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ON THE MEAN PROJECTION THEOREM FOR
DETERMINANTAL POINT PROCESSES

ADRIEN KASSEL AND THIERRY LÉVY

Abstract. In this short note, we extend to the continuous case a mean projection theorem for
discrete determinantal point processes associated with a finite range projection, thus strength-
ening a known result in random linear algebra due to Ermakov and Zolotukhin. We also give a
new formula for the variance of the exterior power of the random projection.

1. Introduction

Kirchhoff’s work on electrical networks [Kir47] seems to be one of the earliest works in the
literature where linear algebra and graph-theoretical combinatorial methods were put together.
Later on, linear algebra problems, and classical determinantal methods for solving them, gave rise
to various statistical approaches, notably linked to the so-called determinantal point processes
(introduced by Macchi in 1975 [Mac75], and named like this by Borodin, only around 2000 which
saw a blossoming of results on those processes from various authors, see [Sos00, ST03, Lyo03,
Joh06, Bor11]). These methods recently became an active field in randomized numerical linear
algebra [DM21].

In his work, Kirchhoff solved a linear algebra system on an electrical network seen as a finite
graph, by expressing the current induced by an external battery hooked on the network, as an
average over spanning trees of a certain current associated to the tree. In modern terms, he
expressed an orthogonal projection as the expectation of a certain random projection associated
to a random spanning tree. Such a mean projection theorem appeared in several guises in
the literature, and more or less independently, in works of Maurer [Mau76], Lyons [Lyo03],
Catanzaro–Chernyak–Klein [CCK13], and probably others that we are unaware of.

In our work [KL22, Theorem 5.9], we extended the mean projection formula for determinantal
point processes on finite sets, thus putting the statements of [Kir47, Mau76, Lyo03, CCK13] in a
unified geometric framework, and strengthening the result by proving a mean projection theorem
for the exterior powers of the projections, that is, for minors of their matrices in a fixed basis.

Let us quickly recall our statement. Let K be R or C, let E be a finite dimensional Euclidean
space on K of dimension d, and let (ei)1≤i≤d be an orthonormal basis of E. We let S = {1, . . . , d}
and consider H a subspace of E of dimension n. Let X be the determinantal point process on S
associated to the matrix K =

(
⟨ei,ΠHej⟩

)
1≤i,j≤d, where ΠH is the orthogonal projection on H.

For each X ⊆ S, let EX =
⊕

x∈X Kex be the corresponding coordinate subspace of E.

Theorem 1.1. Almost surely, the equality E = H⊕E⊥X holds, and denoting by PX the projection
on H parallel to E⊥X , we have

E
[∧

PX

]
=

∧
ΠH .

In words, in a fixed basis of E, the expectation of any minor of the matrix of PX is equal to
the same minor of ΠH .
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2 ADRIEN KASSEL AND THIERRY LÉVY

A short while ago, it came to our attention while reading the recent statistics paper [GBV19]
on Monte–Carlo integration methods, that such a mean projection formula had also appeared
in [EZ60] in the case of S = R, in a different guise, although the relation to the above-cited
works was not mentioned there.

One of the referees of this paper kindly pointed out to us that results in the spirit of The-
orem 1.1 have also been obtained in the context of the resolution of singular linear systems of
equations, for instance in [Ber86, BTT90] and more recently in the context of active sampling
for linear regression [DW18, Thms 5, 6 and 7], see also [AB13, MS17, DWH22]. In [DLM20,
Def. 4], the authors define the class of random matrices for which the expectation of any minor
equals the same minor of the expectation, give basic properties, and provide a few examples.
Theorem 1.1 and [KL22, Thm 5.9] give families of examples of such random matrices, namely the
matrices PX. A systematic study of this class of random matrices would certainly be interesting.

The goal of this short note is to extend Theorem 1.1 to the case of a determinantal point
process associated to a finite rank orthogonal projection on any Polish space S, so that it applies
for instance to any orthogonal polynomial ensemble, see [Lyo14, Section 3.8]. This extension
is the content of Theorem 2.2. An extension of Theorem 1.1 to the case of a projection with
infinite range (both in the case where S is discrete or continuous) would be interesting. An
example of this situation is investigated in [BQ22], where the author study among other things
the continuous analogue of PX in the case of the Bergman kernel.

2. The mean projection theorem

Let S be a Polish space and λ a positive Radon measure on S. Let us consider the space
E = L2(S, λ) and the space C(S) of continuous functions on S.1 Let H ⊆ E ∩ C(S) be a linear
subspace of finite dimension n.

Let Confn(S) be the set of collections of n distinct points in S, and let µ be the determinantal
probability measure on Confn(S) associated with the orthogonal projection on H. This means
that if we choose an orthonormal basis (φj)1≤j≤n of H, then we have for any bounded continuous
symmetric test function T : Sn → C the equality

(1)
∫
Confn(S)

T (X) dµ(X) =
1

n!

∫
Sn

T (x1, . . . , xn)|det
(
φj(xi)1≤i,j≤n

)
|2 dλ⊗n(x1, . . . , xn),

in which the right-hand side does not depend on the choice of the orthonormal basis. We will
denote by X a random subset of S distributed according to µ, and use the notation E[T (X)] for
either of the two sides of the equality above.

It follows from (1) that µ-almost every X is a uniqueness set for H, in the sense that two
elements of H that coincide on X are equal.2 This fact can be used to define a random projection
onto H, as follows. For every X ∈ Confn(S), let us define C(S ;X) = {f ∈ C(S) : f|X = 0}.

Lemma 2.1. For µ-almost every X ∈ Confn(S), the decomposition C(S) = H ⊕ C(S ;X) holds.

Proof. Let f be an element of C(S). Let (φj)1≤j≤n be an orthonormal basis of H. For µ-almost
every X = {x1, . . . , xn} in Confn(S), we have det(φj(xi)1≤i,j≤n) ̸= 0, so that the system

α1φ1(xi) + . . .+ αnφn(xi) = f(xi) , ∀i ∈ {1, . . . , n}

1The space of continuous functions plays for us the role usually devoted to a reproducing kernel Hilbert space
(RKHS), namely that of a space of functions that can be evaluated at points. However, we do not need this extra
structure, because we do not need evaluation at a point to be a continuous linear form. Moreover, it seems that
in many examples of interest, the RKHS is a subspace of continuous functions, so that our result applies.

2The uniqueness property is true for all determinantal processes associated with an orthogonal projection of
possibly infinite range, that is with infinitely many points (n = ∞), as proved in the discrete case by Lyons [Lyo03],
and recently by Bufetov-Qiu-Shamov [BQS21] in the general case, following partial results by Ghosh [Gho15].
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admits a unique solution. Then PXf = α1φ1 + . . . + αnφn is the unique element of H which
takes the same values as f on X. □

For the rest of this note, we will keep the notation PX introduced in the previous proof
for the projection on H parallel to C(S ;X). Let us emphasize that the decomposition given
by Lemma 2.1 depends on H and X, but is independent of the Euclidean structure of E. In
particular, the projection PX is independent of this Euclidean structure.

For example, if S = R, λ is a measure with infinite support which admits moments of all
orders, and φ1, . . . , φn are the first n orthogonal polynomials with respect to λ, then H is the
space of polynomial functions of degree at most n − 1 and PXf is the interpolating polynomial
of the restriction of f to X.

For all g1, . . . , gm ∈ E ∩C(S), let us define g1 ∧ . . .∧ gm ∈ L2(Sm, 1
m!λ

⊗m)∩C(Sm) by setting,
for all y1, . . . , ym ∈ S,

(2) (g1 ∧ . . . ∧ gm)(y1, . . . , ym) = det
(
gj(yi)1≤i,j≤m

)
.

We will use several times the Andreieff–Heine identity, which is a continuous analogue of the
Cauchy–Binet identity, and can be phrased as follows: if h1, . . . , hm belong to E ∩ C(S), then

(3) ⟨g1 ∧ . . . ∧ gm, h1 ∧ . . . ∧ hm⟩
L2(Sm,

1
m!λ

⊗m)
= det

(
⟨gi, hj⟩

)
1≤i,j≤m.

This equality justifies, for instance, the fact that the measure µ defined by (1) is a probability
measure.

Let us write H0 = H and H1 = H⊥. The isomorphism of vector spaces L2(Sm, 1
m!λ

⊗m) ≃
L2(S, λ)⊗m is

√
m! times an isometry, and the orthogonal decomposition L2(S) = H0⊕H1 gives

rise to an orthogonal decomposition

(4) L2(Sm) ≃ L2(S)⊗m =
⊕

ε1,...,εm∈{0,1}

Hε1 ⊗ . . .⊗Hεm =

m⊕
k=0

[ ⊕
ε1,...,εm∈{0,1}
ε1+...+εm=k

Hε1 ⊗ . . .⊗Hεm

]
.

Let us denote by Πk the orthogonal projection of L2(Sm) on the k-th summand of the last
expression. In order to describe this operator more concretely, recall that we denote by ΠH the
orthogonal projection on H in E. For all real t, let us define the linear operator Dt = ΠH + tΠH⊥

on E. Then

Dtg1 ∧ . . . ∧ Dtgm =
m∑
k=0

tk Πk(g1 ∧ . . . ∧ gm).

In words, Πk(g1∧. . .∧gm) is the sum of all the functions obtained from g1∧. . .∧gm by replacing k
of the gi’s by their projections on H⊥, and the others by their projection on H.

Theorem 2.2. For all m ≥ 1, and all f1, . . . , fm ∈ E ∩ C(S), we have

E[PXf1 ∧ . . . ∧ PXfm] = ΠHf1 ∧ . . . ∧ ΠHfm ,(5)

Var(PXf1 ∧ . . . ∧ PXfm) =
m∑
k=1

(
n−m+k

k

)
∥Πk(f1 ∧ . . . ∧ fm)∥2.(6)

The variance in the second assertion is that of a random element of L2(Sm, 1
m!λ

⊗m), that is,
to be explicit, and in view of the first assertion,

Var(PXf1 ∧ . . . ∧ PXfm) = E
[∥∥PXf1 ∧ . . . ∧ PXfm − ΠHf1 ∧ . . . ∧ ΠHfm

∥∥2
L2(Sm, 1

m!
λ⊗m)

]
.

Further note that the quadratic identity (6) may be polarized to obtain information on covari-
ances.

Given the remark made after Lemma 2.1, one can view Theorem 2.2 as providing a statistical
estimator of part of the Euclidean structure of E given H and a realisation X.
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When m = 1, this is the theorem of Ermakov–Zolotukhin [EZ60], rephrased by [GBV19]:

E[PXf ] = ΠHf and Var(PXf) = n∥ΠH⊥
f∥2.

In order to prove Theorem 2.2, we will use the following generalization of Cramer’s formula,
which surprisingly enough, we have not encountered in our undergraduate linear algebra class.

For all integers n and m, we denote by [[n]] the set {1, . . . , n} and by Pm([[n]]) the set of its
subsets with m elements. Given a p × q matrix M and two subsets I ⊆ [[p]] and J ⊆ [[q]], we
define

M I
J = (Mij)i∈I,j∈J and M I =M I

[[q]].

Proposition 2.3 (Cramer’s identity for minors). Let 1 ≤ m ≤ n be two integers. Let M be
an n × n invertible square matrix, and F an n × m rectangular matrix. Let A be the n × m
rectangular matrix solving MA = F . Then for all I ∈ Pm([[n]]), the m ×m submatrix AI has
determinant

(7) detAI = (detM)−1 detM[I←F ] ,

where M[I←F ] is the n × n square matrix obtained by replacing in M the columns indexed by I
by the columns of the matrix F .

If I = {i1 < . . . < im}, then (M[I←F ])ij =Mij for j /∈ I, and (M[I←F ])ij = Fik for j = ik.

Proof. Let us write A =M−1F and use the Cauchy–Binet formula:

detAI =
∑

J∈Pm([[n]])

det(M−1)IJ detF
J .

Now, by Jacobi’s complementary minor formula,

det(M−1)IJ = (−1)
∑

i∈I i+
∑

j∈J j (detM)−1 detMJc

Ic .

Combining the two previous equations and checking signs, we now recognize the Laplace expan-
sion of detM[I←F ] with respect to all columns in I:

detAI = (detM)−1
∑

J∈Pm([[n]])

(−1)
∑

i∈I i+
∑

j∈J j detMJc

Ic detF J = (detM)−1 detM[I←F ] ,

which concludes the proof. □

Proof of Theorem 2.2. Let (φi)1≤i≤n be an orthonormal basis of H. Let X = (x1, . . . , xn) ∈ Sn

be such that det(φj(xi)1≤i,j≤n) ̸= 0. Let us introduce the following matrices:
• M = (φj(xi)) 1 ≤ i, j ≤ n ,
• F = (fj(xi)) 1 ≤ i ≤ n, 1 ≤ j ≤ m ,
• A = (αij) 1 ≤ i ≤ n, 1 ≤ j ≤ m , the solution to MA = F ,
• G = (⟨φi, fj⟩) 1 ≤ i ≤ n, 1 ≤ j ≤ m .

For each I = {i1 < . . . < ik} ⊆ {1, . . . , n}, let us write φI = φi1 ∧ . . . ∧ φik .
For each 1 ≤ i ≤ m, we have

PXfi =
n∑

k=1

Aki φk and ΠHfi =
n∑

k=1

Gki φk,

so that

(8) PXf1 ∧ . . . ∧ PXfm =
∑

I∈Pm([[n]])

detAI φI and ΠHf1 ∧ . . . ∧ ΠHfm =
∑

I∈Pm([[n]])

detGI φI .
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In order to prove the first assertion of the theorem, namely (5), we are thus left to show that for
all I ∈ Pm([[n]]), we have

(9) E
[
detAI

]
= detGI ,

where we view A as a function of the subset X ⊆ S and the expectation is with respect to µ.
By Proposition 2.3, we can write detAI = (detM)−1 detM[I←F ]. Using the form (1) of the

density of µ and the Andreieff–Heine identity (3), we find

E
[
detAI

]
=

1

n!

∫
Sn

detAI |detM |2 dλ⊗n

=
1

n!

∫
Sn

detM[I←F ] detM dλ⊗n

= det
(
⟨φa, ψI,b⟩

)
1≤a,b≤n ,

where (ψI,1, . . . , ψI,n) is the list (φ1, . . . , φn) in which the terms labelled by elements of I have
been replaced by f1, . . . , fm. In symbols, ψI,b = φb if b /∈ I and ψI,b = fk if I = {i1 < . . . < im}
and b = ik.

The last determinant is, up to conjugation by a permutation matrix, that of a 2 × 2 block-
triangular matrix. One of the diagonal blocks of this matrix is the identity, and the other is GI .
Thus, its determinant is equal to detGI , which proves (9) and thus (5).

We now turn to the computation of the variance. An important observation is that the family
{φI : I ∈ Pm([[n]])} is orthonormal in L2(Sm, 1

m!λ
⊗m). Thus, using (8), Pythagoras’ theorem,

and (5), we find that

(10) Var(PXf1 ∧ . . . ∧ PXfm) =
∑

I∈Pm([[n]])

E
[
(detAI)2

]
−
∥∥ΠHf1 ∧ . . . ∧ ΠHfm

∥∥2.
Using the same strategy as before, we compute, for each set I of cardinality m,

E
[
| detAI |2

]
=

1

n!

∫
Sn

|detAI |2 | detM |2 dλ⊗n

=
1

n!

∫
Sn

|detM[I←F ]|2 dλ⊗n

= det(⟨ψI,a, ψI,b⟩)1≤a,b≤n.

The last matrix has a simple block structure coresponding to the partition [[n]] = I ⊔ Ic, in
which the block indexed by (Ic, Ic) is the identity. The Schur complement formula thus gives

det(⟨ψI,a, ψI,b⟩)1≤a,b≤n = det
(
⟨fi, fj⟩1≤i,j≤m −

(
⟨fi, φb⟩

)
1≤i≤m,b∈Ic

(
⟨φa, fj⟩

)
a∈Ic,1≤j≤m

)
= det

(
⟨fi, (Id− ΠHIc )fj⟩

)
1≤i,j≤m

= det
(
⟨fi, (ΠH⊥

+ ΠHI )fj⟩
)
1≤i,j≤m ,

where for all J ⊆ {1, . . . , n}, we set HJ = Vect(φj , j ∈ J). Using the Andreieff–Heine identity,
we rewrite this determinant as

E
[
|detAI |2

]
=

〈
f1 ∧ . . . ∧ fm, (ΠH⊥

+ ΠHI )f1 ∧ . . . ∧ (ΠH⊥
+ ΠHI )fm

〉
and what we need now is to sum this quantity over all I ∈ Pm([[n]]).

For each i ∈ {1, . . . ,m}, let us decompose fi as fi,0 + fi,1 + . . .+ fi,n, where fi,0 = ΠH⊥
fi and

for all j ∈ {1, . . . , n}, fi,j = ⟨φj , fi⟩φj . By multilinearity, we find

E
[
|detAI |2

]
=

n∑
j1,...,jm=0

〈
f1 ∧ . . . ∧ fm, (ΠH⊥

+ ΠHI )f1,j1 ∧ . . . ∧ (ΠH⊥
+ ΠHI )fm,jm︸ ︷︷ ︸

R

〉
.



6 ADRIEN KASSEL AND THIERRY LÉVY

Let us call R the function in the right-hand side of the scalar product. If among the integers
j1, . . . , jm two are positive and equal, then R vanishes, and so does the corresponding term of the
sum. Let us now assume that the positive indices among j1, . . . , jm are pairwise distinct, and let
us list them as {l1, . . . , lm−k}, where k = 1{j1=0} + . . .+ 1{jm=0}. We make three observations.
Firstly, for R not to be zero, it is necessary that {l1, . . . , lm−k} ⊆ I. Secondly, if this condition
is satisfied, then R = f1,j1 ∧ . . . ∧ fm,jm , and in particular does not depend on I. Finally, the
condition {l1, . . . , lm−k} ⊆ I is verified for

(
n−m+k

k

)
subsets I of {1, . . . , n} with m elements.

Putting these observations together, we find∑
I∈Pm([[n]])

E
[
| detAI |2

]
=

∑
j1,...,jm

(
n−m+k

k

)〈
f1 ∧ . . . ∧ fm, f1,j1 ∧ . . . ∧ fm,jm

〉
.

The sum runs over those j1, . . . , jm between 0 and n among which no two are positive and equal,
but lifting this condition only adds null terms to the sum. Therefore, we let j1, . . . , jm run freely
between 0 and n, and k is the number of them that are zero.

Let us sort the terms of the last sum according to which of the indices j1, . . . , jm are zero
and which are not: calling B the set {p ∈ [[m]] : jp = 0} and with the notation H0 = H and
H1 = H⊥, this resummation yields

(11)
∑

I∈Pm([[n]])

E
[
| detAI |2

]
=

m∑
k=0

(
n−m+k

k

)〈
f1∧. . .∧fm,

∑
B∈Pk([[m]])

ΠH1B(1)
f1∧. . .∧ΠH1B(m)

fm

〉
.

The sum over B yields exactly the function Πk(f1 ∧ . . . ∧ fm). The result follows from the
orthogonality of the decomposition (4) and the observation that the term corresponding to k = 0
is exactly the last term of (10). □

Acknowledgments. We thank the two referees for interesting and helpful comments.
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