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Abstract

This paper studies the possibility of using adaptive grid refinement for routine,
automated simulations of ship resistance in calm water. With the increase
in maturity and reliability of mesh adaptation methods, the main remaining
challenge is the creation of straightforward, universal user guidelines which allow
these computations to be run correctly, without resorting to trial and error to
set the parameters.

The paper uses the mesh adaptation in the flow solver ISIS-CFD. For this
solver, a simulation protocol for resistance computation is proposed, which spec-
ifies for example the choice of the refinement criterion and the global mesh size.
To investigate the reliability and generality of this protocol, it is fine-tuned on
one test case and then applied unchanged to three different cases.

The tests show that the solutions have good behaviour and compare well
with experiments. Furthermore, numerical uncertainty estimation works for
these cases, which increases the trustworthiness of the solutions. Where this is
tested, the mesh adaptation produces the same solutions as traditional meshing
methods with reduced computational costs. As such, it is shown that mesh
adaptation for resistance computations is possible today on a routine basis and
that it is advantageous compared with other meshing techniques.

Keywords: Mesh adaptation, Ship resistance, Uncertainty estimation,
Automated simulation

1. Introduction

For the continuing growth of computational fluid dynamics (CFD), mesh
generation is considered as one of the main bottlenecks (Slotnick et al., 2014).
Today, meshing requires more human intervention and more expert knowledge
from the users than any other aspect of simulation. Furthermore, these in-5

terventions often concern iterative corrections of the mesh, since meshes are
created before the solution is known and may turn out to be ill suited for the
flow. Thus, generating meshes for reliable simulations makes CFD both costly
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and unpredictable in terms of user time, which is an obstacle for large-scale use
in industry (Michal, 2019).10

Adaptive mesh refinement, which locally and automatically refines the mesh
during the simulation according to the requirements of the flow, is a natural
solution to this issue. After years of intensive development, mesh adaptation is
approaching maturity and its use for the simulation of complex flows is gaining
momentum. For example, the Unstructured Grid Adaptation Working Group15

(Balan et al., 2020; Park et al., 2021) and the community around the open-
source (re)mesher MMG (e.g. Dapogny et al. (2014); Nardoni et al. (2019))
show the growing awareness of mesh adaptation for complex flow simulations in
academia and industry. For hydrodynamic simulations, mesh adaptation is used
with flow solvers such as OpenFOAM (Eskilsson and Bensow, 2012; Wang et al.,20

2020), ReFresco (Windt and Klaij, 2012), StarCCM+ (Yilmaz et al., 2019) and
FINE/Marine (Hildebrandt and Reyer, 2015; Yvin and Muller, 2016; Wackers
et al., 2017).

The integration of adaptation in a routine meshing pipeline requires a para-
digm shift. Traditionally, adaptive refinement has been used to make simulations25

locally more accurate or to reduce the costs for a given precision, i.e. to optimise
the use of computational resources. For large-scale routine meshing, resource
optimisation still matters, but the main purpose of the adaptation is to make
the computations easier to perform, more predictable and more robust, with less
need for user intervention. This implies first that a mesh refinement method30

should work reliably under all circumstances, and second that it must operate as
a black box for the user (Wackers, 2021). Thus, precise guidelines are required to
automatically set the parameters for the mesh adaptation, such that it produces
the right meshes for a large range of cases. These guidelines tend to be based
on experience and establishing them is a long process (Wackers, 2019).35

The purpose of this article is to show that for calm-water resistance of ships,
the required maturity of adaptive grid refinement to perform routine simulations
has been attained. The study uses the Navier-Stokes solver with integrated
mesh refinement ISIS-CFD (Queutey and Visonneau, 2007; Wackers et al., 2011)
which is developed by CNRS / Centrale Nantes and is included in FINE/Marine.40

For this solver, a protocol of mesh adaptation guidelines is proposed based on our
earlier work. To study its generality, this protocol is fine-tuned on one particular
test case and then applied unchanged to three different cases of towed resistance
and self-propulsion. The accuracy of the adapted-grid solutions is evaluated
through uncertainty estimations based on mesh convergence, comparisons with45

experiments, and studies of the difference with solutions on non-adapted meshes.
The work focuses on unappended displacement hulls modelled with standard
RANS turbulence models and wall-law boundary conditions.

The paper starts with a description of the flow solver ISIS-CFD and its mesh
refinement method (section 2). Section 3 presents the mesh adaptation protocol.50

In section 4, the protocol is tested and adjusted for the KRISO Container Ship
(KCS) and the results are compared with non-adapted meshes. Section 5 then
applies the same protocol to the DTMB 5415 navy combatant, the KVLCC2
tanker, and the KCS in self-propulsion conditions using an actuator disk. In
section 6, we show how the simulations can be accelerated by computing the55

flow on a series of coarse to fine meshes. To conclude, the range of applications
for the simulation protocol and the wider implications of the tests are discussed
in section 7.
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2. ISIS-CFD and its adaptive mesh refinement

The flow solver ISIS-CFD is developed by CNRS / Centrale Nantes and60

distributed by Cadence – NUMECA as part of the FINE/Marine flow simulation
suite. This section presents the flow solver and its integrated mesh adaptation
method.

2.1. The flow solver

ISIS-CFD is an incompressible unsteady Navier-Stokes solver for multifluid65

flow, based on the finite-volume method to build the spatial discretisation of the
transport equations (Duvigneau and Visonneau, 2003; Queutey and Visonneau,
2007). The unstructured discretisation is face-based: fluxes are computed face
by face, without a-priori assumptions about the cell topologies, which means
that cells with any number of arbitrarily shaped faces are accepted. The veloc-70

ity field is obtained from the momentum conservation equations and the pressure
field is extracted from the mass conservation constraint transformed into a pres-
sure equation, similar to the Rhie and Chow SIMPLE method (Rhie and Chow,
1983). Free-surface flow is simulated with a mixture flow approach (Wackers
et al., 2011): the water surface is captured with a conservation equation for75

the volume fraction of water, discretised with specific compressive discretisa-
tion schemes in order to keep the interface as sharp as possible. Both steady
and unsteady free-surface flows are solved with a time integration technique.

The flow solver features classical Reynolds-averaged Navier-Stokes turbu-
lence models and more sophisticated closures, such as the anisotropic EASM80

model (Deng and Visonneau, 1999; Duvigneau and Visonneau, 2003). These
are available with wall-resolved (no-slip) and law-of-the-wall boundary condi-
tions. Several hybrid RANS/LES models are also available. 6 DOF resolved
body motion (Leroyer and Visonneau, 2005) is combined with grid deformation
to simulate ship movement. Sliding interfaces and overset meshes allow a part85

of the mesh to move within the rest, these are used among others to simulate
propellers and rudders. Ship propellers can also be modelled as an actuator disk
or through the coupling with a panel code for propeller flow.

The solver is mostly used with unstructured hexahedral grids generated by
the Hexpress grid generator which is also part of FINE/Marine. These meshes90

combine structured-like regions and body-fitted viscous layer grids near the
walls (see figure 2). The grids consist purely of hexahedral cells, with mesh size
variations obtained by placing larger cells next to two or four smaller neighbour
cells. Due to its face-based nature, ISIS-CFD treats these grids just the same
as any other type of mesh.95

2.2. Adaptive refinement

The mesh adaptation method in ISIS-CFD (Wackers et al., 2012, 2014) per-
forms anisotropic refinement of unstructured hexahedral meshes by dividing the
cells of an initial coarse mesh locally into finer cells, in one or more directions.
This division is repeated until the desired cell sizes are obtained. Earlier refine-100

ment can be undone to accompany unsteady flows or changes in the solution as
the computation converges. The refinement procedure is fully parallelised using
the MPI protocol and includes an automatic adaptive load balancing.

The refinement is called repeatedly during the simulation, to adapt the mesh
to the current flow. For physically steady flows, the flow and the mesh converge105
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together: if the grid is well adapted to the flow and the solution itself has
converged, then calls to the refinement procedure no longer modify the mesh.

Metric-based refinement. Anisotropic grid refinement is based on metric tensors
as refinement criteria (George et al., 1991). This approach is well known for the
creation and adaptation of tetrahedral meshes (see for example Alauzet and110

Frazza (2021); Castro-Dı́az et al. (1997); Loseille et al. (2010)), but it also
works well for hexahedral mesh refinement. For metric-based adaptation, the
refinement criterion is a continuous field which indicates the ideal size of the
cells everywhere in the domain. Adaptive grid refinement is performed to get
the actual cell sizes as close to these ideal sizes as possible. Thus, the refined115

mesh can be considered as a ‘discretisation’ of the criterion.
In ISIS-CFD, the refinement of the cells is decided as follows. First, the

refinement criterion C, which is a 3× 3 symmetric tensor field (evaluated in the
cell centres), is computed in some way from the flow solution. In each hexahedral
cell i, the cell sizes di,j (j = 1, 2, 3) are defined as the vectors between the
opposing face centres in the three cell directions j. Given a constant threshold
parameter Tr, the goal of the grid refinement is to approach:

‖Cidi,j‖ = Tr ∀i, j. (1)

This is obtained by refining a cell in the direction j when ‖Cidi,j‖ exceeds Tr,
while a previously refined group of cells is derefined in the direction j if ‖Cidi,j‖
is lower than Tr/d for all cells in the group. The constant d is chosen slightly
larger than 2, to prevent cells being alternately derefined and re-refined. Tr is120

a global specification of the mesh fineness: all the cell sizes are proportional to
this parameter.

Free surface – Hessian criterion. The criteria C are based principally on the
Hessian matrix of second spatial derivatives of the solution. Hessian matrices
are linked to linear interpolation errors (Loseille et al., 2010), so they provide an
indicator for the truncation error of a second-order finite-volume discretisation.
The Hessian can be based on different variables. Here, to adapt the mesh to
pressure-based flows but also to boundary layers, wakes, and shear layers, the
criterion is based on the Hessians of both the pressure and the velocity, weighted
in the way in which they appear in the flux (Wackers et al., 2017). A common
weight ρV is assigned to all the velocity Hessians, where V =

√
u2 + v2 + w2:

CH =
(

max
(
‖H(p)‖, ρV ‖H(u)‖, ρV ‖H(v)‖, ρV ‖H(w)‖

))α
. (2)

H is the Hessian operator; the absolute value of a matrix ‖ · ‖ corresponds
to a matrix having the same eigenvectors as the original one and the absolute
values of its eigenvalues. In the same way, the power α of a matrix is obtained125

by taking its eigenvalues to the power α while keeping the eigenvectors. We
take α = 1

2 . The maximum of two tensors is computed using the approximate
procedure defined by (Wackers et al., 2012).

A second criterion creates the refined mesh at the free surface: this criterion
is non-zero whenever the water volume fraction α (which indicates the free
surface position) is neither 0 nor 1 (Wackers et al., 2012). Directional refinement
normal to the surface is obtained from normal vectors v = ∇αA/|∇αA|, where
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αA is a smeared volume fraction field created with Laplacian smoothing. The
criterion then becomes:

CS =

{
v ⊗ v if 0.1 ≤ αA ≤ 0.9,

0 otherwise.
(3)

Here αA is used again, to create a buffer layer of a few cells around the surface
position for safety.130

The two tensor criteria are combined into one (Wackers et al., 2014) by taking
a weighted maximum of the tensors. Since the free-surface criterion always has
a unit eigenvalue, a weighting constant c is applied only to the Hessian criterion:

CC = max (CS , c CH) . (4)

Figure 1 shows a mesh generated with the combined refinement criterion.

Grid quality measures. Post-treatment of the refinement criterion is used to
improve the regularity of the adaptively refined meshes. The first step is a
protection of the viscous layer grid, which consists of several layers of wall-
aligned cells (figure 2). For these layers, the refinement parallel to the wall is135

made the same throughout a column of cells from the wall to the outer layer: if
one of the cells in a column needs to be refined, all the cells are refined. Thus,
the column / layer structure of the boundary layer grid is preserved.

A second measure is to impose a minimum cell size: cells smaller than this
size are no longer refined. This option prevents spurious refinement in case of140

locally large errors in the computation of the refinement criterion, which may
appear for example in the high aspect-ratio cells of the near-wall boundary layer
grid. Also, it prevents infinite refinement around flow singularities.

Finally, adaptive refinement can be forbidden outside of a limiting box. This
option is used to maintain a coarse grid near the outflow boundary in order to145

damp out perturbations of the flow. For the grid refinement in the x-, y- and
z-directions, different limiting boxes can be chosen.

Projection. Since the pressure on a wall depends on its curvature, the pressure
reacts to any irregularity in the surface. To prevent spurious pressure peaks, a
refined mesh must therefore be projected onto the true geometry (represented150

by a triangulation of the CAD file). Since existing nodes are already in the
correct position, this projection is only applied to newly created nodes and the
associated mesh deformation is handled in a local way. Ellipsoids are defined
around each new boundary node, dimensioned such that they do not contain
any other boundary node. The required displacement of the boundary node is155

then applied to all the nodes in the ellipsoid, in a weighted manner so that the
displacement on the exterior of the ellipsoid goes to zero. With this approach,
the displacement of all boundary nodes is handled independently.

3. Mesh adaptation protocol for ship resistance

The mesh refinement method in the previous section contains many free160

parameters. For mesh adaptation in routine simulation, the choice of these
parameters should be mostly automated. This requires default values based on
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guidelines which must be straightforward and correct every time, without a need
for trial and error. Establishing these is complicated, because the guidelines have
to be valid over a range of cases, so they must take into account a large number165

of input variables: ship length, velocity, hull shape, etc.
Our approach for defining guidelines (Wackers, 2019, 2021) is to use phys-

ical arguments, notably dimensional analysis, to reduce the number of input
variables that have to be considered and then to use experience to find sensi-
ble guidelines for the remaining parameters. This approach is applied here to170

define standardised ISIS-CFD simulation guidelines for calm-water resistance
evaluation of displacement hulls. The guidelines are based on our earlier work
and have been fine-tuned using a test case, which is presented separately in the
following section 4 for clarity.

Figure 1: An example of an adapted mesh following the current protocol. Top to bottom: free
surface, details of the Y -symmetry plane, X-cut at the stern. The case is the DTMB 5415 at
Fr = 0.41 of section 5.1, with Tr,H = 0.07.

Refinement criterion. The first guideline concerns the choice of the refinement175

criterion. To create meshes for predicting the forces on a hull, adjoint-based
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Figure 2: Initial mesh corresponding to the bottom image of figure 1.

goal-oriented refinement criteria are the ideal choice (Alauzet and Frazza, 2021),
since these create meshes which are directly optimised for the computation of the
requested forces. However, for free-surface flows, evaluating an adjoint solution
is difficult (Kühl et al., 2021). In the absence of an adjoint solver, an indicator180

for the local truncation errors (like a Hessian), which aims at an approximate
equidistribution of the errors over the domain, is a suitable alternative. The
question is, on which variables this criterion should be based.

To decrease the need for user intervention in the meshing process, the re-
finement criterion should react to all the important flow features, so that the185

meshes required to capture these features can be created entirely using adaptive
refinement. Among others, this means that the fine mesh for the free surface
and the ship wave pattern must be inserted with adaptation. The combination
of the free-surface criterion and the Hessian of the pressure, which is a suitable
indicator of the orbital flow fields in the waves, ensures this (Wackers et al.,190

2014). However, this is not enough: even if the forces on the hull are domi-
nated by the pressure, the accurate resolution of the boundary layer and wake
is required to correctly predict these forces (Wackers et al., 2017). Thus, re-
finement based on the velocity Hessians, which detect the wake, is also needed.
The combined free-surface and flux-component Hessian criterion of section 2.2195

is therefore a suitable choice.
Figure 1 shows an adapted mesh of about 1M cells, created with the current

protocol. Combined refinement at and below the surface can be seen in waves,
while the mesh around the hull is refined at the bow and in the boundary layer.
A comparison with the original grid in figure 2 shows that most of the cells have200

been inserted through adaptive refinement.

Threshold. The second question concerns the appropriate mesh density, spec-
ified here by the threshold Tr of equation (1). To manage computational re-
sources, many authors adjust such mesh density parameters to obtain a specified
number of cells. This adjustment can be automated (Pons and Ersoy, 2019) to205

remove the need for trial and error. Another approach, suitable for metric cri-
teria, is to normalise the metric using its integral over the whole flow domain,
in such a way that the mesh density parameter becomes a direct specification
of the target number of cells (Loseille et al., 2010; Alauzet and Frazza, 2021).

To capture free-surface waves, we prefer a different approach. ISIS-CFD210

guidelines for non-adapted meshes specify target cell sizes at the free surface in
terms of the ship length L (typically L/1000 for the vertical cell size). Thus, for
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adaptive free-surface refinement, it is natural to link the mesh density parameter
to the cell size at the surface rather than to the total number of cells (accepting
that more deformed water surfaces require more cells to be captured correctly).215

Therefore, the free-surface refinement criterion is defined with unit vectors in
equation (3), so the threshold Tr equals the desired cell size normal to the free
surface.

To keep the criteria compatible, a similar behaviour is sought for the Hessian
criterion of equation (2): the mesh density on the hull should be proportional to
the threshold value, independent of the case parameters (velocity, density, etc.).
To obtain this, the criterion field must have the same order of magnitude for all
parameter values, which is achieved in equation (4) by nondimensionalising the
Hessian criterion (Wackers et al., 2014; Wackers, 2019) with a weighting factor:

c = c̄

(
L2

ρU2

)a
, (5)

where L and U are the reference length and velocity, ρ is the water density, and
the new weight c̄ is non-dimensional. The criterion c CH is then independent of220

the reference length and velocity, it depends only on the Reynolds and Froude
numbers and the hull geometry.

For selecting c̄, it is convenient to treat the combined criterion as if the free-
surface and Hessian criteria are used separately, with their own thresholds TrS
and TrH . This is achieved by choosing:

Tr = TrS , c̄ =
TrS
TrH

. (6)

Guidelines for these thresholds are based on experience. Since TrS directly
specifies the cell size at the free surface, this parameter is chosen equal to
L/1000 which is the existing ISIS-CFD recommendation. For TrH , an anal-225

ysis in (Wackers, 2019) of several simulations including ships, wing profiles, and
three-dimensional hydrofoils, finds a suitable range of [0.4L, 0.04L]. Serani et al.
(2019) present computational settings which are valid over a family of ship hull
geometries, in a context of automatic shape optimisation for displacement hulls.
They suggest TrH ∈ [0.2L, 0.05L]. A study included in (Demeester et al., 2021)230

applies the same values to a submarine. Here, based on the tests in section 4,
we select TrH ∈ [0.2L, 0.025L].

Minimum cell size. Besides removing spurious refinement due to errors in the
refinement criterion, the minimum cell size reduces the mesh refinement around
the finest flow details. A large minimum cell size works like a cutoff filter:235

while the adaptive refinement still captures the main flow features, very fine
refinement to resolve small details is not applied. Thus, the minimum cell size
can be used to impose the level of resolution for the flow details that is required
for a specific application.

For resistance computations, section 4.3 shows that details below the reso-240

lution of the free surface have a negligible influence on the computed forces and
that not capturing these details reduces the total number of cells and the cost
of the computations. Therefore, a large minimum cell size equal to L/1000 is
applied.
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Limiting boxes. To prevent outflow perturbations and to stabilise the compu-245

tation, it is useful to damp out any waves before the flow reaches the outflow
boundary. Coarse meshes near the outflow are commonly used for this. With
adaptive refinement, these meshes can be created by imposing limiting boxes
which forbid the refinement in x- and y-direction near the outflow boundary.
Refinement in z-direction is allowed throughout the domain, so the free surface250

remains sharply captured. The effect of a limiting box is visible to the left in
the top view of figure 1.

While the minimum requirement for good damping is to forbid the refinement
in the last L of the domain, the refinement can be suppressed much closer to
the stern of the ship, which reduces the number of cells. Serani et al. (2019)255

show that a limiting box at 0.25L behind the stern does not significantly change
the computed forces, while a limit closer to the stern does. Since the tests in
section 4.3 confirm this, a limit of 0.3L behind the stern is proposed here.

Additional limiting boxes are imposed at 0.3L in front of the bow and at
0.7L to the side of the ship. These do not alter the flow field but increase the260

stability of the computation by removing spurious waves radiated from the ship
hull1.

Initial mesh. The initial mesh, from which the computation is started, is created
with Hexpress. Since all fine cells to capture the flow will be created with
adaptive refinement, the initial mesh only needs to resolve the geometry (figure265

2), something that Hexpress can usually do automatically. In the rest of the
domain, the mesh is left coarse to give as much manoeuvring room as possible
to the adaptive refinement.

For metric-based refinement, the refinement criterion specifies the cell sizes
in the adapted mesh throughout the domain. Thus, the initial mesh should not270

have a large influence on the final result of the computation. With division-
based refinement however, there are two exceptions to this principle:

• The refined cell sizes cannot be chosen arbitrarily since division can only
reduce the initial cell sizes by a power of two.

• The initial mesh imposes the orientation of the cells, because the refine-275

ment cannot turn them.

The first exception is relevant for the free-surface mesh. To obtain refined cells
of L/1024 at the surface, all initial cells around the surface should have sizes of
L/2j , for integer j ≤ 10. The second exception implies that the initial body-
aligned viscous layer grid should be thick enough to fully contain the physical280

boundary layer, so that the same will be true for the adapted meshes. In
Hexpress, coarser meshes lead to thicker viscous layers; however, too coarse
meshes may be unable to capture the hull geometry. As shown below, a good
compromise is obtained with cubic cells of size L/128 around the hull.

1These limitations were not used for all cases, which was deemed acceptable since no
influence on the results is expected.
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4. KCS fine-tuning285

The test case in this section was used to fine-tune the simulation protocol
in section 3. Results with the finished protocol are presented here. After an
introduction of the case (section 4.1), the accuracy of the solution is evaluated in
section 4.2 through a mesh convergence study and comparison with experiments.
In section 4.3, the validity of the protocol is shown though systematic parameter290

variations. Finally, in section 4.4 the results are compared with classical meshing
approaches to assess the efficiency of the mesh adaptation.

4.1. Test case and numerical setup

The test case is the KRISO Container Ship (KCS) in towed condition with
free trim and sinkage, for which experimental results are available from KRISO295

(Van et al., 1998; Kim et al., 2001), see also (Hino, 2005). The test is in
model scale (L = 7.2786m) at U = 2.196m/s, µ = 0.0012706kg/(ms), ρ =
999.5kg/m3, g = 9.81m/s, which gives Re = 1.257 · 107 and Fr = 0.260. The
model weight is 1650.8kg with the centre of gravity at x = 3.532m in front of
the aft perpendicular. Half the ship is simulated and the domain runs from 1.5L300

in front of the ship to 3.5L behind the stern, sideways to 2L and vertically from
−1.75L to 1.25L. The boundary conditions are imposed velocity and volume
fraction on the side planes, imposed pressure on the top and bottom, a mirror
condition on the centreplane, and wall law on the hull. Turbulence is modelled
with k − ω SST.305

Convective fluxes use the limited AVLSMART scheme (Pržulj and Basara,
2001), with central differences for diffusion. The time step is 0.0176s and 4000
time steps are run for convergence. The initial mesh has 128 cells/L on the hull
and y+ = 50 for the first boundary layer cells; it has 79.9k cells in total. For the
adaptive refinement, TrS = 1.3 ·L/1000, where the safety factor of 1.3 prevents310

refinement below L/1000. A series of grids is produced by reducing the Hessian
threshold TrH with steps of a factor

√
2 from 0.2L to 0.025L.

4.2. Grid convergence and accuracy

To determine the accuracy of the numerical solution, the grid convergence
study for the Hessian threshold is analysed. Since the mesh size everywhere is315

proportional to Tr (equation (1)), varying this threshold produces a series of sim-
ilar coarse to fine meshes (Wackers et al., 2017). The evolution of the resistance
with the mesh size can be used to evaluate its numerical uncertainty through
standard procedures. We use the estimation of Eça and Hoekstra (2014). Start-
ing from the third grid, the uncertainty on each grid is evaluated using the result320

on the grid and all the coarser ones; TrH is used as a convenient measure of the
grid size.

Figure 3 shows the convergence of the resistance (averaged over the last
25% time steps). Visually, the force converges smoothly, which is confirmed
by the uncertainty estimation. Variable power-law behaviour (the best possible325

result for Eça and Hoekstra’s procedure) was obtained, with similar results
for all meshes. Also, most uncertainty intervals overlap, which shows that the
uncertainty estimation is effective even on the coarser grids. The estimated
uncertainty is low (0.4% on the finest grid). Plots of the free surface (figure
4) show that the flow field is visually converged around TrH = 0.05L. Finally,330

a comparison with the experimental results from Van et al. (1998); Kim et al.
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Figure 3: KCS resistance, grid convergence with TrH and estimated numerical uncertainty.
The blue lines show the uncertainty interval of the experimental results (Van et al., 1998; Kim
et al., 2001).

Figure 4: KCS, free-surface elevation. Top to bottom: TrH = 0.2L, 0.1L, 0.05L, and 0.025L.
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(2001) in figure 3 shows that the converged numerical resistance lies within the
experimental uncertainty interval.

4.3. Parameter study

The settings of the simulation protocol are checked here through systematic335

parameter variation. The first test concerns the effect of the minimum cell size.
This parameter (chosen relatively small in earlier tests, around 10−4L) has a
much more pronounced influence than we expected. Figure 5 shows the grid
convergence for three different minimum cell sizes. For the smaller values of
TrH , a small minimum cell size will lead to the resolution of many flow details,340

which may not be essential for capturing the drag. Thus, the figure shows that
for a larger minimum cell size, the number of cells is strongly reduced, for only a
modest loss of precision. Also, the solutions for the different minimum cell sizes
converge to the same value when TrH is reduced. This means that for resistance
simulations, the choice of the largest minimum cell size, i.e. 1.3 ·L/1000 like the345

free-surface threshold, is preferable.

Figure 5: KCS, influence of the minimum cell size on the convergence of the resistance.

The limiting box proposed at 0.3L behind the stern is restrictive: it removes
most of the trailing wave field behind the ship and also the far-field wake.
Therefore, a test is performed with a much longer limiting box which ends
at 2L behind the stern. Figure 6 compares the free-surface elevations for the350

two tests: in the interior of the smaller limiting box, the solutions are visually
identical. Furthermore (figure 7), apart from some small perturbations, the
forces are similar for the same TrH so there is no systematic advantage to using
the larger limiting box. On the other hand, the larger box significantly increases
the number of cells (up to 75% for Tr=0.05L). This again confirms that the355

smaller box is acceptable. However, Serani et al. (2019) tested an even shorter
limiting box (0.05L) and found significant perturbations. This leads us to adopt
the box at 0.3L as the best choice.

To see the influence of the original mesh, the standard mesh (where the cells
have a size of L/128 on the hull) is compared with two other Hexpress meshes360

that have L/96 and L/192 on the hull. Figure 8 shows the boundary layer on
the aft hull. The figure shows that the different initial meshes lead to varying
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Figure 6: KCS, Free-surface elevation with limiting box 2L behind the stern (top) and 0.3L
behind the stern (bottom). Hessian threshold TrH = 0.05L.

Figure 7: KCS, convergence as a function of TrH for two different limiting box sizes.

Figure 8: KCS, axial velocity, free surface, and mesh at x = 0.86L. Left to right: 96 cells/L
initial grid, standard grid, and 192 cells/L grid. TrH = 0.1L.
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Figure 9: KCS, influence of the initial Hexpress mesh.

viscous layer mesh thicknesses. However, all the meshes are able to capture the
full aftship boundary layer in the viscous layer mesh (although the L/192 mesh
is at its limit). Furthermore, the free surface discontinuity is thinner in the365

standard mesh. The reason for this is that the adaptive refinement cuts cells in
two, so it can only divide the initial cell sizes by a power of 2. Therefore, for
the standard initial mesh, the grid at the free surface ends up at ∆z = L/1024,
while for the new grids it ends up at ∆z = L/768. The resistance is shown
in figure 9. The two new meshes give similar results, but there is a difference370

with the standard mesh, which gives faster and better convergence towards the
experimental results. Thus, the coarser grid at the surface is enough to perturb
the computed forces.

4.4. Comparison of meshing methods

To conclude the KCS test, the results with adaptive refinement are com-375

pared with two non-adaptive techniques for generating series of meshes. The
first approach is to create a series of meshes with Hexpress using the C-Wizard
automatic setup tool included in FINE/Marine. These meshes follow the stan-
dard FINE/Marine guidelines, with uniform cell sizes over the hull. As indicated
in section 4.3, the viscous layers of such meshes become thinner as the mesh is380

refined, so the series of meshes is not strictly similar. The second series uses a
combined Hexpress and systematic grid refinement (SGR) approach: the three
coarsest grids are generated by Hexpress, using manually increased refinement
at the bow and stern to capture the pressure fields. The three finest grids are
created from these coarser grids by refining all cells once (which is possible with385

adaptive refinement). This approach is costly in terms of the number of cells,
but it guarantees that the viscous layers remain thick enough as the mesh is
refined.

Figure 10 compares the three results. The figures show that for very coarse
meshes (300k cells) where the adaptive refinement is mainly used to capture the390

free surface, the C-Wizard series gives similar or slightly better results than the
adaptive series. However, from 600k cells on, the adaptive series is clearly better
than the other two, using on the order of 40% less cells than the C-Wizard and
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Figure 10: KCS, convergence in terms of the number of cells for three meshing strategies and
estimated uncertainties. The x-axis uses a log scale.

60% less than SGR for the same accuracy. The adaptive series also performs
better for the uncertainty estimation: as noted in section 4.2, variable power-395

law fits are obtained with similar behaviour for all meshes. Also, the estimated
uncertainty is low (0.4% on the finest grid). The SGR series is perturbed by
the switch from pure Hexpress meshes to SGR, but it also produces power-law
convergence for the two finest grids, with low uncertainty (0.7% on the finest
grid). The convergence of the C-Wizard series is perturbed by the change in400

thickness of the viscous layer: because the convergence is not asymptotic, the
uncertainty is high (13% – 18%). Finally, the figure confirms that the adaptive
and SGR series converge to the same value for the resistance, which underlines
the reliability of both series. The C-Wizard series may not converge to the same
value however, because the meshes are not similar. Thus, for this case, Hessian-405

based adaptive refinement is the best meshing strategy, both for coarse-mesh
and fine-mesh simulations.

5. Blind application tests

When considering the good results of section 4, it must be taken into account
that the protocol was calibrated for the KCS. To test if the mesh refinement410

settings are generally valid, the protocol of section 3 is applied here, without
any adjustments, to three cases which span the range of bare displacement hulls:
a slender hull (the DTMB 5415 naval combatant), the high-block-coefficient
KVLCC2, and the KCS in self-propulsion with an actuator disk.

5.1. DTMB 5415415

For this slender ship, three speeds are simulated, from Fr = 0.1 where the
waves are barely perceptible to Fr = 0.41 where heavy wave breaking occurs
both at the bow and the stern. The test is based on the measurements at
INSEAN by Olivieri et al. (2001), using the INSEAN model 2340 with a length
of L = 5.72m. The density is ρ = 1000kg/m3, the gravity 9.8058m/s2 and420

the dynamic viscosity is 0.0010080kg/(ms). The three velocities are 0.749m/s
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(Fr = 0.10, Re = 4.25 · 106), 2.097m/s (Fr = 0.28, Re = 1.19 · 107), and
3.071m/s (Fr = 0.41, Re = 1.74 · 107). Trim and sinkage are fixed to the
experimentally obtained values. The boundary conditions and turbulence model
are the same as for the KCS. The domain size is from 1.5L in front of the ship425

to 3L behind it, sideways to y = 2L and vertically from z = −1.5L to z = L.
The same initial mesh is used for all three velocities. It has 128 cells/L on

the hull and y+ = 50 for the first boundary layer cells at Fr = 0.28, with 77.8k
cells in total. The flux discretisation and the mesh adaptation settings are the
same as for the KCS. The time steps are chosen such that the ship advances430

one reference length in 100 time steps; 2000 time steps are run for convergence.

Figure 11: DTMB 5415, convergence of free-surface elevation at Fr = 0.28. Top to bottom:
TrH = 0.2L, 0.1L, 0.05L, and 0.025L.

Results. Figure 11 shows the convergence of the free surface for Fr = 0.28.
The level of convergence is similar to the KCS, even though the flow is different:
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Figure 12: DTMB 5415, free-surface elevation on fine grids (TrH = 0.025L). Top: Fr = 0.1,
bottom: Fr = 0.41.

there is stronger breaking in the bow wave system, especially the first shoulder
wave. The flow has converged around TrH = 0.05L. The results on the finest435

meshes for Fr = 0.1 and Fr = 0.41 are given in figure 12. For brevity the
grid convergence is not shown; the results at Fr = 0.41 are converged around
TrH = 0.05L despite the much stronger breaking waves. However, at Fr = 0.1
the bow wave is not converged even at TrH = 0.025L, although the flow in zones
close to the ship has converged. Still, the waves are so small (about 5 times440

smaller than the vertical cell size) that their influence is probably negligible.
Note that the range of the images is different: for Fr = 0.1, the waves are 17
times smaller than for Fr = 0.28 and 37 times smaller than for Fr = 0.41.

Figure 13 gives the drag force (averaged over the last 25% time steps) ac-
companied by the numerical uncertainty, evaluated following Eça and Hoekstra445

(2014). The blue lines represent the experimental results. The vertical scale is
chosen such that a 1% uncertainty is the same height in the 3 graphs. These fig-
ures show that the convergence behaviour is similar for Fr = 0.1 and Fr = 0.41,
with the resistance varying with TrH to the power of about 0.6. This is nor-
mal behaviour for pressure-dominated flows. The finest-grid uncertainties are450

around 1.8%. For Fr = 0.28 however, the convergence is less regular but the
solution is more accurate, with 0.6% uncertainty on the finest grid. The two fast
cases agree most closely with the experiments. The overestimation for Fr = 0.1
may be due to the boundary layer grid, which was created for Fr = 0.28; at the
lowest velocity, y+ is 20 which is close to the transition layer around y+ = 11455

where the wall law is the least accurate. Still, the agreement with experiments
is acceptable for all cases.

Figure 13 also shows the evolution of the number of cells with TrH . The
results are similar until TrH = 0.025L, where the mesh for Fr = 0.1 is clearly
finer than for the other two. This phenomenon is due to the smaller waves for460

the reduced speed, which require many fine cells to be resolved correctly. The
number of cells agrees well with the KCS case (figure 3).
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Figure 13: DTMB 5415 resistance, grid convergence with TrH and estimated numerical un-
certainty for (top to bottom) Fr = 0.1, Fr = 0.28, and Fr = 0.41. The blue lines represent
the experimental results (Olivieri et al., 2001).
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5.2. KVLCC2

To test a high block-coefficient hull, the KVLCC2 tanker is simulated at
Fr = 0.14232 and Re = 4.6 ·106, following the experiments given by (Van et al.,465

1998; Kim et al., 2001). The density is ρ = 999.25kg/m3, the gravity 9.8058m/s2

and the dynamic viscosity is 0.0012547kg/(ms). The velocity is 1.047m/s and
the reference length L = 5.5172m. All settings (motion, turbulence model, etc.)
are the same as for the KCS; the time step is 0.0263s and 2000 time steps are
run. The initial mesh has 58k cells.470

Figure 14: KVLCC2 resistance, grid convergence with TrH and estimated numerical uncer-
tainty, compared with experimental results (Van et al., 1998; Kim et al., 2001).

Figure 15: KVLCC2, free-surface elevation for TrH = 0.025L.

The wave pattern is similar to the DTMB 5415 at Fr = 0.1 (figure 15).
Likewise, the finer grids have similar numbers of cells (figure 14). And while the
convergence of the resistance has some slight oscillations, the global behaviour
is smooth and the final uncertainty is low (0.61%). The converged difference
with the experiments is about 1.5%.475

5.3. KCS self-propulsion

The final test case is the KCS in self-propulsion, where the propeller is
modelled by an actuator disk. Compared with the towed-resistance cases for
which the mesh adaptation protocol was developed, this poses three additional
challenges. First, the global flow may be different. Furthermore, it is not known480

if the mesh refinement reacts to a force field like the actuator disk. And finally,
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a ship propeller is tiny with respect to the ship itself. Can something so small
be captured by mesh adaptation that is configured for the flow around the ship?

The test case as described by (Hino, 2005) is the same as in section 4.1,
except that the model has free sinkage only. Also, µ = 0.0011379kg/(ms) and485

ρ = 999.1kg/m3 which gives Re = 1.40 ·107 and Fr = 0.260. The model weight
is 1648.5kg. The actuator disk has an outer and inner radius of 0.125m and
0.025m, with a thickness of 0.05m. Ship-point self propulsion is obtained by
applying a forward skin-friction correction force of 30.3N to the hull; the actu-
ator disk thrust is automatically updated to compensate for the remainder of490

the resistance. The corresponding torque is interpolated from a KT −KQ curve
obtained using 21 open water simulations of the propeller. To accommodate the
flow rotation behind the disk, the entire ship is simulated. Otherwise, the initial
Hexpress mesh is equal to the one from section 4; no particular refinement is
applied around the actuator disk.495

Figure 16: Actuator disk: open-water axial velocity in the y-symmetry plane for TrH = 0.1L.
The box shows the disk position.

As a first test, the actuator disk is simulated in an open water setting. A
coarse initial mesh is made, with cell sizes equal to the largest cells that appear
on the KCS hull. Furthermore, even though the actuator disk is simulated on
its own, the adaptive refinement is configured using the reference length of the
ship. The results are good (figure 16): even on a mesh which is coarse for the500

ship (TrH = 0.1L), both the actuator disk and its wake are well represented
by the refined mesh. This implies that no particular initial fine mesh in the
actuator disk region is needed: self-propulsion can be computed using initial
meshes made for towed resistance.

For the actual ship, this conclusion is confirmed: the meshes for two different505

thresholds (figure 17) capture the propeller flow well. Furthermore, the meshes
correspond visually to what the thresholds imply for a ship: TrH = 0.1L is a
rather coarse mesh, while TrH = 0.025L gives a fine mesh. Thus, refinement
based on the ship length scale is appropriate for a detail like the actuator disk.

Still, figure 17 also shows that the mesh size throughout the actuator disk510

region is equal to the minimum cell size (chosen the same as the size at the free
surface), even for TrH = 0.1L. It is likely that the mesh at TrH = 0.025L would
become much finer locally if the minimum cell size were smaller. The mesh is
fine enough for the actuator disk: it contains 40 cells over the disk diameter,
which is twice more than the recommended minimum for ISIS-CFD. However,515

it is possible here that the minimum cell size prevents the convergence to a
mesh-independent solution.
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Figure 17: KCS self-propulsion: axial velocity in the y-symmetry plane. Top: TrH = 0.1L,
bottom: 0.025L.

Figure 18: KCS self-propulsion: axial velocity in the propeller plane x/L = 0.9911. Left to
right: TrH = 0.1L, 0.025L, and experiments.

To assess the convergence of the local flow, figure 18 shows the total wake
field in the propeller plane. The flow is similar between the two solutions shown.
This is partially due to the minimum cell size – the meshes are equal in the520

centre of the actuator disk. But even outside the actuator disk region, where the
minimum cell size plays a smaller role, the agreement is good. The experimental
wake is somewhat different, since it comes from an actual propeller, but the
boundary layer near the hull is captured well. Thus, the simulation of the local
flow is satisfactory.525

The same holds for the resistance (figure 19). While some oscillations are
present, the force behaves globally like the towed case (figure 3) and the esti-
mated uncertainties are of the same order2. The resistance result confirms that
the mesh adaptation protocol can be used for self-propulsion.

2The convergence of other self-propulsion parameters such as thrust and torque has also
been studied, but since these are proportional to the resistance (either directly or via the
KT −KQ lookup table), they behave the same and are therefore not shown here.
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Figure 19: KCS self-propulsion resistance, grid convergence with TrH , estimated numerical
uncertainty, and experimental result from (Hino, 2005).

6. Convergence acceleration530

Adaptively refined meshes have a significant final advantage (Loseille et al.,
2007): it is trivial to initialise a fine-grid solution from the converged solution
on a coarser grid, by simply restarting the simulation with a smaller Tr. Since
coarse-grid simulations are cheap, this can accelerate the solution on the fine
grid. Furthermore, all the coarse-grid results are available for free when the535

fine-grid simulation is finished.

Figure 20: DTMB 5415 at Fr = 0.28, grid convergence and uncertainty for three simulation
approaches.

An example is shown here3 for the DTMB 5415 at Fr = 0.28 of section 5.1.
Instead of running 2000 time steps, the solutions are stopped when no force

3This is an illustrative example only. We do not claim that the settings are universally
correct, nor that they are optimal for this case.
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Table 1: Computation time with 28 cores (in minutes) for three simulation approaches. The
number of time steps is given between parentheses. For multilevel, the time is summed from
the coarsest level to the current level, while the number of time steps is for the current level
only.

Tr,H Full simulation Single level Multilevel
0.2L 47.5 (2000) 20.4 (915) 20.4 (915)
0.1L 94.8 (2000) 35.1 (857) 36.1 (+356)
0.05L 296.4 (2000) 144.6 (1107) 90.4 (+358)
0.025L 767.6 (2000) 279.9 (910) 274.3 (+466)

value in the last 150 time steps differs by more than 0.25% from the average
over the last 250 time steps. Computations are run for TrH = 0.2L, 0.1L, 0.05L,540

and 0.025L. Two series are performed: a single-level series where each grid is
started from zero, and a multi-level one where each simulation starts from the
previous coarser solution.

Figure 20 shows the convergence of the solutions and the estimated uncer-
tainties for each series, compared with the full 2000 time step simulations. The545

number of time steps and the computation time on a 28-core Intel Xeon node is
reported in table 1. While differences can be observed, the behaviour is globally
similar and the multilevel approach is the fastest for the two finest thresholds.

We have tested the same procedure on other cases and obtained an acceler-
ation everywhere. This means that, by correctly using multilevel simulations,550

one can obtain a fine-grid solution plus an uncertainty estimation faster than
just the solution on a single mesh.

7. Discussion and conclusion

The previous sections presented four test cases where combined free-surface
and Hessian-based mesh adaptation is used to create the meshes for ship re-555

sistance evaluation. This section attempts to generalise the findings of these
test cases by discussing two points. First, is routine automated use of adaptive
grid refinement to perform resistance computations possible? And second, is it
advantageous with respect to more traditional meshing methods?

Is it possible?. As discussed in section 1, routine mesh refinement requires a560

protocol without trial and error to set precise values for all simulation param-
eters, that is general enough to apply to a wide range of ships and conditions.
The protocol in section 3 is precise. But how general is it?

For bare hulls, the protocol is applied in this paper to displacement hulls
which range from slender to full. The DTMB 5415 test shows that the procedure565

is effective over a range of velocities from slow steaming to military full speed.
In the course of this test campaign, several other hulls such as the Duisburg Test
Case (DTC) and the Virtue tanker have been tested, which are not shown here
because they are similar to the cases presented. In all cases, the agreement with
experiments is reasonable or better. Furthermore, the adapted-mesh solutions570

converge well and where this was tested, they converge to the same results
as non-adapted meshes. Thus, we consider that the protocol is applicable to
all bare displacement hulls in fixed position, free in trim and sinkage, and in
self-propulsion with a body force or an actuator disk model.
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Can it also be used with appendices or actual propellers? The choice of575

the criterion and the threshold TrH is probably correct: the KCS actuator disk
test suggests that an appendix which generates enough force to move or turn
the ship, creates enough pressure variations to be captured well by adaptive
refinement tuned for the ship. And if ‘inactive’ appendices such as rudders
in a neutral position do not attract much refinement, their influence on the580

ship’s forces is small so they may not require an accurate representation by the
grid. However, the minimum cell size for the ship may be too coarse to capture
the flow around the appendices. While the current settings are acceptable for
actuator disks, rudders and propellers may require locally reduced minimum cell
sizes or other modifications of the criterion. This is a subject for future study.585

Further questions are the extension of combined Hessian and free-surface
refinement to other hull forms such as planing hulls, other approaches such as
wall-resolved turbulence or full-scale simulation, or unsteady simulations like
added resistance in waves. For all these applications, FINE/Marine users em-
ploy free-surface refinement (with the fine mesh around the hull created by590

Hexpress) on a routine basis. Thus, the only open question is the choice of the
Hessian parameters. We have little experience with unsteady simulations, so
more testing is required for these applications. For all steady cases, it is likely
that the correct range for TrH is more or less the same as the one given here,
since a similar range is even applicable to wings and hydrofoils (Wackers, 2019)).595

And other steady cases are close enough to what was tested here, that even if
the protocol in section 3 has to be adapted for them, it is likely that a similar
protocol exists. This answers the main question: routine mesh adaptation for
resistance simulations is realistic today.

Is it advantageous?. If Hessian-based adaptation is to be introduced widely600

for resistance computations, it has to offer advantages with respect to existing
meshing approaches. A first advantage, efficiency, is discussed in section 4.4:
figure 10 shows that adapted meshes provide similar performance as a pure
Hexpress mesh for situations where the Hessian refinement plays almost no
role (300k cells). For all finer meshes, the adaptive approach reaches the same605

accuracy with significantly less cells and thus faster computations.

Figure 21: Water surface (volume fraction α) for the DTMB 5415 at Fr=0.28 with standard
non-adapted mesh (left) and adapted mesh (right).

Furthermore, mesh adaptation makes it easier to obtain reliable simulations,
since the adaptation automatically ensures that the mesh is suitable for the flow.
For example, figure 21 shows the DTMB 5415 at Fr = 0.28, which is a moderate
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Froude number for a destroyer. However, the free-surface refinement in a state-610

of-the-art non-adapted mesh fails to capture the bow wave, which may introduce
errors in the computed forces; this mesh would require manual modification and
a new simulation. The adapted mesh has the free-surface refinement directly in
the right position to capture the waves.

A third advantage is that adaptive-refinement based forces behave remark-615

ably well for uncertainty estimation. Sharp, meaningful uncertainty estimations
increase the confidence in the results by providing a quantitative measure of their
reliability, which is considered more and more important (see for example Stern
et al. (2017)). And yet, section 4.4 shows that uncertainty estimation is not a
trivial matter for general unstructured grids. For adapted meshes however, the620

grid convergence in all cases presented here is smooth, which leads to accurate
power-law fits to the data; this was also observed by (Wackers et al., 2017)
for mono-fluid flows. Furthermore, Alauzet and Frazza (2021) observed similar
good convergence for a completely different setting: simulations of wings and
aircraft using compressible flow and tetrahedral mesh adaptation. This means625

that the good convergence behaviour is likely a property of the metric-based
refinement. The capacity of adaptive refinement to provide uncertainty esti-
mations for routine simulations on unstructured grids could be a major step
forward for practical CFD simulations.

A final point is that multilevel simulations like in section 6 are easy to per-630

form with adaptive refinement. This technique can accelerate the computations
to a point where both the result and the uncertainty estimation are produced
for less than the cost of a single-level simulation.

A disadvantage of adaptive meshing for resistance simulations is that it is a
new technique, contrary to fixed meshing which has the benefit of years of user635

experience in research and industry settings. However, for all simulations which
require reliable (nearly-)automatic meshing, such as automatic shape optimisa-
tion or large series of computations, adaptive meshing is one day going to be
a necessity. The current results show that the technique is mature enough to
start gaining experience with large-scale practical application.640
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