

a solution to an LCL task is correct but in at most 𝑘 nodes. Specifically, every node performs a

deterministic local algorithm to determine whether its neighborhood fits with the specification of

the LCL task at hand, but it does not systematically reject an illegal neighborhood. Instead, it rejects

it with probability 1 − 𝑝 , and accepts it with probability 𝑝 . Randomized decision was also used

in [18] to decide whether a given graph is a lift of a smaller graph, as a tool for establishing that

the class BPNLD contains all decidable classes of labeled graphs, the same way the class LCP [26]

contains all decidable classes of labeled graphs — the latter class assumes distributed proofs which

may depend on the actual identifiers given to the nodes, while the former class assumes distributed

proofs which are oblivious to the IDs.

The question addressed in this paper is to which extent the derandomization result by Naor and

Stockmeyer can be extended to the class of tasks for which the correctness of their solutions can

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

Randomized local network computing 0:3

be checked locally, not necessarily by a deterministic algorithm but definitely by a randomized

algorithm.

1.2 Our results
We extend the result of Naor and Stockmeyer by proving that the same derandomization result as

the one in [40] holds for every distributed problem whose solutions can be checked in constant

time using a 2-sided error randomized Monte-Carlo algorithm.

More precisely, recall that BPLD, which stands for bounded-probability local decision (see [18]), is

the class of distributed languages that can be probabilistically decided in constant time with constant

error probability. That is, a distributed language L is in BPLD if and only if there exists a constant

𝑝 > 1

2
, and an algorithm satisfying the following. After having inspected their neighborhood

at constant distance 𝑡 , every node outputs 𝑎𝑐𝑐𝑒𝑝𝑡 or 𝑟𝑒 𝑗𝑒𝑐𝑡 such that: if the instance is in the

language L, then, with probability at least 𝑝 , all nodes output 𝑎𝑐𝑐𝑒𝑝𝑡 , and, if the instance is not

in L, then, with probability at least 𝑝 , at least one node outputs 𝑟𝑒 𝑗𝑒𝑐𝑡 . We prove that, in the LOCAL
model [41], for every L ∈ BPLD, if there exists a randomized Monte-Carlo construction algorithm

forL running in𝑂 (1) rounds, then there exists a deterministic construction algorithm forL running

in𝑂 (1) rounds. This generalizes the result by Naor and Stockmeyer from the class LD (which stands

for local decision [18]), i.e., the class of distributed languages that can be deterministically decided

in constant time, to the class BPLD, i.e., the class of distributed languages for which the randomized

decision algorithm may err with some probability. As for the results in [40], we consider algorithms

performing in the setting of graphs with maximum degree upper bounded by a constant, and input

and output labels with size upper bounded by a constant. Specifically, the class LCL considered

in [40], as well as in all subsequent papers on derandomization in the LOCAL model, is merely the

class LD restricted to instances involving graphs with bounded maximum degrees, and labels of

bounded maximum size.

We show that our extension of derandomization to the class of languages that can be decided by

randomized algorithms finds applications in the design of lower bounds, e.g., for construction tasks

which tolerate that up to 𝑓 nodes compute incorrect values, for some constant 𝑓 ≥ 0.

The techniques. In their paper, Naor and Stockmeyer established a collection of major results

related to local network computing, including undecidability results and the following two results:

(1) The study of deterministic constant-time algorithms solving LCL tasks can be reduced to the

study of order-invariant algorithms, i.e., algorithms which do not use the actual values of the

node identifiers, but only their relative order.

(2) The study of constant-time algorithms solving LCL tasks can be reduced to the study of

deterministic algorithms, as any randomized constant-time Monte-Carlo algorithm can be

derandomized into a constant-time deterministic algorithm.

The first of these two results is actually used as a main tool for establishing the second. The question

is thus to figure out to which extent the assumption on local checkability (i.e., languages in LCL) can

be relaxed to randomized checkability while preserving the integrity of both the order-invariance

reduction, and the derandomization reduction.

As far as the order-invariance reduction is concerned, the only techniques we are aware of, i.e.,

those in [3] and [40], cannot be directly used in our setting. Indeed, the reduction in [40] uses a

finite version of Ramsey’s theorems coupled with the assumption that the node IDs are taken from

a sufficiently large set of IDs. This is sufficient as languages in LCL can be finitely described, e.g.,

by the list of legal local neighborhoods. It is however not adapted to languages in BPLD as such

languages may not have a finite description, even in bounded-degree graphs with finite labels. The

languages studied in [3] may not have a finite description. The reduction in [3] uses an infinite

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

0:4 Laurent Feuilloley and Pierre Fraigniaud

version of Ramsey’s theorems. However, we cannot directly use this approach either, because our

proof of derandomization later requires counting arguments, which in turn requires to be applied

to a finite set of instances. To handle the constraint on the languages (which may not have a finite

description), we downgrade the applicability of order-invariance reduction, by merely considering

a finite set of graphs, which enables to apply a finite version of Ramsey’s theorems. This weak

variant of order-invariance reduction is sufficient for the purpose of derandomization in BPLD.

Getting rid of the local checkability assumption for derandomization is another issue. Roughly,

this is because, for tasks for which the correctness of the solutions is locally checkable, we can define

the notion of legal and illegal balls: the ball 𝐵𝐺 (𝑢, 𝑡) of radius 𝑡 around a node 𝑢 in a network 𝐺 ,

including the data at the nodes, as well as their identifiers, is legal if and only if the partial solution

in this ball satisfies the specification of the task. For instance, for the coloring task, a ball 𝐵𝐺 (𝑢, 𝑡)
is legal if and only if all nodes are properly colored within this ball. The crucial point is that if

a ball 𝐵 = 𝐵𝐺 (𝑢, 𝑡) is legal (resp., illegal) in one network 𝐺 , the same ball 𝐵 = 𝐵𝐻 (𝑢, 𝑡) remains

legal (resp., illegal) in any other network 𝐻 where this ball may appear. Instead, if a task is not

locally checkable, then, depending on the specification of the task, it may be the case that a ball

𝐵 is legal as a part of one network 𝐺 , but becomes illegal as a part of another network 𝐻 . As a

consequence, the proof technique in [40] based on gluing different networks, for boosting the

probability of failure of randomized algorithms, becomes quite delicate in absence of the local

checkability assumption. One reason is that it is not straightforward to connect different graphs

together to create a larger connected graphs without modifying the behaviors of rejecting nodes.

Nevertheless, by demonstrating the existence of nodes “far from” rejecting nodes, we show that

connecting small graphs to form a large graphs can be done without modifying too much the

decision of the rejecting nodes.

Overall, despite the obstacles listed above, we shall show that the local checkability assumption

can be relaxed significantly, while still preserving the ability to derandomize constant-time Monte-

Carlo algorithms in the framework of network computing.

1.3 Related work
In the context of network computing, the issue of locality has been the source of intensive research.

We refer to, e.g., the textbook [41] for an introduction to the design and analysis of local algorithms,

and to [44] for a survey of local algorithms. In particular, the graph coloring task has been investi-

gated in depth (see [4]), for various reasons, including its applications to, e.g., the management of

radio networks [38]. It is known that the 𝑛-node cycle cannot be 3-colored in 𝑜 (log∗𝑛) rounds [37],
and this holds even if the nodes are aware of 𝑛, and share a common sense of direction. This

lower bound also holds for randomized Monte-Carlo algorithms that can err with probability at

most 1/2 [39].
Several efforts have been made for understanding the different reasons why a problem can or

cannot be solved locally. Several aspects of network computing play a role, including the presence

or absence of identifiers [17, 25], the ability to output values of unbounded size [28], and the

presence or absence of a priori knowledge about the network [32]. A crucial step was made in [40]

which essentially shows that randomization does not help for local computing as long as one aims

at solving problems whose solutions can be checked locally. Recently, a similar result has been

proved in [14] for anonymous networks provided with a special kind of coloring. Other lines of

research investigate the ability to compute approximate solutions of problems that cannot be solved

locally [15, 34–36], or the ability to solve locally such problems using quantum resources [2, 22].

Many of these aforementioned citations underlined strong connections between the ability to

construct a solution and the ability to check whether or not a solution is correct. Local decision then

became an autonomous line of research [16, 18]. Interestingly, the connection between decision

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

Randomized local network computing 0:5

and verification tasks finds applications in other aspects of network computing (see, e.g., [31, 43]),

and even outside the framework of network computing (see, e.g., [19, 20]).

Lots of efforts (see, e.g., [8, 23, 24]) have also been made for studying the power of randomization

in the context of tasks solvable in a polylogarithmic number of rounds — this paper is concerned

with tasks solvable in a constant number of rounds. The recent breakthrough [42] in this line of

study is that randomization does not help in the polylogarithmic regime either. Specifically, any

LCL task solvable in polylog(𝑛) rounds by a randomized algorithm can also be solved in polylog(𝑛)
rounds by a deterministic algorithm.

Our result related to the class BPLD finds applications to problems in which part of the nodes

are allowed to output incorrect values, i.e., values not respecting the specification of the problem.

For instance, in the case of the relaxed (Δ + 1)-coloring problem [4], some nodes are allowed to

output the same color as one or some of their neighbors. Similarly, for the relaxed constructive

version of the Lovász local lemma (LLL) [11], some nodes are allowed to output assignments for

which the corresponding “bad” event holds. This type of relaxation is classic in algorithmics. For

example, in (sequential) clustering, one often allows that a small fraction of the points is not properly

clustered [9, 10, 12, 21, 33]. This has also been a fruitful approach in the study of networks within

the framework of distributed computing. In particular [6] introduces 𝜖-slackness for distributed
spanner construction, based on earlier works on embeddings [1, 7, 29]. Roughly, for any fixed

𝜖 ∈ [0, 1], the 𝜖-slack relaxation of a problem tolerates that an 𝜖-fraction of the nodes outputs

values that violate the specifications of the problem. The notion of 𝜖-slackness has also been proved

useful for compact routing [13, 30]. In general, it is a common strategy for distributed algorithms,

especially randomized ones, to first solve the problem on a large fraction of the nodes (thus solving

a relaxed problem), and then to treat the parts that do not have a proper solution in a different

way, or to recurse on these parts (see for example the so-called shattering technique introduced in

distributed computing by [5]). Randomization is a very powerful tool for solving problems under

the 𝜖-slack relaxation. For instance, no deterministic algorithms can achieve 3-coloring of the

𝑛-node ring in less than Ω(log∗ 𝑛) rounds (the same holds for LLL [11]). Nevertheless, the trivial

randomized algorithm in which every node picks independently uniformly at random a color 1, 2,

or 3, guarantees that, with constant probability and for a sufficiently large 𝜖 , a (1 − 𝜖)-fraction of

the nodes are properly colored, i.e., do not conflict with the colors of their neighbors. That is, the

𝜖-slack relaxation of a problem may be solved by a local randomized Monte-Carlo algorithm, while

it cannot be solved locally by any deterministic algorithm. Note that this observation is not specific

to 3-coloring, nor to cycles, as one can use a similar strategy for many problems, including maximal

matching or maximal independent set in bounded degree graphs, given a sufficiently large 𝜖 .

In this paper, we apply our derandomization results to a relaxation that is more constrained

than 𝜖-slackness, called 𝑓 -resilient. Roughly, for any constant 𝑓 ≥ 0, the 𝑓 -resilient relaxation of a

problem tolerates that up to at most 𝑓 nodes are “faulty”, in the sense that they output values that

violate the specifications of the problem. As opposed to the 𝜖-slack relaxation, it seems unlikely that

randomization helps for solving 𝑓 -resilient relaxations. Nevertheless, establishing lower bounds for

the 𝑓 -resilient relaxation of a problem requires to address an issue that does not appear for original

non-relaxed problems. Namely, checking whether or not a given candidate solution to the 𝑓 -resilient
relaxation of a problem is a valid solution may not be achievable locally in a decentralized manner.

In other words, checking whether a solution of an LCL task is correct up to 𝑓 faults may not be

doable in a constant number of rounds. For instance, checking whether a given graph coloring is

proper can be done in just one round by having each node comparing its color with the colors of its

neighbors. However, checking whether all but at most 𝑓 nodes are properly colored is not checkable

locally. This is simply because checking whether at least 𝑛 − 𝑓 nodes have a correct output is a

global property that can hardly be checked by the nodes by inspecting their local neighborhood

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

0:6 Laurent Feuilloley and Pierre Fraigniaud

only. This fact has strong negative consequences. In particular, it prevents us from using the results

in the seminal paper [40]. Nevertheless, every 𝑓 -resilient relaxation of an LCL task belongs to

BPLD, and thus our derandomization result applies.

2 MODEL AND NOTATIONS
2.1 Computing model

Deterministic algorithms. We consider the usual framework for the analysis of locality in network

computing, namely the LOCAL model [41]. In this model, a network is modeled as a connected and

simple graph (i.e., no loops, and no multiple edges). Each node 𝑣 of a network is given an identifier,
denoted by id(𝑣). This identifier is a positive integer, and the identifiers of the nodes in the same

network are pairwise distinct.

An algorithm in the LOCAL model starts at the same time at all nodes. Then all nodes perform

the same instructions, in a sequence of synchronous rounds. At each round, every node

(1) sends messages to its neighbors,

(2) receives messages from its neighbors, and

(3) performs some individual computation.

The algorithm performs in time 𝑡 if, for every instance, every node compute an output and terminates

after having performed at most 𝑡 rounds. Note that there are no limits on the size of the messages

exchanged during one round, nor on the amount of computation individually performed by every

node at each round. As a consequence, lower bounds for the LOCAL model are very robust, for the

algorithms in this model are only subject to one unique constraint, namely the maximum distance

at which every node communicates in the network.

Indeed, a deterministic or randomized algorithm performing in 𝑡 rounds can be simulated by an

algorithm executing two phases: First, in a network 𝐺 , every node 𝑣 collects all data from nodes at

distance at most 𝑡 from 𝑣 (i.e., their inputs, identifiers and, in the case of randomized algorithms,

their random bits, as well as the structure of the connections between these nodes); second, every

node simulates the execution of the original algorithm in 𝐵𝐺 (𝑣, 𝑡), where 𝐵𝐺 (𝑣, 𝑡) is the ball of
radius 𝑡 around node 𝑣 in graph 𝐺 , that is, 𝐵𝐺 (𝑣, 𝑡) is the subgraph of 𝐺 induced by all nodes at

distance at most 𝑡 from 𝑣 , excluding the edges between the nodes at distance exactly 𝑡 from 𝑣 . In

other words, an algorithm performing in 𝑡 = 𝑂 (1) rounds in the LOCAL model can simply be

viewed as an algorithm in which every node outputs after having inspected their 𝑡-neighborhood

in the network. Note that the input 𝑥 (𝑤) given to every node𝑤 in 𝐵𝐺 (𝑣, 𝑡) may impact the output

𝑦 (𝑣) of a 𝑡-round algorithm at node 𝑣 , and so does the identifier id(𝑤) given to each of these nodes

in 𝐵𝐺 (𝑣, 𝑡), as well as their random bits, if any.

Order-invariant algorithms. Recall that an order-invariant distributed algorithm is a distributed

algorithm for which the output at any given node does not depend on the actual values of the
identifiers of the nodes in its vicinity, but only on the relative order of these identifiers. More

precisely, an algorithm is order-invariant if the following holds: for any graph 𝐺 , for any inputs

given to the nodes, and for any two identifier assignments id and id′ of the nodes in 𝐺 , if the

ordering of the nodes in 𝐺 induced by id and the one induced by id′ are identical, then the output

of the algorithm at every node 𝑣 is the same in both instances, the one with identifiers from id and

the one with identifiers from id′.

Randomized algorithms. A randomized Monte-Carlo algorithm in the LOCALmodel performs the

same as a deterministic algorithm, apart from the fact that every node has also access to a private

source of independent random bits. These random bits may well be exchanged between nodes

during the execution of the algorithm. The completion time 𝑡 of the algorithm is deterministic, but

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

Randomized local network computing 0:7

the output 𝑦 (𝑣) at every node 𝑣 of a network 𝐺 is random, depending on the random bits at 𝑣 , as

well as, potentially, the random bits of the nodes in 𝐵𝐺 (𝑣, 𝑡). A randomized Monte-Carlo algorithm

has success probability 𝑟 ∈ (0, 1] if, for every instance (i.e., every connected simple graph 𝐺 , every

input 𝑥 and every identifier assignment id to the nodes), the global output 𝑦 produced by the nodes

satisfies the specification of the problem to be solved with probability at least 𝑟 .

2.2 Decision and construction tasks
Stating our main result requires to define properly the notions of decision and construction tasks.

Distributed languages and tasks. Given a connected graph 𝐺 = (𝑉 , 𝐸), and two functions

𝑥,𝑦 : 𝑉 → {0, 1}∗

assigning labels to the nodes of 𝐺 , the pair (𝐺, (𝑥,𝑦)) is called an input-output configuration. In
the configuration (𝐺, (𝑥,𝑦)), each node 𝑣 ∈ 𝑉 has input string 𝑥 (𝑣), and output string 𝑦 (𝑣). Given
(𝐺, (𝑥,𝑦)), the pair (𝐺, 𝑥) is called the input configuration, and the pair (𝐺,𝑦) is called the output

configuration. A distributed language, or simply language for short, is a family of input-output

configurations.

Any language defines two different kinds of tasks:

• The construction task for the language L consists in, given any input configuration (𝐺, 𝑥)
for which there exists 𝑦 : 𝑉 (𝐺) → {0, 1}∗ such that (𝐺, (𝑥,𝑦)) ∈ L, computing such a label

assignment 𝑦. That is, every node 𝑣 starts with its individual input 𝑥 (𝑣), and, after having
communicated long enough with its neighbors, it must eventually produce an individual

output 𝑦 (𝑣), such that the resulting 𝑦 : 𝑉 → {0, 1}∗ satisfies (𝐺, (𝑥,𝑦)) ∈ L.

Note that𝑦 does not need to be unique as there could be different𝑦’s such that (𝐺, (𝑥,𝑦)) ∈ L
for the same 𝑥 . Which 𝑦 is returned by the nodes may in particular depend on the node

identifiers. Given an input-configuration (𝐺, 𝑥) on a network𝐺 with identifier assignment

id, the triple (𝐺, 𝑥, id) is called an instance of the task.
• The decision task for the language L consists in, given any input-output configuration

(𝐺, (𝑥,𝑦)), computing a boolean at each node such that: (𝐺, (𝑥,𝑦)) ∈ L if and only if every

node outputs 𝑡𝑟𝑢𝑒 . If all nodes output 𝑡𝑟𝑢𝑒 , we say that the configuration is accepted, otherwise
it is rejected.
Note that, in case (𝐺, (𝑥,𝑦)) ∉ L, the node which outputs 𝑓 𝑎𝑙𝑠𝑒 may not be the same for

every instance (𝐺, (𝑥,𝑦), id) of the decision task, as, once more, the behavior of the nodes

may differ as a function of their identifiers.

Local decision class. According to the terminology of [18], for any 𝑡 ≥ 0, we denote by LD(𝑡) the
class of languages locally decidable in 𝑡 rounds. That is, LD(𝑡) is the class of languages L for which

there exists a distributed algorithm performing in at most 𝑡 rounds in the LOCAL model, and such

that: for any (𝐺, (𝑥,𝑦)) ∈ L, all nodes output 𝑡𝑟𝑢𝑒 , and, for any (𝐺, (𝑥,𝑦)) ∉ L, at least one node

outputs 𝑓 𝑎𝑙𝑠𝑒 . Finally, we define LD as the class of languages decidable in a constant number of

rounds, i.e.,

LD = ∪𝑡 ≥0LD(𝑡) .
Note that there are languages decidable in a constant number of rounds, i.e. in LD, that are not

constructible in a constant number of rounds (a typical example is the language coloring [37]). The
reverse is also true, that is, there are languages constructible in a constant number of rounds, but that

are not decidable in a constant number of rounds (i.e., not in LD). A typical example is majority,
requiring that a majority of nodes output★. Finally, there are languages that are both decidable and

constructible in constant time (a typical example is weak-coloring on graphs of bounded-degree,

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

0:8 Laurent Feuilloley and Pierre Fraigniaud

where every node has odd degree [40]), or both non decidable and non constructible in constant

time (a typical example is MST [41]).

A derandomization result. In the following, we shall focus on the class of languages whose

input-output configurations are defined on bounded degree graphs, with inputs and outputs of

bounded size. More specifically, let us fix two nonnegative integers Δ and 𝑘 . We denote by FΔ,𝑘 the

set of input-output configurations (𝐺, (𝑥,𝑦)) where 𝐺 = (𝑉 , 𝐸) has maximum degree at most Δ,
and, for every node 𝑣 , the lengths of the strings 𝑥 (𝑣) and 𝑦 (𝑣) are both at most 𝑘 . That is,

FΔ,𝑘 = {(𝐺, (𝑥,𝑦)) : ∀𝑣 ∈ 𝑉 , (deg(𝑣) ≤ Δ) ∧ (max{|𝑥 (𝑣) |, |𝑦 (𝑣) |} ≤ 𝑘)}.
In the following, all our algorithms are executed under the promise that they are performed on

configurations in FΔ,𝑘 . Note that we separate the different assumptions that we use: on the one hand

the language is locally checkable (the LD condition), and on the other hand the graphs considered

are of bounded degrees, and of bounded inputs and outputs size (the promise that the configurations

are in FΔ,𝑘).

The following derandomization result is seminal in the context of local computing in networks.

Theorem 2.1 (Naor and Stockmeyer (Theorem 5.2 in [40])). Let L ∈ LD, and let Δ > 2 and
𝑘 ≥ 0 be integers. If there exists a randomized Monte-Carlo construction algorithm with success
probability 𝑟 ∈ (0, 1] for L with configurations taken from FΔ,𝑘 , running in 𝑂 (1) rounds, then there
exists a deterministic construction algorithm for L with configurations taken from FΔ,𝑘 running in
𝑂 (1) rounds.

Note also that the original formulation of Theorem 2.1 actually deals with languages in a

class called LCL (for locally checkable labeling), which is essentially the class LD restricted to

configurations in FΔ,𝑘 for some Δ and 𝑘 . Again, we prefer to separate the issue related to the type

of algorithms deciding the languages (i.e., constant-time decision, a.k.a. LD), from the issue related

to the type of configurations the construction and decision algorithms are dealing with (i.e., those

in FΔ,𝑘). We will show how to extend this theorem to a class of languages wider than LD. For this

purpose, we need first to define randomized distributed decision.

2.3 Randomized distributed decision
Definition. In randomized distributed decision, the decision regarding whether an input-output

configuration (𝐺, (𝑥,𝑦)) belongs to L for a given distributed language L is taken collectively as in

the deterministic setting, but according to relaxed rules. More specifically, as in the deterministic

setting, each node must either accept (i.e., output 𝑡𝑟𝑢𝑒) or reject (i.e., output 𝑓 𝑎𝑙𝑠𝑒), but nodes are

now allowed to err, up to some limited extent. More precisely, a randomized algorithm decides L
with guarantee 𝑝 ∈ (0, 1] if the following holds for every input-output configuration (𝐺, (𝑥,𝑦)),
and every identifier assignment id to the nodes:

(𝐺, (𝑥,𝑦)) ∈ L ⇒ Pr[all nodes accept] ≥ 𝑝

(𝐺, (𝑥,𝑦)) ∉ L ⇒ Pr[at least one node rejects] ≥ 𝑝.
(1)

The above definition is also equivalent to the notion of (𝑝, 𝑞)-decider in [18] by taking 𝑝 = 𝑞.

Example. The following language, also defined in [18], plays an important role in the theory of

randomized decision (see also [16]).

amos = {(𝐺, (𝑥,𝑦))) : |{𝑣 ∈ 𝑉 (𝐺), 𝑦 (𝑣) = ★}| ≤ 1}
where amos stands for “at most one selected”, and a selected node is a node marked by ★. On the

one hand, amos cannot be deterministically decided in 𝐷/2 − 1 rounds in graphs of diameter 𝐷

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

Randomized local network computing 0:9

(because no node can decide whether or not two nodes at distance 𝐷 are selected). On the other

hand, amos can be randomly decided in zero rounds in all graphs, with guarantee 𝑝 =
√
5−1
2

≃ 0.618

as follows. Every non-selected node 𝑣 accepts with probability 1, and every selected node 𝑣 accepts

with probability 𝑝 , and rejects with probability 1 − 𝑝 . This algorithm can err only if there are one

or more selected nodes. In case one node is selected, the algorithm accepts with probability 𝑝 , as

desired. In case two or more nodes are selected, the algorithm rejects with probability at least 1−𝑝2,

i.e., with probability at least 𝑝 , as desired.

Bounded probability local decision class. According to the terminology of [18], for every 𝑝 ∈ (0, 1],
and every integer 𝑡 ≥ 0, we denote by BPLD𝑝 (𝑡) the class of languages decidable in 𝑡 rounds by a

randomized Monte-Carlo algorithm with guarantee 𝑝 . That is, BPLD𝑝 (𝑡) is the class of languages
for which there exists a randomized distributed algorithm performing in at most 𝑡 rounds in the

LOCALmodel, and such that: for any (𝐺, (𝑥,𝑦)) ∈ L, the probability that all nodes accept is at least

𝑝 , and, for any (𝐺, (𝑥,𝑦)) ∉ L, the probability that at least one node rejects is at least 𝑝 . Finally, we

define BPLD𝑝 as the class of languages randomly decidable in a constant number of rounds, i.e.,

BPLD𝑝 = ∪𝑡 ≥0BPLD𝑝 (𝑡).

By definition, we have LD ⊆ BPLD𝑝 for very 𝑝 ∈ (0, 1], and languages such as amos enable us to

show that the inclusion is strict, at least for 𝑝 =
√
5−1
2

. For more details about the classes BPLD𝑝 ,

see [16, 18].

3 MAIN THEOREM AND PROOF OUTLINE
In this section, we state our main result, and we present an outline of the proof for providing

intuition. The complete proof is in the next section.

3.1 Theorem statements
We prove an extension of the derandomization theorem by Naor and Stockmeyer, where the class

LD in Theorem 2.1 is replaced by the larger class BPLD𝑝 with 𝑝 > 1

2
. The latter is the class of

languages that are probabilistically decidable in 𝑂 (1) rounds, with success probability 𝑝 . More

precisely, we prove two theorems. The first one establishes a derandomization result preserving

the same round-complexity, but it requires to lower bound the size of the graphs. The second

one does not require conditions on the size, but the derandomization result does not preserve

the round-complexity. Recall that FΔ,𝑘 denotes the set of input-output configurations (𝐺, (𝑥,𝑦))
satisfying that 𝐺 has degree at most Δ, and the input and output strings are of length at most 𝑘 .

Theorem 3.1. Let L be a distributed language in BPLD𝑝 , 𝑝 > 1/2, and let Δ > 2, 𝑘 ≥ 0, and
𝑡 ≥ 0 be integers, and let 𝑟 ∈ (0, 1]. There exists 𝑛0 such that if there exists a randomized Monte-Carlo
construction algorithm with success probability at least 𝑟 for L with configurations taken from FΔ,𝑘 ,
running in 𝑡 rounds in graphs with at least 𝑛0 nodes, then there exists a deterministic construction
algorithm for L with configurations taken from FΔ,𝑘 , also running in 𝑡 rounds in graphs with at least
𝑛0 nodes.

The lower bound 𝑛0 on the size of the graphs for which Theorem 3.1 applies depends on all the

parameters 𝑝,Δ, 𝑘, 𝑡 , and 𝑟 , as well as on the smallest 𝑡 ′ ≥ 0 such that L ∈ BPLD𝑝 (𝑡 ′). This lower
bound somewhat limits the applicability of the theorem. Nevertheless, it has at least two important

features. First, the round-complexity is preserved, as the deterministic algorithm runs in the same

number of rounds as the randomized algorithm. Second, no constraints are imposed on the set of

identifiers. In particular, for 𝑛-node graphs, these identifiers may be chosen in a set {1, . . . , 𝑛𝑂 (1) },

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

0:10 Laurent Feuilloley and Pierre Fraigniaud

or even in the set {1, . . . , 𝑛}. If one is not attached to the round-complexity of the derandomized

algorithm, as long as it remains constant, then Theorem 3.1 has a simple variant.

Theorem 3.2. Let L be a distributed language in BPLD𝑝 , 𝑝 > 1/2, and let Δ > 2, and 𝑘 ≥ 0 be
integers. If there exists a randomized Monte-Carlo construction algorithm with success probability
𝑟 ∈ (0, 1] for L with configurations taken from FΔ,𝑘 , running in 𝑂 (1) rounds, then there exists a
deterministic construction algorithm for L with configurations taken from FΔ,𝑘 running in 𝑂 (1)
rounds.

Note that, as for Theorem 2.1, Theorem 3.2 enforces no constraints on the success probability

𝑟 > 0 of the Monte-Carlo construction algorithm, as long as 𝑟 is a constant. As for Theorem 3.1,

Theorem 3.2 applies even if the identifiers are supposed to be taken in {1, . . . , 𝑛}. However, for
small 𝑛, the constant hidden in the big-O notation corresponding to the round-complexity of the

deterministic construction algorithm may actually exceed 𝑛. This is because all the aforementioned

theorems requires identifiers taken from a sufficiently large set of integers, where “sufficiently

large” refers to Ramsey’s numbers.

In the next two subsections, we give a sketch of the proofs for Theorems 3.1 and 3.2, based on the

guideline used for establishing Theorem 2.1. Actually Theorem 3.2 can be considered as a corollary

of Theorem 3.1, as the proof of the former is very short given the latter. We cast both statements as

theorems because we view them as equally useful.

3.2 Proof outline of Theorem 3.1
We first provide an outline of the proof of Theorem 3.1, and highlight the similarities and differences

with the proof by Naor and Stockmeyer for Theorem 2.1, i.e., in the case of languages in LD.

The proof goes by contradiction. Let us assume that there exists a language L that matches the

hypothesis of Theorem 3.1, for which there exists a randomized construction algorithm C running

in 𝑡 rounds, but no deterministic algorithms running in 𝑡 rounds exist. We then prove that there

must exist a configuration (𝐺, 𝑥) on which the randomized algorithm C fails with arbitrarily large

probability, thus C is not a correct randomized algorithm. As in [40], the configuration (𝐺, 𝑥) is built
in two steps: first we prove that the algorithm fails with positive small probability on some specific

small configurations, and then we combine these small configurations into a large configuration,

(𝐺, 𝑥), for amplifying the failure probability. These two steps are detailed below.

First step: identifying configurations with probability of failure bounded away from 0. The first
ingredient of the proof basically consists in identifying a family of small instances on which the

algorithm C fails with probability bounded from below by some 𝛽 > 0. This alone would follow

directly from the assumption that there is no correct deterministic algorithms for L. However,

for being useful in the second step of the proof, we need such small instances to include nodes

with arbitrarily large identifiers. Subsection 4.3 describes how such instances can be identified. The

general idea boils down to a counting argument. However, for this approach to work, we need to

argue that we can restrict attention to a finite number of algorithms. We do so in Subsection 4.1

using arguments from Ramsey theory. Specifically, we show that, under some conditions, we

can turn any algorithm into an order-invariant algorithm (Lemma 4.1). This is sufficient for our

purpose, as there is a finite number of such algorithms, as long as we are considering constant-time

algorithms, for configurations taken from FΔ,𝑘 .

The idea of focusing on order-invariant algorithms is borrowed from [40]. However, the technical

details of the proof had to be modified in depth because the framework of [40] enables to use

Ramsey theorem directly. This is because, under the assumption that the given language is in

LD, one can describe this language by a finite collection of “good balls” of some constant radius.

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

Randomized local network computing 0:11

This line of reasoning does not work for languages in BPLD𝑝 . Nevertheless, we observe that, for

reducing the study to a finite number of algorithms, we only need order-invariance applied on

languages with finite support, where a distributed language L has finite support if��{𝐺 = (𝑉 , 𝐸) | ∃𝑥,𝑦 : 𝑉 → {0, 1}∗, (𝐺, (𝑥,𝑦)) ∈ L
}�� < ∞.

In otherwords, there are finitelymany graphs𝐺 forwhich there exists (𝑥,𝑦) such that (𝐺, (𝑥,𝑦)) ∈ L.

For language with finite support, we can fortunately use Ramsey’s theorem, even for languages in

BPLD𝑝 \ LD, and get the desired order-invariance property.

Second step: amplifying the probability of failure. Starting from a collection of small instances on

which the algorithm is failing with probability at least 𝛽 > 0, the objective of the second step is to

construct a large configuration for which the probability of failure of the algorithm will exceed the

error guarantee of the construction algorithm. If connectivity of the considered networks is not

enforced, then it is easy to construct this large configuration, by merely taking the disjoint union of

all the small instances. However, constructing a large connected configuration requires more work.

The basic idea is to glue together the small configurations, resulting in a large configuration on

which the failure probability is arbitrarily large. There are however several difficulties to overcome:

(1) First, the large configuration must have a proper identifier assignment to the nodes, that is,

one cannot glue two small instances in which the same ID appear;

(2) Second, the large configuration must be connected, that is, taking the disjoint union of the

small configurations is not sufficient.

The issue related to the identifiers can be overcome thanks to a careful control of the identifiers

assigned to the small configurations selected during the first step of the proof. The issue related

to connectivity requires more work. The small instances are glued together by connecting them

with new edges connecting nodes in different instances. However, an immediate effect of adding

edges is that the neighborhood of some nodes is modified, which may result in the construction

algorithm C having different behaviors at these nodes in the small and large instances, which

prevents us from arguing that if a node errs in a small instance, then it also errs in the large instance.

This issue can be rather easily handled in the case of languages in LD. Indeed, if C is incorrect on

some small configuration (𝐻𝑖 , 𝑥𝑖), then C constructs an illegal ball around some node 𝑣𝑖 ∈ 𝑉 (𝐻𝑖).
Therefore, as long as 𝐻𝑖 is connected to the other small configurations without modifying the

neighborhood of 𝑣𝑖 , C still constructs an illegal ball around 𝑣𝑖 in the large configuration. However,

as we mentioned before, the notion of legal/illegal ball is irrelevant for languages in BPLD, which

deal with predicates that are non-local.

To tackle this problem, we argue that in each small configuration (𝐻𝑖 , 𝑥𝑖), there must exist a

node 𝑣𝑖 such that modifying its neighborhood does not decrease too much the probability that the

decision algorithm witnessing the membership of the language L to BPLD rejects on the nodes of

𝐻𝑖 . For establishing the existence of 𝑣𝑖 , we consider a set of scattered nodes, i.e., each node is far

enough from the others, and we show that one of these nodes has the desired property, due to the

fact that the language is in BPLD. The constraint that these nodes are far from each other is required

for ensuring statistical independence for the randomized algorithm deciding the language L. The

reason why we can indeed find a convenient set of scattered nodes follows from the fact that we

assumed that the number of nodes, and therefore the diameter (recall that configurations in FΔ,𝑘

have bounded maximum degree), is large enough.

The details of these arguments are provided in Section 4.

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

0:12 Laurent Feuilloley and Pierre Fraigniaud

3.3 Proof of Theorem 3.2 assuming Theorem 3.1
Let L be a distributed language in BPLD𝑝 , let Δ > 2 and 𝑘 ≥ 0 be integers, and suppose there exists

a randomized Monte-Carlo construction algorithm with constant success probability 𝑟 > 0 for L
with configurations taken from FΔ,𝑘 , running in constant time 𝑡 . By Theorem 3.1, there exists an

integer 𝑛0, such that there exists a deterministic 𝑡-round algorithm constructing a solution for L,

assuming that the actual configuration has at least 𝑛0 nodes. Now, consider the following algorithm.

The algorithm starts by gathering at every node all the information at distance 𝑛0 + 1 from that

node. Every node then checks whether the network has size at least 𝑛0 or not. Note that all the

nodes will agree on the answer. Indeed, a node which has not gathered all the nodes and edges

of the graph after 𝑛0 + 1 rounds knows that the graph has at least 𝑛0 nodes, and a node that has

gathered all the nodes and edges of the graph after 𝑛0 + 1 can tell whether the graph has at least 𝑛0
nodes or not.

• If the network has less than 𝑛0 nodes, then every node lets the node with smallest ID in the

network computing a global solution for that instance, which is broadcasted to all the nodes

in at most 𝐷 additional rounds, where 𝐷 ≤ 𝑛0 is the diameter of the network.

• Otherwise, every node executes the 𝑡-rounds algorithm given by Theorem 3.1.

This algorithm has round-complexity 𝑂 (𝑛0 + 𝑡), where both parameters are independent on 𝑛. □

4 PROOF OF THEOREM 3.1
4.1 Order-invariance
We first prove a result about order-invariant algorithms. This allows us to restrict the study of

deterministic algorithms to the study of order-invariant algorithms (see Section 4.3). The following

lemma is the analogue, in our setting, of Lemma 3.2 in [40]. As said earlier, we restrict our attention

to languages with finite support. Recall that such languages are those such that there is a finite

number of graphs 𝐺 for which there exists 𝑥,𝑦 such that (𝐺, (𝑥,𝑦)) is in the language.

Lemma 4.1. Let L be a distributed language with finite support, and let Δ ≥ 2, 𝑘 ≥ 0, and 𝑡 ≥ 0

be three integers. There exists a constant 𝑅 such that, for every set S of integers with |S| ≥ 𝑅, the
following holds. If there exists a deterministic construction algorithm for L with configurations taken
from FΔ,𝑘 running in 𝑡 rounds on every ID-assignment with IDs taken from S, then there exists an
order-invariant deterministic construction algorithm for L with configurations taken from FΔ,𝑘 also
running in 𝑡 rounds.

In order to establish Lemma 4.1, recall a variant on Ramsey’s theorem (cf., e.g., [27]). For any

set 𝑋 , and for any positive integer 𝜌 , let 𝑋 (𝜌)
denote the set of all subsets of 𝑋 with cardinality 𝜌 .

For any finite set 𝑋 , and any two positive integers 𝜌 and 𝜎 , a coloring of each set in 𝑋 (𝜌)
by an

integer in [𝜎] = {1, . . . , 𝜎} is a function 𝑐 : 𝑋 (𝜌) → [𝜎].

Theorem 4.2 (Ramsey’s Theorem). For every triple of positive integers 𝜌, 𝜎 , and 𝜏 , there exists
a constant 𝑅 = 𝑅(𝜌, 𝜎, 𝜏) such that if |𝑋 | ≥ 𝑅, then, for every coloring 𝑐 : 𝑋 (𝜌) → [𝜎], there exists
𝑌 ⊆ 𝑋 with |𝑌 | = 𝜏 , and all sets in 𝑌 (𝜌) are colored the same by 𝑐 .

Proof of Lemma 4.1. Let L be a distributed language with finite support, and Δ, 𝑘, 𝑡 be nonneg-
ative integers as in the statement of the lemma. Let GL be the (finite) family of graphs𝐺 for which

there exists a configuration (𝐺, (𝑥,𝑦)) in L. Let 𝑛max be the maximum number of vertices of the

graphs in GL . Let S be a finite set of integers with |S| ≥ 𝑛max. Let us assume that there exists a

(deterministic) construction algorithm A for L with configurations taken from FΔ,𝑘 running in 𝑡

rounds on every ID-assignment with IDs taken from S.

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

Randomized local network computing 0:13

Ordered labeled balls. We consider what we call ordered labeled balls. A ball is a graph 𝐵 with one

selected node, called the center, such that every node is at distance at most 𝑡 from the center. We

say that 𝑡 is the radius of the ball. The nodes of the balls have degree at most Δ. A labeled ball is a
ball 𝐵 where every node 𝑣 holds an input label 𝑥 (𝑣) on at most 𝑘 bits. Finally, an ordered labeled
ball is a labeled ball (𝐵, 𝑥) along with an ordering 𝜋 of its nodes (i.e., 𝜋 : 𝑉 (𝐵) → {1, . . . , |𝑉 (𝐵) |} is
onto). The following claim directly follows from the definition.

Claim 1. There is a finite number of ordered labeled balls (𝐵, 𝑥, 𝜋).
Let a be the number of ordered labeled balls. We enumerate the ordered labeled balls as

(𝐵1, 𝑥1, 𝜋1), . . . , (𝐵a , 𝑥a , 𝜋a) in an arbitrary order. Note that it may be the case that, for 𝑖 ≠ 𝑗 ,

𝐵𝑖 = 𝐵 𝑗 , or even (𝐵𝑖 , 𝑥𝑖) = (𝐵 𝑗 , 𝑥 𝑗). Let𝑚 be the maximum number of nodes in the balls, i.e., every

ball 𝐵𝑖 has at most𝑚 nodes.

Coloring. We now define a coloring of the sets in S (𝑚)
. Let𝑈 ∈ S (𝑚)

. Let 1 ≤ 𝑞 ≤ a , and let us

consider (𝐵𝑞, 𝑥𝑞, 𝜋𝑞). We set 𝑐𝑞 (𝑈) as the output of A at the center of the ball 𝐵𝑞 , where the nodes

of 𝐵𝑞 are assigned inputs thanks to 𝑥𝑞 , and are given IDs equal to the |𝑉 (𝐵𝑞) | first values in 𝑈 ,

respecting the ordering 𝜋𝑞 . Note that 𝑐𝑞 (𝑈) can take at most 2
𝑘
different values, as it is an output

of A for FΔ,𝑘 , hence on 𝑘 bits. Finally the color of𝑈 is the a-tuple

𝑐 (𝑈) = (𝑐1 (𝑈), 𝑐2 (𝑈), . . . , 𝑐a (𝑈)) .

Applying Ramsey theorem. We apply Ramsey’s theorem (Theorem 4.2) on the coloring 𝑐 of S (𝑚)
,

as specified in Theorem 4.2, with

𝜌 =𝑚, 𝜎 = 2
𝑘a , and 𝜏 = 𝑛max .

By picking S with |S| ≥ 𝑅(𝑟, 𝑠, 𝜏), we get that there exists a subset 𝑌 of S with size 𝑛max such that,

for every subset 𝑈 of 𝑌 with size𝑚, the color 𝑐 (𝑈) given to 𝑈 is the same. In other words, there

exists a set of identifiers 𝑌 such that the algorithm A outputs the same at all centers of the balls

for every ID-assignment with IDs taken from 𝑌 , whenever these IDs are assigned according to

the ordering of the nodes specified for each ball. That is, the algorithm A is order-invariant when

restricted to identifiers taken from 𝑌 .

New algorithm A′. Let us now consider a new algorithm, denoted by A′
, that gathers the 𝑡-

neighborhood at each node, replaces the observed identifiers by the first identifiers in 𝑌 , respecting

the ordering provided by the original IDs, and outputs the same as A for this 𝑡-neighborhood but

with IDs in 𝑌 . The algorithm A′
is order-invariant by construction, since it maps every identifier

assignment with a given order to a same ID assignment with IDs taken from 𝑌 .

Correctness of A′. To prove that A′
is correct, let us consider a run of A′

on a configuration

(𝐺, 𝑥) with 𝐺 ∈ GL and for which there exists 𝑦 such that (𝐺, (𝑥,𝑦)) ∈ L, assuming an arbitrary

ID assignment id1. We show that A′
outputs 𝑦 such that (𝐺, (𝑥,𝑦)) ∈ L, which establishes the

correctness of A′
. Let id2 be an identifier assignment to the nodes of 𝐺 with IDs taken from 𝑌 ,

respecting the global ordering of the nodes induced by id1. Note that𝑌 is large enough as |𝑌 | = 𝑛max

where 𝑛𝑚𝑎𝑥 is the maximum number of nodes in a graph in GL . Let 𝑣 be a node of 𝐺 . While

executing A′
, node 𝑣 assigns IDs from 𝑌 to the nodes in its 𝑡-neighborhood, respecting the local

ordering of the nodes induced by id1. Let us denote this (local) identifier assignment by id3. By
construction, id2 and id3 have the same ordering in the 𝑡-neighborhood of 𝑣 . Therefore, as the

IDs in id2 and id3 are taken from 𝑌 , the output of A at node 𝑣 is the same for these two identifier

assignments. Since this holds for every node, it follows that the global output 𝑦 of A′
with id1 is

the same as the output 𝑦 of A with id2. Since A is correct, we get (𝐺, (𝑥,𝑦)) ∈ L, and therefore A′

is correct, as desired. This completes the proof of Lemma 4.1. □

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

0:14 Laurent Feuilloley and Pierre Fraigniaud

4.2 Proof setting
Let L, 𝑝,Δ, 𝑘, 𝑡 , and 𝑟 be as in the statement of Theorem 3.1. Consider a randomized construction

algorithm for L with configurations taken from FΔ,𝑘 running in 𝑡 rounds, with success probability

at least 𝑟 . We prove that there exists an integer 𝐷0 such that there exists a deterministic algorithm

for L with configurations taken from FΔ,𝑘 running in 𝑡 rounds, in all graphs of diameter at least 𝐷0.

The desired lower bound 𝑛0 on the number of nodes can then be directly derived from 𝐷0, as all

considered graphs have maximum degree at most Δ. For the purpose of contradiction, let us assume

the following.

(★) There exists a 𝑡-round randomized construction algorithmC forL with success probability

at least 𝑟 for configurations taken from FΔ,𝑘 , but every 𝑡-round deterministic construction

algorithm for L with configurations taken from FΔ,𝑘 errs on an infinite family of graphs

(hence on graphs with arbitrarily large diameter).

Since 𝑟 is the success probability of C, we get that, for every input configuration (𝐺, 𝑥) for which
there exists 𝑦 such that (𝐺, (𝑥,𝑦)) ∈ L, and for every identifier assignment id, the output 𝑦

constructed by C satisfies

Pr[(𝐺, (𝑥,𝑦)) ∈ L] ≥ 𝑟 . (2)

An input-output configuration (𝐺, (𝑥,𝑦)) where 𝑦 is constructed by C on instance (𝐺, 𝑥, id) is
denoted by C(𝐺, 𝑥, id).

Randomized decision. Since L ∈ BPLD𝑝 , there exists a randomized Monte-Carlo algorithm D
deciding L in a constant number of rounds (see Section 2.3), and 𝑝 > 1

2
is the success guarantee

of Algorithm D, that is, D satisfies Eq. (1). We denote by 𝑡 ′ = 𝑂 (1) the number of rounds of

Algorithm D.

4.3 Basic building block
The assumption (★) allows to get the following result.

Claim 2. For every integer 𝐷0 ≥ 0, there exists 𝛽 > 0 such that, for every nonnegative integer 𝐼min,
there exists a graph 𝐻 with diameter 𝐷 ≥ 𝐷0, an input-assignment 𝑥 : 𝑉 (𝐻) → {0, 1}𝑘 , and an
identifier-assignment id to the nodes of 𝐻 with id(𝑣) ≥ 𝐼min for every node 𝑣 of 𝐻 , for which

Pr[C(𝐻, 𝑥, id) ∉ L] ≥ 𝛽.

That is, C fails with probability at least 𝛽 on instance (𝐻, 𝑥, id).

Proof of Claim 2. Let 𝐷0 be a nonnegative integer. Since we assume input-output configura-

tions in FΔ,𝑘 , there is a finite number of (deterministic) order-invariant algorithms running in 𝑡

rounds. This is because there are finitely many balls of radius 𝑡 in a graph of maximum degree 𝑘 ,

finitely many 𝑘-bit input-output configurations for each of these balls, and finitely many orderings

for the node identifiers in these balls.

Let 𝐼min ≥ 0 be an integer. By assumption (★), for each order-invariant deterministic algorithm A,
we can pick an instance (𝐻, 𝑥, id), with diameter 𝐷 ≥ 𝐷0, such that A fails on (𝐻, 𝑥, id). As there is
a finite number of order-invariant algorithms, this process generates a finite number of instances.

Let 𝑛max be the maximum number of nodes of 𝐻 across all instances (𝐻, 𝑥, id) obtained after having
considered all order-invariant algorithms.

As Algorithm A is order-invariant, we can actually modify the identifier assignment id at will,

as long as we keep the same global order of the identifiers, and still get an instance where A
fails. In particular, we ask that the minimum identifier is 𝐼min and that the maximum identifier is

𝐼min + 𝑛max − 1. Now, consider the set H of all the configurations on graphs with diameter at least

𝐷0 and on at most 𝑛max nodes, arbitrary inputs, and identifier assignment in [𝐼min, 𝐼min + 𝑛max − 1].

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

Randomized local network computing 0:15

Here we will assume that 𝐷0 is larger than the constant 𝑅 of Lemma 4.1 resulting from the choice

of Δ and 𝑘 in the statement of Theorem 3.1, and the choice of 𝑡 in (★). In turn, this implies that

𝑛𝑚𝑎𝑥 is larger than 𝑅.

This (finite) set contains all the graphs 𝐻 occurring in the configurations (𝐻, 𝑥, id) previously
selected by considering all order-invariant algorithms. Let 𝑁 be the cardinality of H . We set

𝛽 = 1/𝑁 .

Note that 𝛽 does not depend on 𝐼min, as the identifiers in H are taken from a set of size 𝑛max for

any 𝐼min, and 𝑛max does not depend on 𝐼min.

At this point, there are two possibilities. The first possibility is that, for every random bit sequence,

there exists an instance (𝐻, 𝑥, id) on which𝐶 fails, and then, given that there are at most𝑁 instances

(𝐻, 𝑥, id), there exists an instance (𝐻, 𝑥, id) ∈ H such that

Pr[C(𝐻, 𝑥, id) ∉ L] ≥ 𝛽.

The second possibility is that there exists a random bits sequence 𝜎 such that, for every instance

(𝐻, 𝑥, id) ∈ H ,

C(𝐻, 𝑥, id) is correct with the sequence 𝜎 .

We show that the later case is impossible. Indeed, if there exists 𝜎 such that, for every instance

(𝐻, 𝑥, id) ∈ H ,C(𝐻, 𝑥, id) is correct with the sequence 𝜎 , then there exists a deterministic algorithm

for all instances inH . We can turn this algorithm into an order-invariant algorithm by applying

Lemma 4.1. Indeed, the ID space has size 𝑛max, thus is larger than 𝑅, and the language at hand is L
restricted to the graph that are present in H , which then has finite-support. Therefore, there exists

an order-invariant algorithm in time 𝑡 that is correct for all instances inH ,and thus in particular

correct for all the instances (𝐻, 𝑥, id), a contradiction. It follows that there exists (𝐻, 𝑥, id) ∈ H
such that Pr[C(𝐻, 𝑥, id) ∉ L] ≥ 𝛽 , which completes the proof of Claim 2. □

4.4 Boosting the error probability
To provide an intuition of how the assumption L ∈ BPLD𝑝 is used, let us first provide an intuition

of the rest of the proof of Theorem 3.1 by relaxing the constraint that input-output configurations

deal with connected graphs. For this purpose, let us define BPLD
∗
𝑝 as the class of languages defined

as BPLD𝑝 but on configurations (𝐺, (𝑥,𝑦)) where 𝐺 does not need to be connected. The following

result is a relaxed variant of Theorem 3.1 in which distributed languages are allowed to be defined

on non-connected graphs. For this variant, the issue regarding the diameter is irrelevant (as this

constraint is precisely used to connect small graphs together to form a large connected configuration),
hence we simply ignore it. Note that the parameter 𝑝 of the BPLD𝑝 decider does not actually need

to be larger than 1/2 for the results in this section to hold.

Claim 3. Let L be a distributed language in BPLD
∗, and let Δ > 2 and 𝑘 ≥ 0 be integers. If there

exists a randomized Monte-Carlo construction algorithm with success probability 𝑟 ∈ (0, 1] for L with
configurations taken from FΔ,𝑘 , running in 𝑡 rounds, then there exists a deterministic construction
algorithm for L with configurations taken from FΔ,𝑘 running in 𝑡 rounds.

Proof of Claim 3. The assumption that graphs do not need to be connected has no impact on

Lemma 4.1 and Claim 2, which remain both valid in this context. Let 𝛽 be as in Claim 2 for 𝐷0 = 0,

and let a be an integer that we will fixed later.

We use Claim 2 several times, for different values of 𝐼min. Let’s start with 𝐼1 = 0. Let (𝐻1, 𝑥1, id1) be
an instance whose existence is guaranteed by Claim 2 for 𝐼min = 𝐼1. Now let 𝐼2 = 1+max𝑣∈𝑉 (𝐻1) id(𝑣),
and, let (𝐻2, 𝑥2, id2) be an instance whose existence is guaranteed by Claim 2 for 𝐼min = 𝐼2. We can

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

0:16 Laurent Feuilloley and Pierre Fraigniaud

carry on with this process in the same way for constructing a sequence of instances (𝐻𝑖 , 𝑥𝑖 , id𝑖),
for 𝑖 = 1, 2, . . . , a .

Let (𝐺, 𝑥, id) be the union of the instances (𝐻𝑖 , 𝑥𝑖 , id𝑖). Note that id is well defined since two

different identifier assignments id𝑖 and id𝑗 do not overlap, for any 1 ≤ 𝑖 < 𝑗 ≤ a . We now study the

behaviour of C and D on these instances. For a fixed 𝑖 , the probability that D rejects C(𝐻𝑖 , 𝑥𝑖 , id𝑖) is
at least 𝛽𝑝 since

Pr[C(𝐻𝑖 , 𝑥𝑖 , id𝑖) ∉ L] ≥ 𝛽,

and, by definition of D,

Pr[D rejects C(𝐻𝑖 , 𝑥𝑖 , id𝑖) |C(𝐻𝑖 , 𝑥𝑖 , id𝑖) ∉ L] ≥ 𝑝.

Therefore

Pr[D accepts C(𝐻𝑖 , 𝑥𝑖 , id𝑖)] ≤ 1 − 𝛽𝑝,

and thus

Pr[D accepts C(𝐺, 𝑥, id)] ≤ (1 − 𝛽𝑝)a (3)

since the decider runs independently in each (𝐻𝑖 , 𝑥𝑖 , id𝑖). On the other hand,

Pr[D accepts C(𝐺, 𝑥, id)] ≥ 𝑝 Pr[C(𝐺, 𝑥, id) ∈ L] . (4)

Combining Eq. (3) with Eq. (4), we get

Pr[C(𝐺, 𝑥, id) ∈ L] ≤ 1

𝑝
(1 − 𝛽𝑝)a .

By taking a large enough, it follows that

Pr[C(𝐺, 𝑥, id) ∈ L] < 𝑟 .

This is a contradiction with Eq. (2), i.e., the fact that C has success probability at least 𝑟 . This

contradiction indicates that hypothesis (★) cannot be true for L. This concludes the proof of

Claim 3. □

4.5 Gluing of instances
In this subsection, we show how to amplify the probability of failure by repetition, as in the previous

section, while preserving the connectivity of the considered instances. Recall that 𝑝 > 1

2
. We define

` =

⌈
1

2𝑝 − 1

⌉
+ 1,

and we set

𝐷0 = 2` (𝑡 + 𝑡 ′ + 1),
where 𝑡 and 𝑡 ′ are the running times of C and D, respectively. Using Claim 2 with this value for 𝐷0,

we construct a sequence of instances (𝐻𝑖 , 𝑥𝑖 , id𝑖), 𝑖 = 1, . . . , a ′, for an integer a ′ to be specified later,

the same way we did in the proof of Claim 3. All the graphs 𝐻𝑖 have diameter at least 𝐷0. In order

to glue the graphs 𝐻𝑖 , 𝑖 = 1, . . . , a ′, together, we need to identify in each graph 𝐻𝑖 a node 𝑢𝑖 around

which edges will be added in order to connect 𝐻𝑖 with other graphs 𝐻 𝑗 , 𝑗 ≠ 𝑖 . Let 𝑖 ∈ {1, . . . , a ′}. A
crucial remark is that, since the diameter of 𝐻𝑖 is at least 𝐷0 = 2` (𝑡 + 𝑡 ′ + 1), there exists a set 𝑆 of

` vertices in 𝐻𝑖 at distance at least 2(𝑡 + 𝑡 ′ + 1) from each other. We now show how to choose the

desired node 𝑢𝑖 as one of the nodes in 𝑆 .

Let us analyze the execution of the construction algorithm C for each of the possible choices of

its random coins, and let us restrict our attention to the behavior of the nodes far away from𝑢 when

running the decider D, for each 𝑢 ∈ 𝑆 . More specifically, any Monte-Carlo algorithm such as C or D
is using a finite (potentially unbounded) random bit-string at each node. The collection of random

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

Randomized local network computing 0:17

bit-strings consumed by all the nodes during one execution of the algorithm forms a multi-set

of random strings indexed by node identifiers. This set can be viewed itself as a (large) random

bit-string composed of the concatenation of the individual strings, ordered by the node identifiers.

Let Rand(C) and Rand(D) be the sets of random bit-strings used by C and D, respectively.
Recall that the event “D rejects (𝐺, (𝑥,𝑦))” is an abbreviation for the event “D outputs 𝑓 𝑎𝑙𝑠𝑒 in

at least one node when executed on (𝐺, (𝑥,𝑦))”. We define the event “D rejects (𝐺, (𝑥,𝑦)) far from
𝑣 ∈ 𝑉 (𝐺)” as the event that D outputs 𝑓 𝑎𝑙𝑠𝑒 in at least one node at distance greater than 𝑡 + 𝑡 ′

from 𝑣 , when executed on (𝐺, (𝑥,𝑦)). Also, we say that D accepts (𝐺, (𝑥,𝑦)) far from 𝑣 ∈ 𝑉 (𝐺) if D
outputs 𝑡𝑟𝑢𝑒 at all nodes at distance greater than 𝑡 + 𝑡 ′ from 𝑣 , when executed on (𝐺, (𝑥,𝑦)). Note
that it can be the case that D rejects (𝐺, (𝑥,𝑦)) but that D accepts (𝐺, (𝑥,𝑦)) far from 𝑣 ∈ 𝑉 (𝐺).
Let us fix a string 𝜎 ∈ Rand(C) that makes C fail on instance (𝐻𝑖 , 𝑥𝑖 , id𝑖). We denote by C𝜎 the

algorithm C with the fixed random string 𝜎 . Notice that C𝜎 is deterministic.

Claim 4. There exists a node 𝑢 ∈ 𝑆 such that Pr[D accepts C𝜎 (𝐻𝑖 , 𝑥𝑖 , id𝑖) far from 𝑢] < 𝑝.

Proof of Claim 4. To establish the claim, notice that, since C𝜎 (𝐻𝑖 , 𝑥𝑖 , id𝑖) ∉ L, it follows that

Pr[D rejects C𝜎 (𝐻𝑖 , 𝑥𝑖 , id𝑖)] ≥ 𝑝.

Suppose, for the purpose of contradiction, that the claim does not hold. It means that, for every

node 𝑢 ∈ 𝑆 ,

Pr[D accepts C𝜎 (𝐻𝑖 , 𝑥𝑖 , id𝑖) far from 𝑢] ≥ 𝑝.

Let E𝑢 be the event that D rejects C𝜎 (𝐻𝑖 , 𝑥𝑖 , id𝑖), and accepts C𝜎 (𝐻𝑖 , 𝑥𝑖 , id𝑖) far from 𝑢. By a union

bound, it follows from |𝑆 | = ` that, for every node 𝑢 ∈ 𝑆 ,

Pr[E𝑢] ≥ 2𝑝 − 1.

A string in Rand(D) for which E𝑢 holds is called critical for node 𝑢. We show that the sets of critical

strings are disjoint, that is, if a string is critical for 𝑢 ∈ 𝑆 then it is not critical for a different node

𝑢 ′ ∈ 𝑆 . Let

𝜎 ′ ∈ Rand(D)
be a critical string for 𝑢 ∈ 𝑆 , and let us consider the set Reject(𝑢, 𝜎 ′) of vertices of 𝐻𝑖 at which D𝜎′

rejects C𝜎 (𝐻𝑖 , 𝑥𝑖 , id𝑖), where D𝜎′ is the (deterministic) algorithm resulting from applying D with

string 𝜎 ′
. Since D𝜎′ accepts C𝜎 (𝐻𝑖 , 𝑥𝑖 , id𝑖) far from 𝑢, we have:

Reject(𝑢, 𝜎 ′) ⊆ 𝐵𝐻𝑖
(𝑢, 𝑡 + 𝑡 ′).

As a consequence, for any two nodes 𝑢 ≠ 𝑢 ′
of 𝑆 , we have

Reject(𝑢, 𝜎 ′) ∩ Reject(𝑢 ′, 𝜎 ′) = ∅,
because

𝐵𝐻𝑖
(𝑢, 𝑡 + 𝑡 ′) ∩ 𝐵𝐻𝑖

(𝑢 ′, 𝑡 + 𝑡 ′) = ∅.
It follows that the set of critical strings are disjoint. In other words, the events E𝑢 ,𝑢 ∈ 𝑆 , are disjoint.

As a consequence, if E denotes the event that E𝑢 holds for some 𝑢 ∈ 𝑆 , we have

Pr[E] =
∑
𝑢∈𝑆

Pr[E𝑢] ≥ ` (2𝑝 − 1).

This is impossible since, by definition of `, we have

` (2𝑝 − 1) > 1.

This completes the proof of Claim 4. □

We are now ready to establish the existence of a convenient node 𝑢𝑖 in 𝐻𝑖 allowing us to connect

𝐻𝑖 to the other 𝐻 𝑗 ’s.

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

0:18 Laurent Feuilloley and Pierre Fraigniaud

Claim 5. There exists a node 𝑢 of 𝐻𝑖 such that

Pr[D accepts C(𝐻𝑖 , 𝑥𝑖 , id𝑖) far from 𝑢] < 1 − 𝛽 (1 − 𝑝)
`

.

Proof of Claim 5. To establish the claim, let

𝑋 =
∑
𝑢∈𝑆

Pr[D rejects C(𝐻𝑖 , 𝑥𝑖 , id𝑖) far from 𝑢] .

Note that the probabilities are taken on both the random choices of C, and the ones of D. Let us
separate the two by defining

Σ = {𝜎 ∈ Rand(C) : C𝜎 (𝐻𝑖 , 𝑥𝑖 , id𝑖) ∉ L}.
We have

𝑋 ≥
∑
𝑢∈𝑆

∑
𝜎 ∈Σ

Pr[D rejects C𝜎 (𝐻𝑖 , 𝑥𝑖 , id𝑖) far from 𝑢] · Pr[𝜎] .

Now, by Claim 4 we know that, for any 𝜎 ∈ Σ, there exists 𝑢 ∈ 𝑆 such that

Pr[D rejects C𝜎 (𝐻𝑖 , 𝑥𝑖 , id𝑖) far from 𝑢] > 1 − 𝑝.

On the other hand, we also know from Claim 2 that∑
𝜎 ∈Σ

Pr[𝜎] ≥ 𝛽.

Therefore, 𝑋 ≥ 𝛽 (1 − 𝑝), that is,∑
𝑢∈𝑆

Pr[D rejects C(𝐻𝑖 , 𝑥𝑖 , id𝑖) far from 𝑢] ≥ 𝛽 (1 − 𝑝).

Therefore, there exists 𝑢 ∈ 𝑆 such that

Pr[D rejects C(𝐻𝑖 , 𝑥𝑖 , id𝑖) far from 𝑢] ≥ 𝛽 (1 − 𝑝)/`.
This concludes the proof of Claim 5. □

To complete the proof of the theorem, we now glue all graphs 𝐻𝑖 together, as follows. For every

𝑖 = 1, . . . , a ′, let 𝑢𝑖 be a node satisfying Claim 5 for 𝐻𝑖 . Let 𝑒𝑖 be an arbitrarily chosen edge incident

to 𝑢𝑖 in 𝐻𝑖 . We subdivide each edge 𝑒𝑖 twice, by inserting two nodes 𝑣𝑖 and 𝑤𝑖 . Then we add an

edge between 𝑣𝑖 and 𝑤𝑖+1, for 𝑖 = 1, . . . , a ′ − 1, and an edge between 𝑣a′ and 𝑤1. In this way, we

form a connected graph 𝐺 with degree at most Δ as the degrees of the original nodes remain

unchanged, and all new nodes 𝑣𝑖 and𝑤𝑖 , 𝑖 = 1, . . . , a ′, have degree 3 (recall that Δ > 2). The inputs

and indentifiers given to the nodes of 𝐺 not in some 𝐻𝑖 are set arbitrarily (with the only constraint

that no identifiers present in one 𝐻𝑖 should be given to any node of𝐺). This construction results in

an instance (𝐺, 𝑥, id). Let us now compute

𝑞 = Pr[D accepts C(𝐺, 𝑥, id)] .
On the one hand, we have

𝑞 ≤
a′∏
𝑖=1

Pr[D accepts C(𝐻𝑖 , 𝑥𝑖 , id𝑖) far from 𝑢𝑖],

where “far from 𝑢𝑖” must be understood as “far from 𝑢𝑖 in 𝐻𝑖”, that is when considering only nodes

in 𝐻𝑖 at distance greater than 𝑡 + 𝑡 ′ from 𝑢𝑖 . This inequality holds because, to accept, every node

must output 𝑡𝑟𝑢𝑒 , and so, in particular, those in 𝐻𝑖 far from 𝑢𝑖 , for all 𝑖 . These sets of nodes are

at distance more than 2(𝑡 + 𝑡 ′ + 1) from each other, and each of the nodes in these sets cannot

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

Randomized local network computing 0:19

distinguish an instance on 𝐻𝑖 from an instance on 𝐺 . This implies that the decision made by D in

each set is independent from the one taken in another set.

Now, by applying Claim 5, we get that

Pr[D accepts C(𝐺, 𝑥, id)] ≤
(
1 − 𝛽 (1 − 𝑝)

`

)a′
.

On the other hand, as in the proof of Claim 3, we have

Pr[D accepts C(𝐺, 𝑥, id)] ≥ 𝑝 Pr[C(𝐺, 𝑥, id) ∈ L] .
Combining the two latter inequalities, we get

Pr[C(𝐺, 𝑥, id) ∈ L] ≤ 1

𝑝

(
1 − 𝛽 (1 − 𝑝)

`

)a′
.

If follows that, by choosing

a ′ = 1 +

ln(𝑟𝑝)
ln

(
1 − 𝛽 (1−𝑝)

`

) ,
we obtain

Pr[C(𝐺, 𝑥, id) ∈ L] < 𝑟,

which is a contradiction with Eq. (2), i.e., with the fact that C has success probability at least 𝑟 .

This contradiction yields that hypothesis (★) does not hold, which implies that there must exist a

𝑡-round deterministic algorithms for L. This concludes the proof of the theorem.

4.6 Small error detection probabilities, and graphs with small maximum degree
We conclude this section by a couple of remarks.

4.6.1 On the error detection probability. Our derandomization result holds for languages in BPLD𝑝

with success probability 𝑝 > 1

2
. The following language L justifies this threshold. L is defined

solely for configurations in F2,2, i.e., on graphs with maximum degree 2, and output labels on at

most 2 bits (there are no input labels in L). Every node 𝑢 of a graph 𝐺 must output a 2-bit integer

𝑦 (𝑢) ∈ {0, 1, 2, 3}. If 𝐺 is a cycle, then there are no contraints on these integers. However, if the

graph 𝐺 is a path, then the labels of its two endpoints 𝑢 ′
and 𝑢 ′′

must satisfy 𝑦 (𝑢 ′) ≠ 𝑦 (𝑢 ′′).
We have L ∈ BPLD1/2 using the following decision algorithm. Every degree-2 node accepts with

probability 1, and every degree-1 node accepts with probability 1/√2. It follows that if 𝐺 is a cycle

then Pr[all nodes accept] = 1, and if 𝐺 is a path, then Pr[all nodes accept] = 1

2
. Therefore, a legal

instance is accepted with probability at least
1

2
, and an illegal instance is rejected with probability

1

2
.

On the one hand, L has a randomized construction algorithm, performing in zero rounds, and

succeeding with probability
3

4
. This algorithm simply outputs an integer 𝑦 (𝑢) ∈ {0, 1, 2, 3} chosen

uniformly at random at every degree-1 node 𝑢, and outputs 0 at every degree-2 node. In a path

with endpoints 𝑢 ′
and 𝑢 ′′

, the probability that 𝑦 (𝑢 ′) ≠ 𝑦 (𝑢 ′′) is 3

4
.

On the other hand, L has no deterministic construction algorithm performing in𝑂 (1) rounds. To
see why, let us assume, for the purpose of contradiction, the existence of a construction algorithm

for L performing in a constant number of rounds 𝑡 . In an 𝑛-node path 𝑃 with 𝑛 ≥ 2𝑡 + 2, the

algorithm is merely a function 𝑓 that maps views at distance 𝑡 of the endpoints of 𝑃 to {0, 1, 2, 3}.
Such a view is a word 𝑤 = 𝑥0, . . . , 𝑥𝑡 of 𝑡 + 1 distinct IDs. For every 𝑘 ≥ 0, we define the view

𝑤𝑘 = 𝑘 (𝑡 + 1) + 1, . . . , (𝑘 + 1) (𝑡 + 1). Since 𝑓 has four possible outcomes, there are two distinct

indices 𝑖, 𝑗 ∈ {0, . . . , 4} such that 𝑓 (𝑤𝑖) = 𝑓 (𝑤 𝑗). Therefore, if 𝑃 has 𝑛 ≥ 2𝑡 + 2 nodes, then one can

assign the IDs to 𝑃 in such a way that its two endpoints have respective views𝑤𝑖 and𝑤 𝑗 , leading

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

0:20 Laurent Feuilloley and Pierre Fraigniaud

the algorithm to output the same value at the two endpoints of 𝑃 , contradicting its correctness.

Note that this holds even for IDs in {1, . . . , 𝑛}, whenever 𝑛 ≥ 5(𝑡 + 1).
It follows that there are languages in BPLD1/2 that have a randomized construction algorithm

performing in 𝑂 (1) rounds and outputting a correct solution with probability
3

4
, but that do not

admit any deterministic construction algorithm performing in 𝑂 (1) rounds. Our derandomization

result however holds for configurations taken from FΔ,𝑘 , i.e., on the class of graphs with maximum

degree at most Δ, with Δ > 2. (Remember that for every for every graph we require that there

exists a correct solution, thus we cannot simply rule out instances with larger degree.) For such

an assumption, we do not know whether a success probability 𝑝 > 1

2
is required for checking the

correctness of a solution, and it may well be the case that even a small (constant) probability of

success 𝑝 > 0 suffices for a derandomization result to hold. Establishing the correctness of this

extension would require a more refined analysis than the one used for Claim 4.

4.6.2 On graphs with maximum degree 2. The derandomization result by Naor and Stockmeyer [40]

(cf. Theorem 2.1) extends from the class of graphs with maximum degree Δ, with Δ > 2, to the class

of 2-regular graphs. Similarly, assuming 𝑝 > 1

2
, our derandomization result stated for graphs with

maximum degree Δ, with Δ > 2, also holds the class of 2-regular graphs. Indeed, Claim 5 can also

be applied in this setting for gluing small cycles together, in order to create a large cycle in which

the construction algorithm fails with a probability exceeding its error threshold. Nevertheless, the

specific case of the class of graphs with degree at most 2 is not covered by our theorem. We do

not know whether derandomization holds for this class. Indeed, there is a specific reason why this

class behaves differently from any class of graphs with maximum degree Δ > 2. Specifically, the

only way to glue paths while remaining in the class is to connect these paths via their endpoints.

Unfortunately, Claim 5 does not say anything about the location of the nodes of 𝐻𝑖 enabling to

connect 𝐻𝑖 with other 𝐻 𝑗 s for creating a large graph in which the construction algorithm fails. In

particular, if the rejecting node is too close to an endpoint, one cannot use it.

In fact, there are scenarios in which glueing paths is impossible. Let us again consider the

language amos, for “at most one selected”, in which either zero or one node can be marked 1, while

all the other nodes are marked 0. We actually consider the variant amos′ of amos for F2,1 in which

only degree-1 nodes matter (i.e., one does not count the number of marked degree-2 nodes). Note

that there exists a randomized construction algorithm for amos′ that succeeds with probability
3

4

under F2,1, performing as follows. Each degree-2 node outputs 0 with probability 1, and each

degree-1 node outputs 0 or 1 uniformly at random. The probability that the two extremities of a

path output 1 is
1

4
.

Now, deciding amos′ can be done in zero rounds, as follows: each degree-2 node accepts regardless
of whether it is marked or not, each unmarked degree-1 node accepts with probability 1, and each

marked degree-1 node accepts with probability 𝑝 = (
√
5−1)/2, and rejects with probability 1 − 𝑝 . We

get amos′ ∈ BPLD𝑝 with success probability 𝑝 = (
√
5−1)/2 > 1

2
. However, the rejecting nodes are

systematically extremities of paths, preventing gluing to be unnoticed by these nodes. It follows

that our proof does not enable to show the existence of a deterministic construction algorithm for

amos′, and the fact that there exists a trivial deterministic algorithm for amos′ (every node merely

outputs 0) is of no help as far as our proof is concerned.

We actually do not know whether our derandomization result for FΔ,𝑘 , Δ > 2, for languages in

BPLD𝑝 with 𝑝 > 1

2
, extends to F2,𝑘 .

5 RESILIENT RELAXATIONS
In this section, we derive lower bounds for relaxed construction tasks. In a framework of dynamic

networks, in which links can be removed or added along with time, a modification of the network

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

Randomized local network computing 0:21

may turn a legal LCL into an illegal one. As a consequence, any application based on an LCL on

dynamic networks should tolerate at least some erroneous labelings of the nodes, here and there in

the network. For such applications, it might therefore be overdoing to construct perfect labelings, as

slightly erroneous labeling would be sufficient. In this section, we question the ability to construct

LCLs efficiently when relaxing the task by tolerating a certain number of erroneous neighborhoods.

Let 𝐵𝑎𝑑 (L) be the set of “bad” balls for L.

Definition 5.1. The 𝑓 -resilient relaxation of L ∈ LCL for a positive integer 𝑓 , denoted by L𝑓 , is

the language consisting of all input-output configurations (𝐺, (𝑥,𝑦)) containing at most 𝑓 balls in

𝐵𝑎𝑑 (L).

We prove that randomization does not help for the design of construction algorithms forL𝑓 . Note

that this result does not follow from the derandomization result in [40] since L𝑓 is not necessarily

locally checkable (i.e., not necessarily in LD). The following is however a corollary of Theorem 3.2.

Corollary 5.2. Let L ∈ LCL, Δ > 2, 𝑘 ≥ 0, and 𝑓 > 0. If there exists a randomized Monte-Carlo
construction algorithm for L𝑓 with configurations taken from FΔ,𝑘 , running in 𝑂 (1) rounds, then
there exists a deterministic construction algorithm for L𝑓 with configurations taken from FΔ,𝑘 running
in 𝑂 (1) rounds.

Proof. It is sufficient to show that L𝑓 ∈ BPLD𝑝 for some 𝑝 > 1

2
, and the result will then follow

directly from Theorem 3.2. Let

𝑝 ∈ (2−
1

𝑓 , 2
− 1

𝑓 +1).
The randomized decision algorithm performs in 𝑡 rounds, where 𝑡 is the radius of the balls excluded

from L. The decision algorithm works as follows. In instance (𝐺, (𝑥,𝑦), id), every node 𝑣 collects

the ball 𝐵𝐺 (𝑣, 𝑡) of radius 𝑡 in 𝐺 . If 𝐵𝐺 (𝑣, 𝑡) ∉ 𝐵𝑎𝑑 (L) then 𝑣 accepts with probability 1. Instead,

if 𝐵𝐺 (𝑣, 𝑡) ∈ 𝐵𝑎𝑑 (L) then 𝑣 accepts with probability 𝑝 , and rejects with probability 1 − 𝑝 . Note

that this is a well-defined algorithm since the set of bad balls is finite for configurations in FΔ,𝑘 ,

and therefore 𝐵𝐺 (𝑣, 𝑡) ∈ 𝐵𝑎𝑑 (L) is decidable (in the usual sense of sequential computing). Given

(𝐺, (𝑥,𝑦), id), we define
𝐹 (𝐺) = {𝑣 ∈ 𝑉 (𝐺) : 𝐵𝐺 (𝑣, 𝑡) ∈ 𝐵𝑎𝑑 (L)}.

• Assume (𝐺, (𝑥,𝑦)) ∈ L. The probability that all nodes accept is 𝑝 |𝐹 (𝐺) |
. Therefore, since

|𝐹 (𝐺) | ≤ 𝑓 , we get

Pr[all nodes accept] ≥ 𝑝 𝑓 >
1

2

.

• Assume (𝐺, (𝑥,𝑦)) ∉ L. The probability that at least one node rejects is 1−𝑝 |𝐹 (𝐺) |
. Therefore,

since |𝐹 (𝐺) | ≥ 𝑓 + 1, we get

Pr[at least one node rejects] ≥ 1 − 𝑝 𝑓 +1 >
1

2

.

Therefore, L ∈ BPLD𝑝 with 𝑝 > 1

2
, as desired. □

As a simple illustration of Corollary 5.2, we get that the 𝑓 -relaxation of (Δ+1)-coloring cannot be
solved in constant time, even if using a randomized Monte-Carlo algorithm. Indeed, this language

belongs to LCL, and therefore, by Corollary 5.2, it is sufficient to show that there is no constant-time

deterministic algorithm solving the 𝑓 -relaxation of (Δ + 1)-coloring. By Lemma 4.1 in the proof of

Theorem 3.1, it is actually sufficient to show that no order-invariant algorithms can solve these

relaxed tasks. In the cycle 𝐶𝑛 where adjacent nodes are given consecutive identifiers from 1 to

𝑛 (except for nodes with IDs 1 and 𝑛), any order-invariant 3-coloring algorithm performing in

𝑡 = 𝑂 (1) rounds acts identically in at least 𝑛 − 2𝑡 nodes since all the balls centered at nodes with

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

0:22 Laurent Feuilloley and Pierre Fraigniaud

IDs in [𝑡 + 1, 𝑛 − 𝑡] are identical as far as the ordering of the identifiers are concerned. Therefore,
𝑛 − 2𝑡 nodes output the same color, and thus the algorithm cannot be 𝑓 -resilient.

Note that the example of application to (Δ + 1)-coloring is for the ease of presentation. Other
than that, it may look like using a sledgehammer to crack a nut. Indeed, for that task, one could

derive the impossibility result directly by noticing that fixing the colors of a finite number 𝑓 on

nodes when all the other nodes are properly colored can be done in constant time. However, this

“local fixing” property does not necessarily hold for all languages in BPLD𝑝 . Even for languages in

LD, local fixing might not be easy. For instance, frugal coloring is the task requiring to properly

color the nodes, with the additional constraint that no color appears more than 𝑐 times in the

neighborhood of any node (for some given 𝑐). Locally fixing frugal coloring is not as easy as locally

fixing unconstrained proper coloring. More generally, locally fixing a language whose specification

is not fully local (as it is the case for the languages in BPLD𝑝 \LD) is not necessarily straightforward.

6 OPEN PROBLEMS
A natural question raised by this paper is whether⋃

𝑝>1/2
BPLD𝑝

is the ultimate class of tasks for which a derandomization theorem à la Naor and Stockmeyer holds.

There are several classes that might be good candidates for further extensions. Examples of such

classes are NLD and BPNLD, that is, the non-deterministic classes of languages that can be locally

verified, deterministically or randomly, respectively (see [18]). These are the classes of languages

for which one can certify the membership to the class thanks to local certificates. They are to LD

and BPLD, respectively, what NP is to P. Another candidate for further extensions is the class LD
O
,

that is, LD enhanced with an oracle O providing some information about the environment (see

also [18]). Indeed, it is frequent that distributed algorithms assume that the nodes are a priori aware

of global information about the network, like, e.g., its size, or an upper bound on its size.

From a technical point of view, generalizing Theorems 3.1 and 3.2 to tasks in one of the classes

LD
O
, NLD, or BPNLD, requires to overcome a serious obstacle. When constructing larger instances

by gluing smaller instances, the certificates and/or the information provided to the nodes by the

oracle, may change radically, and therefore it is quite hard to relate the outputs of the construction

and the decision algorithms when running in smaller instances, to the outputs of these algorithms

in larger instances.

Note that Theorems 3.1 and 3.2 do not extend to BPLD
#node
𝑝 , the class of languages that can be

decided by a randomized algorithm aware of the number of nodes. Indeed, the 𝜖-slack relaxation

of (Δ + 1)-coloring is in BPLD
#node
𝑝 (using the same algorithm as in the proof of Corollary 5.2

with 𝑓 = 𝜖𝑛). Yet, there is a constant-time (zero-round) randomized Monte-Carlo algorithm for

the 𝜖-slack relaxation of (Δ + 1)-coloring (every node picks a color in {1, . . . ,Δ + 1} uniformly

at random), but there are no constant-time deterministic algorithms for the 𝜖-slack relaxation of

(Δ + 1)-coloring.
Another issue is the extension our results to tasks in restricted classes of networks. Theorems 3.1

and 3.2 extend to tasks for configurations restricted to graph classes such as planar graphs, or

2-connected graphs. Indeed, the construction in the proof of the theorem preserves planarity and

2-connectivity. We do not know whether our theorems can be generalized to languages restricted

to arbitrary infinite class of graphs.

Finally, we have seen that randomization helps for the 𝜖-slack relaxation, but does not help for

the 𝑓 -resilient relaxation. One intriguing question is whether randomization helps for intermediate

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

Randomized local network computing 0:23

relaxations, like allowing 𝑂 (𝑛𝑐) nodes to output incorrect values, for 𝑐 < 1. Note that the corre-

sponding languages are not necessarily in BPLD𝑝 (hence our theorems cannot be used). They are

in BPLD
#node
𝑝 , but we have seen that this latter class is too wide for a derandomization result such

as the one in [40] to hold. Nevertheless, there might be a class C, with

BPLD𝑝 ⊂ C ⊂ BPLD
#node
𝑝

for which Theorems 3.1 and 3.2 could be extended.

ACKNOWLEDGMENTS
Both authors were supported by the ANR project DESCARTES, and the INRIA Project GANG. The

authors thank the reviewers for their very careful, detailed and helpful reviews.

REFERENCES
[1] Ittai Abraham, Yair Bartal, and Ofer Neiman. 2006. Advances in metric embedding theory. In 38th ACM Symposium on

Theory of Computing (STOC). 271–286. https://doi.org/10.1145/1132516.1132557

[2] Heger Arfaoui and Pierre Fraigniaud. 2014. What can be computed without communications? SIGACT News 45, 3
(2014), 82–104. https://doi.org/10.1145/2670418.2670440

[3] Heger Arfaoui, Pierre Fraigniaud, David Ilcinkas, and Fabien Mathieu. 2014. Distributedly Testing Cycle-Freeness. In

40th Int. Workshop on Graph-Theoretic Concepts in Computer Science (WG). 15–28. https://doi.org/10.1007/978-3-319-

12340-0_2

[4] Leonid Barenboim and Michael Elkin. 2013. Distributed Graph Coloring: Fundamentals and Recent Developments.
Morgan & Claypool Publishers. https://doi.org/10.2200/S00520ED1V01Y201307DCT011

[5] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. 2016. The Locality of Distributed Symmetry

Breaking. J. ACM 63, 3 (2016), 20:1–20:45. https://doi.org/10.1145/2903137

[6] Hubert T.-H. Chan, Michael Dinitz, and Anupam Gupta. 2006. Spanners with Slack. In 14th European Symposium on
Algorithms (ESA). 196–207. https://doi.org/10.1007/11841036_20

[7] T.-H. Hubert Chan, Kedar Dhamdhere, Anupam Gupta, Jon M. Kleinberg, and Aleksandrs Slivkins. 2009. Metric

Embeddings with Relaxed Guarantees. SIAM J. Comput. 38, 6 (2009), 2303–2329. https://doi.org/10.1137/060670511

[8] Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. 2019. An Exponential Separation between Randomized and Determin-

istic Complexity in the LOCAL Model. SIAM J. Comput. 48, 1 (2019), 122–143. https://doi.org/10.1137/17M1117537

[9] Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. 2001. Algorithms for facility location problems

with outliers. In 12th ACM-SIAM Symposium on Discrete Algorithms (SODA). 642–651. http://dl.acm.org/citation.cfm?

id=365411.365555

[10] Ke Chen. 2008. A constant factor approximation algorithm for k-median clustering with outliers. In 19th ACM-SIAM
Symposium on Discrete Algorithms (SODA). 826–835. http://dl.acm.org/citation.cfm?id=1347082.1347173

[11] Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. 2017. Distributed algorithms for the Lovász local lemma and graph

coloring. Distributed Computing 30, 4 (2017), 261–280. https://doi.org/10.1007/s00446-016-0287-6

[12] Marek Cygan and Tomasz Kociumaka. 2014. Constant Factor Approximation for Capacitated k-Center with Outliers.

In 31st International Symposium on Theoretical Aspects of Computer Science (STACS) (LIPIcs), Vol. 25. 251–262. https:

//doi.org/10.4230/LIPIcs.STACS.2014.251

[13] Michael Dinitz. 2007. Compact routing with slack. In 26th ACM Symposium on Principles of Distributed Computing
(PODC). 81–88. https://doi.org/10.1145/1281100.1281114

[14] Yuval Emek, Christoph Pfister, Jochen Seidel, and Roger Wattenhofer. 2014. Anonymous networks: randomization =

2-hop coloring. In ACM Symposium on Principles of Distributed Computing (PODC). 96–105. https://doi.org/10.1145/

2611462.2611478

[15] Patrik Floréen, Joel Kaasinen, Petteri Kaski, and Jukka Suomela. 2009. An optimal local approximation algorithm for

max-min linear programs. In 21st ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 260–269.
https://doi.org/10.1145/1583991.1584058

[16] Pierre Fraigniaud, Mika Göös, Amos Korman, Merav Parter, and David Peleg. 2014. Randomized distributed decision.

Distributed Computing 27, 6 (2014), 419–434. https://doi.org/10.1007/s00446-014-0211-x

[17] Pierre Fraigniaud, Mika Göös, Amos Korman, and Jukka Suomela. 2013. What can be decided locally without identifiers?.

In ACM Symposium on Principles of Distributed Computing (PODC). 157–165. https://doi.org/10.1145/2484239.2484264

[18] Pierre Fraigniaud, Amos Korman, and David Peleg. 2013. Towards a complexity theory for local distributed computing.

J. ACM 60, 5 (2013), 35:1–35:26. https://doi.org/10.1145/2499228

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

https://doi.org/10.1145/1132516.1132557
https://doi.org/10.1145/2670418.2670440
https://doi.org/10.1007/978-3-319-12340-0_2
https://doi.org/10.1007/978-3-319-12340-0_2
https://doi.org/10.2200/S00520ED1V01Y201307DCT011
https://doi.org/10.1145/2903137
https://doi.org/10.1007/11841036_20
https://doi.org/10.1137/060670511
https://doi.org/10.1137/17M1117537
http://dl.acm.org/citation.cfm?id=365411.365555
http://dl.acm.org/citation.cfm?id=365411.365555
http://dl.acm.org/citation.cfm?id=1347082.1347173
https://doi.org/10.1007/s00446-016-0287-6
https://doi.org/10.4230/LIPIcs.STACS.2014.251
https://doi.org/10.4230/LIPIcs.STACS.2014.251
https://doi.org/10.1145/1281100.1281114
https://doi.org/10.1145/2611462.2611478
https://doi.org/10.1145/2611462.2611478
https://doi.org/10.1145/1583991.1584058
https://doi.org/10.1007/s00446-014-0211-x
https://doi.org/10.1145/2484239.2484264
https://doi.org/10.1145/2499228

0:24 Laurent Feuilloley and Pierre Fraigniaud

[19] Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. 2013. Locality and checkability in wait-free computing.

Distributed Computing 26, 4 (2013), 223–242. https://doi.org/10.1007/s00446-013-0188-x

[20] Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. 2014. On the Number of Opinions Needed for Fault-Tolerant

Run-Time Monitoring in Distributed Systems. In 5th International Conference on Runtime Verification (RV). 92–107.
https://doi.org/10.1007/978-3-319-11164-3_9

[21] Zachary Friggstad, Kamyar Khodamoradi, Mohsen Rezapour, and Mohammad R. Salavatipour. 2019. Approximation

Schemes for Clustering with Outliers. ACM Trans. Algorithms 15, 2 (2019), 26:1–26:26. https://doi.org/10.1145/3301446

[22] Cyril Gavoille, Adrian Kosowski, and Marcin Markiewicz. 2009. What Can Be Observed Locally?. In 23rd International
Symposium on Distributed Computing (DISC). 243–257. https://doi.org/10.1007/978-3-642-04355-0_26

[23] Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. 2018. On Derandomizing Local Distributed Algorithms. In 59th
IEEE Symposium on Foundations of Computer Science (FOCS). 662–673. https://doi.org/10.1109/FOCS.2018.00069

[24] Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. 2017. On the complexity of local distributed graph problems. In 49th
ACM Symposium on Theory of Computing (STOC). 784–797. https://doi.org/10.1145/3055399.3055471

[25] Mika Göös, Juho Hirvonen, and Jukka Suomela. 2013. Lower bounds for local approximation. J. ACM 60, 5 (2013),

39:1–39:23. https://doi.org/10.1145/2528405

[26] Mika Göös and Jukka Suomela. 2016. Locally Checkable Proofs in Distributed Computing. Theory Comput. 12, 1 (2016),
1–33. https://doi.org/10.4086/toc.2016.v012a019

[27] Ronald L Graham, Bruce L Rothschild, and Joel H Spencer. 1990. Ramsey theory. Vol. 20. John Wiley & Sons.

[28] Henning Hasemann, Juho Hirvonen, Joel Rybicki, and Jukka Suomela. 2016. Deterministic local algorithms, unique

identifiers, and fractional graph colouring. Theor. Comput. Sci. 610 (2016), 204–217. https://doi.org/10.1016/j.tcs.2014.

06.044

[29] Jon M. Kleinberg, Aleksandrs Slivkins, and TomWexler. 2009. Triangulation and embedding using small sets of beacons.

J. ACM 56, 6 (2009), 32:1–32:37. https://doi.org/10.1145/1568318.1568322

[30] Goran Konjevod, Andréa W. Richa, Donglin Xia, and Hai Yu. 2007. Compact routing with slack in low doubling

dimension. In 26th ACM Symposium on Principles of Distributed Computing (PODC). 71–80. https://doi.org/10.1145/

1281100.1281113

[31] Amos Korman, Shay Kutten, and David Peleg. 2010. Proof labeling schemes. Distributed Computing 22, 4 (2010),

215–233. https://doi.org/10.1007/s00446-010-0095-3

[32] Amos Korman, Jean-Sébastien Sereni, and Laurent Viennot. 2013. Toward more localized local algorithms: removing

assumptions concerning global knowledge. Distributed Computing 26, 5-6 (2013), 289–308. https://doi.org/10.1007/

s00446-012-0174-8

[33] Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep. 2018. Constant approximation for k-median and k-means

with outliers via iterative rounding. In 50th ACM Symposium on Theory of Computing (STOC). 646–659. https:

//doi.org/10.1145/3188745.3188882

[34] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. 2004. What cannot be computed locally!. In 23rd ACM
Symposium on Principles of Distributed Computing (PODC). 300–309. https://doi.org/10.1145/1011767.1011811

[35] Christoph Lenzen, Yvonne Anne Oswald, and Roger Wattenhofer. 2008. What can be approximated locally?: case

study: dominating sets in planar graphs. In 20th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
46–54. https://doi.org/10.1145/1378533.1378540

[36] Christoph Lenzen and Roger Wattenhofer. 2008. Leveraging Linial’s Locality Limit. In 22nd International Symposium
on Distributed Computing (DISC). 394–407. https://doi.org/10.1007/978-3-540-87779-0_27

[37] Nathan Linial. 1992. Locality in Distributed Graph Algorithms. SIAM J. Comput. 21, 1 (1992), 193–201. https:

//doi.org/10.1137/0221015

[38] Thomas Moscibroda and Roger Wattenhofer. 2008. Coloring unstructured radio networks. Distributed Computing 21, 4

(2008), 271–284. https://doi.org/10.1007/s00446-008-0070-4

[39] Moni Naor. 1991. A Lower Bound on Probabilistic Algorithms for Distributive Ring Coloring. SIAM J. Discrete Math. 4,
3 (1991), 409–412. https://doi.org/10.1137/0404036

[40] Moni Naor and Larry J. Stockmeyer. 1995. What Can be Computed Locally? SIAM J. Comput. 24, 6 (1995), 1259–1277.
https://doi.org/10.1137/S0097539793254571

[41] David Peleg. 2000. Distributed computing. SIAM Monographs on discrete mathematics and applications 5 (2000).
[42] Václav Rozhon and Mohsen Ghaffari. 2020. Polylogarithmic-time deterministic network decomposition and distributed

derandomization. In 52nd ACM Symposium on Theory of Computing (STOC). 350–363. https://doi.org/10.1145/3357713.

3384298

[43] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal Pandurangan, David Peleg,

and Roger Wattenhofer. 2012. Distributed Verification and Hardness of Distributed Approximation. SIAM J. Comput.
41, 5 (2012), 1235–1265. https://doi.org/10.1137/11085178X

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

https://doi.org/10.1007/s00446-013-0188-x
https://doi.org/10.1007/978-3-319-11164-3_9
https://doi.org/10.1145/3301446
https://doi.org/10.1007/978-3-642-04355-0_26
https://doi.org/10.1109/FOCS.2018.00069
https://doi.org/10.1145/3055399.3055471
https://doi.org/10.1145/2528405
https://doi.org/10.4086/toc.2016.v012a019
https://doi.org/10.1016/j.tcs.2014.06.044
https://doi.org/10.1016/j.tcs.2014.06.044
https://doi.org/10.1145/1568318.1568322
https://doi.org/10.1145/1281100.1281113
https://doi.org/10.1145/1281100.1281113
https://doi.org/10.1007/s00446-010-0095-3
https://doi.org/10.1007/s00446-012-0174-8
https://doi.org/10.1007/s00446-012-0174-8
https://doi.org/10.1145/3188745.3188882
https://doi.org/10.1145/3188745.3188882
https://doi.org/10.1145/1011767.1011811
https://doi.org/10.1145/1378533.1378540
https://doi.org/10.1007/978-3-540-87779-0_27
https://doi.org/10.1137/0221015
https://doi.org/10.1137/0221015
https://doi.org/10.1007/s00446-008-0070-4
https://doi.org/10.1137/0404036
https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1145/3357713.3384298
https://doi.org/10.1145/3357713.3384298
https://doi.org/10.1137/11085178X

Randomized local network computing 0:25

[44] Jukka Suomela. 2013. Survey of local algorithms. ACM Comput. Surv. 45, 2 (2013), 24:1–24:40. https://doi.org/10.1145/

2431211.2431223

ACM Trans. Parallel Comput., Vol. 0, No. 0, Article 0. Publication date: 20XX.

https://doi.org/10.1145/2431211.2431223
https://doi.org/10.1145/2431211.2431223

	Abstract
	1 Introduction
	1.1 Context and objective
	1.2 Our results
	1.3 Related work

	2 Model and notations
	2.1 Computing model
	2.2 Decision and construction tasks
	2.3 Randomized distributed decision

	3 Main theorem and proof outline
	3.1 Theorem statements
	3.2 Proof outline of Theorem 3.1
	3.3 Proof of Theorem 3.2 assuming Theorem 3.1

	4 Proof of Theorem 3.1
	4.1 Order-invariance
	4.2 Proof setting
	4.3 Basic building block
	4.4 Boosting the error probability
	4.5 Gluing of instances
	4.6 Small error detection probabilities, and graphs with small maximum degree

	5 Resilient relaxations
	6 Open problems
	Acknowledgments
	References

