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New results on the model problem of the diffusion of turbulence
from a plane source

J.-B. Cazalbou® and P. Chassaing
ENSICA, 1 place Emile Blouin, 31056 Toulouse cedex 5, France

(Received 23 December 1999; accepted 6 November)2000

The problem of the diffusion of turbulence from a plane source is addressed in the context of
two-equation eddy-viscosity models and Reynolds-stress-transport models. In the steady state, full
analytic solutions are given. At second order, they provide the equilibrium value of the anisotropy
level obtained with different combinations of return-to-isotropy and turbulent-diffusion schemes and
confirm the results obtained by Straatmetral. [AIAA J. 36, 929 (1998] in an approximate
analysis. In addition, all the characteristics of the turbulence decrease can be determined and it is
shown that a special constraint on the value of the modeling constants should hold if turbulence fills
the whole surrounding space. In a second step, precise results can be given for the unsteady model
problem at the first-order-closure level. The evolution cannot be described with a single set of
characteristic scales and one has to distinguish the cases of short and large times. In the short-time
regime, the flow is governed by the characteristic scales of turbulence at the source and
contamination of the flow proceeds €#&. At large times, the flow is governed by time-dependent
characteristic scales that correspond to the solution of the steady problem at the instantaneous
location of the front. Contamination of the flow proceeds as a power of time that can be related to
the value of the modeling constants. The role of a combination of these constants is emphasized
whose value can be specified to produce a solution that matches simultaneously the experimental
data for the decrease of turbulent kinetic energy in the steady state and the exponent of the
propagation velocity in the transient regime. 201 American Institute of Physics.

[DOI: 10.1063/1.1336155

I. INTRODUCTION fluctuation is proportional t@™!; during the propagation,
the mean position of the interface proceeds*&s wheret is

We consider the action of a plane source of turbulencehe time counted from a conveniently chosen origin. These
on a fluid initially at rest in an unbounded domain. Turbu-results allow a concept of “grid action” to be introduced,
lence is supposed to be statistically homogeneous in theccording to which the flow is governed by a single param-
plane of the source with known characteristic scales. Theoeter: the “action” parametérKocu’l, whereu’ and! are,
retical arguments by Corrsin and Kisfleshow that, as the respectively, the rms value of the velocity fluctuation aleng
source is switched on, turbulence proceeds in the undisturbg@erpendicular toz) and the turbulent length scale at the
fluid behind a perfectly defined although highly irregular in- same location irz. K has the dimension of viscosity and,
terface. After a sufficient time, all the surrounding space isaccording to Long’s analysis, is constant throughout the
filled with turbulence and a steady state of spatial decay iflow.
reached in which the local level of turbulent kinetic energy A significant number of experimental studies helps to
results from a balance between turbulent diffusion from theevaluate Long’s conclusions. A linear variation for the length
source and local destruction by viscous dissipation. Turbuscale is of little doubt being confirmed by Thompson and
lent diffusion is therefore an essential mechanism in this situTurner? Hopfinger and Tol)?, Kit, Strang and Fernan§and
ation which distinguishes it from classical situations of tem-by the direct-numerical-simulation results of Briggsal.’
poral or spatial decay of homogeneous turbulence. Such an agreement is not observed for the decay of turbu-

In practice, this situation can be obtained with a turbu-lence. If most of the data exhibits ttze 1 behavior for the
lence grid oscillating perpendicularly to its plane in the ab-decay ofu’ (Hopfinger and Toly, Hannoun, Fernando and
sence of mean velocity. LoAgstudied theoretically such a List,2 De Silva and Fernand®t® Kit et al.), some authors
situation. By a discussion of relevant parameters, dimengive significantly different values for the decay exponent:
sional analysis and a simple model for the grid-generated-1.5 for Thompson and Turnéryarying between—0.86
motions, he obtained some remarkable results: in the steadyhd — 1.5 for Noked! and — 1.35 in the simulation by Briggs
state, the turbulent length scale increases linearly with thet al.” It should be noted, however, that Thompson and Turn-
distance from the sourcez), the rms value of the velocity er’s data have been reinterpreted by Hopfinger and Toly and
that some of them seem to support thet behavior, while a
aAuthor to whom correspondence should be addressed. Telepfa®ies ~ 10W-Reynolds-number effect could be present in the simula-
61 61 86 59; Fax(33) 5 61 61 86 63; Electronic mail: cazalbou@ensica.fr tion results of Briggset al. Experiment also gives informa-
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tion on the anisotropy of turbulence: diffusion only actslIl. STEADY PROBLEM
alongz and velocity fluctuations are enhanced in this direc-

tion. The data®®~1%for the ratio of the rms fluctuations

alongz andx (a=w’'/u’) are scattered in the range 1.1 to
1.32 while the simulation gives a value of 1.4.

Now, if we turn to the case of the propagation regime
the experiments of Dickinson and Lot deal with homo-
geneous fluids and support th&? behavior for the mean
position of the interface. Other studies by Ferndridmd A, Eddy-viscosity models
De Silva and Fernandadeal with stratified fluids, the data

; 12 ; i .
also confirm thet ™ behavior at the beginning of the evolu in its standard high-turbulent-Reynolds-number form. A

tion V\éhen g(rja\lllty eJeCtS are qegllglbl_eh h q h similar analysis could be performed for any other two-
The mp el problem associated with the steady state aé;quation model as long as turbulent diffusion is of the gra-
been studied for thek( ¢) turbulence model of Jones and jgy type. Here, the set of governing equations is restricted

Laundet* by Sonit® and for the ke), (kkL)*® and the turbulent-kinetic-energykj and dissipation-rate
(k,@)*" models by Briggset al.” In all cases, solutions in equations in the simplified forms

powers ofz for the turbulent quantities and a linear variation

We consider a plane source of turbulence whose charac-
teristics are constant in the,fy) plane. Turbulence diffuses
alongz in the surrounding space initially at rest and we are
interested in the steady state obtained in the half sgace
'>0. We assume that the turbulent Reynolds number is high
enough for molecular diffusion to be negligible.

The problem is examined for thé,(€) turbulence model

of the length scale are obtained. At the second-order-closure _ i(ﬂ %) _ (12
level, Straatman, Stubley and Raithbgxamined the anisot- dz\o,dz)
ropy level far from the source with different combinations of 5

. . . d Vi dE €
turbulent-diffusion and return-to-isotropy schemes. The (= _<_ _) ~C.p—, (1b)
analysis is based on the hypothesis that the velocity fluctua- dz\o. dz k

tions and the dissipation rate evolve, respectivel dsand  \yhere »=C,k% e is the eddy viscosityr,, o,, C, and

z * (consistently with a linear variation of the length sgale C_, are the usual modeling constants. One has to solve these

The value of the anisotropy rat@can be obtained and the equations with the following boundary conditions:

authors show that an adequate modeling of pressure diffu-

sion is essential to a good prediction of the anisotropy. A k(z=0)=ko, €(z=0)=¢,

slight modification to Lumley’s mod# is proposed, which lim k(z)=0

brings the results in good agreement with known data. = ’
In the case of the propagation regime, information on théVe shall look for similarity solutions considering that, at any

solution have been given by Spalart and Allm&?dsr their ~ z the spatial evolution of the variables cannot depend on

one-equation model and by Cazalbou, Spalart andther quantities than the local levels of turbulent kinetic en-

Bradshaw for a variety of two-equation models. Both stud- €9y and dissipation rate. On dimensional grounds, this reads

ies show that, with some special restriction on the values ofS

the modeling constants, a weak soluti@hiscontinuous for . de &2

some of the derivatives at a finite distance from the squrce —=o— and —=8-—:, 2)

to the model problem is obtained. This property—Ilinked dz k2 dz k2

with the nonlinearity of the diffusion model—corresporeds  \\here o and 3 are nondimensional constants to be deter-

in reality to a turbulent front that propagates into the undis-mined by substituting relation®) in Egs. (1a and (1h). It

turbed fluid at a finite VeIOCity. In the V|C|n|ty of the front, appears that the 0n|y solution that satisfies the boundary con-
the form of the solution can be given as a function of localdition at infinity is obtained with

characteristic scales. Unfortunately, these cannot be related

to global scales in the absence of a complete solution of the  _ [ 9% and g= \/ Ok \/ Tk, Ceo0c
problem. 3C 24C,, 24C,, C,

o

e s e cerieve of e et ngt sl

. . """ tan be directly deduced from relatio(®:

show that power solutions are the only self-similar solutions

and that the hypothesis made in Straatregal. are unnec- d 3

essary. Exact and complete solutions are therefore available gz~ 2
for first- and second-order turbulence models. The second

part is restricted to the case of first-order-closure models folNtégration is immediate and gives

ZILrgO e(z)=0.

a—p. (©)

which we show that the knowledge of the steady solution K32 3g—2
: : . . 0 a—2pB
allows to precise the meaning and behavior of the character- |=Ily+yz with I0=E— and y= —
0

istic scales that govern the propagation. The time evolution
of the position of the front can then be characterized directlyThe dissipation rate can therefore be written k&&/(1,
as a function of the modeling constants. + yz) and relationq?2) be integrated to
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aly Bly value could be incompatible with the existence of a well-

defined boundary layer edge. However, loweringto 0.75
while keepingC,, and o, to their standard values would
This fully determines the solution and shows that the onlybring A fairly close to 10/3 without violating the edge con-
similarity solutions[in the sense of E¢(2)] are power solu-  straint (¢.<20,, see Ref. 21 On another hand, recent at-
tions with a linear variation of the length scale. Now, physi-tempts to reoptimize thek(e) model by Davodett al 2526
cal considerations as well as experimental evidence shownd in the framework of thavTAc European Community
that the length scale should increase with the distance fror‘ﬁroject (see Beardﬂ) also lead to an increase in the ratio
the source. According to E¢3), this requires thay>0 and /gy (respectively, 1.3/0.8 and 1.14/0.58 for the references
leads to the following condition on the modeling constants: cited) with improvements in the prediction of a variety of
20y~ C p0r.<0. 4) flows including wall-bounded flows and free shear flows.
“re Some variants of thek(e) model display an even lower
Introducing the combination of constamts=C,,0. /0y, the  value ofA than the standard version and conditighcan be
decrease exponents of the turbulent kinetic energy and dissiolated?®?° In this case,y is negative and powers of (1

4
1+ ’yE

4
1+ ’yE

€
and —=
€0

Ko

pation rate can be rewritten as +yz/ly) are undefined foe/l>—1/y. However, it could
o —7— 1124\ B 1-4A—\1+247 be shown that the evolution given by
3 T eA-2  M™MIT T a2 o kiko=(1+yz/lp)*'" and e/ ey=(1+ yz/ly)?"?, for 0=z
o <-—1/y, and
The slope of the length scale is given by « k and e are uniform forz=—1/y and as small as wanted
\/Tk provided thaty; remains finite,
= V1+24A -7
Y 24CM( ) corresponds to a weak solution of titeady diffusion prob-

lem whenA <2 (not to be confused with the weak solutions
given by Cazalbowt al.?! in the propagation regime. From
a numerical point of view, we have checked that this solution
fwas obtained at time convergence of the unsteady problem
with the calculation method used in Sec. lll. So, violation of
condition (4) produces solutions for which turbulenpar-
o=1, o.~13, C,=0.09 andC,=1.92, tially contaminates the surrounding space: on a distance
_ _ _ (Io/7y) that does not exceed a few integral length scales
one getsy=—2.72, f=~4.63, y=0.55 and (about three for the models cited abdv8uch a behavior,
z\| 842 along with the decrease of the length scale with distance
k_o = 1+ 0-551_0) ' from the source, is difficult to accept on physical grounds but
o S practical consequences of this deficiency have not been fur-
Thus, the decrease of turbulent kinetic energy is mgmﬂcanﬁlxher explored here.
overestimated—Long's theory and the majority of experi-  The Jimiting case\ =2 corresponds to a constant length
mental data givekz ?—and consequently, the Reynolds- scale throughout the flow. The turbulent kinetic energy and

; - 1.47 .. . . . .
number evolution takes the form ofz *“" decrease. The gjssipation rate experience an exponential spatial decay ac-
latter result leaves the possibility for a low-turbulent- ¢orging to

Reynolds-number regime at large Such a regime is not
compatible with the concept of “grid action{according to .
which, the turbulent Reynolds number should be constant k=k, ex%a—
throughout the flowbut is reminiscent of what is observed lo
in the situation of decreasing homogeneous turbuléhce. _

These differences between model behavior and wellWith
established experimental trends is evidently linked with the
low value of A obtained with the standard constants: about 2 |20y
2.5 to be compared with our preferred value 10/3. This im- @~ 38~ \ 35
plies that either the value @&, or that of the ratiar /oy is
too small. The value o€, is usually chosen in the range 1.8 - Reynolds-stress transport models
to 2 in order to match the rate of decay of homogeneous
turbulence, so that things may be difficult to improve by At the second-order-closure level, the problem is gov-
simply adjusting this value. Instead, a number of argumentérned by two equations for the normal Reynolds stresdes
support the idea of increasing the ratin /o . First, an and w? (axisymmetric state supplemented with the
analysis of direct-numerical-simulation data for wall- dissipation-rate equation. Taking into account the simplifica-
bounded flows by Cazalbou and Bradshhimdicates that tions of the problem, the exact transport equation of the Rey-
the standard value .= 1.3 is consistent with the data while a nolds stressi;u; (u; is the velocity fluctuation along; rela-
value ofoy in the range 0.4 to 0.7 should be preferred in thetive to the statistical average denoted by an overban be
outer layer. These authors also pointed out that such a lowritten as

and condition(4) becomesA >2. We note that, ifA takes
the value 10/3, them/y=—2, so that the rms value of the
velocity fluctuation decreases ag,14s indicated by the ma-
jority of experimental data. With the standard set o
constant&

1+052_4'95 c -
) e

z
and e= ¢ exp( ,BI—) ,
0

"
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TABLE I. Turbulent-diffusion and return-to-isotropy models considered in the steady problem.

Turbulent diffusion

k— duy;

Daly and Harlow(Ref. 30 —UUiU=Cs= Ul W C,=0.22
€
Hanjalic and Launde(Ref. 3] _uiujuk:Csl_( Gij C,=0.11
€
Mellor and Herring(Ref. 32 —UUU=Cy (K €) [(UUfl %) + (uUdax;) + (aUudox)] Cs=0.2
u — Cy,=0.185
Lumley (Ref. 19 (Dj)) —Uu=Cqy (K'e) (Gjj+Co(Gyi 6+ Gy St G 6j))
o C.,=0.066
Lumley (Ref. 19 (Df} —pui/p=Pp uuy, Pp=1/5
mijle
Rotta (Ref. 33 —Cya; C,;=18
C,=75
Fuet al. (Ref. 39 —C1AY?A (ayj+ Cl(aiay — A28j/3)) — a;(1— A9 o 06
1: .
_ C,=17
Sarkar and Spezial@ef. 35 —Cqayj+ Cy(ajay— Az /3)
o o o C,=1.05
(JUjUk R &Uiuk B — anUj Uin 2
Gijk=uiy, o, +ujy, a, + U, o aiJ:Tf 55”-

9
Ar=aa5, As=aaja, A=1-g(A—Ay)

d pu; pu; )
O0=—/| —ujuup,— —356,;,— —96;
k( TR TR p T

produced what we believe is a misinterpretation by Schwarz
and BradshawW of the relation between the diffusion and
return-to-isotropy constants.

\ v
E,, The dissipation-rate model equation can be taken in a
standard form. In the absence of mean velocity, it reads as
p|ou; du,; Ju; du;
i Rrrniiabed Bar 2 d Remalrwal B (5 d [ —k de €
p \dx,- dxj \dxk dxk, 0=—|C.uu — —|— —
— " — i (9X| Ellean €2k'
IT;; €

with C.=0.14 andC_.,=1.92.
The analysis performed for eddy-viscosity models can

Djj, II;; and ¢;; are, respectively, the turbulent diffusion be adapted with little changes considering that

term (by pressure and velocity fluctuationghe pressure- I

strain term(reduced to its “slow” part due to the absence of * u?=v?, and o

mean-velocity gradientsand the dissipation ternfwith e < the equation fou? can be replaced by that for the turbu-

=¢;i/2). Lumley’s rearrangement can be used to form a lent kinetic energy.

unique return-to-isotropy termir;;=1I1;;— €;;+2/3€6;j, so

that Eq.(5) finally becomes Accordingly, the problem is governed by the following sys-
tem:

0=Dij+7Tij_2/365ij y
0=Dy—¢, (6a)

leaving turbulent diffusion and return-to-isotropy as the only

processes that need to be modeled. We shall consider the 0=D 33+ 33— 2/3¢, (6b)
same closure schemes as Straatwetaal.’® Their definitions )

and referencés*-* are given in Table I. The return-to- 0=D.~Ceek, (6c)

isotropy schemes are lineéRotta®), quadratic(Sarkar and  \yhere D 33, Dy=D;i/2 and D, denote, respectively, the
Spezialé®) and quadratic with a formulation that accounts turbulent-diffusion terms ofv2. k ande. We shall look for a
for the anisotropy of the dissipation teng&iu, Launder and similarity solution satisfying ’
Tselepidakid®). All turbulent-diffusion schemes are of gra- o
dient type and neglect pressure diffusion with the exception dk € de €? w?
of Lumley’s® Concerning this scheme, we use the following EZQKT/Z’ dz 132 and =
relations between the diffusion constants &hd the return-

to-isotropy constant in Rotta’s schenfsee Shih, Lumley The equilibrium value of the anisotropy rate will be a
and Janick¥): C,=2/(38) and Cg,=(8—2)/(4B+ 10) result of the analysis. It follows that relatiofi8) cannot be
with 8=2C,. The resulting values are significantly different valid for z=0 if turbulence is produced with an anisotropy
from those used by Straatmahal. These authors have re- level that does not match the equilibrium value to be found.

=a2 (7)
u



468 Phys. Fluids, Vol. 13, No. 2, February 2001 J.-B. Cazalbou and P. Chassaing

TABLE II. Turbulent-diffusivity coefficients obtained with the different gradient schemes used.

f(a) 9@ h(a)
2a% 2a? 2a?
Daly and Harlow(Ref. 3 — _
Y ( 0 C52+a2 S2+a’ C:52+a2
Hanjalic and Launde(Ref. 31 2438 +2) 28 ”
: T 3C5m2
) 3a%+2
Mellor and Herring(Ref. 32 Csﬁ 3C, "
2 2 2,
Lumley (D)) (Ref. 19 512& (3a°+2)(1+5Cy) Sla (1+3Cy)+2Cy "
(2+ad)’ 2+a
2a%(3a?+2)(1+5Cy) 2(3a2+2)(1+5Cy)
Lumley (Df}) (Ref. 19 _ZPDCﬂW —2Pp T

We shall therefore consider our results as applicable to 3 is still equal to 3x/2— 8 and the analog of conditio@) is

similarity region away from the source and we can2h(a)—C,,f(a)<0. Relations(8a) and (8b) can be then

assume—as usual in this kind of problem—thaenotes the  substituted in Eq(6b) to give

distance to a virtual origin whose location depends on the

models used and the anisotropy level of the actual source.
We can proceed in the analysis noting that, whatever the

2a®> g(a) mag 2

€)

diffusion model is(see Table ), it is possible to write

oA Kk
K4z (a <~ a4/
5. d k? dw?
e g(a)?E’
5 _d(  Kde
4z (a)?&.

It follows that Eqs.(6a) and(6¢) can be solved as in the case
of an eddy-viscosity model with the following solution,
which now depends on the value af

z aly € z Bly
k—O: 1+’)/E , 6_0: 1+’yE y (83)
with
2 \/ 1 \/ 1 C.,
=~ V3t P~ V2@ Vaata) ha)
(8b)

0= i fa e 3

In this flow configuration and for all the return-to-isotropy
models usedgs/€ is a literal function ofa only (see Table

IIl) and the solution of Eq9) allows the equilibrium value

of a to be determined. A numerical solution to E®) is
easily obtained, relationé8a) and (8b) then allow to fully
determine the state of the flow. The corresponding results are
given in Table IV with

« the decrease of turbulence characterized by the exponent
n=al(2vy) of the rms value ') of the fluctuation, and

* the evolution of the length scale, by the slopg
= y(u?/k)%2.

v, can be assimilated to the slope of the integral scale rela-
tive to u alongx (L) since the relatioh;=.4u’% e seems
to be satisfied withA=1 in our configuration(see Kit
et alb).

In spite of the approximations made in their analysis, the
anisotropy levels reported by Straatneiral .28 are in agree-
ment with the values obtained here. This can be traced to the

TABLE Ill. m33/€ as a function ofa for return-to-isotropy models.

Model sl €
Rotta(Ref. 33 C 2 2
' 137 v
2 2a? 1
Fuet al. (Ref 34! (C1A1/2A2+ 1*Al/2)(§ _ 2+_a2 _ 501C1A1/2A§
) 2 2a? 1
Sarkar and SpezialdgRef. 3 - |+ Z
pezialiRef. 39 cl(3 2l +3CoA;
8 (a®—1)? 16 (a®—1)3 a’(8a%+19)

A=3 Grad?

As=g (2+a%)3"

C (2+a)?
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TABLE V. Similarity results obtained far from the source in the steady state with the different Reynolds-
stress-transport models.

Return to isotropy Diffusion n YL a
Rotta(Ref. 33 Daly and Harlow(Ref. 30 -1.28 0.46 1
Hanjalic and Launde(Ref. 31 —1.00 0.19 1.75
Mellor and Herring(Ref. 32 —0.50 0.31 1.75
Lumley (Ref. 19 (D;;) -0.32 0.47 1.60
Lumley (Ref. 19 (D;;+Df) -0.97 0.56 1
Fuet al. (Ref. 39 Daly and Harlow(Ref. 30 -1.28 0.46 1
Hanjalic and Launde(Ref. 31 —-1.14 0.22 1.55
Mellor and Herring(Ref. 32 —0.47 0.41 1.55
Lumley (Ref. 19 (D;;) -0.33 0.52 1.52
Lumley (Ref. 19 (D;;+Df) -0.97 0.56 1
Sarkar and SpezialgRef. 35 Daly and Harlow(Ref. 30 —-1.27 0.46 1
Hanjalic and Launde(Ref. 31 —-0.60 0.01 6.88
Mellor and Herring(Ref. 32 —0.65 0.007 6.88
Lumley (Ref. 19 (D)) -0.29 0.28 2.08
Lumley (Ref. 19 (D;;+Df) -0.97 0.56 1

fact that their hypothesis lead to the corréiriear evolution  to accept from a physical point of view since, together with
of the length scale. A conclusion of both analysis is that nahe linear increase of the length scale, they would imply a
combination of models is able to produce an anisotropy levelurbulent Reynolds number increasing withSo, if we con-
in the range 1.1 to 1.4 as indicated by the experimental andider—1.5 to—1 as a plausible range for every return-to-
simulation data. This can be explained upon considering thasotropy scheme considered here can be combined with sev-
in this flow, anisotropy is generated by turbulent diffusion eral diffusion schemes to produce a decrease exponent in this
and return to isotropy only comes to moderate this effect. Asange. Considering the slopg of the length scale, experi-
a matter of fact, Eq(9) shows that when the diffusion coef- ments with oscillating grids give a rather wide scatter, it
ficients forw? and k are equal:f(a)=g(a) for all a with seems that this value depends strongly on the particular ge-
Daly and Harlow scheme di(1)=g(1) whenPp=1/5with  ometry of the grid, frequency and strokeee Refs. 5 and)6
Lumley’s scheme, no anisotropy is generated amdmains  Measurements by Thompson and Tufngave y, =0.1,
unity whatever the return-to-isotropy scheme is. Hanjalic—Hopfinger and Toly reported three values in the range 0.16
Launder and Mellor—Herring diffusion schemes exhibit theto 0.34 while Kitet al.® gave a value of 0.25. Such a sensi-
same ratigg(a)/f(a) and it can be easily seen that Lumley’s tivity to the initial parameters of the turbulence source is
scheme without pressure diffusion produces a lower ratio amdeed out of reach of one-point closure but, with one excep-
soon asa is higher than unity. Thus, Hanjalic—Launder and tion, the tested models produce values that stay in line with
Mellor—Herring diffusion schemes always give the samethe data.
value ofa when combined with the same return-to-isotropy From a practical point of view, the analysis provides
scheme, while Lumley’s scheme without pressure diffusiorsome guidelines to improve model performances in this flow
always returns a lower value. Now, with the linear scheme otonfiguration. Straatmast al.*® emphasized that modeling
Rotta as a reference for return to isotropy, we see that thpressure diffusion was necessary to accurately predict anisot-
nonlinear schemes do not react in the same way to an overepy and suggested to use Lumley’s model with a lowered
generation of anisotropy by the diffusion scheme. The Fwalue of P, . Our analysis indeed supports this conclusion
et al. scheme seems to compensate for this effect while thbut also suggests an optimization strategy; noting that the
Sarkar—Speziale scheme amplifies it. The reason is that thelue ofa does not depend on the constants in the dissipation
latter has been devised to reduce the rate of return to isotropgquation[see Eq.(9)], one can proceed in two step&)
for high values ofA; (corresponding to high values éf, in adjust the value oPp in order to get the proper level of
our configuratiop, in agreement with experimental data. The anisotropy; andii) adjust the diffusion constaq, to obtain
high values ofa (6.88 obtained in our configuration should the correct spatial decrease. At this stage, we neither wish to
therefore not question the accuracy of Sarkar—Spezialmodify the diffusion constants in the Reynolds-stress equa-
scheme. As a matter of fact, we shall see below that, whetions, since they are connected to the return-to-isotropy con-
the diffusion scheme is adjusted so as to keep generation stant by construction—noC  ,—whose value is usually
anisotropy in reasonable bounds, the results obtained witfixed by the decay law of homogeneous turbulence. Such an
this scheme are beyond criticism. optimization performed with the target valuas-1.2 andn

Our analysis gives also access to the decrease exponent—1 givesPp=0.17 andC_.=0.175 when Rotta’s return-
of u’ and to the slope of the length scale. Considering theo-isotropy scheme is used, aRg =0.18 andC.=0.17 with
former, we mentioned above that the body of experimentathe Sarkar—Speziale scheme. In both casgstakes the
data indicates thabh=—1 but values of—0.86 and—1.5 value 0.35 which is perfectly acceptable in view of the ex-
have also been reported. Values higher thah are difficult ~ perimental data cited above. The optimized value€ pare
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consistent with usual implementations of Reynolds-stress- 1 | | | |

transport models. Note that we were unable to perform a

similar optimization with the Fet al. scheme: it seems that, 08 -

in this case, the evolution @fwhenP varies in the range 0

to 1/5 is not continuous and that valuesagh the range 1 to 2 0.6 - N

1.4 cannot be reached. 3 04 -
In a recent paper, not available when this one was sub- U S

mitted, Straatmati proposed a calibration procedure based 0.2 - DN -

on the approximate analysis of Straatmetral.!® and the | NS |

simulation results of Briggst al. The method allows to de- 0 0 1 9 3 4 5

termine the values o€, and Py in Lumley’s model and 2/

ensures that the three terms at work in this model are bal- _ _
anced in agreement with the simulation data. This appears fg&- 1. Numerical solution of the unsteady,€) model problem, eddy-
be linked with the value of the rati®, = U2w/wiin a se- ooty profiles. —-teo/ko=30; == teo/ko=60; — teo/ko=90; ----,
. ! 1 (1+ yz/15) 2P (steady solution
lected region of the flow. Takingr;=0.29, Straatman ob-
tainedCg,=0.31 andP=0.153 with the return-to-isotropy
scheme of Sarkar and Speziale. These values are signifi-

cantly different from those used or obtained here but do noltn the vicinity of the front and corr nd to a weak solution
really conflict with our analysis: following Straatman’s € vicinity ot the front and correspond 1o a weax soiutio

method the valueC,,=0.066 can be recovered by taking of the model equations there. To better visualize the charac-

. : . teristics of such solutions, numerical integration of Egs.
R;~0.25 which leads tdP~0.18 in agreement with the . .
result of our optimizationR;~0.25 is not far from the value (109 and (10b can be carried out using the method pre-

recommended by Straatman and equally supported by thseented in the Appendix. The resulting eddy-viscosity profiles

simulation data. It remains that the large difference betweeS:;g;eesg'lﬁzgenm_lt_m eSrﬁrip!aotg)endc;EaFrEc;tirtg??rt;e;c\)l;tltt?otr??s
possible values o€, is a matter of concern and a precise y ' propag

evaluation of this model constant should probably be dong\pparent:l th_e eddy viscosity goes to Z€r10 Imeé.al;general
using a different approach. characteristic of the weak solutions given in Ref) 2t a

finite distance from the source. As time proceeds, so does the
position of the frontd(t) and one is inclined to look for a
similarity solution in the form k=K(t)f(») and e

We turn now to the unsteady problem in which the =E(t)g(%) with »=2/45(t). However, § is not the only
source is switched on at=0. At a given timet, turbulence time-dependent length scale to enter the problem and this
will have diffused over some distance and we shall look formethod is not able to give a solution valid at all times. This
a time-dependent scaling of the instantaneous profiles of thig apparent in Fig. 2 where we plot the instantaneous profile
different variables. As we shall see below, the solution of theof the length scale at a given time: in addition &) a
steady-state problem will provide a useful basis for such &econd time-dependent scalg(d), is to be consideretthe
scaling. suffix « will denote the value of the variable in the steady

We restrict the analysis to the case of thkee) model  solution at the location given between parentheses, here: the
and the unsteady problem is governed by the following set oposition of the fronts). It is therefore difficult to imagine a

IIl. UNSTEADY PROBLEM

equations: simple way to scale the solution and, in order to proceed,
oK 9| v ok we shall have to consider separately the cases of “short” and
R (i “long’” times.
at az(ak az) ' (109 g
(96_ Jd [ vy de c €2 108
- azlo oz Cex (105
4
with the initial condition: 35 | ! ' ! I ]
Vz>0 k(zt=0)=0, &(zt=0)=0, 0 (0) :,___,_______,_,___._,t_,.__,_,..---"""" -
and the boundary conditions: < . N
K(z=01)=ko, < _
e(z=0}t)=¢g, -
Vt=0 Zlm k(z,t)=0, _
]
li =0.
lim (z,)=0 0 1 2 5 4 5
It has been shown by Cazalbetial.?! that, if the ratio 2/t

Uf/gk is lower than 2, turbulence propagates into the LIndISTZIG. 2. lllustration of the different time-dependent length scales in the un-

turbed ﬂUId at a fln'te Ve|OCIty At a g|Ven t|me, the eVO|U' Steady kxf) model prob|em_ —_ Length.scaje prof”eml)/kozeo; ceee,
tions of the different variables can be analytically described.+ yz/l, (steady solution
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A. Short-time scaling
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s T T T T
We define short times by considering that, in the corre- AN
sponding regime(i) turbulence has diffused over a short 08 = I n
distance(compared to the length scale at the soug)eand 0.6 N i
(if) the value of the length scale in the steady solutioz at = ' S
= § remains close tb,. We have therefore simultaneously L o4 N -
8<ly andl.(8)~l, so that 5<I..(5). 09 b ' 1
As a direct consequence, gradients are important and diffu- L | | AN |
sion dominates all. We get a pure-diffusion problem that can 0 0 5 5 5
be described by the following system: 2/t
a_k: i ﬂ&_k (113 FIG. 3. Numerical solution of the pure-diffusion unsteadye) model
ot 9z\ oy 9z)’ problem, eddy-viscosity profiles. --teq/ky=30; ——, teg/ky=60; —,
teg/ko=90.
de J [ v de 11b
ot 9z\o, 9z) (110

There is no straightforward analytical solution to Et@a—

with the same initial and boundary conditions as the originakl4b) but Egs.(118—(11b) can be numerically integrated.

diffusion/destruction problemsi(t) is the relevant character-

istic length scale and we shall look for a similarity solution

in the form
k=ko f(7)

with 7= (12

z
5

where § is more generally considered psoportional to the

and €= €,g(7)

The result of such an integration is illustrated in Figs. 3 and
4. The contamination, at a finite velocity, of the flow is ap-
parent in Fig. 3 where the eddy-viscosity profiles are plotted
for three distinct values of time. In Fig. 4, the same data are
replotted according to the theoretical self-similar scaling
normalized by (k3/e,)Y?]. The three profiles collapse on a
single curve that can be considered as the solutioii4d—

position of the front. Substituting these expressions in Eqs(14b) with A=1/(2C,). This confirms the validity of the

(119 and(11b), we get

O €y - f2f/>l
— X D5t = —| |
k77 ( g

. € . f2 s
2 pi-[12]

where () and (') denote, respectively, time angl deriva-
tives. Solutions in the form of Eq12) exist only if
€0

S 80=A,
C/_Lko

time evolutions given by Eq13). One can notice that in the
one-equation model of Spalart and Allmafdshe absence

of a destruction term in the eddy-viscosity equation enables
the distinction between short and long times to be eliminated
and thet Y2 behavior of the propagation velocity could be
shown to be valid all along the evolution. Such a behavior is
remarkably consistent with the results of Long’s analysis and
known experimental data.

B. Long-time scaling
In the long-time regime we consider that
8(t)>1y and therefored(t)~I.(6).

A being a nondimensional constaAtis arbitrary and simply  sjncek and e are both decreasing within the steady state,

S(t). Integration of the last equation yields the expressions

of the position of the front and propagation velocityt)

= ¢, that is 1 l , | :
2AC kG C.ks 1 0.8 |- _
s()= 2\t andc(t)= wo =
€0 260 \/E 2 0.6 |- |
(13 3
The self-similar profiles are then the solutions of the system 04 -
f2f’ ’ 02 |
— Aoy npf =<?> , (143 . | | | |
f2 AN 0 0.2 0.4 0.6 0.8 1
—Aong' = (—gg ) , (14b) 2 % (tk2/eo) />

FIG. 4. Numerical solution of the pure-diffusion unsteadye) model
problem. Eddy-viscosity profiles as functionso$caled by the theoretical
expression ofé(t) (13). ---, teg/ko=30; ——, teg/ky=60; —, teg/Kg
=090; the three profiles, perfectly collapsing, are indistinguishable.

with
f(0)=g(0)=1 and 7,&”;3 f(n)= ,I,'ﬂl g(7)=0.
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This precludes any scaling based on the values of the vari-

ables at the source and it seems th@t) can only be con-

sidered as a reference location tatThus, we look for a

solution in the form
k=K(t)f(n)
e=E()g(7)

o(t)—z

7 K3 E() (13

As previously, relations(15) can be substituted in Egs.

(10a—(10Db) to give

C.(f\ | & 3K KE ol Kl
AN RN P = K
(163
C.(f0'\" | 8|, |3K KE| , [KE
ol o) Tk 2 ) e
gZ
+Cor. (16b

J.-B. Cazalbou and P. Chassaing

C# f2f' ’ g ,
nal g | ~Arasm-aio

C,u. fzg, ’ g2 ,
Aoe( ~Capy ~9'(1-yn)—pBg=0.

g

If we consider that the value &k has been chosen so that
o(t) correspondsstrictly to the position of the front at,
relations(15) show thatf and g need to be defined on the
interval[ 0,1/y] which is the limit whené goes to infinity of
[0,6/(1g+ y6)] (corresponding ta in [ 4,0]). The boundary
conditions atyp=0 are immediate, we havd(0)=0 and
g(0)=0. To specify the boundary conditions at 1/y, we
begin by writing relationg15) for z=0:

s\ 5
1= 1+YE f(m ,

5\ Al 5
) o m)

6 varying from 0 to infinity. Introducing{= 6/(ly+ yd), we
getd/l,=X/(1—yX) and it follows that, for allX between 0
and infinity, f(X)=(1—yX)¥” and g(X)=(1—yX)?'".

Here again, a necessary condition for the system to have @y, sly this result is not acceptable f=0, so that in
self-similar solution is that the terms between brackets Ahe end. the analysis appears to be restricted to the case

constant, which is equivalent to

5 K KE_
= @

K—1/2:A, E B,

whereA, B and C are nondimensional constants. Now, it is

where X remains close to 3/that is 6>, which is charac-
teristic of the long-time regime. We shall therefore consider
the following boundary condition ap= 1/y:

- _ al — _ Bl
f(m), =, (A=ym®” andg(n) ~ (1-yn) ’-(21)

easy to check that this condition can be fulfilled if one takes

for K andE the solution fork and e in the steady state at
=5(t):
o(t)

aly
ey

8(t)\ Al
1+ y£> .
lo
Accordingly, relations(17) are satisfied withB=Aa, C
=Ap and the following expression fa¥(t):

o) _1(, e, )y’(“‘ﬁ) 1 19
lo Y Oko ! Y’

K(t)=Kkg (183

The analysis is now complete. It shows that, in the un-
steady model problem, a similarity solution in the form of
Eqg. (15 with time-dependent characteristic scales given by
Egs. (189—(18b) is adequate at large times. With the stan-
dard set of constants, the position of the front should evolve
ast®?% A remarkable result is that, wheh takes the value
10/3(corresponding to a 2/decrease in the steady problem
the position of the front evolves @& in the long-time re-
gime as required by Long'’s theory.

Numerical integration of Eq$108—(10b) has been car-
ried out to check these results. According to EtP), the
quantity A= (8/1y+ 1/v)(@~P'7 should be a linear function
of time during the propagation. It is rather easy to locate the

whereA,=A(a— B) andA, is an integration constant. Inci- position of the front in the numerical solution and to plot it
dentally, we note that the value of the exponent only depend@dainst time. This has been done in Fig. 5, the linear charac-
on the choice of the modeling constants through the value €T of the result at large times is quite convincing while a

A:

Y 12(A—2)
a—B  12A—17+1+24A

Differentiation of Eq.(19) gives the expression of the propa-

gation velocity:
al2(a—B)

=AVK.(5).

€
c(t)= Akg’z[Aotk—" +A; (20)
0

Provided that relation§l7) are satisfied, the remaining

spatial problem is governed by the following equations:

slow divergence at short times is apparent. A least-square
linear approximation of the curve in the range5 to 90
gives Ag=0.9 andA;=2.1 corresponding t&\=0.47. The
propagation velocity has been plotted in Fig. 6 together with
the time evolution ok, (). Both curves are in good agree-
ment as soon as=>5, the slope of the logarithmic plot being
consistent with the exponent in EQ0). Ast becomes lower
than 5, the two curves depart significantly ar{d) exhibits
the —1/2 slope, characteristic of the pure-diffusion regime at
short times.

If we turn now to the space problem, it can be seen in
Fig. 7 that the eddy-viscosity profiles, computed at three dif-
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T T T 6 ' | | | |
300
1 =
200 3
| -
2 - B —
100 ......7_,/-:.(--
| ) I I 0 . | | ] ]
0 10 20 30 40 0 025 05 0.5 1 L |
teo/ko .
FIG. 5. Time evolution ofA=(8/lo+1/y)(*~ A7, — Numerical result; FIG. 7. Eddy-viscosity profiles in the long-time regime scaled by the time-

dependent characteristic scales. -tey/ko=30; ——, teg/ko=60; —,
teg/ko=90; ---, asymptotic behavior when— 1/y; — —, theoretical slope
of the eddy-viscosity profile at the frofpA(2o— o) with A=0.47]. The
three instantaneous profiles, collapsing perfectly, are indistinguishable.

——, least-square linear fit between 5 andt=90.

ferent times in the long-time regime, perfectly collapse when
scaled according to Eqg15), (183 and (18b. One also

observes that the equivalent of relati¢?l) for the eddy C Klge o
viscosity lim ¢.o=—2 207 = Btk
) (2a—B)iy t—oo o, €y JZ 0 O,

Fmig(n) ~, (1=vn)

Figure 8 shows the time behavior of these fluxes and one
sees that, starting from theoretically infinite valueg-a0,
they come to saturation on the above values for a nondimen-
sional time approximately equal to 3. Rigorously this is only
obtained whert—o. However, one can give an indication
of the time ¢4) at which transition between the short- and
long-time regimes occurs by noting in Fig. 4 that the gradient
of »; at the source takes the constant value 1.28 when

scaled by (k3/e,)*2 Equating with the known value in the
As time progresses front=0, the space evolution steady solution we get

gradually shifts from the short-time situation where the tur-
bulence flux at the sourcegiy=(v/o\) dkldz|,—,) de-
creases in modulu§t should reach zero in the end if the
evolution were to proceed in the pure-diffusion regin@  which is coherent with what can be observed in Fig. 8. More-
the long-time situation where it saturates on the constandver, noticing in Fig. 4 that the front is located at
value corresponding to the steady state, that is: ~0_57kg’2/60, it can be deduced that correspond to a
C K2k c propagation distance of the same (3rder of magnitude as the

lim dro=—2 22| =a—2K3, integral scale at the sourcé;~0.%3 % ¢,. This is a rather
o € IZ |,_, Ok short distance and, consequently, it is most likely that the
experimental data for the propagation of the front should be
compared with model solutions in the long-time regime.

accurately fits the results as soon &s 0.4. According to
the analysis in Cazalboet al.,?* the slope of the eddy-
viscosity profile at the front should be equal (20
—o.)/C,, the corresponding line is plotted on the figure
with A=0.47 and is in good agreement with the numerical
result.

C. Transition between short and long times

treg/ko=(1.28(B—2a))?~2.47,

t—o

and, similarly for the dissipation rate:

TTTTf T T TTTTI T 1T T TTTITT] T

IlIIIII- O I I I I

e 12

0.1

Litl ol Ll

tam

0.1 1 10
tEo/ko

FIG. 6. Time evolution of the propagation velocity. —, Numerical result for
c(t)/A with A=0.47; — k. (5), &(t) being given by the numerical solu-

tion.

100

3
tﬁo/ko

FIG. 8. Time evolutions of the turbulent-kinetic-energy and dissipation-rate
fluxes atz=0. ——, X oy [(C,K3); —, dpeoX . /(C, k3€0).
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IV. SUMMARY AND CONCLUSION values normalized by,/eg). About 9000 time steps are

It has been shown that a number of characteristics of th%herefore needed to compute the flow during this period of

turbulent field created by the diffusion from a plane source M€

could be analytically given for turbulence models of first and te T%e(:)g pa:icde déisri;egf:tfsne:jsucozrﬁegg tive with a constant
second order. In the steady state, complete solutions whera"P: grid points a PaBo=>.
The turbulent kinetic energy and its dissipation rate can-

turbl.JIen(?e usually'fllls the whole surrounding space can b%ot be set to zero in the undisturbed fluid. As in Ref. 21, we
obtained: the spatial decrease of turbulence, as well as the

o : . use “small” but non-zero values there: 1®times their re-
equilibrium anisotropy level for a variety of second-order )
models are given and may be used to improve the perf0r§pecwe level at the source.
The instantaneous position of the front is determined

mances of the models in this flow configuration. with an accuracy of one mesh size which is enough to ex-
With the two-equation eddy-viscosity models that satisfy” . . y . o 19
mine its behavior. After differentiation, however, it returns

the conditions given in Ref. 21, one can also examine thé ronagation velocity that can be rather noisy. The results
problem at finite times. It appears that the cases of short an propag . Oclty Y.
or this quantity(Fig. 6) are evaluated every 80 time steps

long times have to be distinguished. The first case Corref_rom a linear least-square fit of the front position for these 80

sponds to a pure-diffusion evolution, the position of the front . . . :
evolves ast'? whatever the values of the model constantsStepS' Time resolution remains very good, the corresponding

. . . . _2 . .
are. The evolution at large times is slowed down by viscou {ime intervals being in the range-610 = at the beginning of

dissipation and the position of the front still evolves as jhe calculation to 1 at the end.
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