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Abstract 10 

Signals of volcanic unrest have been used successfully to provide insights into the timing, 11 

magnitude, intensity, and style of future eruptions. However, in order to provide context for 12 

the subsequent activity analysis of past eruptions is required. This provides useful 13 

information in order to understand processes of magma genesis, storage, evolution and 14 

ascent which lead to the onset of future eruptions. Here, we examine basaltic-andesitic to 15 

andesitic deposits from La Soufrière de Guadeloupe Holocene eruptions, covering a range of 16 

explosive eruption styles, ages and magnitudes. Our work is timely given unrest at this 17 

system has increased over the last 25 years, with a potential eruption capable of directly 18 

impacting up to 80,000 people in Southern Basse-Terre and potentially thousands more 19 

indirectly on a regional scale. We report on the geochemistry of pre-eruptive magmas using 20 

detailed analyses of glass (melt inclusions and groundmass glass) from four Holocene 21 

explosive eruptions: 1657 Cal. CE (Vulcanian, VEI 2), 1530 Cal. CE (sub-Plinian, VEI 3), 1010 22 

Cal. CE (Plinian, VEI 4), and 5680 Cal. BCE (Plinian, VEI 4). Major element concentrations vs 23 

SiO2 in whole rock (WR), groundmass glass (GM) and melt inclusions (MI) show a strong 24 

linear trend. MIs reveal a relatively homogenous melt composition from the first to the 25 

most recent eruptions, ranging from 63.6 – 78.7 wt% SiO2. Volatiles, including H2O (2.3 - 4.4 26 

wt%), CO2 (35 - 866 ppm) and sulphur (30 - 202 ppm), are also consistent across the various 27 

eruptions. The major element and volatile compositional homogeneity across the eruptions 28 

indicates that composition and volatiles do not have a direct control on eruption explosivity 29 

at this system. Instead, we find differences in ascent rate, groundmass glass viscosity and 30 

microlite volume percentage indicating that explosive eruptive style at La Soufrière is 31 

controlled by a combination of ascent rate and top-down controls affecting rock strength, 32 

stress distribution and the development of fluid overpressure.  Rapid ascent in the absence 33 

of top-down controls (processes with a cause external to the magma but affecting the 34 

plumbing system) will result in explosive eruptions driven from the bottom-up (internal to 35 

magma dynamic response with varying pressure and temperature, e.g., 1010 Cal. CE in the 36 

case of very rapid ascent or 1657 Cal. CE in the case of rapid ascent). However, we also 37 

highlight the importance of top-down controls such as conduit sealing which can promote 38 

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0377027322000191
Manuscript_3a716362f7467c10bf535747dd643a07

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0377027322000191
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0377027322000191


 2

the onset of explosive eruptions, even in the case of slow magma ascent (e.g., 5680 Cal. 39 

BCE). External effects (including ingress of water and rapid edifice unloading) can also favour 40 

explosive eruptions with flank collapses involved in some scenarios (e.g., 1530 Cal. CE). The 41 

multiple controls on explosive eruption style make this system more hazardous and complex 42 

to model and monitor. In order to improve early-warning system efficiency, forecast 43 

models, eruption scenario crisis response and long-term risk reduction planning, we stress 44 

that internal processes such as fracture and host-rock sealing (fluid pore pressure) as well as 45 

external processes such as water moving into the system and the mechanical stability of the 46 

edifice should be monitored and modelled closely.  47 

Keywords: Eruption style, melt inclusions, ascent rate, mixing and mingling, La Soufrière de 48 

Guadeloupe 49 

1 Introduction  50 

Eruption style dictates many of the hazards presented by a volcano, however, volcanoes are 51 

not limited to one particular eruption style. Changes in eruption style can occur over short 52 

periods e.g., multiple transitions within a single eruptive episode (e.g., Cioni, et al., 2008; 53 

Boudon et al., 2008) and long periods e.g., different eruption styles separated by a repose 54 

period (e.g., Endo et al., 1981; Ratdomopurbo et al., 2013; Costa et al., 2013). In particular, 55 

explosive eruptions are hazardous and can range in style at one system from small 56 

Vulcanian activity to large sub-Plinian and Plinian activity (e.g., Soufrière Hills Volcano, 57 

Montserrat, (Komorowski et al., 2010; Wadge et al., 2014); La Soufrière de Guadeloupe 58 

(Komorowski et al., 2005; Legendre, 2012); Etna, Italy (Coltelli et al., 2005; Moretti et al., 59 

2018; Cappello et al., 2019); Rabaul, Papua-New-Guinea (Bernard and Bouvet de 60 

Maisonneuve, 2020)).  61 

Current volcano monitoring, such as geochemical and geophysical methods, can provide 62 

indications of volcano activity and the onset of unrest (e.g., Gottsman et al., 2019; Pritchard 63 

et al., 2019). However, in order to provide a more complete picture, understanding the 64 

controls on eruptive style, and particularly the controls on transitions between styles is 65 

required to develop realistic eruption scenarios.   66 

 There are multiple ways to generate a magmatic, explosive eruption: (1) heating of the 67 

system causing magma convection and vesiculation (Sparks, et al 1977; Melnik and Sparks, 68 

1999) and/or the mobilization of crystal-rich magmas (Burgisser and Bergantz, 2011; 69 

Andrews and Manga et al., 2014); (2) addition of magma volume into the system which 70 

increases the overpressure on the confining walls (Ruprecht and Bachmann, 2010; Bouvet 71 

de Maisonneuve et al., 2013; Degruyter, et al 2016); (3) effective degassing of volatile rich 72 

magma and volatile fluxing which increases buoyancy and overpressure during ascent 73 

(Roggensack et al., 1997; Scandone et al., 2007; Helo et al., 2011; Sides et al., 2014; Costa et 74 

al., 2013; Parmigiani et al., 2016; Edmonds and Wallace, 2017); (4) rapid magma ascent rate 75 

preventing efficient gas–melt segregation (e.g., Gonnermann and Manga, 2007; Goepfert 76 

and Gardner, 2010; Martel, 2012; Lloyd at al., 2014; Barth et al., 2019); (5) syn-eruptive 77 
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microlite growth resulting in an increase in magma viscosity (e.g., Houghton & Gonnermann, 78 

2008; Moitra et al., 2018; Arzilli et al., 2019; Hlinka, 2020; Hlinka et al., 2021), (6) increased 79 

mechanical connectivity by shallow level volcanic seismic rupturing (Roman and Cashman, 80 

2018). These processes are likely to occur combined in order to produce magma 81 

fragmentation and explosive eruptions (Gonnermann and Manga, 2007; Cassidy et al., 2018; 82 

Hlinka, 2020; Hlinka et al., 2021).  83 

At subduction zones transition in eruption style is common, with transitions observed within 84 

the same eruption (e.g., effusive to explosive) and across several eruptions with an 85 

observed repose period (Cassidy et al., 2018). The range of eruption styles observed at such 86 

systems makes them particularly hazardous and defining the processes and controls on each 87 

eruption style is particularly important. In recent years the interplay of bottom-up (internal 88 

to magma dynamic response with varying pressure and temperature) vs top-down 89 

(processes with a cause external to the magma but affecting the plumbing system) has been 90 

shown to play an important role in triggering transitions in eruption style (e.g., Sparks, 1997; 91 

Cassidy et al., 2018; Bernard and Bouvet de Maisonneuve, 2020). 92 

Bottom-up processes drive an eruption through physico-chemical changes which are 93 

intrinsic in the magma system (e.g., crystallisation, degassing and chemical differentiation, 94 

mixing of other magmas) and control magma rheology. These processes affect magma 95 

properties, and therefore affect magma migration in the crust and ascent and 96 

decompression rates, key parameters in determining eruption style, particularly the 97 

explosive one via the onset of fragmentation (Dingwell, 1996; Alidibirov and Dingwell, 1996; 98 

Gonnermann, 2015 and refs. therein). For a given felsic magma composition the total 99 

amount of volatiles  in the system and the composition of the melt itself, are  critical 100 

parameters in determining fragmentation thresholds and explosivity (e.g., Papale, 1999; Di 101 

Genova et al., 2017).  102 

Top-down processes may involve non-magmatic causes and sources, related to water 103 

circulation and gravity or be the result of magma evolution in conduits. Rapid and efficient 104 

infiltration of external waters can lead to phreato-magmatism (Zimanowski et al., 2015); 105 

over a longer-term, water circulation promotes rock alteration and secondary 106 

mineral precipitation in the presence of well-developed hydrothermal systems (e.g., Barberi 107 

et al., 1992; Roman et al., 2019; Stix & de Moor, 2018). Top-down processes may greatly 108 

modify the edifice stability and rock, strength, and/or promote fluid overpressure. In all 109 

cases they alter the stress distribution within the volcanic edifice, particularly in the upper 110 

portion at shallow depths. 111 

Gravity-induced instabilities can determine sudden changes to the edifice e.g., flank collapse 112 

or dome collapse resulting in a downward-propagating decompression wave which triggers 113 

magma fragmentation (e.g., Voight et al., 1981; Sparks et al., 2002; Alidibirov and Dingwell, 114 

1996; Komorowski et al., 2013). On longer timescales, volcano spreading was recognized to 115 

decrease thresholds for the occurrence of highly-explosive Plinian eruptions (Borgia et al., 116 

2005). 117 
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Top-down controls resulting from magma evolution in conduits involve sealing of the upper 118 

portions of a plumbing system, which results from rapid thermal exchange due to a high 119 

surface/volume ratio when magma supply is low or nil and degassing-induced crystallization 120 

is high (De Natale et al., 2004; Quareni et al., 2007). Concomitant but external factors 121 

contributing to conduit sealing are plugging due to collapse (particularly at calderas) and the 122 

rock overburden pressure, which the tectonic regional stress can contribute to either 123 

positively (compressive) or negatively (tensile) (Quareni and Mulargia, 1993). Changes that 124 

occur in the uppermost plumbing system affect late-stage decompression path of magma 125 

considerably and control eruption style from the top-down (Thomas and Neuberg 2014, 126 

Cassidy et al., 2018). An open conduit, or one which is not sealed effectively, will allow 127 

magma to lose gas efficiently making an effusive eruption likely (Sparks, 1997). In 128 

comparison, a sealed system may lead to pressure build-up due to deep degassing and 129 

prime the volcano for an explosive eruption (Sparks, 1997; Komorowski et al., 1997; 130 

Burgisser et al. 2011; Preece et al., 2016; Roman et al., 2019; Komorowski et al., in prep). 131 

This indicates the role of bottom-up and top-down processes can cause transitions in 132 

eruptive behaviour both during a single eruption and across multiple eruptions.  133 

In this study we focus on understanding the variability in explosive eruption style over 134 

several eruptions occurring within a period of ca. 7000 years. For this purpose, we study 135 

four eruptions from La Soufrière de Guadeloupe: the 5680 Cal. BCE Plinian eruption (VEI 4), 136 

the 1010 Cal. CE Plinian eruption (VEI 4), the 1530 Cal. CE sub-Plinian eruption (VEI 3) and 137 

1657 Cal. CE Vulcanian eruption (VEI 2). We use the chemical composition and volatile 138 

content of volcanic glass (melt inclusions and groundmass glass) to understand how the 139 

magmatic parameters such as, the pre-eruptive magma composition, conditions and 140 

physicochemical parameters in the conduit relate to variations in eruption styles.  141 

2 Geological and Magmatic Setting 142 

 2.1 Eruptive History 143 

Guadeloupe is found in the central Lesser Antilles arc and formed as a result of subduction 144 

of the Atlantic plate beneath the Caribbean plate. Basse-Terre, the western island of 145 

Guadeloupe, was formed over the last ca.  3 million years by the active inner volcanic arc 146 

which has produced several volcanic complexes (Komorowski et al., 2005; Samper et al., 147 

2007). La Soufrière de Guadeloupe Volcano (hereby referred to as La Soufrière) is part of the 148 

most recently active Grande-Decouverte-Soufrière complex (Fig 1). Ca. 80,000 people live in 149 

the south of Basse Terre and would be impacted by a future eruption of La Soufrière 150 

eruption (Komorowski et al., 2005; Leone et al., 2019; Esposti Ongaro et al., 2020). 151 

La Soufrière is a basaltic-andesite to andesitic arc volcano built over the older Monts 152 

Caraïbes complex and has been active since ca. 7140 Cal. BCE until present day (Legendre, 153 

2012; Komorowski et al., 2005; 2012; 2013). A large variation in magmatic eruption styles 154 

are observed at this system, from effusive dome building eruptions to explosive behaviour 155 
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ranging from Vulcanian to Plinian eruptions (Komorowski et al., 2005; Boudon et al., 2008; 156 

Legendre, 2012; Komorowski et al., 2013). 157 

At La Soufrière two types of transitions between magmatic eruption styles are observed: (1) 158 

a transition in eruption style within the same eruption (e.g., 1530 Cal. CE which had 159 

explosive sub-Plinian and strombolian phases followed by an effusive dome building phase 160 

(Boudon et al., 2008; Komorowski et al., 2008), (2) a transition in eruption style over several 161 

eruptions with an observed repose period (e.g., the La Soufriere eruptive record shows 162 

individual eruptions separated a repose period ranging from Plinian to Vulcanian to effusive 163 

eruptions (Komorowski et al., 2005; Legendre, 2012). 164 

Since 1635 Cal. CE, the majority of historic activity at La Soufrière has been phreatic 165 

(Feuillard et al., 1983; Komorowski et al., 2005), related to the well-developed hydrothermal 166 

system. Recent unrest at the system has suggested the movement and emplacement of 167 

magma at depth (Moretti et al., 2020) triggering pulses of recurrent heating and 168 

pressurisation of the hydrothermal system. However, there are few constraints on the 169 

controls of eruption style at this system and the transitions between eruption styles are 170 

poorly understood.  171 

The eruptions presented in this paper cover the variety of explosive eruption styles which 172 

have occurred at La Soufrière through the Holocene, a full eruptive history is detailed in 173 

Komorowski et al. (2005); Legendre (2012) and Metcalfe et al. (2021). Four eruptions are 174 

discussed in detail: 5680 Cal. BCE, 1010 Cal. CE, 1530 Cal. CE and 1657 Cal. CE.  175 

The 5680 Cal. BCE eruption is a Plinian eruption (VEI 4) and was the first explosive and most 176 

violent eruption preserved in the La Soufrière record. The 1010 Cal. CE eruption is the most 177 

recent Plinian eruption (VEI 4). The most well studied, archetypal eruption of La Soufrière is 178 

the multistage eruption of 1530 Cal. CE, that started with an edifice collapse phase, evolved 179 

into an explosive sub-Plinian (VEI 3) phase and ended with the growth of the current dome 180 

(Komorowski et al., 2005; Boudon et al., 2008; Komorowski et al., 2008; Esposti Ongaro et 181 

al., 2020). Finally, the last magmatic eruption was the 1657 Cal. CE a Vulcanian eruption (VEI 182 

2-3) (Komorowski et al., 2012; 2013; Legendre, 2012; Metcalfe et al., 2020). We also discuss 183 

basaltic samples from the Monts Caraïbes complex, which is found in the southernmost part 184 

of Basse-Terre and erupted between 555 ± 26 and 472 ± 16 ka (Blanc, 1983; Fig. 1). The least 185 

evolved magmas observed on Basse-Terre were produced during this phase, with the Monts 186 

Caraïbes magma often hypothesised as the parental magma from which other magmas on 187 

the island evolved (Bissainte, 1995). 188 

Currently, La Soufrière has a developed hydrothermal system and following the 1657 Cal. 189 

CE eruption, only phreatic/hydrothermal eruptions have occurred, with the last event in 190 

1976-1977 (Feuillard et al., 1983; Komorowski et al., 2005). This eruption resulted in the 191 

evacuation of >70,000 people from Basse-Terre (Le Guern et al., 1980; Feuillard et al., 192 

1983; Hincks et al., 2014) and resulted in increased monitoring of this system. The peak of 193 

recent unrest occurred in April 2018 when a M4.1 earthquake was recorded, this was the 194 
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strongest seismic event since 1976-1977. This is interpreted to relate to a failed phreatic 195 

event (Moretti et al. 2020). 196 

 2.2 Magmatic System  197 

Models of the La Soufrière system involve the storage of a parental magma in a deep, zoned 198 

magma chamber below a system comprised of shallow-depth crystallised intrusions, as 199 

proposed by Touboul et al. (2007) and later by Pichavant et al. (2018). In both models the 200 

shallow andesitic system is remobilised by mafic magma moving up from the deeper 201 

system. 202 

More recently, a mush system has been proposed for the structure of the La Soufrière 203 

magmatic reservoir (Moretti et al., 2020; Metcalfe et al., 2021). Mush systems are long-lived 204 

storage zones and are located at variable depths in the crust. These systems are composed 205 

of crystal and melt lenses in variable states of cooling and are built by repeated intrusions 206 

from depth (e.g., Mahood, 1990; Nakamura, 1995; Bachmann et al; 2002; Zellmer et al., 207 

2003; Moretti et al., 2013, 2019; Brown et al., 2014; Cooper and Kent 2014; Annen et al., 208 

2015; Bergantz et al., 2015, 2017; Edmonds et al., 2016; Cashman et al., 2017; Spera and 209 

Bohrson, 2018; Carrara et al., 2019). Crystals in the mush system have close contacts which 210 

form a continuous interlocking framework, through which melt is distributed in varying 211 

volumetric proportions and in variable states of eruptibility (e.g., varying temperature, 212 

density, viscosity, volatile content) (Cashman et al., 2017; Spera and Bohrson, 2018).  213 

At La Soufrière, the mush lenses are hypothesised to vary through the reservoir with 214 

different lenses hosting different crystal populations (Metcalfe et al. 2021). This results 215 

from repeated intrusions interacting with the lenses differently due to the intrusion’s size, 216 

geometry and location as well as physio-chemical properties (Metcalfe et al. 2021).   217 

Melt and/or fluid migration, amalgamation and mixing render the system inherently 218 

unstable allowing remobilisation through disaggregation of the mush lenses (Costa et al., 219 

2009; Mader et al., 2013; Rubin et al., 2017; Cooper and Kent, 2014; Sparks and Cashman, 220 

2017; Jackson et al 2018; Cooper 2019). At La Soufrière, it is hypothesised that magma 221 

recharge leads to remobilisation of magma mush (e.g., Bergantz et al., 2015, 2017; 222 

Schleicher et al., 2016; Schleicher and Bergantz 2017). Recharge may not result in 223 

remobilisation of the whole system, and only small areas may remobilise depending on 224 

intrusion geometry which relates to density differences between the intruding magma and 225 

host mush (Bergantz et al., 2015, 2017; Schleicher et al., 2016; Schleicher and Bergantz 226 

2017). This remobilised area may differ between eruptions, meaning not all the crystals 227 

interact with the same amount of intruding magma, therefore allowing different 228 

populations of crystals to be involved in different eruptions (Carrara et al., 2019; Cheng et 229 

al., 2020; Metcalfe et al. 2021).  230 

The pre-eruptive melt composition is well constrained for the 1530 Cal. CE eruption 231 

(Poussineau, 2005; Boudon et al., 2008; Pichavant et al., 2018). Two magma compositions 232 

were involved to form the archetypal 1530 Cal. CE banded eruption products. This resulted 233 
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in a wide range of whole rock (WR) compositions observed from 55 - 62 wt% SiO2 (Semet 234 

et al., 1981; Boudon et al., 2008; and Pichavant et al., 2018). However, the hybrid magma 235 

composition is not reflected in melt inclusions (MI), with inclusions from both mafic and 236 

silicic andesite bands falling in the range 70.5 – 78.7 wt% SiO2 (Poussineau, 2005; Boudon 237 

et al., 2008 and Pichavant et al., 2018). Groundmass glass (GM) do reflect this hybrid 238 

composition, with the most silicic GM found in the homogenous andesitic pumice and 239 

white layers of the banded pumice, whereas more mafic glass is found in dark pumice 240 

bands. This indicates that the La Soufrière reservoir hosts an evolved melt composition and 241 

that recharge from depth, as in the case of the 1530 Cal. CE eruption, is more mafic with 242 

respect to the magma in the reservoir.  243 

Quantification of MI concentrations and experimental data from 1530 Cal. CE MI studies by 244 

Pichavant et al. (2018) allows a pressure of 170 MPa for the source of this eruption to be 245 

constrained This also allows a minimum depth for the top of the La Soufrière magma 246 

reservoir to be constrained between 5.6 and 7.1 Km. The absence of amphibole phenocrysts 247 

in comparison to other system in the Lesser Antilles also provides a maximum reservoir 248 

depth of 8.5 Km.  249 

Glass studies by Pichavant et al. (2018) (MI) and Metcalfe et al. (2021) (GM) allow 250 

quantification of a range of temperatures for the system. The existing reservoir, 251 

hypothesised as an andesite body (Pichavant et al., 2018), is between 825 – 875oC. The 252 

recharging basalt was between 900–1025oC (Metcalfe et al., 2021) as it intruded into the 253 

system, and hybrid magmas, as observed in the 1530 Cal. CE eruption, are 925 - 950oC.  254 

The Monts Caraïbes include the least evolved magmas observed on Basse-Terre and are 255 

often hypothesised as the parental magma from which other magmas on the island evolved, 256 

making it important to link the Monts Caraïbes to the La Soufrière magmas. The Monts 257 

Caraïbes is a large volcanic complex which began with submarine activity until the final 258 

phases which transitioned to sub-ariel Plinan activity. Eruptive activity also produced an 259 

evolved dacitic composition as well as the basaltic component studied here (Bissainte, 1995; 260 

Komorowski et al., 2005). 261 

3 Methods 262 

Details on the sampling areas and methods used are available in Legendre, 2012, Metcalfe 263 

et al. 2021 and in the Supplementary Material provided. Juvenile clasts were collected from 264 

both proximal and distal locations from around the vent depending on where the freshest 265 

material was available from. Detailed sample descriptions, powder, mineral and melt 266 

inclusion preparation and analysis techniques can be found the Supplementary Material.  267 

ICP-MS was conducted on whole rock samples to measure major element concentrations. 268 

Following sieving of the samples, juvenile pyroxene and plagioclase crystals were hand 269 

separated from the 500 μm sieved fraction and analysed at the mineral core and the rim. 270 

Melt inclusions are abundant in both pyroxene and plagioclase and are observed in all 271 

samples (Fig 2). For both pyroxene and plagioclase, the selected MIs had no evidence of 272 
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leakage or post-entrapment crystallisation (PEC) and were randomly distributed through the 273 

crystal. We also favoured crystals which hosted bubble-free inclusions in order to minimise 274 

the effect of volatile loss, especially CO2 and S, to the vapour (e.g., Venugopal et al. 2020; 275 

Table S1).  Further verifications were also carried out to ensure the MI can be interpreted as 276 

the original melt composition. We also observe Na-loss from both the MI and GM, despite 277 

analysing Na first. 278 

EMPA was conducted on minerals and glass. Major and volatile compositions were obtained 279 

for 81 polished MIs, 35 hosted in pyroxene and 46 hosted in plagioclase across the different 280 

eruptions. SIMS analysis was conducted on 33 MIs to measure H2O, CO2, S, Cl and F 281 

concentrations. Calibration curves were established using data ranging from basaltic-282 

andesite to rhyolite in composition (See supplementary material; Fig S1). Deuterium (D), 283 

expressed as D/H isotope ratio, was also measured in 28 representative MIs to assess the 284 

degree of H+ diffusion which is used as a proxy for H2O loss (See supplementary material; 285 

Fig S2).  286 

EMPA and SIMS analyses for S, Cl and F were compared and show a good agreement for S 287 

and Cl in particular. For example, for inclusion 1101viA-pyx-5 SIMS analysis 251 ppm S and 288 

1882 ppm Cl, in comparison EMPA analysis yielded 254 ppm S and 1720 ppm Cl. For F, 289 

however, there appears to have been some loss during EMPA analysis, for 1101viA-pyx-5 290 

SIMS analysis yielded 433 ppm F and EMPA analysis yielded 105 ppm F.  291 

This difference in F may be due to the higher detection limit during EMPA analyses and the 292 

overlap of the the FKα peak by the FeLα peak in these relatively Fe-rich glasses (Todd 1996; 293 

Lowenstern, 1994; Witter and Kuehner 2004). For this reason, we use only the SIMS data for 294 

F. 295 

4 Results 296 

 4.1 Whole Rock 297 

Across Basse-Terre, bulk rock compositions from the various suites vary from basalt to 298 

dacite, with the least evolved compositions observed in the Monts Caraïbes suite in 299 

Southern Basse-Terre (Bissainte 1995; Boudon et al, 2008; Samper et al 2009; Fig 3). La 300 

Soufrière shows a narrower magma compositional range, from basalt to andesite (Boudon 301 

et al, 2008; Samper et al 2009).  302 

This study provides further evidence that the Monts Caraïbes suite include the least evolved 303 

compositions observed on Basse-Terre showing a basaltic composition ranging from 47.6 to 304 

48.8 wt% SiO2 for a range of eruption products including lava and scoria (Table S2; Fig 3). 305 

The younger La Soufrière magma suite from the 1657, 1010 and 1530 Cal. CE eruptions, 306 

show a basaltic-andesite to andesite composition (55.7 to 63.9 wt% SiO2; Fig 3), and so are 307 

more evolved than the older Monts Caraïbes magmas. Within the La Soufrière magmas, 308 

there is no clear compositional evolution with more evolved magma observed in 1530 Cal. 309 

CE (55.7 – 61.2 wt% SiO2) and 1010 Cal. CE (60.8 - 63.9 wt% SiO2) in comparison to the 310 

younger 1657 Cal. CE (57.9 – 62.1 wt%) samples. 311 
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The well-studied 1530 Cal. CE eruption has characteristic banding consistently observed in 312 

juvenile material with light bands are reported as ~60 wt% SiO2 and less evolved dark bands 313 

with ~56 wt% SiO2 (Fig 3; Boudon et al., 2008; Pichavant et al., 2018). Though the 1530 Cal. 314 

CE eruption shows a bimodal magma composition, the 1657 Cal. CE, 1010 Cal. CE and 5680 315 

Cal. BCE eruptions appear homogeneous with no compositionally banded material observed 316 

and relatively continuous whole rock compositions.  317 

4.2 Groundmass Texture and Composition 318 

The groundmass textures are summarised in Table 1. The 1657 Cal. CE, 1010 Cal. CE and 319 

5680 Cal. CE GM are compositionally homogenous with differences observed in the 320 

microlite content (Fig 2). The 1530 Cal. CE GM is described by Pichavant et al. (2018), 321 

Boudon et al.  (2008) and Martel et al. (2021) and varies between the light and dark layers 322 

of the banded pumices. 323 

The GM compositions are more evolved than the whole rock compositions and fall in a 324 

relatively wide compositional range from andesite to rhyolite (Table S3; Fig 3). The older 325 

eruption (5680 Cal. BCE) extends to less evolved compositions: 61.1–75.8 wt% SiO2, 0.1– 3.6 326 

wt% MgO, 12.5 – 22.9 wt% Al2O3, 1.7 – 9.7 wt% FeO(total), 3.1 – 8.9 wt% CaO and 0.6 – 1.9 327 

wt% K2O (Fig 4). In comparison, the younger eruptions (1010, 1530 and 1657 Cal. CE) show 328 

more evolved compositions: 60.6–76.3 wt% SiO2, 0.4– 4.7 wt% MgO, 11.5 – 18.4 wt% Al2O3, 329 

2.7 – 11.7 wt% FeO(total), 2.1 – 7.4 wt% CaO, and 0.6 – 2.3 wt% K2O (Fig 4). Though there is a 330 

considerable overlap, the variations may relate to the abundance of microlites observed in 331 

the 5680 Cal. BCE eruption glass and not in the 1010 Cal. CE and 1657 Cal. CE. 332 

We also observe a bimodal distribution in SiO2 content for the 1657 CE eruption, with a high 333 

SiO2 endmember (69.6 – 72.6 wt% SiO2) and a low SiO2 endmember (60.6 – 67.6 wt% SiO2; 334 

Fig S3).  335 

4.3 Mineral Texture and Composition 336 

The main mineral phases in all eruptions are plagioclase and pyroxene. The majority of 337 

pyroxene are orthopyroxene with small clinopyroxene populations observed in 5680 Cal. 338 

BCE and 1657 Cal. CE. Metcalfe et al. (2021), defines six different types of orthopyroxene in 339 

different eruptions of La Soufrière based on crystal textures and zoning patterns. MI are 340 

observed in all populations with no differences observed in the MI for different crystal 341 

types. 342 

These populations, described in full in Metcalfe et al. (2021), include three simple crystals 343 

distinguished by their zoning patterns (Type-1: one sharp compositional zone; Type-2: one 344 

diffuse compositional zone; Type-3: multiple compositional zones), two complex crystals 345 

with resorption features (Type-4: resorption rims with remaining crystal core; Type-5: 346 

completely resorbed crystals) and unzoned crystals (Type-6: no compositional zones or 347 

variations). These six populations are also identified in this study and melt inclusions are 348 

observed in all six crystal types. Orthopyroxene compositions display a narrow 349 
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compositional range, particularly within the Type-1, 2, 3 and 6 crystals (En55-62). The type-4 350 

crystal cores also fall into this narrow compositional range, while the resorbed rims fall into 351 

a different compositional range which is the same as the type-5 resorbed crystals (En62-67).  352 

The composition of pyroxene from the 1530 Cal. CE eruption is En56-59, which falls in the 353 

same compositional range observed for this study (Semet et al., 1981; Poussineau, 2005; 354 

Pichavant et al., 2018). Pichavant et al. (2018) also identify a small, sporadic population of 355 

Mg-rich orthopyroxene up to En71, which are closer to the resorbed compositions of type-4 356 

and type-5 crystals in this study. Bourgeoisat (2018) splits the 1530 Cal. CE orthopyroxene 357 

into three groups based on composition related to magmatic environment (ME): ME1 (En56-358 

59), ME2 (En60-63), ME3 (En69-72). These compositions cover the range reported for this study 359 

with ME1 and ME2 compositions covering the range observed in the simple crystal Type-1, 360 

2, 3, 6 and 4 (cores) and ME3 are similar to the compositional range observed for Type-4 361 

(rims) and 5.  362 

Plagioclase is present in all the eruptions discussed and the textures observed appear 363 

consistent through the eruptions. The plagioclase crystals are tabular and euhedral to 364 

subhedral in shape. Plagioclase often has oscillatory zoning and patchy zoning in the cores 365 

(Vance, 1965). Overall, the main populations in each eruption are approximately An60 Ab40. 366 

Additional minor populations with different compositions are observed, notably an albite-367 

rich population (An20-30 Ab49-54) and a very anorthite-rich population (An80-94 Ab6-19).  368 

For the 1530 Cal. CE eruption, narrower plagioclase compositions are reported by 369 

Pichavant et al. (2018), with a main An60-65 population. Anorthite-rich layers are also 370 

reported with An85-90 (Semet et al., 1981; Pichavant et al., 2018). This suggests that the 371 

small populations of very anorthite-rich compositions observed in the eruptions from this 372 

study may correspond to the anorthite-rich layers reported by Semet et al. (1981) and 373 

Pichavant et al. (2018).  374 

 4.4 Melt Inclusions   375 

  4.4.1 Post Entrapment Modifications 376 

Melt inclusions are droplets of silicate and form as melt surrounding a growing crystal 377 

becomes trapped in irregularities (Sorby, 1858; Cannatelli et al., 2016; Fig 4.2). Melt 378 

inclusions are composed of glass, dissolved volatiles, vapour bubbles and crystals in 379 

variable amounts and behave as a closed system once they have become trapped in the 380 

host crystal, so theoretically retain the melts original composition. A melt inclusion is After 381 

a melt inclusion (MI) has been trapped in a host crystal it may continue to evolve 382 

independent of the melt outside of the crystal (Roedder, 1984; Bodnar et al., 1989; Steele-383 

Macinnis, 2011). The continued evolution of the MI means the composition no longer 384 

represents the composition of the melt which was trapped. For example, crystallisation of 385 

daughter minerals or along the MI wall and diffusive re-equilibration between the MI and 386 

host crystal can all result in compositional changes (Gaetani and Watson, 2000; Schiano, 387 

2003; Wallace, 2005; Steele-Macinnis et al., 2011). Volatiles, including CO2 which have a 388 
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low solubility in the melt, can be lost in significant percentages to vapour bubbles 389 

(Anderson and Brown 1993; Venugopal et al., 2020).  390 

H2O loss from the MI can occur if the host crystal fractures or due to H+ diffusion through 391 

the host crystal (Anderson, 1974a; Hauri, 2002; Danyushevsky et al., 2002; Wallace, 2005). 392 

The possibility of H2O loss makes it is necessary to assess if observed H2O trends are the 393 

result of trapping of variably degassed melts or due to H+ loss. To assess H+ diffusion the 394 

D/H isotopic ratio can be measured, this is expressed as δD (the permil deviation from 395 

Standard Mean Ocean Water, δDSMOW). For slab fluids associated to the average upper 396 

MORB mantle, δD typically falls in the range of -20 to -80 ‰ (Shaw et al., 2008). Loss of H+ 397 

and addition of seawater and/or secondary hydrothermal fluids is also shown by positive δD 398 

values and negative correlations with H2O (wt%) (Kyser and O’Neil, 1984; Shaw et al., 2008; 399 

Portnyagin et al., 2008). Post-entrapment modifications (PEM) can also be assessed by 400 

looking at the equilibrium between the MI and host crystals (Putirka, 2008). If the host 401 

crystal and MI are in equilibrium it can be assumed that the MI has experienced minimal 402 

post-entrapment processes such as diffusive loss and crystallisation and is representative of 403 

the original magma composition.  404 

This included examining H+ loss, for the eruptions discussed here, minimal H+ loss is 405 

observed for most inclusions Generally, most inclusions fall into the D/H isotopic ratio 406 

range, expressed as δD -25 to -70‰ (Fig S2). One very positive value suggesting H+ loss is 407 

observed for 1657 Cal. CE and one very negative value is also observed for 5680 Cal. BCE, 408 

which is due to the inclusions in this sample being small. However, as most inclusions are in 409 

the range for typical slab fluids (-20 to -80 ‰; Shaw et al., 2008), we assume the H2O 410 

contents are representative of the magma.   411 

Post-entrapment modification of the melt inclusions, especially the host mineral 412 

crystallisation at the walls of the MI, was assessed in two ways: (1) the MI compositions 413 

were compared to groundmass glasses and whole rock compositions in order to identify 414 

anomalous compositions with respect to the La Soufrière liquid line of descent. Though 415 

some Na2O loss during analysis is observed, MI fit into the liquid line of descent (Fig 3 and 416 

4). (2) Using the method of Putirka, 2008, the MI-host crystal equilibrium (KD) was assessed 417 

and only MI in equilibrium are included in the final data set. For pyroxene hosted MIs and 418 

host crystal pairs the KD is calculated by comparing the Mg/Fe ratios in the MI and host 419 

crystal (Putirka, 2008). This was also used for groundmass glass and pyroxene crystal pairs 420 

(Metcalfe et al. 2021). 421 

MI with a KD in the range 0.23 – 0.35 (Putirka, 2008) are considered to be in equilibrium and 422 

can be used in the dataset. The equilibrium values calculated for the pyroxene MI fall into 423 

the 0.23 – 0.35 range, with any inclusions falling outside this range excluded from the 424 

dataset (Table 2).  425 

For plagioclase hosted MIs and host crystal pairs the KD is calculated by comparing the albite 426 

(Ab) and anorthite (An) content of the host crystal with the Al, Ca, Na and Si content of the 427 

MI (Putirka, 2008). For plagioclase the equilibrium values are temperature dependent: MI 428 
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trapped at <1050oC are in equilibrium in the range 0.05 – 0.15, and MI trapped at >1050oC 429 

are in equilibrium in the range 0.17-0.39 (Putirka, 2008). The majority of plagioclase MI 430 

record temperatures of <1050oC and KD in the range 0.05 – 0.15. MI outside of this range 431 

were excluded from the study. The few MI recording temperatures >1050oC have KD in the 432 

range 0.17-0.39 (Table 2). 433 

By only including MI in the equilibrium ranges ensures all MI discussed in this paper have 434 

experienced minimal post-entrapment modifications. This includes the 1530 CE MI which 435 

are described by Pichavant et al. (2018) as having experienced no significant post-436 

entrapment modification (See Supplementary Fig S4). 437 

  4.4.2 Major and Volatile Elements 438 

The pyroxene MI are found across a range of crystal types described in Metcalfe et al., 2021 439 

(Table S1). MIs of the 1657 and 1010 Cal. CE eruptions are all found in the cores and rims of 440 

simple orthopyroxene crystals (Type 1-3 and 6), while the MIs of the 5680 Cal. BCE eruption 441 

are found in cores and rims of both simple and complex orthopyroxene crystals. However, 442 

no difference in MI composition is observed between the difference crystal types.  443 

MIs of the 5680 Cal. BCE eruption are dacitic in composition (64.6 - 76.7wt% SiO2; see 444 

supplementary Fig S5). The majority of the MIs of the 1010 Cal. CE eruption (64.3 - 77.5 wt% 445 

SiO2; see supplementary Fig S6) and 1657 Cal. CE eruption (73.1 – 78.2 wt% SiO2; see 446 

supplementary Fig S6) are also dacitic in composition with few MIs of rhyolitic in 447 

composition (Fig 4; Table 2). The majority MIs of the 1530 Cal. CE eruption are reported to 448 

be rhyolitic in composition with a small population which are dacitic in composition (70.5-449 

78.7 wt% SiO2; see supplementary Fig S6) (Poussineau, 2005; Boudon et al., 2008; Pichavant 450 

et al., 2018). There is a relatively large compositional range, however, this remains relatively 451 

constant across the eruptions studied: 64.3– 78.7 wt% SiO2, 0.02– 2.8 wt% MgO, 11.9 – 21.3 452 

wt% Al2O3, 0.6 – 8.2 wt% FeO(total), 1.1 – 7.0 wt% CaO, 0.05 – 4.7 wt% Na2O and 0.7 – 2.7 453 

wt% K2O (Fig 4; Table 2).  454 

For all the eruptions, with increasing SiO2 contents CaO, FeO, MgO, MnO, Al2O3, TiO2 and 455 

Na2O decrease and K2O increases. MIs, along with the groundmass glass, exhibit linear 456 

trends (Fig. 4; Table 2). The compositions of the MIs also show considerable overlap with 457 

the groundmass compositions. For the 1010 Cal. CE and 5680 Cal. BCE eruptions most MI 458 

are more evolved than the groundmass glass compositions, in comparison the 1657 Cal. CE 459 

eruption where MI are generally the same composition or less evolved than groundmass 460 

glass. The MIs of the 1530 Cal. CE eruption and groundmass glass compositions are very 461 

similar, with inclusions varying between being more and less evolved than glass 462 

compositions (Boudon et al., 2008, Poussineau, 2005; Pichavant et al., 2018).  463 

We also observe variations that distinguish between the VEI 4 eruptions and the VEI 2-3 464 

eruptions when looking at the average MI SiO2. The average MI SiO2 (wt%) is lower for both 465 

the VEI 4 eruptions (1010 CE – 71.6 wt% SiO2, 5680 BCE – 72.7 wt% SiO2) in comparison to 466 



 13

the VEI 2-3 eruptions (1657 CE – 76.1 wt% SiO2 and 1010 CE – 74.3 wt% SiO2). Giving a 467 

compositional gap of 1.6 - 4.5 wt% SiO2 between the two VEI 4 and VEI 2-3 eruptions.   468 

The range of water across the eruptions is 1.3 - 4.4 wt%, with little variation in the water 469 

content between eruptions (5680 Cal. BCE: 2.4 - 4.2 wt%; 1010 Cal. CE: 1.3 - 4.4 wt% and 470 

1657 Cal. CE: 2.3 - 4.1 wt% (Fig 5A; Table 2)). The reported range for the 1530 Cal. CE 471 

eruption is 2.5 - 5.6 wt% H2O, however, most inclusions are reported to have 5 - 5.5 wt% 472 

H2O which is higher than recorded for the eruptions in this study (Pichavant et al., 2018) (Fig 473 

5A; Table 2).  474 

In comparison to H2O contents, CO2 contents vary greatly across the eruptions. The range 475 

measured in bubble-free MI across the eruptions is 11 – 866 ppm. The highest CO2 contents 476 

are recorded for the 5680 Cal. CE eruption with a range from 116-866 ppm. The lowest CO2 477 

contents are recorded for the 1010 Cal. CE eruption with CO2 contents often below the 478 

detection limit and a range from 11 – 405 ppm. The CO2 contents for the 1657 Cal. CE 479 

eruption ranges from 35 - 674 ppm. Across the eruptions CO2 contents decrease with 480 

increasing K2O (Fig 5B; Table 2). No CO2 contents have been published for 1530 Cal. CE. 481 

Sulphur (S) is relatively consistent across the eruptions, ranging from 20-777 ppm. There is 482 

little difference S content between the eruptions (e.g., 5680 Cal. BCE: 20-777 ppm; 1010 Cal. 483 

CE: 57-654 ppm and 1657 Cal. CE: 30-564 ppm. The S contents reported for 1530 Cal. CE 484 

(184-495 ppm) by Poussineau (2005) and Pichavant et al. (2018) also fall in this range (Fig 485 

5C; Table 2). 486 

Chlorine (Cl) has a range of 892 - 3610 ppm across the eruptions. Similar to S, there is little 487 

variation in the Cl content between eruptions (e.g., 5680 Cal. BCE: 1041 – 2551 ppm; 1010 488 

Cal. CE: 1458-3198 ppm and 1657 Cal. CE: 892 – 3610 ppm (Fig 5D; Table 2). The Cl contents 489 

reported for 1530 Cal. CE (2462- 3006 ppm) by Poussineau, 2005 and Pichavant et al., 2018 490 

also fall in this range. 491 

Fluorine (F) content ranges from 350 to 610 ppm across the eruptions (only SIMS data). The 492 

F data shows little variation between eruptions (5680 Cal. BCE: 370 - 610 ppm; 1010 Cal. CE: 493 

350 - 483 ppm and 1657 Cal. CE: 400-510 ppm (Fig 5E; Table 2)). No F contents have been 494 

published for 1530 Cal. CE.  495 

The total volatile content across the eruptions is relatively consistent with the majority of 496 

the total volatiles made up by H2O (Fig 5F; Table 2): 5680 Cal. BCE - 4.7 wt%; 1010 Cal. CE - 497 

5.1 wt%; 1530 Cal. CE - 5.3 wt%; 1657 Cal. CE - 4.7 wt%. 498 

5 Discussion 499 

 5.1 The Mush Model of La Soufrière 500 

  5.1.1 Magmatic Conditions 501 

The results of our MI analysis allow us to incorporate a more accurate understanding of 502 

temperatures, pressures, depths and melt compositions into the mush model proposed by 503 
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Metcalfe et al. (2021) for La Soufrière. Scandone et al. (2007) schematise four regions to 504 

describe the generation and ascent of magma in a general context: (i) the deepest part of 505 

the system: the supply system, (ii) the intermediate storage: the mush zone, (iii) the 506 

conduit, (iv) the vent. The four regions are not necessarily simultaneously connected 507 

depending on the supply rate from the supply system and processes occurring in the mush 508 

storage zone. Here we use a similar schematic and our study focuses on the mush storage 509 

zone. This region is formed from repeated intrusions from the supply system and is 510 

composed of an interlocking framework of crystals which melt is distributed through the 511 

mush in varying volumetric proportions. Melt and/or fluid migration, amalgamation and 512 

mixing make the system inherently unstable allowing remobilisation for example, by 513 

pressure increase from crystallisation or influxes of new magma (Scandone et al., 2007; 514 

Costa et al., 2009; Mader et al., 2013; Moretti et al., 2013; Brown et al., 2014; Rubin et al., 515 

2017; Cooper and Kent, 2014; Sparks and Cashman, 2017; Jackson et al 2018).  516 

The MIs show that the composition of the La Soufrière magma has remained relatively 517 

stable across the eruptions studied here, and no compositional evolution across the history 518 

of the system is observed (Fig 4). This suggests that the composition of any new magma 519 

inputs has also remained relatively similar. However, as the MI from the La Soufrière 520 

eruptions show an evolved composition, these MI do not preserve the primitive melt 521 

composition feeding this system. Based on this, we can only make inferences about the 522 

mush storage region and not on deeper processes occurring in the supply zone involving 523 

more primitive melts.  524 

The MI and GM relationship provides further evidence of a mush storage zone at La 525 

Soufrière (Fig 4). The fact that some MI have a more evolved composition than the GM 526 

indicates the MI have cooled prior to interaction with the GM and are exotic to the 527 

transporting melt (e.g., Kilgour et al., 2013). This is possible if the transporting melt entrains 528 

MI-bearing crystals stored in the mush system. The 5680 Cal. BCE, 1010 Cal. CE, 1530 Cal. CE 529 

and 1657 Cal. CE eruptions all have MI which are more evolved than the GM glass, indicating 530 

MIs have been entrained from the mush lenses in the erupting melt. This could be 531 

particularly important for the 5680 Cal. BCE eruption where orthopyroxene crystals are 532 

observed to have resorption rims (Metcalfe et al., 2021).  533 

The MIs can also be used to calculate the properties of the mush storage zone. The 534 

thermobarometers of Putirka (2008) were used to calculate the temperatures for both MI 535 

(Putirka, 2008 eq. 24a for plagioclase, eq. 28a for orthopyroxene and eq. 33 for 536 

clinopyroxene) and groundmass glass (with orthopyroxene rims, Putirka, 2008: eq. 28a; 537 

Metcalfe et al. 2021), this thermobarometer has an error of ±30oC. For each eruption, MI 538 

record a range of temperatures: 965 – 1110oC for 5680 Cal. BCE, 960 – 1050oC for 1010 Cal. 539 

CE, and 945 – 1050oC for 1657 Cal. CE (Fig 6A). GM record a range of temperatures: 870 – 540 

1085oC for 5680 Cal. BCE, 1010 – 1025oC for 1010 Cal. CE, and 950 – 1020oC for 1657 Cal. CE 541 

(Fig 6A). The temperatures reported by Pichavant et al., (2018) for 1530 Cal. CE (825-542 

1025oC) are in a similar range as those calculated for this study. (Fig 6A). For the 1657 CE, 543 
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1010 CE and 5680 BCE eruptions there is significant overlap between the mean MI (1000 544 

±SD 40 oC, 1000 ±SD 35 oC and 1020 ±SD 36 oC, respectively) and GM temperatures (975 ±SD 545 

24 oC, 980 ±SD 8 oC and 990 ±SD 72 oC, respectively). 546 

Using the method of Papale et al. (2006) minimum pressures were calculated using the 547 

highest H2O and CO2 contents recorded by MIs for each eruption. The ferric and ferrous iron 548 

con- tents of the melt were estimated using Kress and Carmichael (1991) which is integrated 549 

into Magmasat (Ghiorso and Gualda, 2015). This shows the pressure of MI entrapment 550 

ranges from 190 MPa to 220 MPa (Fig 6B). These pressures are similar to the pressure of 551 

170 MPa reported by Pichavant et al. (2018) for the 1530 Cal. CE eruption (Fig 6B). 552 

Converting the pressures to depths using a density of 2450 kg m-3 (Barnoud et al., 2016) 553 

indicates that these eruptions at La Soufrière were fed by melts originating from minimum 554 

depths of ~7 to 9 km within the mush storage zone. However, different eruptions were fed 555 

by melt originating from different areas of the mush storage zone and the 5680 Cal. BCE 556 

eruption was fed from the deepest source at ~8.7 Km. This shows the eruptions of La 557 

Soufrière studied here have been fed from a narrow range of depths within the mush 558 

system.   559 

Oxygen fugacity (fO2) affects magma phase equilibria, density and rheology because of 560 

redox reactions affecting fluid speciation and iron speciation in melts (Kress and Carmichael, 561 

1991; Campbell et al., 2009; Moretti and Papale, 2004; Burgisser and Scaillet, 2007; Moretti 562 

and Stefansson, 2020). In this study, we adopt the Kress and Carmichael (1991) equation, 563 

which is included in the Ghiorso and Sack (1995) model for natural magmas’ phase 564 

equilibria. This allows fO2 to be defined from a measured melt composition and calculated 565 

temperature and pressure. For La Soufrière, this model shows the logfO2 ranges from -9.1 - -566 

9.4. For each eruption the average ΔNNO values are: +0.86 (5680 Cal. BCE), +0.79 (1010 Cal. 567 

CE) and +0.85 (1657 Cal. CE), calculated using the average melt inclusion temperatures 568 

(1020oC, 1000oC and 1000oC, respectively). These values are in the same range reported for 569 

1530 Cal CE (ΔNNO+0.8) by Pichavant et al. (2018) and indicates that the fO2 of melts at La 570 

Soufrière has remained relatively constant through time.  571 

  5.1.2 Magmatic Processes at Depth 572 

Understanding the processes occurring in the storage zone is important to understand the 573 

dynamics, chronology and style of eruptions. Pichavant et al. (2018) use melt inclusions and 574 

experimental data to investigate the processes driving the 1530 Cal. CE eruption. For this 575 

eruption, the andesite in the storage zone is remobilised by the arrival of a less evolved 576 

basaltic magma. Mixing between the andesite and basalt forms a hybrid magma where 577 

banded material is extracted from. The mixing is incomplete with an unmixed andesite, 578 

hybrid magma and unmixed basalt present. In this scenario, recharge by a less evolved 579 

magma from depth is needed to explain the observed eruption products and compositions. 580 

The eruptions detailed in the present work, in contrast to 1530 Cal. CE, do not show any 581 

textural evidence of mixing with more primitive compositions which may have triggered the 582 
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eruption. However, for the 1657 CE eruption there is some evidence for a bimodal 583 

distribution within the groundmass glass compositions which could indicate incomplete 584 

mixing of high and low SiO2 melts (Fig S3). This suggests both the 1657 Cal. CE and 1530 Cal. 585 

CE eruptions may have been driven by mafic recharge intruding into the storage zone.  586 

For the 1010 Cal. CE and 5680 Cal. BCE eruptions, the lack of compositional and textural 587 

evidence for mixing could indicate that recharges from the supply system have not been 588 

involved in these eruptions. Alternatively, efficient mixing could have occurred, or magmas 589 

preserving mixing textures have not been erupted. In this case, mafic recharge would 590 

prompt the reactivation of shallow magmas by supplying it with fluids and heat, as for other 591 

volcanoes of Lesser Antilles (e.g., Edmonds et al., 2010; Solaro et al., 2020).  592 

Furthermore, the occurrence of potential mafic recharge may explain the lack of 593 

compositional evolution across the samples, with the compositions related to the volumes 594 

of mafic/evolved endmembers and the efficiency of magma mixing. Alternatively, the fact 595 

that not all parts of the mush system may be tapped during eruption would again contribute 596 

to the lack of any broad compositional evolution (Metcalfe et al., 2021).  597 

The compositional gap between the VEI 4 eruptions and the VEI 2-3 eruptions could suggest 598 

the Plinian events erupted well-mixed, moderately evolved magmas. In comparison, the 599 

lower magnitude eruptions erupted poorly mixed magmas with the MI representing the 600 

mush-zone magma and evidence for mixing observed in groundmass glass compositions and 601 

textures. Poorly mixed magmas are widely recorded for VEI 2-3 eruptions at arc volcanoes, 602 

including: Turrialba (DeVitre et al., 2019); Santiaguito (Wallace et al., 2020); Tungurahua 603 

(Myers et al., 2014); Mt Unzen (Nakamura, 1995); Kasatochi (Neill et al., 2015); Soufriere 604 

Hills, Montserrat (Barclay et al., 2010; Edmonds et al., 2010) and Kelud (Jeffery et al., 2013).  605 

We also consider the possibility that a more evolved melt migrated through the mush zone 606 

following the 1010 CE eruption, and that subsequent mafic injections interacted and began 607 

to mix and mingle with the more evolved melt to produce to 1530 CE (very poorly mixed) 608 

and 1657 CE (moderately poorly mixed) eruption products. 609 

5.2 Controls on Eruption Style 610 

The overall stability of the temperature and depth (7 - 9 Km) indicates the storage zone has 611 

remained relatively stable over time. Though the eruptions studied here have been fed from 612 

a relatively narrow range of depths, we cannot rule out that the mush system may extend 613 

over a larger range of depths. Although the composition and volume of any potential mafic 614 

recharge may also result in variation in eruption style, this suggests that factors and 615 

processes occurring above the magma storage zone and within the conduit system may also 616 

play a considerable role in controlling eruption style. These processes include degassing of 617 

the ascending magmas, rheological changes and the interactions with other top-down 618 

processes of non-magmatic but external origin. Particularly in a mushy system, these 619 

processes modulate to various extents the magma ascent rate, which initially is ideally 620 
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imposed by the mass flux at the exit of the magma storage zone. Therefore, though 621 

eruption style may be determined by factors and processes occurring above the magma 622 

storage zone, and not influenced by dynamics in the magma storage zone, the magma 623 

storage zone must still be considered to play a role in driving the build-up to an eruption.  624 

  5.2.1 Volatiles 625 

Volatiles are considered to be an important control on eruption style (Blundy and Cashman, 626 

2005; Dingwell, 1996; Melnik and Sparks, 2002). Volatiles, in particular H2O, have an 627 

important control on magma ascent. Degassing during ascent leads to degassing-induced 628 

crystallisation (Cashman and Blundy, 2000; Cashman, 2004) which promotes further volatile 629 

exsolution and results in changes in magma rheology (Dingwell, 1996; Edmonds and 630 

Wallace, 2017). Alternatively, exsolution-driven volatile expansion drives fast ascent which 631 

results in high volatile overpressure in bubbles and high strain rates from rapid acceleration 632 

leading to explosive fragmentation (Roggensack et al., 1997; Papale, 1999; Huppert and 633 

Woods, 2002; Scaillet et al., 2008; Owen et al., 2013; Cassidy et al., 2016; Bernard and 634 

Bouvet de Maisonneuve, 2020). 635 

In the case of La Soufrière, it could be expected that the large magnitude eruptions of 636 

Plinian style were driven by higher H2O contents. However, no discernible differences are 637 

observed, with the large 5680 Cal. BCE and 1010 Cal. CE Plinian eruptions and the 1657 Cal. 638 

CE Vulcanian eruption having <0.3 wt% difference in H2O content.  639 

Open system degassing and fluxing of CO2 are important process at some systems to drive 640 

explosive eruptions (Sable et al., 2006; Aiuppa et al., 2011; Blundy et al., 2010; Moretti et 641 

al., 2019; Assbichler, 2020; Allison et al., 2021). However, the plot of H2O versus CO2 shows 642 

no clear degassing trends, instead the wide spread of H2O and CO2 contents indicates 643 

complex degassing histories and the trapping of variably degassied melt (Schmitt 2001; Atlas 644 

et al. 2006; Johnson et al. 2010; Blundy et al. 2010; Reubi et al., 2013; Fig S8).   645 

The fluxing of CO2 occurs because deep melts with high CO2 contents degas and supply CO2 646 

to shallow ascending magmas but it seems to control the eruption style wherever the total 647 

(exsolved + dissolved) CO2 amount is high (>0.6. wt%, Allison et al., 2021; > 1.5 wt% in most 648 

cases, Blundy et al., 2010; Moretti et al., 2018, 2019). Current data do not allow total CO2 in 649 

the system to be assessed reliably (e.g., Barsanti et al., 2009; Moretti et al., 2018), but based 650 

on degassing and fluxing simulations carried out on Montserrat volcanoes total CO2 is not 651 

expected to be larger than 0.2 wt%, inferred from the amount dissolved in the unerupted 652 

underplating basalt (Edmonds et al., 2010). Considering that CO2 contents measured in this 653 

study for La Soufrière are even lower (<0.1 wt%), which is also the case for Montserrat 654 

basalt values, we can conclude the total CO2 content is not a major control, with H2O 655 

making up the majority of the total volatile content. 656 

Assuming that the bulk dissolved content of the most primitive MIs approximate the total 657 

volatile content of magmas in their subsequent evolution toward pre-eruptive conditions, 658 

there is <1 wt% difference in total volatile content across the eruptions studied, suggesting 659 
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the volatile content cannot be the main controlling parameter for eruption style (Fig 5F). 660 

Comparing the total volatile content against VEI highlights that, for these eruptions, volatile 661 

content does not control explosivity (Fig 5F). However, we cannot discount the effect of an 662 

exsolved fluid phase on the eruption style. At La Soufrière, gas measurements currently 663 

acquired over the active fumarolic field allow to quantify the degassing volatile flux. 664 

However, the lack of such data for past eruptions to compare with our MI dataset 665 

significantly complicates the understanding of the exsolved fluid phase. Further to this, 666 

current measurements of the gas phase composition at the surface do not reproduce the 667 

pre-eruptive magmatic volatile phase at depth because the well-developed hydrothermal 668 

system scrubs the magmatic signal (Symonds et al., 2001; Moretti et al., 2020; Moune et al., 669 

2022). 670 

  5.2.2 Viscosity Changes 671 

To investigate how the magma has changed during ascent and eruption we investigate the 672 

syn-eruptive change of flow behavior. Crystallization in the conduit can abruptly modify 673 

magma properties and effect eruption style (Gardner et al., 1998; Nakada et al., 1999; 674 

D’Oriano et al., 2005; Di Genova et al., 2017; Hlinka, 2020; Romano et al., 2020; Vona et al., 675 

2020; Hlinka et al., 2021). As the MI are trapped in phenocrysts formed in the storage zone, 676 

we instead use GM viscosity where the microlite crystallization relates to changes occurring 677 

in the conduit during magma ascent prior eruption (Hlinka, 2020; Hlinka et al., 2021). We 678 

assume crystallization of the GM occurred in the conduit and was quenched on eruption 679 

and no further crystallization occurred after eruption.  680 

The syn-eruptive crystal fraction in the GM varies for each eruption (Table 3), with the 681 

largest variation observed between the 5680 Cal. BCE microlite-rich Plinian eruption and the 682 

1010 Cal. CE microlite-poor Plinian eruption. The ConFlow 1.0.5 model (Mastin, 2002) is 683 

used to calculate the groundmass viscosity as this model takes into consideration 684 

crystallinity. Using the ConFlow 1.0.5 model (Mastin, 2002) crystal-free viscosity model, 685 

mean glass composition, magma temperature and pressure we calculate GM viscosities 686 

ranging from 105.4 Pa·s to 108.2 Pa·s (Table 3; Fig 6C). Notably, the two Plinian eruptions 687 

(5680 Cal. BCE and 1010 Cal. CE) are characterised by lower viscosities than the two 688 

smaller eruptions (1530 Cal. CE and 1657 Cal. CE) (Fig 6C). This is one of the only 689 

properties which shows a clear difference between the more explosive (VEI 4) and less 690 

explosive (VEI 2-3) eruptions.   691 

Using the microlite vol%, mean glass composition and the ConFlow 1.0.5 model (Mastin, 692 

2002) we calculate the melt viscosity after syn-eruptive crystallisation (GM+X) (Figure 6C). 693 

The resulting increase in the effective viscosity between GM and GM+X indicates an 694 

increase in potential for explosivity for the 1657 Cal. CE, 1530 Cal. CE and particularly, the 695 

5680 Cal. BCE eruptions (e.g., Houghton and Gonnermann, 2008; Moitra et al., 2018; Arzilli 696 

et al., 2019; Hlinka, 2020; Hlinka et al., 2021). The range of viscosities calculated for La 697 

Soufrière have a similar range to viscosities calculated in the literature (See Supplementary 698 

Fig S9), which for groundmass glass without microlites range from 101.9 - 108.2 Pa·s and for 699 



 19

groundmass glass with microlites range from 102 – 109.7 Pa·s (Taddeucci, et al., 2004; Lautze 700 

and Houghton, 2007; Pappalardo et al., 2018; Mujin and Nakamura, 2020; Hlinka et al., 701 

2021). 702 

The 5680 Cal. BCE eruption experienced a larger viscosity increase than the 1657 and 1530 703 

Cal. CE eruptions, suggesting the magma feeding the 5680 Cal. BCE eruption had a higher 704 

explosivity following ascent. This large viscosity change may have resulted in the 5680 Cal. 705 

BCE eruption being the largest Plinian eruption in the La Soufrière record. However, 706 

viscosity changes cannot be the only cause of Plinian eruptions at this system, as a large 707 

viscosity change is not observed for the magma feeding the 1010 Cal. CE Plinian eruption. 708 

For the 1010 Cal. CE eruption a combination of other factors may result in the culmination 709 

of a Plinian eruption. 710 

5.2.3 Ascent Rate 711 

The ascent rate is the rate which magma ascends through the conduit from the magma 712 

mush storage zone to the surface and is a function of pressure magma density, viscosity, 713 

and resistance to flow while in the conduit (Papale and Dobran 1994; Mastin and Ghiorso 714 

2001; Pinkerton et al. 2002; Sparks et al. 2006; Rutherford, 2008). Ascent rate has been 715 

shown to be an important factor in controlling the onset of fragmentation, hence the 716 

transition between eruption styles and so may also be a key parameter to explain the 717 

differences in eruption styles observed at La Soufrière (e.g., Cassidy et al., 2018).  718 

Here we simplify magma ascent to fast and slow relative to the rates calculated. The ascents 719 

calculated refer to an average velocity from the storage system to the surface, though in 720 

reality magma ascent rate will vary through the conduit due to changes in vesicularity and 721 

volatile content, overpressure at depth, magma rheology and conduit geometry.  722 

ConFlow 1.0.5 from Mastin (2002) is used to calculate ascent rate based on crystal volume 723 

% and mean GM composition. The model also requires the input of temperature, pressure 724 

and depth (taken from Putirka, 2008 and Papale et al., 2006 calculations). Conduit diameter 725 

is also required when using this model and is the largest unknown as no magmatic eruptions 726 

have been observed at La Soufrière so estimates must be used.  727 

The conduit is defined as the connection between the magma storage area and the surface 728 

(Wilson et al., 1980; Bower and Woods, 1996). In explosive eruptions at more evolved 729 

systems the conduit is hypothesised to begin as a small fracture which widens allowing 730 

higher velocities, resulting in erosion of the conduit and widening into the vent (Wilson et 731 

al., 1980). To simplify the model, the conduit is assumed to be a vertical cylinder with a 732 

constant radius from the storage area to the surface which does not include any widening in 733 

the upper parts of the conduit or the vent radius (Fedotov, 1981; Colucci et al., 2014). 734 

One way to estimate conduit diameter is to look at similar systems. At the neighbouring 735 

volcano Soufrière Hills Volcano, Montserrat, a conduit radius of 15 m has been estimated 736 

for the sub-Plinian eruption on 17th September 1996 (Robertson et al., 1998). This is based 737 

on Bower and Woods (1996) which models a sustained discharge from a narrow conduit 738 
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into a wide crater, from the initial crater dimensions, spine widths from earlier eruption 739 

phases and fluid dynamic models (Robertson et al., 1998). A 15 m radius is also estimated 740 

for smaller Vulcanian eruptions occurring at Soufrière Hills Volcano during August 1997 741 

where a 30 m ±5 m diameter conduit, widening into a flared crater was estimated using 742 

spine dimensions, magma ascent rates and volume extrusion rates (Voight et al., 1999; 743 

Clarke et al., 2002). A radius of 15 m has also been used for modelling the dynamics of lava 744 

dome extrusion during the 1995-1999 period (Devine et al., 1998; Melnik and Sparks, 1999). 745 

Based on this we used conduit diameters of 10, 20, 30, 40 m to cover the observed conduits 746 

at Montserrat. ConFlow 1.0.5 assumes the conduit is vertical and circular in cross section.  747 

For 10 to 40 m diameters, this model gives ascent rates of 0.7 – 3 m/s for the 1657 Cal. CE 748 

Vulcanian eruption and 2 – 4 m/s for the 1530 Cal. CE sub-Plinian eruption (using the 749 

average microlite vol% to give an average ascent rate), respectively (Figure 6D; Table 3). The 750 

two Plinian eruptions could be expected to have similar ascent rate however, the 1010 Cal. 751 

CE Plinian eruption is characterised by a fast ascent rate of 0.6 – 12 m/s in comparison the 752 

5680 Cal. BCE Plinian eruption which is characterised by the slowest ascent rate of 0.04 -1 753 

m/s. This difference is related to the feedback loop between ascent rate and microlite 754 

growth which leads to a slower ascent rate in the microlite-rich 5680 Cal. BCE eruption 755 

(Cassidy et al., 2018).  756 

 5.3 Top-Down, Bottom-Up and External Processes 757 

The transition in explosive eruption style at La Soufrière is not related to any large changes 758 

in the mush storage region or supply system, as shown by the lack of compositional and 759 

volatile differences in the magmas feeding the different eruption styles. The variations in 760 

ascent rate (Fig 6D) indicate that faster ascent rates often lead to more intense eruptions, 761 

the ascent rate variations may relate to mass flux entering the conduit. However, the range 762 

in viscosity changes indicate processes occurring above the magma storage zone and within 763 

the conduit also control eruption style and explosivity. This suggests that externals factors 764 

and the interplay of top-down and bottom-up controls must be considered for the La 765 

Soufrière system. 766 

At andesitic volcanoes such as La Soufrière, top-down controls are related to the extent and 767 

dynamics of the hydrothermal system on magma in the conduit and the presence of lava 768 

lakes as well as of caldera structures and lava domes (e.g., Endo et al., 1981; Alidibirov and 769 

Dingwell et al., 1996; Sparks, 1997; Scandone et al., 2007; Boudon et al., 2015; Cassidy et al., 770 

2018; Heap et al., 2019). In this context, fracture-generating processes driven by thermo-771 

hydraulic circulation, hydrothermal inflation and rock alteration result in the establishment 772 

of connectivity between the lower-pressure upper zones and the deeper pressurised regions 773 

of the plumbing system (Roman and Cashman, 2018). A lava dome can favour pressure 774 

build-up by sealing shallow outgassing fractures (Taisne and Jaupart, 2008; Boudon et al., 775 

2015; Chevalier et al., 2017) or plugging the conduit (Diller et al., 2006; Collinson and 776 

Neuberg, 2012; Boudon et al., 2015; Bain et al., 2019). Explosions are promoted by smaller 777 
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domes where pressure build up is sufficient to overcome load pressures; as the lava dome 778 

load increases pressure build up may become insufficient to overcome the lava dome load 779 

pressure and strength (Taisne and Jaupart, 2008; Boudon et al., 2015). Lava domes can also 780 

modulate explosions during long-lived activity. If pressure builds up below a ‘plugging’ dome 781 

(Johnson et al., 2014), magma may fragment through tensile failure (Hornby et al., 2019) 782 

leading to explosive eruptions. Larger lava domes are also less likely to become efficiently 783 

sealed as deep-seated fractures are more likely to form in the the outer parts of the lava 784 

dome increasing the permeability (Boudon et al., 2015). Sector collapses and phreato-785 

magmatic interactions may also greatly enhance or even trigger highly explosive activity 786 

(Pinel and Jaupart et al., 2000; Scandone et al., 2007).  787 

La Soufrière has a history of dome emplacement, large dome collapse events, high amounts 788 

of external water and also has a well-developed and active hydrothermal system, which 789 

forms quickly at any hot cycle of volcanic activity. Hydrothermal alteration results in 790 

modifications to the shape of the pore network, this can result in reductions in permeability 791 

and porosity, decreasing volcano stability and increasing pore pressure and promoting 792 

explosive behaviour (e.g., Lopez and Williams et al., 1993; Sparks, 1997; Komorowski et al., 793 

1997; Reid, 2004; Komorowski et al., 2010; Pola et al., 2012; Ball et al., 2013; Wyering et al., 794 

2015; Navelot et al., 2018; Heap et al., 2019; Heap et al., 2021; Komorowski et al., in prep). 795 

Like for many andesitic volcanoes, these major features of the La Soufrière system must be 796 

considered as controlling effects on magmatic eruption style.  797 

The influence of the hydrothermal system alteration at La Soufrière (e.g., Navelot et al., 798 

2018) and external forcing has already been proposed as important controls on phreatic 799 

eruptions (Zlotnicki et al., 1992; Moune et al., 2022). High fluid circulation combined with 800 

sealing of the dome with pressure unable to be released increases the risk of a phreatic 801 

eruption, as hypothesised for the 1976-77 eruption (Zlotnicki et al., 1992). An alternative 802 

hypothesis proposed for the 1976-77 eruption is the efficient, extensive hydrothermal 803 

system might buffer the rise of small magma batches, leading to their stagnation at shallow 804 

depth and limiting the eruption active to only phreatic explosions (Feuillard et al., 1983; 805 

Villemant et al., 2014). It is therefore also important to understand the potential control of 806 

the hydrothermal system and external forcing on a magma ascent and its eruption potential 807 

and explosivity.  808 

5.3.1 The 5680 Cal. BCE Plinian eruption (VEI 4) – slow ascent and the importance of top-809 

down controls 810 

As no temperature differences within the error estimates are observed between the 811 

average GM (990oC) and MI (1035oC), this could indicate that any magma moving from the 812 

supply system is not preserved in the erupted area of the storage zone. Instead, processes 813 

of mixing different parts of the same mush may be more relevant (e.g., Solaro et al., 2020). 814 

This could be considered a realistic scenario based on: the lack of GM mixing textures, 815 

homogenous MI composition in both the Type 1, 2, 3 and 6 OPX and Type-4 and 5 OPX and 816 
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MIs and GM glass show considerable compositional overlap.  Alternatively, magmas may 817 

have been well mixed prior to eruption.  818 

The final destabilisation of the mush system has affected the majority of the erupted area 819 

of the storage zone (~9 Km depth) 40 days before eruption (Metcalfe et al., 2021) (Fig 7A). 820 

In comparison, to the other eruptions discussed here, the 5680 Cal. BCE eruption had a 821 

slow ascent rate (0.04 – 1 m/s).  822 

Prior to the 5680 Cal. BCE eruption, lava flow and dome extrusions were identified in the 823 

eruptive record (Samper et al., 2009; Legendre, 2012). This effusive period of activity 824 

followed in eruptive record directly by the explosive Plinian eruption (Legendre, 2012), 825 

with the transition of effusive to explosive activity potentially influenced by the upper 826 

conduit and vent (Sparks, 1997; Platz et al., 2007; Castro and Gardner, 2008; Cassidy et al., 827 

2018). 828 

This transition can be explained by the properties calculated for the 5680 Cal. BCE magma. 829 

The slow ascent observed for this eruption should have allowed volatiles to decouple from 830 

the magma under an open-system degassing regime (Gonnermann and Manga, 2013). 831 

Feedbacks between degassing and crystallization (observed in this eruption which is 832 

characterised by a high microlite content) were able to increase viscosity and slow ascent 833 

further allowing more degassing. Such gas loss would have favoured the occurrence of an 834 

effusive eruption (Melnik and Sparks, 1999; Cassidy et al., 2018) (Fig 7A).  835 

However, the syn-eruptive viscosity changes resulting from degassing and crystallization 836 

feedbacks and the conduit sealing related to a lava dome and/or hydrothermal processes 837 

would have reduced outgassing efficiency (Sparks, 1997; Komorowski et al., 1997; 2010). 838 

With the combination of microlite growth creating large pressure gradients and gas 839 

accumulation beneath the sealed dome, leading to pressurisation of the magma (Sparks, 840 

1997; Cassidy et al., 2015). 841 

The pressure increase is contained by the elastic deformation of the wall rocks until this 842 

overpressure exceeds the strength of the confining rock and the seal fails resulting in this 843 

case, a Plinian eruption (Cortés et al., 1997, Barmin et al., 2002, Lavallée et al., 2012; 844 

Boudon et al., 2015). This scenario of slow ascending magmas resulting in explosive 845 

eruptions has been shown to occur at several systems including the Inyo volcanic chain, 846 

USA (Castro and Gardner, 2008). 847 

5.3.2 The 1010 Cal. CE Plinian phase (VEI 4)– fast ascent and the importance of bottom-848 

up controls 849 

Similar to the 5680 Cal. BCE, no temperature differences within the error estimates are 850 

observed between the average groundmass glass (1025oC) and MI (1000oC) for the 1010 Cal. 851 

CE eruption. Again, this could indicate that any magma moving from the supply system did 852 

not directly impact the erupted area of the storage zone. As with 5680 Cal. BCE, mixing 853 

different parts of the same mush may have occurred (e.g., Solaro et al., 2020). This is again 854 

shown by: the lack of GM mixing textures, MIs and GM glass show considerable 855 
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compositional overlap and homogenous MI composition in the Type 1, 2, 3 and 6 OPX. 856 

Alternatively, magmas may have been well mixed prior to eruption.  857 

The final destabilisation of the mush system has affected the majority of the erupted area of 858 

the storage zone (~9 Km depth) 848 days before eruption (Metcalfe et al., 2021). In 859 

comparison to the shorter diffusion timescales calculated for other eruptions, which are on 860 

the scale of days to weeks, this indicates that recharge and mixing in the storage zone has 861 

occurred over a long period. Despite the magma’s long residence in the storage zone, 862 

magma has ascended relatively rapidly in the conduit (0.6 -12 m/s) in comparison to the 863 

other eruptions.  864 

The 1010 Cal. CE explosive eruption was followed by an effusive phase (Legendre, 2012). 865 

Though the previous eruption (450 Cal. CE) was an effusive eruption, it is unclear whether 866 

prior to the 1010 Cal. CE eruption a dome was emplaced, if a dome was present our results 867 

suggest that the state of the upper conduit and vent has not had a major control on the 868 

1010 Cal. CE eruption (Fig 7B). 869 

Instead, volatile exsolution drove rapid ascent by increasing buoyancy, during fast ascent 870 

outgassing is less efficient with exsolved volatiles remain coupled to the melt in a closed-871 

system degassing scenario (Mangan and Sisson, 2000; Cashman, 2004; Szramek et al., 2006). 872 

The small syn-eruptive viscosity change observed for the 1010 Cal. CE and microlite-poor 873 

groundmass indicates that decompression-induced crystallisation was limited, and has 874 

resulted in fluid-like behaviour by reducing viscosity and further increasing magma 875 

buoyancy (Anderson, 1995; Martel, 1998; Scandone et al., 2007; Massol and Jaupart, 1999; 876 

Martel, 2012). This rapid ascent of a magma with volatiles coupled to the melt in a closed 877 

system led to high overpressures and promoted explosive behaviour. Driven from the 878 

‘bottom-up’ the rapid ascent of a gas-rich magma led to explosive fragmentation and a 879 

Plinian eruption (Cassidy et al., 2018; Fig 7B). A slower ascent rate, as in the case of 1657 880 

Cal. CE may have resulted in a less explosive eruption (e.g., Szramek et al., 2006). 881 

5.3.3 The 1530 Cal. CE Sub-Plinian phase (VEI 3) – the importance of external forces 882 

The 1530 Cal. CE eruption began with injection of a less evolved magma from the supply 883 

system into the storage system (Pichavant et al., 2018). Magma then ascended at 2-4 m/s 884 

through the conduit, an ascent rate that is most comparable to the magma ascent rate for 885 

the 1657 Cal. CE eruption.  886 

The microlite-poor (17 vol%) glass observed in the light bands of the banded 1530 Cal. CE 887 

eruption products, are comparable to the 1657 Cal. CE groundmass glasses (18 vol%). 888 

However, the 1530 Cal. CE has the additional homogenous glass (27 vol%) and glass from 889 

dark bands (34 vol%) that are compositionally different. This wider range of textures 890 

indicates more complex processes affected the conduit. 891 

The 1530 Cal. CE eruption is the most well-constrained La Soufrière eruption. It began with a 892 

phreatic phase followed by a flank collapse which preceded the arrival of magma at the 893 

surface and fed the sub-Plinian explosive phase discussed throughout this paper 894 
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(Komorowski et al., 2005; 2008; Touboul et al., 2007; Boudon et al., 2008; Pichavant et al., 895 

2018). The andesite magma was erupted first transitioning through banded black and white 896 

pumice and then to basaltic-andesite. Following the sub-Plinian phase the eruption style 897 

changed to strombolian activity and a less explosive phase, with the end of the multiphase 898 

eruption marked by the growth of the current andesite lava dome (Boudon et al., 2008).  899 

The flank collapse prior to the sub-Plinian phase indicates that external forces have had a 900 

major control on the generation of this magmatic eruption (Boudon et al., 2003; Boudon et 901 

al., 2007). The volcanic edifice can exert a large load which affects the stress field at depth 902 

reservoir (Pinel and Jaupart, 2000, 2005). A flank collapse rapidly releases this load resulting 903 

in a downward propagating pressure change which affects the decompression rate of the 904 

magma resulting in fragmentation and in this case, contribute to the triggering of a sub-905 

Plinian eruption style (Boudon et al., 2003; Pinel and Jaupart, 2005; Gudmundsson, 2006; 906 

Scandone et al., 2007). 907 

The stress fields exerted by the edifice can also affect the petrological and chemical 908 

evolution of the magma in the storage zone and can prevent denser, less evolved magmas 909 

reaching the surface (Pinel and Jaupart, 2000, 2005; Gudmundsson, 2006).  At several 910 

volcanoes including. Mount St. Helens (Pinel and Jaupart, 2000), Bezymianny volcano 911 

(Kamchatka, Russia) (Izbekov et al., 2006) and volcanoes in the Lesser Antilles including on 912 

Martinique and St Lucia (Boudon et al., 2013), the unloading of the volcanic edifice and 913 

change in stress field from events such as flank collapse have been shown to result in a 914 

change in magma composition to more mafic compositions erupted after the collapse event 915 

(Pinel and Jaupart, 2000). This may be a plausible scenario for the 1530 Cal. CE eruption 916 

with changes in the stress field controlling the transition from andesite to black and white 917 

banded pumice and then to basaltic-andesite which were present in the storage zone 918 

following the recharge event. In comparison, the other eruptions do not have a banded 919 

component and flank collapses were not thought to have occurred directly before a 920 

magmatic explosive eruption. 921 

5.3.4 The 1657 Cal. CE Vulcanian eruption (VEI 2) – fast ascent and the importance of 922 

bottom-up controls 923 

As with the two Plinian eruptions no temperature differences within the error estimates are 924 

observed between the average groundmass glass ((975oC) and MI (1000oC) for the 1010 Cal. 925 

CE eruption. There are also no GM mixing textures, MIs and GM glass show considerable 926 

compositional overlap and homogenous MI composition in the Type 1, 2, 3 and 6 OPX. 927 

There is also some bimodal variation in the groundmass glass compositions. This suggests 928 

mafic recharge may have occurred prior to this eruption and resulted in incomplete mixing. 929 

The final destabilisation of the mush system has affected the majority of the erupted area of 930 

the storage zone 35 days before eruption (Metcalfe et al., 2021). Eruptible magma then 931 

ascended from ~8 Km depth in the storage region into the conduit and then to the surface. 932 
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Though this eruption did not have an effusive phase, the 1530 Cal. CE dome, still present 933 

today, was emplaced prior to the 1657 Cal. CE eruption (Komorowski et al., 2005; Boudon et 934 

al., 2008; Legendre, 2012). For the 5680 cal. BCE eruption the dome and top-down controls 935 

have had a major effect on producing the explosive eruption. However, for 1657 Cal. CE the 936 

evidence for the occurrence of similar major top-down controls is not clear.   937 

Given the composition and volatile contents of the 1010 Cal. CE and 1657 Cal. CE eruptions 938 

are very similar, the magma could have been expected to ascend in similar ways and to lead 939 

similar explosive eruptions. However, magma in the 1657 Cal. CE eruption had a slower 940 

ascent rate and experienced a larger syn-eruptive viscosity change. The slower ascent rate 941 

may have allowed more time for microlite crystallisation in the magma of the 1657 Cal. CE 942 

eruption than in the 1010 Cal. CE eruption, a process that in turn increased its viscosity 943 

(Sparks, 1997; Melnik and Sparks, 1999). The viscosity change that resulted from microlite 944 

crystallisation in a closed-system promoted some limited explosivity of the small magma 945 

batch that only led to a Vulcanian eruption (Fig 7D). If the ascent rate had been faster, as 946 

with the 1010 Cal. CE eruption, this may have resulted in a more explosive eruption. The 947 

absence of dome collapse during this small eruption suggests that pressure in the magma 948 

column overcome the load of the dome to produce a small explosive eruption (Fig 7D). 949 

5.3.5 Implications for future eruptions and monitoring 950 

This data suggests shows that explosive eruption style at La Soufrière is controlled by a 951 

combination of ascent rate and top-down controls and not necessarily linked exclusively to 952 

bottom-up processes, as highlighted by the Plinian eruptions studied here. Looking towards 953 

a future eruption, the various scenarios leading to explosive magmatic eruptions, and 954 

particularly the multiple controls on Plinian eruptions, make the La Soufrière volcanic 955 

system more hazardous and complex to forecast. 956 

The results of this study have wider implications, not just for La Soufrière but for other 957 

systems with a developed hydrothermal system that tends to promote sealing of the host-958 

rock, which influences the dynamics of magma ascent and degassing at shallow depth (e.g., 959 

Komorowski et al., 1997; 2010; in prep). To improve forecasting of potential future 960 

magmatic eruptions, continued development of volcano monitoring techniques must focus 961 

on developing the ability to: 1) reconstruct, via real-time geodesy, the deep stress field 962 

changes behind the upward movement of magma; 2) track the modifications of the physical 963 

properties of the host-rock; and 3) the development and evolution of sealing in the 964 

hydrothermal system. To understand the evolution of the magmatic system and how a 965 

potential eruption could evolve, monitoring should also keep tracking the petrology and 966 

rock properties of early erupted products, imaging the physio-chemical properties of the 967 

host-rock and its structures in time and space, and quantifying external forcing processes of 968 

the hydrothermal system that can modulate magma ascent dynamics. Particularly for 969 

volcanic systems with a wide range of eruptive behaviour, such as La Soufrière, this could 970 

provide a more complete understanding of how an eruption could develop and what its 971 

credible expected intensity might be. 972 
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6 Conclusions 973 

The variation in eruption style at La Soufrière gives us opportunity to understand the 974 

controls on eruption explosivity at this volcano. The four eruptions discussed here are a 975 

Vulcanian (VEI 2), sub-Plinian (VEI 3) and two Plinian eruptions (VEI 4), covering a range of 976 

dominantly explosive magmatic activity produced by La Soufrière. Major and volatile 977 

elements of melt inclusions across the eruption series show the composition of the mush 978 

storage zone has remained stable. Melt inclusions also allow us to constrain the mush 979 

storage zone to 7 – 9 Km depth with an average temperature of 1000oC. The constant 980 

composition and physical properties of the storage zone feeding the eruptions indicate that 981 

for some eruptions processes occurring from the top-down and external forces have also 982 

determined the magma ascent rate and controlled eruption style, particularly the intensity 983 

of the explosive activity. 984 

Magma feeding the 1010 Cal. CE eruption ascended relatively rapidly (0.6 – 12 m/s) 985 

preventing the growth of microlites. The magma and exsolved gas remain coupled and 986 

ascended rapidly to trigger an explosive eruption style that was primarily driven by bottom-987 

up processes. In contrast to the 1010 Cal. CE eruption, the 1657 Cal. CE eruption, where the 988 

magma ascended at a slower ascent rate (0.7 – 3 m/s), we find little geochemical and 989 

petrological evidence for any major top-down controls. This suggests the differences in 990 

ascent rate may have resulted in contrasting explosive eruption styles. 991 

The magma feeding the 5680 Cal. BCE ascended comparatively slowly (0.04 -1 m/s) due to 992 

feedbacks between degassing and crystallization. These processes lead to an increase 993 

viscosity, further slowing magma ascent and promoting magma degassing. In the absence of 994 

any top-down controls this magma could have been expected to erupt with a low explosivity 995 

or effusively. However, sealing resulting from the capping dome and a reduction in 996 

permeability in the conduit favoured the accumulation of gas, leading to over pressurisation 997 

and an explosive Plinian eruption. External forces also played a role in the 1530 Cal. CE 998 

eruption where a flank collapse has resulted in rapid decompression of a gas-rich magma at 999 

shallow depth that rapidly led to a phase of sub-Plinian explosive activity at the onset of the 1000 

multiphase eruption. 1001 

The multiple controls on explosive eruption style, and particularly on the most intense 1002 

eruptions observed at La Soufrière, Plinian (VEI 4) eruptions, render this volcanic system 1003 

particularly hazardous. Hence, the forecasting of the most credible eruption scenario is 1004 

particularly challenging. Given that several eruption styles are possible and that eruption 1005 

style can evolve within an eruption, we stress that monitoring efforts must also address the 1006 

issue of tracking ascent and shallow-depth conduit processes which can influence eruption 1007 

style, and particularly the intensity of explosivity. Given these uncertainties, we recommend 1008 

that an integrated risk-reduction approach consider the capacity to detect rapid changes in 1009 

unrest dynamics and associated eruption-driving processes, both at depth but also near the 1010 

surface, and to develop associated preventive crisis response strategies on a short time 1011 

frame. 1012 
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 1047 

9 Figure Captions 1048 

Figure 1: Map of southern Basse-Terre showing the location of La Soufrière and volcanic 1049 

complexes which make up the island. Also shown are sampling locations for each eruption. 1050 
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Inset Left: Map showing the position of Guadeloupe in the Lesser Antilles Island arc chain. 1051 

Inset Right: Image of La Soufrière (2020, Metcalfe). 1052 

 1053 

Figure 2: Example images of glass from La Soufrière. (A) Plagioclase and (B) pyroxene hosted 1054 

melt inclusions. Only inclusions with no daughter crystals analysed, inclusions can be round 1055 

and uniform or more irregular. Plagioclase often shows primary and secondary inclusions, 1056 

only inclusions from the core of the crystal which are primary inclusions were analysed. (C-1057 

E) Pyroxene hosted inclusions (C – 5680 Cal. BCE, D – 1010 Cal CE, E – 1657 Cal CE) (F-H) 1058 

Plagioclase hosted inclusions (F – 5680 Cal. BCE, G – 1010 Cal CE, H – 1657 Cal CE). (I-N) 1059 

Groundmass glass (I – 5680 Cal. BCE, J – 1010 Cal CE (Legendre, 2012), K – 1657 Cal CE 1060 

(Legendre, 2012), L – 1530 Cal CE (light glass) (Martel et al., 2021), M – 1530 Cal CE (dark 1061 

glass) (Martel et al., 2021), N - 1530 Cal CE (homogenous glass) (Martel et al., 2021).  1062 

 1063 

Figure 3: Total Alkali-Silica whole rock dataset for the La Soufrière eruptions and parental 1064 

Monts Caraïbes magma. The groundmass glass show some Na2O loss during analysis. 1065 

Generally, the data falls on the same liquid-line of descent. 1066 

 1067 

Figure 4: Complete major element data set: (A) FeO, (B) CaO, (C) K2O, (D) MnO, (E) MgO, (F) 1068 

Al2O3, (G) Na2O, (H) TiO2 vs SiO2.  1069 

 1070 

Figure 5: Volatile contents for melt inclusion and: (A) H2O, (B) CO2, (C) S, (D) Cl, (E) F vs K2O 1071 

and (F) Total Volatile Content vs VEI. Data is clustered with no significant difference in the 1072 

volatile contents for each eruption. 1073 

 1074 

Figure 6: Eruption year vs (A) Temperature (Putirka, 2008), (B) Pressure (Papale et al., 2006, 1075 

errors calculated based on model error and volatile analysis error), (C) Viscosity 1076 

(groundmass (GM) and groundmass with microlites (GM+X), Mastin, 2002), (D) Ascent Rate 1077 

(Mastin, 2002).  1078 

 1079 

Figure 7: Schematic diagram of the La Soufrière reservoir for each eruption discussed, with 1080 

calculated parameters annotated. (A) 5680 Cal. BCE (VEI 4): eruptible melt from 9 km depth 1081 

begins ascending in the conduit at max. 1 m/s. The slow ascent results in feedbacks 1082 

between degassing and crystallization increasing viscosity and slowing ascent further. 1083 

Sealing of the conduit from the top-down due to the presence of a dome results in exsolved 1084 

volatile accumulation and pressure increases, until the overpressure exceeds the strength of 1085 

the confining rock and the seal fails resulting in a Plinian eruption. (B) 1010 Cal. CE (VEI 4): 1086 

eruptible melt from 6 Km depth begins ascending in the conduit at max. 12 m/s. Volatile 1087 

exsolution has prevented a large viscosity change but increased buoyancy allowing the 1088 

magma to rise. Disequilibrium closed system degassing has driven magma still coupled to 1089 

the melt from the bottom up allowing fast ascent resulting in a Plinian eruption. (C) 1530 1090 

Cal. CE (VEI 3): magma from the supply system moves up into the storage zone resulting in 1091 
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magma mixing. Eruptible melt from 7 Km depth begins ascending in the conduit at 2-4 m/s, 1092 

with microlite textures reveal a complex ascent history. A flank collapse has rapidly released 1093 

the edifice load resulting in a downward propagating pressure change which affects the 1094 

decompression rate of the magma resulting in fragmentation a sub-Plinian explosion. (D) 1095 

1657 Cal. CE (VEI 2): eruptible melt from 8 Km depth begins ascending in the conduit at max 1096 

3 m/s, the slower ascent compared to the 1010 CE eruption and without influence from top 1097 

down processes, has resulted in a Vulcanian explosion. The dome did not collapse during 1098 

this small eruption. 1099 
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Table 1: Summary of groundmass glass and microlites for each eruption.  1610 

 1611 

 1612 

 1613 

 1614 

 1615 

 1616 

 1617 

 1618 

 1619 

Table 2:  Full normalised MI dataset including major elements from EMPA and volatile data from EMPA and SIMS (*). Also shown are the enstatite (En) and 1620 

anorthite (An) content of the host mineral and the calculated Kd value. Some volatiles were less than the detection limit (<dl). 1621 

Table 2 

Eruption Sample 

Host 

Crystal 

En 

Host 

Crystal 

An 

SiO
2
 TiO

2
 Al

2
O

3
 FeO MnO MgO CaO Na

2
O K

2
O F S Cl H

2
O CO

2
 �D Kd 

1657 CE 0913D-pyx7-1 0.39 - 77.74 0.38 12.19 2.50 0.02 0.47 2.05 2.12 2.53 <dl 0.037 0.16 - - - 0.23 

1657 CE 0913D-pyx7-2 0.39 - 76.72 0.39 12.24 3.14 0.12 0.54 2.38 2.40 2.07 <dl 0.019 0.18 - - - 0.24 

1657 CE 0913D-pyx7-3 0.39 - 77.01 0.42 12.46 2.94 0.08 0.49 2.45 2.27 1.87 <dl 0.028 0.19 - - - 0.22 

1657 CE 0913D-pyx-9-1 0.57 - 75.30 0.47 12.70 3.44 0.18 0.65 2.71 2.74 1.80 <dl 0.056 0.25 - - - 0.24 

1657 CE 0913D-pyx16-1 0.39 - 74.79 0.43 13.58 2.76 0.03 0.86 3.33 2.45 1.76 0.051* 0.006* 0.29* 3.6* 530* -10.1 0.28 

1657 CE 0913D-pyx16-2 0.38 - 75.23 0.45 13.59 2.91 0.09 0.45 3.02 2.50 1.77 0.050* 0.005* 0.24* 3.7* 674* -25.6 0.24 

1657 CE 0913D-pyx-16-3 0.39 - 75.26 0.43 13.57 3.05 0.12 0.53 3.22 2.32 1.49 0.048* 0.005* 0.23* 3.6* 451* -10.9 0.24 

1657 CE 0913D-plg7-1 - 0.68 76.33 0.50 13.97 2.15 0.11 0.28 2.73 1.84 2.09 0.048* 0.005* 0.24* 3.4* 146* -10.5 0.08 

1657 CE 0913D-plg7-2 - 0.66 76.94 0.45 13.56 2.33 0.11 0.39 2.72 1.57 1.94 0.049* 0.006* 0.25* 3.9* 165* -46.1 0.10 

1657 CE 0913D-plg11-2 - 0.68 74.97 0.75 14.23 2.14 0.10 0.33 3.10 2.71 1.67 0.039* 0.006* 0.21* 2.4* 35* -40.3 0.07 

1657 CE 0913D-plg11-3 - 0.70 74.22 0.60 13.80 1.99 0.08 0.35 3.44 3.41 2,12 0.045* 0.007* 0.32* 3.7* 122* -37.1 0.05 

Table 1 

Eruption Style VEI Glass Microlites 
Microlite 

size (μm) 
Vesicles 

Microlite 

vol% 

1657 Cal. CE Vulcanian 2 Homogenous subhedral - euhedral <10 yes 18 

1530 Cal. CE Sub-Plinian 3 Heterogeneous subhedral - euhedral <50 yes 17-34 

1010 Cal. CE Plinian 4 Homogenous anhedral <5 yes 8 

5680 Cal. BCE Plinian 4 Homogenous anhedral - subhedral 1 - 15 yes 47 
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1657 CE 0913D-plg5-2 - 0.69 73.13 0.53 12.50 4.67 0.14 0.87 3.06 2.97 2.11 0.046* 0.009* 0.36* 3.9* 192* -26.6 0.05 

1657 CE 0913D-plg2-1 - 0.75 75.90 0.45 13.90 2.05 0.01 0.31 2.73 3.29 1.37 0.04* 0.003* 0.19* 2.3* 253* -43.6 0.06 

1657 CE 0913D-plg3-1 - 0.29 74.49 0.57 13.13 3.88 0.08 0.79 2.60 2.33 2.13 <dl <dl 0.32 - - - 0.06 

1657 CE 0913D-plg3-2 - 0.97 74.98 0.55 12.70 4.28 0.15 0.76 2.85 1.68 2.04 <dl 0.021 0.33 - - - 0.07 

1657 CE 0913D-plg3-3 - 0.97 74.82 0.60 12.51 3.78 0.13 0.76 2.96 2.22 2.24 <dl 0.015 0.30 - - - 0.07 

1657 CE 0913D-plg3-4 - 0.57 74.71 0.64 12.47 3.77 0.12 0.77 2.74 2.53 2.24 <dl 0.025 0.32 - - - 0.05 

1657 CE 0913D-plg1-1 - 0.58 75.69 0.56 12.55 3.29 0.04 0.58 2.63 2.53 2.13 <dl 0.007* 0.29* 2.4* 35* -39.4 0.08 

1657 CE 0913D-plg1-2 - 0.76 75.37 0.58 12.49 3.37 0.07 0.59 2.72 2.62 2.19 <dl 0.036 0.29 - - - 0.05 

1657 CE 0913D-plg5-1 - 0.66 74.94 0.53 13.42 4.69 0.16 0.80 3.04 0.82 1.59 0.05* 0.009* 0.36* 4.1* 36* -50.8 0.05 

1657 CE 0913D-plg1-3 - 0.69 74.66 0.46 13.07 3.29 0.13 0.56 3.06 2.64 213 <dl 0.021 0.272 - - - 0.06 

1657 CE 0913D-plg5A-1 - 0.59 76.20 0.31 13.11 2.44 0.01 0.34 2.75 2.59 2.25 <dl 0.010 0.221 - - - 0.07 

1657 CE 0913D-plg5A-2 - 0.61 75.94 0.34 13.51 2.28 0.10 0.32 3.00 2.41 2.10 <dl 0.042 0.089 - - - 0.09 

1657 CE 0913D-plg8-1 - 0.57 77.61 0.48 12.36 2.38 0.02 0.39 2.28 2.31 2.17 <dl <dl 0.225 - - - 0.07 

1657 CE 0913D-plg8-2 - 0.58 78.16 0.55 12.43 1.78 0.10 0.39 2.11 2.36 2.12 <dl 0.022 0.211 - - - 0.07 

1657 CE 0913D-plg4-1 - 0.59 77.12 0.59 12.34 2.44 0.12 0.42 2.47 2.47 2.03 <dl <dl 0.208 - - - 0.07 

1657 CE 0913D-plg4-2 - 0.59 77.31 0.59 12.25 2.42 0.17 0.35 2.27 2.54 2.09 <dl 0.017 0.196 - - - 0.06 

1657 CE 0913D-plg4-3 - 0.59 77.75 0.51 12.34 2.16 0.04 0.33 2.27 2.61 1.99 <dl 0.010 0.187 - - - 0.06 

1657 CE 0913D-plg4-4 - 0.59 77.46 0.53 12.25 2.48 0.13 0.34 2.31 2.49 2.02 <dl <dl 0.201 - - - 0.06 

1657 CE 0913D-plg4-5 - 0.59 77.77 0.53 12.36 2.24 0.03 0.35 2.49 2.17 2.06 <dl <dl 0.201 - - - 0.08 

1657 CE 0913D-plg4-6 - 0.59 77.65 0.53 12.20 2.25 0.10 0.34 2.33 2.51 2.10 <dl 0.017 0.199 - - - 0.05 

1657 CE 0913D-plg6-1 - 0.64 77.28 0.50 12.85 2.05 0.02 0.27 2.25 2.43 2.35 <dl <dl 0.194 - - - 0.05 

1657 CE 0913D-plg6-2 - 0.67 76.37 0.51 13.24 2.07 0.05 0.28 2.69 2.61 2.17 <dl 0.026 0.182 - - - 0.06 

1010 CE 0924A-pyx1A-3 0.56 - 69.50 0.67 14.77 5.36 0.21 0.99 3.75 3.13 1.62 <dl <dl 0.20 - - - 0.24 

1010 CE 0924A-pyx1D-1 0.56 - 69.87 0.66 14.53 5.03 0.18 0.93 3.90 3.25 1.65 <dl 0.065 0.20 - - - 0.24 

1010 CE 0924A-pyx1D-2 0.56 - 70.33 0.64 14.46 5.07 0.14 0.89 3.53 3.27 1.69 <dl 0.022 0.21 - - - 0.23 

1010 CE 0924A-pyx1D-4 0.59 - 70.66 0.61 14.49 4.57 0.10 0.92 3.62 3.20 1.83 0.035* 0.006* 0.2* 2.2* 11* -29.5 0.23 

1010 CE 0924A-pyx1G-1 0.57 - 69.66 0.67 14.79 4.98 0.14 0.91 3.98 3.37 1.50 <dl 0.046 0.19 - - - 0.23 

1010 CE 0924A-pyx1G-4 0.57 - 70.30 0.45 14.51 5.12 0.08 0.93 4.00 3.18 1.43 <dl 0.012 0.19 - - - 0.23 

1010 CE 0924A-pyx2C-1 0.57 - 69.51 0.57 14.69 5.28 0.12 1.03 3.81 3.46 1.53 <dl 0.042 0.21 - - - 0.24 

1010 CE 0924A-pyx2C-2 0.56 - 70.41 0.52 14.36 4.84 0.09 0.88 3.87 3.47 1.56 <dl 0.031 0.19 - - - 0.22 

1010 CE 0924A-pyx1B-1 0.41 - 70.80 0.55 14.50 4.86 0.23 0.85 3.80 2.87 1.55 <dl 0.015 0.21 - - - 0.25 

1010 CE 0924A-pyx13-2 0.60 - 73.28 0.65 14.36 4.90 0.10 1.01 3.19 1.08 1.44 0.041* 0.006* 0.16* <dl <dl - 0.23 
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1010 CE 0111A-pyx10-2 0.57 - 73.85 0.53 15.43 3.67 0.07 0.68 3.92 0.51 1.33 0.043* 0.01* 0.18* 3.3* 60* -34.5 0.22 

1010 CE 0924A-pyx2F-1 0.54 - 64.32 0.31 21.31 2.34 0.04 0.38 7.04 3.16 1.11 <dl 0.006 <dl - - - 0.25 

1010 CE 0111A-pyx10-1 0.57 - 73.44 0.77 15.74 3.63 0.14 0.28 4.04 0.80 1.15 0.048* 0.02 0.24* 4.4* 122* -30.5 0.22 

1010 CE 0924A-pyx6-1 0.61 - 70.28 0.58 15.35 5.28 0.12 0.92 3.47 2.76 1.24 0.042* 0.01* 0.15* 2.8* 131* -34.5 0.23 

1010 CE 0924A-plg2E-1 - 0.67 73.25 0.57 13.92 4.04 0.16 0.78 3.18 2.25 1.85 <dl 0.020 0.17 - - - 0.09 

1010 CE 0924A-plg2E-2 - 0.67 72.50 0.44 14.12 3.55 0.10 0.77 3.48 3.26 1.77 <dl 0.023 0.16 - - - 0.07 

1010 CE 0924A-plg2E-3 - 0.60 72.68 0.54 14.04 3.85 0.05 0.83 3.25 2.85 1.92 <dl 0.031 0.18 - - - 0.10 

1010 CE 0924A-plg2B-1 - 0.62 75.52 0.49 12.41 2.90 0.06 0.48 2.51 3.36 2.26 <dl 0.039 0.32 - - - 0.05 

1010 CE 0924A-plg2B-2 - 0.61 75.08 0.63 12.57 2.86 0.00 0.42 2.69 3.35 2.39 <dl 0.025 0.29 - - - 0.06 

1010 CE 0924A-plg2A-1 - 0.61 77.47 0.37 12.28 2.54 0.08 0.34 2.22 2.30 2.39 <dl 0.010 0.25 - - - 0.06 

5680 BCE 1101viA-pyx2E-2 0.64 - 64.62 0.79 16.08 8.19 0.17 2.75 6.43 0.24 0.73 <dl 0.08 0.17 - - - 0.30 

5680 BCE 1101viA-pyx2E-3 0.65 - 66.18 0.72 14.76 7.16 0.12 2.50 4.35 3.09 1.12 <dl 0.02 0.21 - - - 0.30 

5680 BCE 1101viA-pyx2E-4 0.62 - 66.74 0.61 14.79 6.94 0.16 2.54 4.53 2.50 1.18 <dl 0.04 0.20 - - - 0.36 

5680 BCE 1101viA-pyx2F-3 0.55 - 76.49 0.55 13.34 4.09 0.08 0.87 2.99 0.09 1.49 <dl <dl 0.22 - - - 0.29 

5680 BCE 1101viA-pyx1-1 0.58 - 69.38 0.44 13.77 8.03 0.28 1.00 4.24 1.56 1.32 0.048* 0.02* 0.23* 4.2* 866* -59 0.26 

5680 BCE 1101viA-pyx1-2 0.56 - 69.54 0.47 14.76 6.62 0.31 0.81 4.16 1.88 1.46 0.044* 0.02* 0.19* 3.5* 448* -33.1 0.25 

5680 BCE 1101viA-pyx2A-2 0.37 - 76.41 0.49 12.77 4.25 0.17 1.13 3.50 0.05 1.24 <dl 0.02 0.26 - - - 0.31 

5680 BCE 1101viA-pyx2A-1 0.34 - 75.01 0.55 12.38 3.88 0.13 0.87 3.40 1.62 2.17 <dl 0.02 0.13 - - - 0.25 

5680 BCE 1101viA-pyx2B-3 0.37 - 74.93 0.59 13.46 4.00 0.10 0.91 3.45 0.92 1.63 <dl 0.05 0.23 - - - 0.26 

5680 BCE 1101viA-pyx2E-1 0.64 - 64.88 0.64 15.40 7.04 0.20 2.84 4.71 312 1.17 <dl 0.03 0.23 - - - 0.36 

5680 BCE 1101viA-pyx5-1 0.62 - 68.67 0.82 17.01 3.49 0.22 0.63 4.74 3.03 1.38 0.043* 0.02* 0.19* 3.4* 129* -64.8 0.35 

5680 BCE 1101viA-pyx5-2 0.59 - 64.68 1.00 17.54 7.55 0.15 1.22 6.65 008 1.13 0.051* 0.02* 0.2* 3.1* 182* -50.8 0.23 

5680 BCE 1101viA-plg1D-1 - 0.69 76.13 0.34 14.17 3.02 0.12 0.38 2.75 1.22 1.87 0.06* 0.003* 0.14* 2.4* 116* -33.2 0.12 

5680 BCE 1101viA-plg1D-2 - 0.73 75.61 0.49 12.85 2.59 0.14 0.47 3.02 2.78 2.06 <dl 0.01 0.24 - - - 0.04 

5680 BCE 1101viA-plg1D-3 - 0.67 76.68 0.51 12.93 2.83 0.07 0.48 2.79 1.66 2.04 <dl 0.02 0.23 - - - 0.09 

5680 BCE 1101viA-plg1C-3 - 0.77 76.39 0.50 13.41 2.91 0.06 0.43 2.86 1.46 1.99 <dl 0.01 0.25 - - - 0,06 

5680 BCE 1101viA-plg1C-3 - 0.68 76.63 0.37 13.36 2.82 0.07 0.40 2.84 1.46 2.04 <dl 0.01 0.21 - - - 0.10 

5680 BCE 1101viA-plg1A-1 - 0.01 75.68 0.64 12.84 3.14 0.23 0.55 2.86 2.09 1.98 <dl 0.02 0.22 - - - 0.07 

5680 BCE 1101viA-plg1A-2 - 0.68 76.27 0.70 12.73 3.36 0.01 0.56 2.87 1.62 1.88 <dl 0.02 0.24 - - - 0.09 

5680 BCE 1101viA-plg1E-2 - 0.70 74.97 0.42 13.72 2.75 0.02 0.43 3.36 2.41 1.90 <dl <dl 0.21 - - - 0.07 

5680 BCE 1101viA-plg1B-1 - 0.67 76.25 0.48 13.12 3.27 0.09 0.46 2.87 1.57 1.90 <dl 0.01 0.18 - - - 0.10 

5680 BCE 1101viA-plg1B-2 - 0.66 76.33 0.47 12.93 3.60 0.04 0.47 2.98 141 1.77 <dl <dl 0.10 - - - 0.12 
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5680 BCE 1101viA-plg1B-3 - 0.71 73.31 0.57 12.28 3.73 0.03 1.42 3.88 2.89 1.90 <dl 0.02 0.13 - - - 0.06 

 1622 

Table 3: Summary table of the analysed data and calculated properties (including temperature for MI and GM, pressure and viscosity (GM without 1623 

microlites and GM+X with microlites) *Boudon et al., 2008; Pichavant et al., 2018; Poussineau, 2005  1624 

Table 3 

 

Eruption 

Eruption 

Style 
VEI 

Measured Properties Calculated Properties 

Av. Bulk 

Rock 

SiO2 

(wt%) 

Av. MI 

SiO2 

(wt%) 

Max. 

H2O 

(wt%) 

Max. 

CO2 

(ppm) 

Microlites 

(vol%) 

Av. MI 

Temp 

(oC) 

Av. GM 

Temp 

(oC) 

Pressure 

(MPa) 

Depth 

(Km) 

Viscosity 

(Pa·s) 
Ascent 

Rate 

(m/s) 
GM GM+X 

1657 Cal. CE Vulcanian 2-3 58.1 76.1 4.14 674 18 1000 975 190 7.7 107.6 108 0.7 - 3 

1530 Cal. CE Sub-Plinian 3 57.5* 74.3* 5* - 17 - 34 875* 1000* 170* 7* 108.2 108.5 2 - 4 

1010 Cal. CE Plinian 4 58 71.6 4.42 131 8 1000 1025 210 8.6 106 106 0.6 - 12 

5680 Cal. BCE Plinian 4 - 72.7 4.19 866 47 1035 990 220 8.7 105.4 107 0.04 - 1 

 1625 


















