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The structure of the solution obtained with Reynolds-stress-transport
models at the free-stream edges of turbulent flows

J.-B. Cazalbou® and P. Chassaing”
ENSICA, 1 place Emile Blouin, 31056 Toulouse cedex 5, France

(Received 29 June 2001; accepted 9 October 001

The behavior of Reynolds-stress-transport models at the free-stream edges of turbulent flows is
investigated. Current turbulent-diffusion models are found to produce propagatissibly weak
solutions of the same type as those reported earlier by Cazalbou, Spalart, and Bri@khaw
Fluids 6, 1797(1994] for two-equation models. As in the latter study, an analysis is presented that
provides qualitative information on the flow structure predicted near the edge if a condition on the
values of the diffusion constants is satisfied. In this case, the solution appears to be fairly insensitive
to the residual free-stream turbulence levels needed with conventional numerical methods. The main
specific result is that, depending on the diffusion model, the propagative solution can force
turbulence toward definite and rather extreme anisotropy states at théomgg®r two-component

limit). This is not the case with the model of Daly and Har[®hys. Fluidsl3, 2634(1970]; it may

be one of the reasons why this “old” scheme is still the most widely used, even in recent
Reynolds-stress-transport models. In addition, the analysis helps us to interpret some difficulties
encountered in computing even very simple flows with Lumley’s pressure-diffusion madel

Appl. Mech.18, 123(1978]. A new realizability condition, according to which the diffusion model
should not globally become “anti-diffusive,” is introduced, and a recalibration of Lumley’s model
satisfying this condition is performed using information drawn from the analysis.20@2
American Institute of Physics. [DOI: 10.1063/1.1423933

I. INTRODUCTION flow. As a matter of fact, the interface between turbulent
‘(‘lvortical) fluid and nonturbulent fluid in unconfined space at

The singular behavior of popular turbulence models at . h R Id ber is b dual. Instant
the edge of turbulent regions has often been repdrtét.is 'gh REYNOIds number 1S by No means gra “ua. ns an”a-
neously, it is sharp: the width of the transition “superlayer

related to the vanishing of theariable diffussivity used in | . ) . C
is proportional to molecular viscosity which is small; and

gradient-transport modeling of turbulent diffusion. It has > 7 .
been shown by Spalart and Allmafder their one-equation highly contorted: the size of the turbulent bulges scales on
that of the large turbulent eddies. It is, therefore, barely con-

model, and by Cazalbou, Spalart, and Bradshéw most i P
y b ceivable that even rare turbulent bulges could reach infinity

two-equation models, that the singularitgtiscontinuity to . L o
some order of the transported variablesthe result of the (or at least a distance significantly larger than a characteristic

propagative character of the solution. Such solutions occullength spale of the mean flonand conseqyently, stgt|st|cs of
when turbulent diffusion is the dominant term in the budgetthe vortical fluctuatlon_s _shou_ld reacistrictly their free-
of the modeled equations in this region. This is so for all theStream 'values .at a finite dlstanpe from the turbulence-
models considered in Refs. 5 and 6, provided that some Spg_eneratln_g region. Another p05|.t|ve. consequencg of the
cial inequalities between the model constants are satisfie(fl).mpag"_"t've character of the solution |s_ of computa_ltlonal na-
The discontinuity corresponds to a turbulent front located afuré: With most models and a conventional numerical setup,
a finite distance from the turbulence-generating region, and"n€ cannot use strictly zero values for the turbulent quanti-
the front proceeds in the undisturbed fluid with a finite ties in the free—.stream, but the propagative solutllon ensures
“propagation” velocity. It is interesting to note that this pe- f[hat the result in the core of the tt_eruIent layer is virtually
culiar mathematical behavior of the gradient-transport modelndependent of these values provided that they are reason-
is revealed in a situation which is rather far from the frame-2bly small(see Ref. & _ . _
work in which the model is introduce@ fully turbulent fluid To our knowledge, the existence of propagative solutions
and some crude analogy between the macroscopié’-‘t the second—order—closure level has not been demonstrated
momentum transport by molecular motion and the meanalthough c'ar.eful compytatlons of simple shgar layers seem to
momentum transport by turbulent velocity fluctuatiphsit support this |dEéa. In this paper, we generalize the analysis of
possesses amazing similarities to what is observed in re&azalbouetal.” to the case of Reynolds-stress-transport
models. One will see that such solutions do exist for the most
dAuthor to whom correspondence should be addressed. Telept&B)e5 fuorzu(llirtglrfrf]:f Ig? anl’n'llos?)(ill’i'p;(?? tﬁgopl’:ggiciggsg?gbI'Z‘Ir?C:traL:C
61 61 86 59; Fax(33) 5 61 61 86 63. Electronic mail: cazalbou@ensica.fr

YAlso at: INPT-ENSEEIHT-Institut de Mzanique des Fluides de Toulouse free'Strea_-m e_dges. o _ . .
UMR 5502 CNRS. Considering the characteristics of anisotropy in this re-
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TABLE |. Evaluation ofw2/k+ for turbulent fluctuations in the turbulence-generating region and at the mean
interface for various simple-shear flows; the arrgwl (—, \,) indicates the trend at the mean interféegther
increasing, roughly constant or decreaging

Source region Mean interface
Plane wakgRef. 9 0.54 (half-velocity defect width  0.61 (")
Plane jet(Ref. 10 0.38 (half-velocity width 0.31 (\)
Plane mixing layefRef. 11 0.46 (centerling High-speed side: 0.67,7)
Low-speed side: 0.43—)
Wall boundary layefRef. 12 0.41 (y=0.375) 0.6-0.66 (")
Wall boundary layefRef. 13 0.36-0.4 y=0.15) 0.43-0.5 ()

gion, a meaningful comparison between the results of théned, and numerical calculations are presented to support the
forthcoming analysis and experiment is not straightforwardconclusions of the analysis. In some circumstances, it has not
The problem stems from the fact that the flow is highly in-been possible to obtain numerical solutions with Lumley’s
termittent there, and consequently, conventional statisticpressure-diffusion model, Sec. IV introduces a new realiz-
contain contributions from both the actual turbulent fluctua-ability condition, which is violated by this scheme with the
tions on one side of the instantaneous interface and irrotaeriginal values of the model constants. A recalibration of the
tional fluctuations on the other side. The characteristics omodel based on intermediate results of the analysis is then
these two kinds of fluctuations are essentially distinct: Thepresented.

irrotational fluctuations are barely dissipative; according to ~ From now on, we shall use conventional statistitse
Phillips® they do not produce shear stress, and display aaverages will be denoted by overbaassuming that conven-
anisotropy that favors the component normal to the meational turbulence modeling neglects the irrotational fluctua-
interface (the corresponding “Reynolds stress” amounts totions and also their interactions with the mean flow and the
the sum of the other twoAs the free stream is approached, actual turbulent fluctuations.

their contribution to the conventional statistics increases so

t_hat the Iatter. tend to reflect the characteristics of the irro.ta"_ SHEAR-EREE PROPAGATING TURBULENCE

tional fluctuations. Therefore, it seems reasonable to consider

that predictions should be compared with measurements of When a source of turbulence is activated in still fluid,
the turbulentdissipative and shear-producing fluctuations.  turbulent transport causes progressive contamination of the
Information on these fluctuations can be obtained from exfluid behind a turbulent—nonturbulent interface. This situa-
periment when conditional averaging is used. Data inferredion allows the characteristics of the flow in the vicinity of
from such experiments'®are presented in Table I. The sta- the interface to be examined in the absence of mean-velocity
tistics we used involve only the actuarbulent fluctuations: ~ gradient. Here, we consider an incompressible fluid filling
w_$ is the corresponding normal Reynolds stress aprige ~ the whole space. At some initial time, high—ReynoIds-nu.mber
direction of propagation, ank is the corresponding turbu- turbulence is generated in the plaze 0, and then remains
lent kinetic energy. For each configuration, the raﬁjkT statlstlcally stea}dy and homogeneous in this plane. This flow
has been evaluated in the turbulence-generating region and $@nfiguration will be referred to as that afrbulence propa-

the mean interface. According to these data, there is no evfialing from a steady plane source. At any time in the con-

dence that a definite anisotropy state should be reached in ti@minated region, the statistics are homogeneous in the
region of the mean interface. Instead, the value/\_/éfkT planes perpendicular tg and the exact transport equation

there seems to be closely connected with its value in thd0" the Reynolds stresgu; (u; denotes the velocity fluctua-

“source” region, and also—uwith the exceptions of the Iolanet|on alongx;) can be written in the simplified form
jet and the low-speed side of the mixing layer—seems to

tend toward the value corresponding to isotro®y3) or, &Miuj——(—u-u-w)+— _pu; _@5 )
further, to the equilibrium state observed in steady diffusive i oz " (ENPE
turbulence(0.75-0.84, see De Silva and Fernatdor in- . -~ .
stancé. Note that the two exceptions cited above correspond bjj DY
to measurements in a region where the mean velocity goes to - - —
zero and that reliable hot-wire data are usually difficult to +}_7<ﬂ ﬂ) - V(ﬂ ﬂ)
obtain in such conditions. p\dx; Ix; Ixy OXg)

The analysis presented in this paper is divided into two e P ’

parts. In a first stepSec. I), the model problem is studied in Y Y

the absence of mean shear with the case of turbulence propahere D}’j and Dipj are the turbulent-diffusion terms by ve-
gating from a steady plane source. In a second &ep. Il locity and pressure fluctuations respectively;; is the

the scope of the analysis is extended to simple-shear flongressure-strain correlation, aeg the dissipation term with
with the case of a time-evolving mixing layer. In both cases,e= ¢;;/2. Viscous diffusion is neglected owing to the hypoth-
the behavior of several turbulent-diffusion models is exam-esis of high turbulence Reynolds number. Turbulence pro-
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TABLE IlI. Definition of the Reynolds-stress diffusion schemes used.

— k—ay
Daly—Harlow (Ref. 19 — Ul U=Cy— Uy ——
€ 2
- — Kk
Hanjalic-Launder(Ref. 16 ~ =Gy Gijk
Mellor—Herring (Ref. 17 =C < &ﬁ+m+ﬂﬂ
9 . Uite=Cs— % 7 o
R k
Lumley (Ref. 18 (Df}) ~UlUe=Cq £ (Gijit Col Gin St Gt Guar )
Lumley (Ref. 18 (Df} —pu/p=Pp uuy,
R v
ijkiuiul TI UjU| W Uy TI

duced at the source is assumed to be axisymmetric about theherek is the turbulent kinetic energyk& u;u;/2). Finally,

z axis and then—in the absence of mean shear—the Rewve use a standard transport equation to close the problem for
nolds shear stresses are zero afp@qualsy? throughout the  dissipation. It takes the form

contaminated region at any time. The relevant Reynolds-

stress equations can, therefore, be written in the form Jde o —2k Je €2
2 s ) Ttz CeW T ) ~Ceaap (€)
— e (—WU2 _Z
It (92( WU) +771q 36 1 _ _ _
e In Ref. 20, we used this equation with all the Reynolds-stress
ow? g — 2— 2 diffusion models. In fact, it seems more consistent to use the
at gz T PW T 56 2 following “isotropic’ form with the Mellor—Herring
model?’

where Lumley’s rearrangement has been used to obtain a

single, traceless, return-to-isotropy termw;(=11;;— ¢;; de 3 K2 ge 2
+2/3€ &;;). In order to obtain a closed set of equations, one  — = _( — _) —Co—. (4)
needs to model the turbulent-diffusion, return-to-isotropy gt oz € Jz k

and dissipation terms in Eg€l) and(2). The diffusion mod-
els used hefé '8 are defined in Table II. Pressure diffusion
is specifically modeled in Lumley’s schenf&for all the
other schemes, it is either neglected or lumped with diffusion ~ The problem is now closed, and we shall investigate its
by velocity fluctuations in a unique gradient-diffusion term. possible solutions in the half spage-0. The turbulent ki-
Considering the return-to-isotropy term, it will be shown thatnetic energy can be used inst_eaduﬁf so that we proceed
our results are independent of the selected scheme, so thaith the model equations fd, w?, ande with the following

A. Analysis

we can proceed with the linear Rotta mddel initial and boundary conditions:
c ru] 2 5 (i) forall z>0,
T TR\ T T3 ) k(z0)=0, w%z0)=0, and e(z0)=0;

TABLE IlI. Diffusion fluxes in the turbulent-kinetic-energy ane? equations E and F,3, respectively ac-
cording to the different closure schemes studied, in the absence of mean shear.

F Fas3
k— ok k— w?
Daly—Harlow (Ref. 19 Cs;WZ[;—Z CSEWZE
, k—(ow? ok k— w?
Hanjalic-Launder(Ref. 1 WA — + — W2 —
jali under( 6 CSEWZ =% 3CSeW2(?Z
KR(oaw? K K2 w2
Mellor—Herring (Ref. 1 —— 4 — -
9 ? G €\ az * dz 3G € 0z
k—s( WP k—| w? [w? ok
Lumley (Ref. 1 WA — 4 — - | — =
y ( 9 Csl€w2 =t csleva[3aZ+ — %

X(1-2Pp)(1+5Cy,) X(2 Cs»(3—10Pp)—4 Pp)]
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TABLE IV. Linearized diffusivity coefficients in the turbulent-kinetic-energy equatibndgnd in thew? equation €33), as functions ofrs; with the different
diffusion schemes in the absence of mean shear. For the dissipation-rate equation, WweahgveC a3; for all models except Mellor—Herring, for which
we use the isotropic forn4) and obtainh(as3)=C, .

f(asq) fas(ass
Daly—Harlow (Ref. 15 Cq agz Cs ags
Hanjalic-Launder(Ref. 16 Csagy(agst1) 3C,ag;
Mellor—Herring (Ref. 17 Cq(azst1) 3Cs
Lumley (Ref. 18 Ceop ags@sst 1)X(1—-2 Pp)(1+5 Cy) Ca1[3 a3t (2 C»(3—10Pp) — 4 Pp) (azst1)]
(i) forall t=0, without their destruction terms. In these conditions, it is eas-
k(O =ko, W2(O1)=w2, €(0O1)=eo, ily seen that the following expressions are appropriate on

both sides of the front:

limk(z,t)=0, limw%(z,t)=0, and lime(z,t)=0, .

Z— > Z— 0 Z— 0 Ct —7
k=K H(Ct—Z) m ) (7)
wherewé/ ko sets the anisotropy level of the source. For each
of the closure schemes considered here, the modeled expres- ct—z|"
sions of the diffusion fluxed== — (u;u;w/2+pw/p) and e=E&H(ct—2)|—— , (8
3o\ o K321
&3=—(w3+2pw/p) in the turbulent-kinetic-energy and
w? equations, respectively, are given in Table IIl. with
As in the case of one- and two-equation eddy-viscosity f(as.) h(a h(a
models’® the analysis is based on the following assump- C:;CUZM, m:(—3?’),
tions: 2h(azs) —f(ass) 2 h(ags) —f(azs)
(al) the solution is of propagativepossibly weakcharacter and
in the vicinity of a front that travels alongwith a finite f(agy)
velocity c; n= m,

(a2 the budget of the turbulent-kinetic-energy and

dissipation-rate equations reduce to balances betweefhere H is the Heaviside function, arid and & are local
time rate of change and turbulent diffusion in the vicin- characteristic scales that cannot be determined without a full

ity of the front. solution of the problentsee Ref. 20 for such a solution in the
Recall that th " v o th del bl _.case of a two-equation modelThen relationg(7) and (8)
ecall that these assumpltions apply o the model problem; 10y, ihat the destruction terms in thand e equations can

real life, (al) should hold if the irrotational fluctuations are . L .
excluded from the statistics whika2) may be restricted to actually be neglected in the vicinity of the front, provided

the turbulent-kinetic-energy budget: The behavior of e that
dissipation rate at free-stream edges remains open to ques- 2 h(agg)—f(azy)>0. 9
tion. This gives a condition to be satisfied for assumptiad to

Coming back to the model problem, we cannot proceedyq \5jig. |t remains to find the condition for the equation

at second-order closure level without linearizing the diffu-,[0 be satisfied. With no extra assumption, this equation can
sion fluxes in the transport equations. To this end, we introy, |inearized in the form

duce the structural parameters = u;u;/k, noting that their
values should indeed be always finiia the rang€0,2] if
i=]j and[—1,1] otherwise. Then, if as3 is nonzero at the
front and sufficiently differentiable for smaller its expan-
sion, limited to zeroth order im, can be used to write linear-
ized forms of thek and e equations there

dk Jd
a335 = ass&

7T33 2
f33(a33)?5 t—3/e (10

k2 ak)

wheref 33 is the corresponding linearized diffusivity coeffi-
cient (given in Table IV for the different diffusion models
The factor @ry3/e—2/3) in the destruction term is always
5 finite with Rotta’s model and we have checked that this is
ak 9 k< ok : :
= _(f Asz) — _) —e, (5)  also true with most current return-to-isotropy schemes. As a
ot oz € 0z consequence, the destruction term can be neglected in Eq.
(10) as soon asiz3 is nonzero. One can, therefore, consider
de d h k? ge _c € 5 that Eq.(10) reduces—as does tlkeequation—to a balance
ot~ az\ M@ = 57~ Ceprs ®  petween time rate of change and turbulent diffusion. Then,
identifying the degenerated forms of EqS) and (10), one
where az; is the value ofas; at the front, and andh are  getsf(ass) =f33(asy).
linearized diffusivity coefficients given in Table IV as func- To sum up, we shall retain the result that relatigms
tions of a5 for the different diffusion models. According to and(8) can be considered as local solutions on both sides of
assumptior(a?, we have to find solutions to these equationsthe front if a nonzero valuas; exists for which
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TABLE V. Results of the analysis in the absence of mean shgarn,) C. Numerical results

=C, ay; for all models except Mellor—Herring for whidh(as) =C, .

For each of the diffusion models considered in the pre-
ceding section, we have shown that one propagative solution
at least exists, provided that some constraint on the values of

Possible solutions  Validity conditio(®)

Daly—Harlow (Ref. 19 ° anyass Cs<2C, : ' g -
Hanjalic-Launder(Ref. 1§  +ag;=2 c.<Zc. the modeling constants is fulfilled. The solution cannot be
Mellor—Herring (Ref. 17 eag=2 c.<ic considered as unique, so that one has to check its relevance
s~ 3%e —
Lumley (Ref. 18 (Pp=1/5) ag=2/3 Ca(l+5Cy)<2C, in practice. In order to do so, the model equationskfor?,
- _2-5Cy c <£) c and e have been numerically solvegdomputational details
¥ 1+45Cq stT9 e are given in Appendix A with the following initial and
boundary conditions:
(i) fort=0,
. k=ke, W’=2k,, and e=e,;
(i) f(asg)="fs3(asy); (i) for z=0,
(i)  2h(azz) —f(azz)>0. _
B k=ky, WP=w3, and e=e¢g;
Then,w? can be written as (i) for z=H,
m K M e

ct—z

—=—=—=0,
T 0z Jz oz

w2=ag3 K H(ct—2) (11

i whereH is the size of the computational domain. Note that,
With Egs.(7), (8), and(11), and some ranges of value for the fom 4 numerical point of view, it is not possible to use

Qiﬁ‘usion constaqts, derivatives presgnt in the model edUagenuinely zero values in the undisturbed fluid, so thaand

tloqs may not eX|st6at the edge. In'thls. case, it can be showge are nonzero but small compared kg and ¢, (typically

as in Cazalboua_t al. that_the solution is of weak character 1g-12times lowe}. Also, to simplify the interpretation of the

and, hence, valid according tal). results,w2/k, can be specified so that the anisotropy level of

the source matches the equilibrium achieved far from the

source in the model problem of steady diffusive turbulence:
The analysis has been applied to the diffusion schemeghe equilibrium values obtained in this situation with vari-

presented in Table Il. The main results are given in Table Vous combinations of diffusion and return-to-isotropy models

Satisfaction of the relatiof(ags) = f35(a39) leads to specific are given in Refs. 20 and 22. We shall now present the re-

values ofaz; with all models except Daly—Harlow, for which sults obtained with the different diffusion schemes except

the relation is satisfied whatever the valg is. Lumley's  Mellor—Herring, for which the results are essentially similar

scheme admits two solutions, the first of which correspond#o those obtained with Hanjakid aunder.

to isotropy at the edge while the characteristics of the second

depend on the values of the modeling constants. Lumley o

gives these constants as functions of the return-to-isotropy: Hanjalic—Launder model

constantC, in the form wo/k3 is taken equal to 1.21, which is characteristic of
the equilibrium state reached in steady diffusive turbulence
with this model when combined with Rotta’'s return-to-
isotropy model. The computations have been performed with
the most widely used values of the model constants, that is

B. Results obtained with current diffusion schemes

c.— 1 c_ C,—1
3¢, “274C,+5

With the standard valu€,=1.8, one get;=0.185 and
C4,=0.066, which leads tas;=1.26. With accepted values
of the diffusion constants@,=0.11 for Hanjalic-Launder
and Mellor—Herring, 0.22 for Daly—Harlowg¢; andCg, as
given aboveC,=0.18) all models satisfy conditiof9).

With reference to the discussion given in the introduc-
tion, one sees that the anisotropy measase is kept in

C.=0.11, C,=1.8, C,=0.18, andC_=1.92.
(12

As mentioned above, conditidf) is fulfilled with these val-
ues, so that the propagative solutions are likely to occur.
Figures 1 and 2 show the computed turbulent viscosity (

, ... =k’/€) normalized by its value at the source,{) and pa-
reasonable bounds with the Daly—Harlow model and Wlthrametera33, as functions o/l (|0=k8/2/60) at three dif-

the isotropic solution to Lumley’s. In all other cases, the . .
. . : ferent times. One can notice:
solution produces an unexpectedly high degree of anisotropy

at the edge. With the Hanjalid.aunder and Mellor—Herring (i)
models, one even reaches some “one-component limit” that

is seldom observed in practida reentrant corner between
two solid walls or the perfectly permeable wall of Perot and(ii)
Moin?! are scarce examples involving this peculiar anisot-
ropy state as a limjit (iii)

the presence of discontinuitigen the slope of the
turbulent-viscosity profile and on thealue of a3y)
moving away from the source with increasing time;
the linear behavior of the turbulent-viscosity profile
on the left of the discontinuity;

the limiting valueagz=2 actually reached at the edge.
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1.2 T

(a)
teo/ko = 40 -

v/ vio
v /o

12 14
Z/lo
FIG. 1. Turbulence propagating from a steady plane source. Numerical re- 3 L oA
sult obtained with the HanjaliesLaunder model for the turbulent viscosity (b) ! \\
(k?/€) at three different times: — ey /ky=20; — —,t €4/ky=40; - - -, 25 teo ko = 4 P -
t €5/ko=60. €o/ko = T
1 1]
2F { \ -
1] [}
i 1
2 / 3t
This indicates without any ambiguity the occurrence of the § 15| /i i -
solution identified in the analysis. For two-equation eddy- ,f,.'-" ‘-:\\
viscosity models, it was shown by Cazalbeital.® that such 1 v .
solutions were computationally well behaved with respect to v
the practical requirement of nonzero free-stream boundary 05 -
conditions. In order to assess this point in the context of
Reynolds-stress-transport modeling, sensitivity tests have 0 L "1 L1 1 )
been carried out with the same values of the model constants o 2 6 . 8§ 0 12 1
as given above, except for the value®f, which has been #/h

lowered to 0.14 so as to violate Cond.iti@)- With this set of  Fig. 3. sensitivity to free-stream conditions in the case of turbulence propa-
constants, as well as sét2), three different cases of free-

gating from a steady plane source, with the Hanjaliaunder model(a)
stream boundary conditions have been used: Turbulent-viscosity profiles obtained with a set of model constants satisfy-

ing condition (9) att ey/ky=40; (b) turbulent-viscosity profiles obtained
(1) Areference case withy/kg=10" 12 and €./€0=10" 12 with a set of model constants violating conditit®) att e,/k,=4. - -, case

(2) a case of increased free-stream values whithk, 1 — case2 — - case3.
=10 ® ande./ey=105;

(3) a case of high free-stream turbulent viscosity with
ke/k0:1076 and Ee/EOI 10712.

In the latter case, small values of the transported variables
resulting in a high level of free-stream turbulent viscosity are
not really inconsistent: It was argued in Ref. 6 that the value
of the free-stream turbulent viscosity should indeed remain
finite, but was to be considered as undefined rather than zero.
The profiles of this quantity computed in the three cases are
plotted in Fig. 3a) for the original set of constants, and in
Fig. 3(b) for the modified set. Predicted turbulence diffuses
much faster with the latter, so that the results have not been
plotted at the same time in the two figures. This, however,
does not impair the comparison to be made here. It is appar-
ent in Fig. 3a) that, as long as the free-stream values of the
transported variables are small, and irrespective of the corre-
sponding level of turbulent viscosity, the profile of this quan-
tity is unchanged across the turbulent region except for a
0 2 4 6 & 10 12 very limited region in the vicinity of the front. On the other
z/bo hand, when conditioK®) is violated, one can see in Fig(83

FIG. 2. Turbulence propagating from a steady plane source. Numerical ret—halt the computed flow is extremely dependent on the free-
sult obtained with HanjalieLaunder model forw?/k at three different ~ Stream values: The spreading of turbulence as well as the
times: —,t € /ko=20; — —,t €9/kg=40; - -, t €9 /ko=60. turbulent-viscosity profile are affected. Note that the free-

w2k
-
|

05
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2 T T T T 14 T T

5/3 k-

43 |-
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FIG. 4. Turbulence propagating from a steady plane source. Numerical re-

sult obtained fow?/k at a given time with the Daly—Harlow model and FIG. 6. Turbulence propagating from a steady plane source. Numerical re-

different anisotropy levels at the sourog3(ko=1/3,2/3,1,4/3,5/3). sults obtained dtt ey /kq= 20 with Lumley’s model and different anisotropy
levels at the source. —wa/ko=2/3; — —,w3/ko=4/3.

stream values used in cases 1 and 2 are usually considered a

ddel, isotropy is the equilibrium state in steady diffusive
reasonable choices for practical calculations, but lead here t,[o ' by q y

. . i urbulence, and a fully isotropic solution§;=2/3 for all z
unacceptable differences in the predictions. . o .
andt) exists when the source is isotropic.

2. Daly—Harlow model 3. Lumley’s model

For this model, the analysis shows that the propagative  \wjith this model, the analysis shows that two different

solution exists, and does not impose a specific level of angqtions exist. The first solution corresponds to isotropy at
isotropy at the edge. The calculations have been performegle eqge and the second to a significant departure from isot-
with the following values of the model constants: ropy there, withag;=1.26. Both solutions appear unambigu-
C.=0.22, C,=1.8, C.=0.18, andC,,=1.92, ously in our calculations with an appropriate choice of
wé/ko. If the source is isotropic, we get a fully isotropic
solution with a33=2/3 for all z andt (note that isotropy is
also the equilibrium state in steady diffusive turbulence with
this modef®23. When the source significantly favorg, we
get the second solution. This is apparent in Fig. 6, whege
and v, have been plotted agairsat a given time. To get the
anisotropic solutionwg/ko has been set to 4/3, and one can
observe thatrss begins to relax toward isotropy before in-
creasing so as to reach 1.26 at the edge. The picture is less
clear whenwj/k, is lower than, or close to, 2/3. To illustrate
08 : : : : this, numerical results2 obtained with the source slightly
shifted from isotropy g/ ko= 0.62 and 0.7)Lare reported in
Fig. 7. Forwg/k, slightly above 2/3,a3; remains roughly
07 k- i constant across most of the turbulent region, then exhibits a
steep rise near the edge. One may think that, with a better
resolution, the computed value should reach 1.26 there.
When w3/k, is slightly below 2/3, one can observe a re-
versed picture:ws; experiences a sharp decrease near the
edge. In this case, the absence of a theoretical solution—with
the linearization process used here—for whigh would be
lower than 2/3 prevents drawing any conclusion about a defi-
nite anisotropy state being reached at the edge. For even
04 A [ [ A lower ngko, the computation quickly breaks down with
0 1 2 3 4 5 negative values of? near the edge. At this point, we can
z{lo tentatively explain this behavior by noting that, ag; de-
FIG. 5. Turbulence propagating from a steady plane source. Numerical re2l€aS€s, the linearized diffusivity oi” can become negative
sult obtained fow?/k at different times with the Daly—Harlow model and [@S S00N asags<(4—10Cy,)/(11+10Cs,)=0.286, see
Walko=0.5. —,t €y/ko=20; — —,t €9 /kg=40; - -, € /ko=60. Table Ill], so that the model can become “anti-diffusive” and

satisfying condition(9). The solution always appears, we
have plotted in Fig. 4 the computed profiles af; at

t eg/ko=20 for different anisotropy levels at the source. One
can observe that;; varies with anisotropy without question-
ing the propagative character of the solution. It can also b
seen in Fig. 5 that, with a given anisotropy level at the
source,as; varies during propagation. The trend—in space
and time—is always toward isotropy. Note that, for this

w?/k
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\“ teg/ko =20 : ot oz

1 l l l l ouw 9| — 1\ —au
9z

—uwz—;pu —W?— + 773, (17)

K To close the problem, we still need an equation for the dis-
. sipation rate and a model for;; . The dissipation-rate equa-

— tion is obtained by adding a conventional production term of
the formC,; e/k P, (with P,=P;;/2) to Eq.(3) or Eq. (4).
Consideringm;;, one has to account for the influence of the
mean motion through the “fast” pressure-strain correlation.
Here again, the results will not depend on the model chosen
for this term, so that we can proceed with the simple IP
(isotropization of productionmodel. The full term is, there-
fore, written as

g o

2 3 C2 2
Z/IO ’7Tij:_C1€ T_§5|J _C2 Pij_gpkéij
FIG. 7. Turbulence propagating from a steady plane source. Numerical re- « " . . .
sults obtained at e,/k,=20 with Lumley’s model. The source is either *The standar_d Va!ue ofC, is 0.6. With th_e expressions of
=0.62; - - -,W3/ko=0.71. diffusion schemes, the model problem is closed.

A. Analysis

experience realizability problems if the transported variable  The analysis is a simple generalization of that given in
must go to zero at some location. In another respect, thgec. Il A. We still prefer to use the equation for the turbulent
calculations presented here seem to indicate that the isotropignetic energy; here, it will be used instead of #he equa-
solution is unstable, a proof is given in Appendix B showingtjon. We start with assumption®1) and (a2 and look for
that this is actually the case with some kind of small pertursp|utions with the following linearized forms of theand e

bation. equations:
gk 9 K2aok| —aU
IIl. TIME-EVOLVING SHEAR FLOWS . az\ egz) Wz TE (18)
The analysis can be extended to account for the effectof ;. 5/ k2 g¢ € ouU 2
simple shear. This will be exemplified through the case of the i E( - 5) — Cle uw 27" CfZT' (19

time-evolving mixing layer, but the results are by no means

restricted to this configuration and should apply equally toThe diffusivity coefficientd andh may now depend on both
other simple-shear time-evolving flows such as jets andv;3 and a3 (see Table VII. Consequently, Eq918) and
wakes. In the mixing-layer problem, we shall consider that at19) will generally be valid if these parameters are nonzero at
some initial time the half space>0 is at rest, while the fluid the edge and sufficiently differentiable for smalteiThen, if
filling the half spacez<0 has a uniform velocity 2/, along  a propagative solution exists, it necessarily takes the form of
X. The analysis is performed once the shear layer has becon(@ and(8) with

fully turbulent. At any time in this regime, the flow is statis- Y _

tically homogeneous in all the planes perpendiculaz, tine c=K"ehe/(2he=Te), m=he/(Zhe=Te),

mean velocity remains aligned with and the only nonzero and n=fg/(2hg—fg),

shear stress isw. The problem is, therefore, governed by
the mean-momentum equation and the Reynolds-stress eq
tions supplemented by their production termsP;;(

= —UjUyg an/an— Ujuk ﬁUi/ﬁXk), that is

herefg="f(asz,a;13), he=h(asz,a;3); a;3 being the value
of aq3 at the edge. For the same reason as above, the dissi-
pation and return-to-isotropy terms can be neglected as soon

as 2hg—f>0. Noting thatuw andU behave in the same

121 B — way at the edgéaccording to the momentum equatjpand
ot 5(_UW)' 13 thatuw= a3k to leading order, relation&) and(8) can be

_ o used to show that the production term and the fast pressure-
au? 9 — —duU 2 strain correlation are also negligible in the vicinity of the
Tt gz WU m2uw——+ T s e, (14 odge. This shows that the budget of the turbulent-kinetic-

energy and dissipation-rate equations actually reduce to bal-

dv —s 2 ances between time rate of change and diffusion, so that

—=—(—Wvd)+my—ce€ (15

ot oz 2 3% assumption(a?) is valid.

_ In order to check that the three remaining Reynolds-

w? 9 — 2— 2 stress equations can be locally satisfied, one can linearize
— 3 L

at ﬁz( WP T T g s 18 them in the form
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TABLE VI. Diffusion fluxes in the turbulent-kinetic-energy equatidf)(and in the Reynolds-stress equations
(Fij) according to the different closure schemes studied in time-evolving shear flows.

Daly—Harlow (Ref. 15

Hanjalic-Launder(Ref. 16

Mellor—Herring (Ref. 17

Lumley (Ref. 18

k— dk
F=CS;W2—

k—; au

Fll C GW E
kWP
F337CS;W E
_ k—uw
F13—CSEW ?

kK — ow?

77 +W E"'UW

2

k —
FZCSZ W

—BW

auw
9z

k(—du
FllzCse w2 —+2 uw ——

0z Jz
17 2
Jz
k[ — ow? — duw
F13=Cs—| uw — +2 w?

k
F33=3 Cq

9z 9z
o kj(ﬂ_kﬁi
Selgz oz

K2 gu?

€ oz
k
F=Cg — (1+5 Cs)(1-2 Pp)

—dk —adu

&

— ok
W2 — + W2 —— +UW ——

—w? — guw
9z Jz Jz

12 2

w
Jz 0z (4

k — W — du
F11:C31 2C52w —+w? —+2C52W —+2(1+Csz) uw ——

K — ok — aw? — ouw
F33=3 CSl; 2Cs, W E+(1+2 CSZ)W E“rz Cs, UW?

— ok — w2 — quw

-4 Pp C (1+5 Cs) w? 5+W E-HJWW
k ok — o2 gw? — Juw
F13:C31 2Cy uw — +2C52 uw —— +UWT+2(1+Csz)W 7

—0k —au? — uw

—-2PpC (1+5 Co)lu E‘FUWE‘FWZE

TABLE VII. Linearized diffusivity coefficients in the Reynolds-stress and turbulent-kinetic-energy equations as
functions of ay;, a3z, and a3 with the different diffusion schemes in time-evolving shear flows. For the
dissipation-rate equation, we still havg a33) =C, a3 for all models except Mellor—Herring, for which

h(az)=C..

Daly—Harlow (Ref. 15
Hanjalic-Launder(Ref. 16

Mellor—Herring (Ref. 17

Lumley (Ref. 18

f=f11=f33=f13=Csag

f=Cy(azstadstaly
fu=
fas=f13=3 Cs ass
=Cy(1+ a3y
f11="f3d3=1192=C,

Co( gzt 2 afy )

=Ca(1+5Ce)(1-2Pp)(asstalst afy
f11=Cal agst2 ajd @1+ 2 Coagst asst a13)/0112ﬂ ,
f33= Caa[ 3 agat+2 (Csp(3—10Pp) — 2 Pp) (@ast asst ajg)/ ass]

f13= Ca[ 3 azat+ 2 (14 @11+ @39)(Csp(1 -5 Pp) = Pp) ]
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TABLE VIII. Results of the analysis for time-evolving shear flows.ass) =C, az; for all models except

Mellor—Herring for whichh(asz) =C..

Possible solutions

Validity condition

Daly—Harlow (Ref. 15 e any (ay;,as3,a13 C<2C,
Hanjalic-Launder(Ref. 16  ea;;+az=2, a;; X agz;=a’, c<2c,
Mellor—Herring (Ref. 17 ea;;=0, az=2,a;3=0 C.<:c,
Lumley (Ref. 18 (Pp=1/5)  eaj;;=az3=2/3,a,3=0 Cqu(1+5Cg)<2C,
15C,, 2-5Cg 10
uT3146C, ¥ I+sc, w0 Casgle
2-5Cg 10
*a;1=0, asszm , a;z=0 Csl<3 C.
P K2 ow?| o0 [y a11X ags=ajz and, thereforeC,, =1 (Cyy, is the cor-
Tt g2\ fug 5 2 UWE“L(__ §> e, (20 relation coefficient between andw, defined byuw
w2 9 K2ow?| [ma 2 ZC“W\/E\/E);
—= _( fag— _) + (__ _) €, (22) (i)  the Mellor—Herring model has no solution other than
a oz € 0z € 3 the shear-free solution;
ouw  J K2 ouw| —au (iv) the only specific solution obtained for Lumley’s
= E( fla? W) —WZE + 43, (22 model is a close variant of the anisotropic shear-free

with the appropriate restrictions on the behaviowgf, ass,
and aq3. If @;; is nonzero, it can be readily shown that the

solution (with the same value odi;3, anda;;=0 in-
stead ofa;;=a,,=(2—azy)/2).

budget ofu;u; reduces to a balance between time rate ofFor all models, the validity condition remains the same as in
change and diffusion, and that the value of its linearizedhe shear-free case.

diffusivity coefficient at the edge should be equalftofor

the equation to be satisfied. Then the general condition foC. Numerical results for the time-evolving shear layer

relations(7) and (8) to be local solutions in the vicinity of
the edge is that

fag(@ss,a19)=Ffg and [fqy(ass,a;9="fg or a;;=0]
(23

Note that we still consider solutions for whieh; or a;4 can
be zero since, for some of the models considered later:

(i)
(i)

and [fi5(azz,a;9)=fg or a;3=0].

h andf do not depend o3 so that expanding this
parameter in powers afis not needed;
if a;3 or a;; is zero, the corresponding Reynolds

stress may simply respond to the right-hand side

terms of its equation without any influence on the
structure of the solution, and its evolution may not
necessarily result from a degenerate balance.

B. Results obtained with current diffusion schemes
in the presence of mean shear

For each of the diffusion schemes, realizable sets; of

have been systematically sought in all the cases for which

proposition(23) could be true. The results are given in Table
VIII. The shear-free solution plus, ;=0 is indeed a possible
solution for all models. Moreover, one can see that:

(i)
(i)

the Daly—Harlow model still does not constrain the
anisotropy state in the vicinity of the edge;

the Hanjalie-Launder model has a specific solution
for whichu andw are fully correlated at the edge with

The modeled forms of Eq913)—(17), supplemented
with the dissipation-rate equation written in appropriate form
[Eq. (3) or (4)], have been numerically solved for each of the
diffusion schemes considered here. The ideal initial condi-
tion with its step in the velocity profile is difficult to use with
a conventional numerical method, so that we initialize the
computation with an approximate finite-width shear layer
such that:

(i)
uw
us

z
X100=1+ cos(w—),
%

(i)

and e=e¢,.

For t>0, the following boundary conditions are used:

(i) for z=0,
_ AP W P auw de
UZUO, :E:E:E:O’ and 520;
(i)  for z=H,
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FIG. 9. Time-evolving mixing layerC,,, correlation coefficient in the self-
FIG. 8. Time-evolving mixing layer. Anisotropy parameters in the self- similarity regime computed with the Hanjafitaunder model.
similarity regime computed with the Hanjalitaunder model(We show in

Appendix C that? goes to zero like?® at the edgs.

lence. We have seen above that having samegoing to

— - — zero at the edge leaves the possibility of a nondegenerate
— au®  gv?  ow? g P y g

=0, —=—=—=0, budget in the corresponding Reynolds-stress equation. This
oz Jz  dz is the case here with2, whose computed budget is com-
de pared with that ol in Fig. 10. The latter actually displays

uw=0, and EZO' a balance between time rate of change and turbulent diffu-

sion near the edge, all the other terms being negligible in this
Computations are advanced in time until self-similar solu-region. The figure clearly shows that this is not true of the
tions are reached. For all our results, the final width of thebudget ofv?, for which we show in Appendix C that the sum
layer is more than 58,, and we have checked thwuol of the pressure-strain and dissipation terms contributes ex-
uju;/U3 and et/U, all collapse when plotted against actly 1/3 of the time rate of change.
z/(Ugt). Results will be presented for all models except
Lumley’s, for which negative values @ quickly occur and
prevent a numerical solution being obtained. This is probably
because anisotropy in the core of the mixing layer being  Figure 11 shows the evolution across the mixing layer of
detrimental tow?, the numerical solution deviates from isot- the anisotropy parameters;; computed with the Daly—
ropy at the edge, to produce the low valuesyg§ which we  Harlow model. As in the shear-free case and in agreement
think are responsible for realizability problems there. Wewith the analysis, all of them reach finite nonzero values at
shall now review the results obtained with the other diffusionthe edge. Mild variations toward the values corresponding to

Daly—Harlow model

models. isotropy for each of the parameters are exhibited across the
layer, and one can consider that anisotropy at the edge
1. Hanjalic—Launder model mostly reflects the anisotropy state in the core of the layer.

The evolution across the mixing layer of the anisotropy
parametersa;; and correlation coefficienC,,, computed
with the Hanjalic—L&under model are plotted in Figs. 8 and
9. One can see that/k goes to zero whil€,,,, reaches 1 at For this model, we use the same values of the model
the edge: this indicates that the solution identified in theconstants as for Hanjakd.aunder model. The analysis indi-
analysis is actually reached in practice. With reference to theates thatv?/k reaches 2 at the edge, while all the othgr
shear-free case, the valuew?/k in the vicinity of the edge ~ go to zero there. This behavior is confirmed by the numencal
has decreased but remains high, about 1.3; the value of thiresults reported in Fig. 12. Here again, unrealistic turbulence
shear-stress parametaw/k also appears to be high, slightly is predicted near the edge: The one-component limit is
above 0.9(note that these particular values are not fixed byreached and the shear-stress parametetk peaks at 0.6
the structure of the solution, but may vary from one sheabefore going to zer¢such high values are presumably linked
flow to another, and with the choice of pressure-strairwith those ofw?/k). The computed budgetgiot shown
mode). Turbulence, therefore, reaches the two-componentiere also confirm an analysis similar to that given in Appen-
limit at the edge, and is unrealistically correlated and effi-dix C, which shows that having all the;; exceptas3 going
cient in a significant part of the layer: To our knowledge, to zero at the edge is obtained with nondegenerate budgets
values ofC,,, and uw/k significantly higher than 0.5 and for u? andv?, while theuw budget still exhibits the usual
0.3, respectively, have never been reportedréa turbu-  balance between time rate of change and diffusion.

3. Mellor—Herring model
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diffusion alone. For an essentially positive quantity going to
zero somewhere in the flow, the occurrence of negative, “un-
realizable,” values follows.

Modifications to Lumley’s model intended to avoid such
behavior in the flows investigated here are possible. Consid-
ering the shear-free case, we have indicated that the linear-
ized diffusivity coefficientf,;; becomes negative as soon as
a33 becomes lower than 0.286, with the original values of
the modeling constants. The expression of this coefficient

-0.15 . . given in Table IV shows that it cannot become negative in
006 007 008 009 01 011 this flow if C,=2 Pp/(3—10Pp). The limiting case
z/(Us?)
B B 2Pp
FIG. 10. Time-evolving mixing layeu? (a) andv? (b) budgets computed Cszzm' (24)

with the Hanjalie-Launder model.

is sufficient and can be used to recalibrate the model. The
analysis then gives the following solution at the edge:

IV. REALIZABILITY OF LUMLEY’S MODEL

In this section, we shall use the results of the analysis to
show how Lumley’s model could be recalibrated so as to
avoid the difficulties mentioned in Secs. Il C and Il C. Such
difficulties have already been reportddee Lumley and
Mansfield®), and we believe that they refer to the realizabil-
ity question in connection with the possible anti-diffusive
nature of the diffusion scheme. As a matter of fact, if pres-
sure diffusion of turbulent kinetic energy is to be modeled
with a gradient diffusion approximation, it should indeed be
anti-diffusive: In free-shear flows, experiment as well as
simulation show that pressure diffusion mostly acts as
counter-gradient transport. Lumley’s model is consistent
with this and cannot be criticized from this point of view.
However requiring that the global model—diffusion by pres-
sure and velocity fluctuations—should not become anti-
diffusive is not obviously contradicted by experiment, and
the global model would probably be better behaved from
mathematical and numerical points of view. The reason for
such a requirement is that, unlike “natural” diffusion, anti-

895~ 1-2p,

2-8P,

and a;;=ay=1—

asz

0 002 0.04

006 008 01 0.12

z/(Uot)

FIG. 12. Time-evolving mixing layer. Anisotropy parameters in the self-

diffusion is nOI_dom‘?‘infir_‘\.’ariantv i-e.-: If Fhe value of the similarity regime computed with the Mellor—Herring modéAn analysis
transported variable is initially contained in a bounded do-similar to that given in Appendix C shows that, at the edgeandv? go to
main, it will escape from this domain under the effect of zero likek?, anduw like k*2.)
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FIG. 13. Turbulence propagating from a steady plane sowtt for dif-

ferent anisotropy levels at the sourosy(k,=2/3,0.84,1) computed with  FIG. 14. Time-evolving mixing layer. Anisotropy parameters computed in

Lumley’s model and a new set of constants satisfying realizability. the self-similarity regime with Lumley’s model and a new set of constants
satisfying realizability.

with the validity condition:Cy; <2 C./3. It appears that Eq. oretical estimates is disturbing. Considering the calibration
(24) also ensures thafzs never becomes negative in the of c_ | diffusion of w—the component in the direction of
simple-shear case, for which relatiof2S) remain valid with  gjffysion—is probably the most important to be assessed;
a;3=0. To illustrate how the model can be recalibrated ongne can see in Tables Il and VI that using relatid@s)

this basis, we propose to evaluate the following set of CONgives an expression of Lumley’s diffusion flug ) which
stants: is the same as that obtained with the Hanjaliaunder
Cy=0.11, C.=0.18, Pp=0.15 Cg,=0.2, model,C4 being simply replaced bgq; . Therefore, lower-
(26) ing Ci; to 0.11 (the well-established Hanjakd.aunder
Ca=144, andC,=1.92, valug seems to be justified, and follows from the increase in
satisfying relations(25) and the validity condition. With ~Cs resulting from the use of relation&5) with a low value
Rotta and IP schemes for the pressure-strain correlation, & Po - TakingPp lower than 1/5the value initially recom-
can be shown using the analysis given in Ref. 20 that th&ended by Lumle¥) is permitted: It was recognized by
following results are obtained in steady diffusive turbulence:Shih, Lumley, and Janicl%%tzr;atPD was in fact a free coef-
The equilibrium value oW?/k is 0.84, the spatial decrease in ficient, while Straatmaet al.“ later showed that a low value
the rms value of the velocity fluctuation is proportional to Was needed to obtain®>u in steady diffusive turbulence.
z~ 127 and the slope of thénear length scale equals 0.29; all Finally, it is interesting to note that, in an examination of
of them fall into accepted experimental rangese Ref. 20 Simulation and experimental data, Straatffidras proposed
In propagating turbulence and simple-shear flows, relationd modification to Lumley’s model in which the value Gf;
(25) indicate thatass should reach 1.14 at the edge. Calcu-iS also significantly increase@.31), with low values ofPp
lations have been performed for turbulence propagating fror0-142-0.158 needed to account for the situation of steady
a steady plane source and the time-evolving mixing layef#liffusive turbulence. Straatman assessed the effectiveness of
without any of the difficulties mentioned above. The resultshis modified model with computations of several flows of
are reported in Figs. 13 and 14, respectively. One can see Riactical interest. The present analysis supports Straatman’s
Fig. 13 that a solution in agreement with relatiof®§) is proposal, showing that his modified model should be free of
obtained with different anisotropy levels at the source, andhe realizability problems encountered in the original ver-
that it is now obviously stable. Figure 14 shows the evolu-S!on.
tions of the anisotropy parameters in the mixing layer. It
appears that, at the edgey/k goes to zero, turbulence be- V. SUMMARY AND CONCLUSION
comes axisymmetric wittu?/k=v?/k, and w?/k reaches
1.14 as predicted in the analysis. The growth rate of th%
mixing layer measured as

_ 199 i 0—2[306(1 u d
=20, at """ 779,20, 1 20, 97

The present study establishes that most turbulent-
iffusion schemes used in the context of Reynolds-stress-
transport modeling lead to possibly weak propagative solu-
tions, which are similar to those previously reported in the
case of eddy-viscosity models. As a consequence, these so-
lutions exhibit the same advantages in terms of insensitivity
amounts tal.41x 10”2 which is at the low end of the range to the free-stream conditions and physical behavior. To ben-
of experimental results(1.4x10 ?2<r<2.2x10°2, see efit from these advantages, some inequalities relating the
Rogers and Mos&h. Now, the difference in the values of modeling constants have to be satisfied, these can be estab-
the diffusion constants as given k%6) and the original the- lished in the course of the analysis and used in the calibration
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of models. The main extra piece of information brought outfirst-order accurate, explicit for destruction and fully implicit
in the context of Reynolds-stress-transport modeling is thator diffusion. The equations are written for the vector of the
the propagative solution can strongly influence the predictioiransported variables, so that implicit evaluation of the dif-
of anisotropy near the edge. Among the diffusion modeldusion fluxes leads to the inversion of a block-tridiagonal
investigated here, Daly—Harlow is the only one for which matrix at each time step. The space discretization is conser-
anisotropy at the edge follows from the state of the flow invative with a constant step. In all calculations 600 grid points
the core of the layer. With all the other models, essentiahre used across the computational domain, a majority of
characteristics of anisotropy at the edge are either fully indewhich is inside the turbulent region.
pendent of it(Mellor—Herring, Hanjalie-Laundey or mar-
ginally dependent: With the original version of Lumley’s
model, there is a finite number of solutions at the edge, an
the state of the flow in the core of the layer can only influ-
ence the selection of one of these solutions. According to our  In the problem of turbulence propagating fromiastro-
discussion in the introduction, Daly—Harlow may, therefore,pic steady plane source, Lumley’s model wity,=1/5 ad-
be considered as the best-behaved of the models consideretdts an isotropic solution such that;;=2/3 for all z andt
here. inside the turbulent region. To get some insight into the sta-
From a practical point of view, one has to wonder aboutbility of this solution, one can consider a perturbatiorif
the need to predict precisely anisotropy near the edge: In thiat a given timet,, such asasz=2/3+ 9, with 9 constant
region, all the Reynolds stresses go to zero and the compardongz. The evolution equation fa; can be obtained from
son between prediction and experiment is probably less s@he combination of thé andw?2 equations
vere when the Reynolds stresses rather than the anisotropy
parameters are considered. The point is that modern 733 _ EJF a
pressure-strain models use the anisotropy parameters to en- Jt e 3 7%

sure realizability in the two-component limit: The latter is Introducing the modeled expressions of the turbulent-

expected in the vicinity of solid walls and free surfaces butyifusion and return-to-isotropyRotta terms, and taking
certainly not at free-stream edges. Therefore, combiningts account thatess= 2/3+ 9, one gets

these schemes with Hanjalitaunder or Mellor—Herring
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the redistribution processes. This is probably one of the rea- ot 15 3
sons why the “old” Daly—Harlow scheme is still preferred 5 3
by modelers in recent implementations of Reynolds-stress- + ,32( = 7 CSZ) + 193( —z- 3 CSZ) }
transport models.

In another respect, an interesting by-product of the P K2 ok
analysis appears to be the interpretation that can be made of XE s1— E) .
€

difficulties encountered in computing simple-shear flows
with Lumley’s model. It has led us to introduce a new real-This equation is exact at=t, sinced is constant ire. The
izability condition, according to which the model for the term on the first line of the rhs has a stabilizing effect since
whole diffusion term in the normal-Reynolds-stresses equafl—C,) is negative. To first order in}, the term on the
tions should not become anti-diffusive. The analysis helps t@econd line of the rhs has an opposite effect: It is propor-
determine modified values of the model constants ensuringonal to the diffusion ofk which is always positive in this
that it does not happen in the computation of simple sheaflow, and the coefficient of proportionality is also positive
flows. This is a necessary condition, and the need for thevhenC,,=0.066(in fact, as soon a€,<0.16). This term
sufficient condition—according to which it shouldever is dominant at the edge, so that any perturbation of the type
happen—remains an open question. Also, possible implicaconsidered here is amplified in this region. Note that the
tions for the diffusion of the shear stresses could be furthesame analysis applied to the Daly—Harlow model—which

investigated. also admits an isotropic solution in this problem—Ieads to an
opposite conclusion, the term on the second line of the rhs
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APPENDIX A: NUMERICAL DETAILS In simple-shear flows, the Hanjalitaunder model has

The numerical method used for solving the model prob-been shown to produce a propagative solution vaith=0
lem of turbulence propagating from a steady plane source iand a;;X asz= a§3. We also havefg=3Cgas; and hg
Sec. Il C, and time-evolving mixing layer in Sec. Il C, is =C_as3, so that the propagation velocityand the expo-
based on a time-marching procedure with finite-volume disnents for the turbulent kinetic energy and its dissipation rate
cretizations in space and time. The time discretization isn Egs.(7) and(8) take the forms
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,3a33CsC, C. This determines the behavior of in the vicinity of the edge
c=K >Cc -3¢ M™M3c-3cs through the expressions bandV?/K given as functions of
‘ s ‘ s ags and a;—that remain free. Simple algebra then shows
3C, that D, is exactly 2/3 ofgv?/dt.
and n= m
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