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A Continuous Damage Mechanics
Model for Ductile Fracture
A model of isotropic ductile plastic damage based on a continuum damage variable,
on the effective stress concept and on thermodynamics is derived. The damage is 
linear with equivalent strain and shows a large influence of triaxiality by means of a 
damage equivalent stress. Identification for several metals is made by means of 
elasticity modulus change induced by damage. A comparison with the McC!intock
and Rice-Tracey models and with some experiments is presented for the influence of 
triaxiality on the strain to rupture. 

1 Introduction 
The phenomenon of initiation and growth of cavities and 

microcracks induced by large deformations in metals and 
called "ductile plastic damage," has been extensively studied 
by means of micro-mechanics anlaysis. In the pioneer works 
of McClintock [l], Rice and Tracey [2] and subsequent 
studies, defects are taken into account by analyzing their 
geometry in a continuous matrix using the procedure of the 
mechanics of continuous media. 

At that microscale, a good representation of physical 
mechanisms can be introduced, but difficulties arise when 
these analyses have to be included in large scale structures to 
predict ductile failures. The main reason is the lack of ac­
curacy of local stress calculations for the microscale level. 

Between that microscale level, say 10-3-10-2 mm, and the 
structure scale level, say 102 - 103 mm, there exists a 
macroseale level of constitutive equations for strain behavior. 
The continuous damage mechanics approach deals within that 
macroscale defining a damage variable as an effective surface 
density of cracks or cavity intersections with a plane. Of 
course, at that macroscale it is difficult to introduce much 
physics but on the other hand this damage variable is easy to 
introduce in structural calculation, especially with the concept 
of effective stress. This stress, written as the mean density of 
forces acting on the elementary surface that effectively resists, 
has been introduced by Kachanov in 1958 to model creep 
rupture [3]. This has been the starting point of continuous 
damage mechanics developed further for dissipation and low 
cycle fatigue in metals (Lemaitre 1971 [4]), for coupling 
between damage and creep (Leckie 1974 [5]), between damage 
and cyclic creep (Hult [6]), for high cycle fatigue (Chaboche 
1974 [7]), for creep fatigue interaction (Lemaitre-Chaboche 
1974 [8]) . . .  Later, the thermodynamics of irreversible 
processes provided the necessary scientific basis to justify 
continuous damage mechanics as a theory (Chaboche 1978 
[9], Lemaitre-Chaboche 1978 [ 10], Murakami [ 1 1] ,  Cor­
debois-Sidoroff [ 12] Krajcinovic [ 13]) with many develop­
ments (see for examples papers presented at the Euromech 

Colloquim on "Damage Mechanics" held in Cachan (France) 
in 198 1). Models presented here are in the framework of that 
thermodynamics which gives the possibility of identifying the 
damage by means of its coupling with elasticity. 

2 Elements of Continuous Damage Mechanics 
As many developments of the theory of continuous damage 

mechanics have already been published [9, 10, 12], only the 
principal features used to build a new model of ductile plastic 
damage are summarized here. 

2.1 Damage Variable. Consider a damaged body in which 
a volume element at macroscale level has been isolated (Fig. 
1). 

Let S be the overall section area of that element defined by
its normal n. In that section the microcracks and cavities have 
intersections of different shapes, let SD be their total area. 

Let S be the effective resisting area taking into account this
area SD, the microstress concentrations in the vicinity of
discontinuities and the interactions between closed defects. 

S<S-SD 
The concept of effective stress associated to the hypothesis 

of strain equivalence described below avoids the calculation 
of S and, by definition, the damage variable D associated 
with the normal n is: 

s-s 
D = ­n S 

Fig. 1 Damaged element 

s 
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From a physical point of view the variable D,, is the 
corrected area of cracks and cavities per unit surface cut by a 
plane perpendicular ton. 

From a mathematical point of view, as S approaches zero, 
then D11 is the corrected surface density of discontinuities in 
the body relative to the normal n. 

D11=0 

D,, = I 
corresponds to the undamaged state; 

corresponds to rupture of the element into two 
parts; 

characterizes the damaged state. 

Hypothesis of Isotropy. In the general case, cracks and 
voids are oriented and D11 is a function of n. This leads to an 
intrinsic variable of damage which can be a second order 
tensor [ 12) or a fourth order tensor [9)' depending upon the 
hypothesis made. In this paper we restrict ourselves to 
isotropic damage, the cracks and voids being equally 
distributed in all directions. D11 does not depend upon n and 
the intrinsic damage variable is the scalar D. 

·Concept of Effective Stress. If F is the load acting on the 

2.2 Thermodynamics. In order to model elasticity, 
thermal effects, plasticity and damage within the hypothesis 
of isotropy for the three phenomena, the following variables 
have to be introduced [IO]: 

Observable 
variables 

Elastic strain 
tensor 

Temperature 
T-----

Internal 
variables 

Associated 
variables 

stress tensor 

------------ ----- a 

Accumulated 
plastic strain 

p 

Damage 

D 

entropy 
----- s 

Radius of yield 
surface: R ,. + R 

R . 
·------------

Damage strain 
energy release 
rate 

y 

section S of the element considered in Fig. I, T = 1''/ Sis the pis defined by: 
usual stress vector which leads to the Cauchy stress tensor u 
(u.n = T). The quantity S = S (I - D) is the effective area 
which effectively carries the load F. By definition: 

- F T 
T=�= -

S 1-D 

is the effective stress vector which, since D is a scalar, leads to
the effective stress tensor (ii.n = 'f) 

u 
ii= 

1-D 

Beside the hypothesis of isotropy, we assume here that the 
mechanical effects of cavities and microcracks are the same 
both in tension and compression. As it is generally .not the 
case in practice, this limits the applicability of the theory to 
those cases where "compressions" are small. 

Hypothesis of Strain Equivalence (4). It is assumed that the 
strain behavior is modified by damage only through the ef­
fective stress: � The strain behavior of a damaged material is represented by 

constitutive equations of the virgin material (without any 
damage) in the potential of which the stress is simply 
replaced by the effective stress. 

Examples: 

-one dimensional linear elasticity of a damage material: a a Ee= E = 
(1-D)E 

Ee being the elastic strain and E the Young's modulus. 
-Ramberg-Osgood equation for plastic strain-hardening 
evolution: (a)M [ u ]ME,,= K = 

(1-D)K 

where E" is the plastic strain and K and M material coef­
ficients. 

t" is the Euler-Almansi plastic strain tensor in large defor­
mation theory, its rate being defined from the total strain rate 
f by: 

i/' = i: - i:" 

Thermodynamic Potential. Taking the free-energy "1 as 
thermodynamic potential, it is assumed that it is a convex 
function of all observable and internal variables. Using the 
hypothesis that the elasticity and plasticity behaviors are 
uncoupled gives: 

"1= ,µ,, ( t", T,D) + "1,, ( T,p)

In order to obtain linear elasticity coupled with damage by 
means of the effective stress, "1e must be quadratic in t" and 
linear in (I -D). If a is the fourth order tensor of elasticity 
and p the density 

I 
l/Je= -- a: t'': t''(l -D) 

2p 

The damaged elasticity law is: 

al/;,, 
u=p --- =a: te(I -D) aE" 

and the variable y associated with D, by the power dissipated 
( - y D) in the phenomenon of damage, is defined by: 

al/;.. I 
y=p- =--a: t'': t'' 

aD 2 

Damage Criterion. The density of elastic strain energy We 
being defined as: 

dW,. =u: dt" 

if we replace dt" by its value taken from the damaged 
elasticity law written for du = 0 at constant temperature one 

'The symbol ( : ) means the tensorial product contracted on two indices. 
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can see that -y is one half of the variation of We due to an
infinitesimal increase of damage at constant stress and 
temperature. This gives for -y the name of "damage strain 
energy release rate" (as Gin fracture mechanics!) [9]. 

-y= � dWe )u T2 dD ' 

The expressions of y and We show that: 

we-y= 1- D 

We is calculated as the sum of shear strain energy and volume
dilatation energy with the tensor of elasticity written in terms 
of Young's modulus E and Poisson's ratio v, that is the 
following relations between elastic strain deviator ee and 
stress deviator s, the hydrostatic strain c'i-r = 1/3 tr(te) and
the hydrostatic stress aH = 1/3 tr(u):

We obtain 

1 + v s e"=-- -­E 1-D 
1 -2v aH c'i;=---­E 1-D 

-y= 2
1 [l

E
+v s:s +3 1-2v aH2 J(l -D)2 E (l -D)2

or with the Von Mises equivalent stress for plasticity 

( 3 ) 1/2 
lleq = l S: S 

-y= ae/ 2 [2-0+11)+3(1-211)(_!!_!!_)2] 2E(l -D) 3 aeq
This quantity can be calculated for an "equivalent" one­
dimensional case defined by its stress a*, giving the same
value of y.

1 aH= - a*3 
-y= 2E(l -D)2 

As y is the variable associated with D, it means that evolution 
of D is governed by values of y; by analogy with the Von 
Mises equivalent stress for plasticity, the quantity: 

[ 2 ( a ) 2 
J 112 a*= aeq -(1+v)+3(1 -2v) _!!__ 3 lleq

is called damage equivalent stress and can act as a criterion 
for damage just as aeq acts as a criterion for plasticity [14].a• = a* /1 - D) is the damage equivalent effective stress and:

a•z -y= 2E 
It is interesting to note that a* is equal to the Von Mises
equivalent stre5s multiplied by a factor function of the 
triaxiality ratio u:; I lleq which is very important for damage
evolution as shown by many experimental or theroetical 
studies [15-17]. 

Dissipation, Rupture Criterion. Within the hypothesis of 
uncoupling between intrinsic mechanical and thermal 
dissipations, the second law of thermodynamics imposes the 
condition of mechanical dissipation being positive, 

IT: iP-Rp-yD�O 
The processes of plasticity and damage may be independent, 
then we must have separately: 

a: iP-Rp�O and -yb�o 
( -y) being positive iJ must be positive which is a trivial 

result! ( -yiJ) is the energy dissipated within the damage 
process for decohesion of the material. By analogy with the 
toughness criterion in fracture mechanics one may postulate 
the following rupture criterion: 

The damage process gives rise to initiation of a macrocrack 
for a critical value of -y, that value Ye being a charac­
teristic for each material. 

-y =ye - crack initiation 

This corresponds to a critical value of the damage variable D 
which can be calculated from the uniaxial case for the rupture 
conditions: 

ITR '' a == -- == (2Ey ) " is the condition of brittle 
fracture of Orowan. 

R I -De e 

is the critical value of damage 
at macrocrack initiation. 

Many experiments have shown that: 

.2:5D e:S.8 

depending upon the materials. 

Potential of Dissipation. In order to derive constitutive 
equations for evaulation of dissipative variables, the existence 
of a potential of dissipation is assumed: a scalar convex 
function of flux variables (EP, p, b, and the heat flux q) the
state variables acting as parameters [ 18]. 

<PW ,p,D,q; te ,T,p,D)
Other equivalent potentials can be obtained by means of the 
Legendre-Fenchel transform, in particular the partial trans­
form changing iJ to its dual variable y; 

<P*<fP,p,y,q; te,T,p,D)
The constitutive equation for damage evolution D is given by 
the normality property of that potential: 

. a<P• D= -­ay 
3 Models for Ductile Plastic Evolution 

Restricting ourselves to isotropic plasticity and isotropic 
damage, mathematical models are of a scalar nature. Ductile 
platic damage, as plasticity, is a phenomenon which does not 
depend explicitly upon time. 

Within these hypothesis the main features of ductile plastic 
damage can be described by a potential of dissipation 
restricted to three variables 

<P*(y,fl,n
written as a power function of y for convenience and linear in p to ensure the non explicit dependency of D with time: 

So ( -y ) so + 1 . <P*- p 
(s0 + 1) S0 

where s0 and S0 are material and temperature dependent. 
The complementary law of evolution of damage derives from 
<P* by . a<P• ( -y ) so+ 1 • 

D=--= -- p ay So 
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3.1 One Dimensional Models Written in Terms of Stress. 
It can be shown that several models proposed in the past from 
phenomenological considerations may be derived from the 
above general constitutive equation: 

In the one-dimensional case of monotonic loading defined 
by the stress a and the plastic strain f P'' 

With 

. . 52 
p=E,,,-y= 2E . 

a a=---(1-D)
then follows 

. ( a2 ) "O D- -- i 
- 2ES0 " 

Replacing i,, by its value taken from the Ramberg-Osgood 
law of hardening coupled with damage· by means of the ef­
fective stress: 

gives: 

f" = ( : ) M 
or 

_(2s0+M··I) o 
D= ------a 

KM 
-(2ESo)'0M 

or, with change of notation: 

dD= (; )'1 da
This is the model proposed by Broberg (19). Usually a 

damage threshold does exist such that: 

a<aJJ-D=O 

Then a more realistic model has been proposed by Dufailly 
and Lemaitre 120 I: 

( a- aJJ ) ·1·2 da
dD- -- S2(1-D) S2 

with: (x)=xif>O , (x)=O if x�O 
Here aJJ, S2, and s2 are material constants identified from

tension tests in which damage is derived from elasticity 
modulus change as explained in section 3.2. (Identification). 

These models written in term of stress are difficult to apply 
in the range of large strains, where usually ductile plastic 
damage occurs, because the stress does not vary very much as 
the material becomes almost perfectly plastic close to rupture. 
Then a model written in terms of strains is more suitable 
especially for metal forming calculations. 

3.2 A Three Dimensional Model Written in Terms of 
Strains. Ductile plastic damage generally occurs with large 
deformations and in metal forming calculations. Large strain 
theory must then be used. 

Now f is the Green Lagrange strain tensor, a is the Cauchy stress tensor, 
t" is the elastic strain tensor defined with respect to 

the unstressed state. 

Due to the large strain hypothesis the damage is written as 
function of total strain instead of plastic strain. Then: 

( 2 ) 1/2 p= 3 t: t 

Formulation. From the potential of dissipation already 
chosen in section 3: 

. ( -y ) "O • D= -- pS o 

In the expression for y: 
ae/ [ 2 ( 011 ) 2 J-y= ----, 2  -(I +P)-J-3(1-2P) --

2E(l -D, 3 o"" 
replace aeq by its value, taken from the Ramberg-Osgood 
hardening law coupled with damage and written for the three­
dimensional case: 

I -[ aeq ] MP- (1-D)K or 
aeq M --=Kp 1-D 

Then 

. ( K2 [ 2 ( aH ) 2] �) So D= 2ES 
) (I+ v) + 3(1-2v) - p M p o aeq 

This is the general constitutive equation for ductile plastic 
damage. 

Integration in the Particular Case of Radial Loading. In 
most engineering applications the loading is such that the 
directions of principal stresses (different in each point M) are
constant with time through the process and may be described 
by: 

u(M,t> =cxu>ur(M) (a scalar) 

Within this hypothesis, the triaxiality ratio 011 I a"'1 is 
constant with time and it is possible, by integration, to obtain 
a simple relation between the actual value of damage D and 
the accumulated plastic strain p. If PD is the damage strain 
threshold: 

Integration yields: 

D= (� [2-o+v)2ES0 3 

+ 3 (1-2v ) (-'!!!____) 2 ]) 'o �-(p
2so

,
�M 

-pn 
21c

'.�
;M) 

Oeq 2so + M 
This expression can be written in a simpler fashion by in­
troducing the rupture strain PR as a function of the triaxiality 
ratio a11 I aeq corresponding to the intrinsic value of damage at 
failure De which we assume to be a material property: 

p=pR-D=De 

( K2 [ 2 De= 2ES0 
3 (I + v)

Dividing D by De yields:

2so+M 21·0 +M (p M -pn M ) D=D,. 2so +M 210 IM 

PR 
M -pf) M

In the range of large deformations in metals, the hardening 
exponent M is usually very high (a perfectly plastic material 
corresponds to M = co) . Otherwise, identifications of one­
dimensional models described in section 3. I. show that the so
coefficient is of order of magnitude of unity then 
(2s0 + M) IM is of order unity. 

Pn and PR depend upon the triaxiality ratio but 1t 1s 
physically admissible to assume that this dependence is the 
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same for both quantities and, that the ratio Po IPR does not 
depend upon triaxiality, and is equal to its value in the one­
dimensional case: 

PR ER 
where Eo and ER are the one-dimensional strain at damage 
threshold and at failure. 

The accumulated strain at rupture p R can also be expressed as
a function of ER, aH/aeq and of its value in the one­
dimensional case: 

aH 1 --=-
Ueq 3 

From the expression of De with (2s0 + M) IM = 1 follows:

and 

[ 2 ( 1 )] -so=ER= ----- 3(1+11)+3(1-211) 9 
K2 (1- :: )

[ 2 ( a ) 2 ] -so PR =ER -(1+11)+3(1-211) __!_I_ 
( -"1:L) 3 Ueq 

Oeq s0 being of the order of 1 as will be checked in section 4.1, the 
final equation is: 

D=D/ P_ [_� _(1_+_11) _+ 3 _(1 _- _211 _) ( _;_:_: _) _2 ]_-_Eo- ) 
\ ER -ED 

In the particular case of one dimension ( E-ED )D=De ---ER -ED 
which is very simple! 

With the above expression for PR the equation for De can 
be written in a very simple way using s0 = 1 and (2s0 + M) IM

= 1:
K2 ER K2 D = -- --(PR-Po )= --(ER-Eo)e 2ES0 p R 2ES0 

This allows to replace K212ES0 by Dcl(ER-Eo) in the 
differential constitutive equation for iJ to obtain the final
results. 

Differential model 

These models depend upon material constants Eo, ER , De for
damage properties and Poisson's ratio 11. The first one which 
also depends upon hardening exponent M has to be integrated 
in each particular case of history of loading represented by 
aHlaeq (t) and p(t) to obtain the damage evolution D(t).
The second, only valid for radial or proportional loading 
gives directly the damag;e D as a function oft when aH I aeq is 
known. 

Identification of Parameters. Identification of such models 
consists in the quantitative evaluation of the three coefficients Eo, ER and De characteristic of each material at each temp­
erature considered. (Mis known from the uniaxial hardening 
curve.) Eo and De need a measurement of damage which is
somewhat difficult due to the fact that damage does not affect 
very much any measurable quantity far from the rupture 
condition. 

Let us return to the definition of D and the effective stress 
concept applied to elasticity: it is possible to measure D
through the variations of the elasticity modulus [21].
Writing again the damage elasticity law: 

a=Ete or a = E(l -D )Ee
E being the Young's modulus of undamaged material, the 

quantity 

E(l-D) =E
can be considered as the elasticity modulus of the damaged 
material. E being known and E measured by a special 
technique described below, then the damage D is evaluated as: 

Fig. 2 

:E D=l-­
E 

--------r -

........... r- I 
/ I 

//" / / I I I I I ! ,' I I ' E ,' 
I 

Measure of damaged elasticity modulus 

The damage elasticity modulus E can be measured through 
tension tests but as damage is always localized in a very small 
region of the specimen some special precautions are needed.
They are described in reference [22]. For the static method,a
specimen of the shape given in Fig. 2 is needed. Roughly, 
ductile plastic damage begins when necking starts. As a 

valid for any loading path ( 2 r/2p= 3 i: i 
D=�[ �(1+11)+3(1-211)( aH r ]p21MpER -ED 3 Ueq 

Model valid for radial 
loading only ( 2 ) 1/2P= 3 E: E 

D= �e (P[�o+11)+3(1-211>(�)2]-Eo)ER Eo 3 Ueq 
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D ·: _Ds .;;Al .. L __________ � 

I 
.4 

.2 

0 20 140 60 
e:p0 =.35 

(b) 

60 

0 

I 
I I I I e:R.102 

10� 
l:pR = 1.07 

Fig. 3 Ductile plastic damage for 99,9 percent copper. T = 20 = C 

consequence, rapid change of geometry occurs and the local 
strain in the most damaged region must be measured through 
very small strain gages, say .5 x .5 mm. As these gages have a 
maximum strain amplitude of 10 to 15 percent then, if the 
damage has to be measured up to strain of 50 or 100 percent 
or more, the gages have to be changed, which interrupts the 
tests. Last point, a better accuracy is obtained if E is measured 
during unloading as shown in Fig. 2. With these precautions 
taken, a relative accuracy of 5 percent may be expected for D. 
When texture induces a variation of the elasticity modulus this 

·is generally for small values of strain far below the damage
threshold. En is then defined by the value of E for which the
derivative dD!dE begins to be positive. The damage is of
course supposed to be zero for E < En· 

An example is shown in Fig. 3 for copper (99.9 percent) at 
room temperature, the variation of damage elasticity modulus 
is shown in Fig. 3(a) and the evolution of damage, deduced 
from D = 1 - E/E, is plotted against the true strain Ev = 
log(l + E) in Fig. 3(b). 

In the range of normal scatter D is linear in E as predicated 
by the model. 

En is the value of E where the best fit straight line of ex­
perimental data cuts the E axis. 

De is the value of D for the strain at rupture ER. 

4 Applications 
The two main properties of the model is the linearity of D 

with strain and the influence of triaxiality given by the factor 

[ � (l+v)+3(1-2v) ( :: r]
The first set of applications will check the first property and 
the second application will give some elements of the second. 

D D Al alloy AU4G1 

4.1 Ductile Plastic Damage Characteristics of Several 
Metals. The method of identification described above has 
been applied to several materials. The results are given below 
in Fig. 4 with the characteristic values of En, ER, and De. The 
linearity of D with E is again weJ! verified in these six exam­
ples. 

4.2 Influence of Triaxiality on Strain to Failure. A way to 
check the model with regard to the triaxiality effect is to 
compare the strain to failure predicted by p = PR when D
reaches its critical value De with the one predicted by the 
Mcclintock or Rice and Tracey models for growth of voids 
and with experiments. 

The strain to rupture p R for any value of the triaxiality ratio
has already been calculated to derive the model. Dividing PR 
by ER (the strain to rupture in the one-dimensional case) yields 
(withs0 = 1). 

_R_ = - (1+v)+3(1 - 211) _!!_ p [ 2 ( a ) 2 ] -1 
ER 3 aeq

Let us now calculate the same ratio with the McClintock or 
Rice and Tracey models (1, 2]. These models predict the 
growth of a void of radius R in a plastic matrix by

dR =B exp( C 
aH )dp R aeq

where B and C = 1.5 are coefficients determined by the 
theory. 

Assume an initial value of the radius R0 which grows after a 
threshold value of the equivalent strainpn is reached. 

p<pn - R=Ro 
Assume that failure occurs when a critical value of the radius 
Re is reached (23] 

D 
013 steel xc 38 Steel E 24 

0,1 

D 

De 9)2_ __ __ _ 

0,1 

D 
Q13 Steel 30CD4 

Jlo.e:�L _ -
qo 

.R.c�-- ---

D 
q2 0,4 q6 0)8 �b� c��� 

Q-��8�- --- - -

q2 q4 �6 0,8 
fb� ���JQ� 

Fig. 4 Ductile damage evolutions (from J. Dufailly, D. Nouailhas, B. 
Ghatoufi, B. Abdouli·l.M.T. Cachan France). 
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R=Rc - p=pR 
and integrate the differential equation for constant ratio
a HI aeq between these two limits. 

or 

Rc ( aH )Log-- =B (pR-PD )exp C --Ro �q 

Rc=R0exp(B [pR -pD ]exp( c�))aeq 
Dividing by the same expression written for the one­
dimensional case: 

Rc =R0exp (B [cR -ED ]exp �)
after some mathematical manipulations, we obtain: 

1- �
PR = PD + _____ 

0R ____ _ 

exp c(-a_H_ - �)aeq 3 
The corresponding values of PRIER for C = 1.5 are plotted 
against the triaxiality ratio aHlaeq in Fig. 5. The two dashed
lines correspond to extreme values of the ratios PD/ER and 
EDI ER that experiments on metal may show. That is: 

PD ED 
= 0 (no threshold) ER ER 

PD :::: ED
= .2 ER ER 

Values of PRIER given by the model described in this paper are 
also plotted on the figure for the two values of v, v = .25 and v = .33. P.

I [.R 
1,5 \ '1 1, 

"' \\ ' \ 

0,5 

Ott 
o �---�----�2-----===3,__ 

_ 
__.,_a.q 

Fig. 5 Influence of triaxiality on strain to rupture•• A508 steel 
@@ H Steel 

ZZ-£.fi Domaine cover by McClintock-R.T. model 

.IIZ7I Domaine cover by present model. 

Except for very small values of the ratio aHlaeq• the domain
of this model (between the two solid lines) covers the domain 
of the McClintock or Rice and Tracey models (between the 
two dashed lines). This strong influence of triaxiality ratio is
also in accordance with results of reference [16] and [17]. Also
plotted in Fig. 5 are some points representing experimental 
results from reference [23] obtained with notched specimens 
of A508 steel at room temperature and from reference [24] 
obtained with deep-drawing of sheets of "H" steel. 

Considering the simplicity of the model and the scatter of 
tests, correlation may be considered to be good, and provides 
a proof of the validity of the triaxiality factor: 

[ +(l+v)+3(1-2v)( :: r J
5 Conclusion 

The integrated model of ductile plastic damage developed 
on a thermodynamic and effective stress concept basis is 
linear in strain and shows a very strong effect of triaxiality as 
do the McClintock and Rice and Tracey models. Its range of 
validity is limited by the hypothesis of isotropy of damage and 
isotropy of plasticity, and also by the hypothesis of constant 
triaxiality ratio during loading, that is radial loading in the 
sense of plasticity (approximately constant principal direc­
tions of stresses), which is a very common case in metal 
forming. In more general cases of loading, the differential 
model written in terms of a continuum mechanics variable of 
damage is easy to apply together with plasticity equations 
coupled with damage in any type of structural step by step 
calculations such as the finite element method to predict the 
state of damage and ductile fracture. 
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