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Geralf Hiitter, Lutz Zybell, Meinhard Kuna

This article presents an overview on modeling of micromechanical failure processes in
nodular cast iron, a material used for many engineering applications. Depending on the
loading conditions, different micromechanisms are responsible for damage and failure of
nodular cast iron. The scope of this article is to derive a connection between experimental
findings and simulation approaches for those different micromechanisms. Based on a review
of experimental studies, the models are classified by several criteria into different modeling
strategies. The main findings achieved for homogeneous stress states as well as for fracture
and machining simulations are summarized and compared. Keywords: nodular cast iron;
damage mechanisms; modeling; micromechanics simulations; finite elements

1 Introduction

Nodular cast ironE] (NCI), also known as spheroidal graphite cast iron, is a carbon-rich iron alloy. Due
to the high carbon content, graphite is found as particles on the microstructure level embedded into the
metallic matrix. The term “nodular” refers to the shape of the graphite particles which is achieved by
certain alloying elements like magnesium. Compared to classical gray cast iron with lamellar graphite,
the nodular particle shape increases strength and toughness becoming comparable to many grades of
steel. In addition, the cost-effective casting production allows a high design flexibility which is why
nodular cast iron is widely used in industry, e.g. for gearboxes, crankshafts, pipes or nuclear storage
and transportation casks.

The nodular graphite particles have a volume fraction between 7% and 15% and exhibit typically a
diameter dg in the range between 10 pm and 150 pm. They thus constitute strong heterogeneities in the
microstructure affecting the macroscopic mechanical properties. Size, (deviations from the spherical)
shape and distribution of graphite particles and the microstructure of the metallic matrix depend on
temperature evolution during the casting process and possible subsequent heat treatments. Especially
in thick-walled casted components the local temperature evolutions at the surface and in the center can
differ considerably resulting in locally different microstructures and thus in locally varying mechanical
properties.

!Due to its mechanical properties nodular cast iron is also known as “ductile cast iron (DCI)”. However, in order to avoid
confusion with the damage mechanisms which will be discussed below, this term is omitted here.
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Of course, then the question arises whether the local strength or toughness is sufficient to sustain
the local loading conditions — or other the way round: Which microstructure has to be adjusted by
(additional) heat treatments to make the component resist the local loading conditions? Answering these
questions requires that a relation between microstructure and macroscopic mechanical properties can
be drawn. This relation has been subject of both experimental and computational investigations. The
latter approach becomes more and more powerful with increasing computing power. Furthermore, NCI
is an ideal material for this approach since the geometry of the microstructure can be easily determined
by optical imaging and, as mentioned before, can be influenced specifically. That is why the present
paper aims in providing a review on the current state of the art of the modeling of micromechanics of
NCI pointing out the specifics of this material. Reviews on the applications and properties of NCI were
published on occasion of 50 years of applications of NCI [70] and from German [9] and Japanese points
of view [63]. A review on fracture testing of cast iron materials was given recently [96]. Reviews on the
modeling of other engineering metals, typically steels and light-weight alloys, can be found elsewhere
I16, 95, [T16)].

The outline of the present paper is as follows: In Section [2| some experimental results are reviewed
briefly as they are necessary for an accurate modeling, before in Section [3| the available models are
classified according to several criteria. Then, the classes of models are discussed in Sections [ and [j]
before we close with a summary and outlook.

2 Experimental characterization

2.1 Classification

The classification of NCI is defined in the standards EN-1563 [33] and ASTM A536 [4]. In both systems
the grade code number is related to ultimate strength (MPa resp. ksi) and percent elongation at fracture.
Both quantities depend on the microstructure of the metallic matrix and on the shape of the graphite
particles. The matrix material can have a ferritic, pearlitic or austenitic structure or intermediate stages
depending on the chemical composition of the matrix and on the heat treatment as shown in Figure [f}
In ferritic-pearlitic NCIs, a so-called “bulls eye” structures of ferrite can be found around the graphite
particles, see Figure By additional heat treatment the matrix material can be transformed into
bainite consisting of needle shaped ferrite and austenite. This material is known as austempered ductile
iron (ADI).
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Figure 1: Different kinds of nodular cast iron (NCI) (from [34]): a) ferritic NCI b) ferritic-pearlitic NCI
with so-called “bulls eye” structures c) pearlitic NCI



2.2 Stereology of NCI microstructures

In order to quantify the influence of the microstructure on the properties of NCI, one needs to define
corresponding geometric measures of the statistical microstructure of NCI. Basic geometric quantities
of NCI are the relative number of graphite particles (2D: N4 the mean number per unit area, 3D:
Ny the mean number per unit volume), graphite volume fraction fp and a mean distance A between
centers of neighboring graphite particles These quantities can be obtained by statistical evaluation of
2D images from micrographs or from 3D images. The probably most prominent stereological method
is closely related to the solution of Wicksell’s corpuscle problem, namely the stereological estimation of
the diameter distribution function of the spheres from the diameter distribution function of the section
circles observed in a metallographic cross section [83] 01]. A further problem is the characterization of
the 3D arrangement of the graphite particles, which can be expressed in terms of the pair correlation
function of the spheres’ centers. A stereological method of estimating the pair correlation function of
the spheres’ centers from the pair correlation function of the section circles is presented in [47].

However, for practical applications it is usually not necessary to determine the complete distribution
and correlation functions. Rather, it is desirable to establish links between mechanical properties of
NCI and mean measures of its microstructure like the above-mentioned A, fy, N4 and Ny. The latter
three quantities are related to each other by

— — — .3
fo=NvV, fa=fo, Na=2RNy, V=ay (2R)" . (1)

Therein, R and V denote the mean values of the particle radii and volumes, respectively. Furthermore,
fa is the area fraction of the graphite particles in a micrograph. Remarkably, f4 equals the volume
fraction fy independent of the particular distribution of radii. The factor oy accounts for the fact that
the mean of the cubed diameter of the particles differs in general from the cube of the mean diameter
and depends thus on the particular distribution function. For practically relevant distributions ay = 1
(e.g. ay = 1 for a Rayleigh distribution, ay = m/3 for a uniform distribution). Only if all particles
have the same diameter, a smaller value of oy = 7/6 is obtained.

The mean particle distance A can be characterized by different measures. In the mathematical
literature and software packages built thereupon mostly the mean distance Ay, between nearest neighbors
is employed for this purpose. However, in the light of the mostly ductile failure mechanisms of NCI
acting always over several neighboring particles (as will be discussed in detail in Section , a measure
taking into account all neighbors is more appropriate. That is why in [58]

A=1/Y/Ny 2

was defined as adequate measure of the mean distance of graphite particles corresponding effectively to
the lattice constant of a regular cubic-primitive arrangement of same density Ny . Using Eq. , this
definition yields A = (fo /av)l/ 6 /v/Na allowing to compute A from measures N4 and fo = fa which
can be directly determined from micrographs. The influence of the particular distribution of radii is
relatively weak since «y is close to one and enters only in the sixth root. A similar approach \ =
0.5/+/N4 was proposed by Salzbrenner [102]. The ratio between the mean distance according to Eq.
and the mean nearest-neighbor distance Ay, depends considerably on the pair correlation function of
the particles’ centers. For instance, if the particles are regularly arranged the ratio is A\, /A = 1 whereas
the values Ann/A = 0.55 and Ap,/A = 0.62 are obtained if the centers are assumed to originate from
stationary Poisson point processes or from Matérn’s hard-core point processes, respectively. For details
we refer to Ohser and Miicklich [91].

The graphite particle distance A and the graphite particle size (mean radius R or mean diameter dg,
resp.) scale to each other for a fixed graphite volume fraction of fy ~ 0.07 ... 0.15 by

- ,3/% ~0.37 ... 0.48. (3)
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So conclusions drawn with respect to graphite particle size R are valid as well with respect to graphite
particle distance A. Additionally, a similar scaling holds for the size of the ferrite grains.

Extensive research has also been done in characterizing the shape of the graphite particles, for clas-
sification see e.g. [61]. Thereby, the so-called shape factor f = 47rA/U?, with A being the area of
a graphite particle in a plane section and U its circumference, is a measure of the nodularity of the
graphite particles. Modern techniques like scanning electron microscopy (SEM) with focused ion beam
(FIB) thinning [122] allow for a precise determination of this measure, which is of important concern for
the field of non-spheroidal graphite cast irons such as e.g. gray cast iron containing lamellar graphite.

2.3 Macroscopic mechanical behavior

Due to the embedded graphite particles, the macroscopic behavior of NCI under different loading
conditions is different from common steels and will be discussed with respect to the influence of the
specific microstructure in the following.

2.3.1 Moneotonic loading

Under monotonic tension loading NCI shows no distinct yield point. Furthermore, there is a tension-
compression asymmetry, with the yield stress in compression being larger than in tension up to 7%
[43] 49, [78]. The strength and the hardening behavior of NCI are strongly influenced by the matrix
material properties showing a ratio of yield stress to ultimate strength of about 0.65...0.75. As for
the very most engineering metals, the yield stress of NCI increases with increasing rates of loading,
decreasing temperature and decreasing grain size (Hall-Petch effect). In ferritic-pearlitic NCIs the yield
stress increases also with increasing content of pearlite and increasing contents of silicon. Also the strain
to fracture depends strongly on the microstructure and chemical composition. With higher content of
pearlite, and/or stronger deviations of the shape of the graphite particles from the spherical one, and/or
higher contents of silicon the material becomes more brittle and thus the strain at failure decreases.
Empirical relations for the effect were derived by Nilsson et al. [89, 90]. Especially under low stress
triaxialities the graphite plays an important role, which was, however, only investigated in a few studies
yet [26], [78].

Nodular cast irons with a body-centered cubic matrix (ferrite, pearlite, bainite) exhibit a ductile-
to-brittle transition (DBT) with decreasing temperature and/or increased rates of loading. The DBT
temperature depends on the microstructure, if the pearlite content is larger than 50 % [66], and on
the chemical composition, especially on the content of silicon [96]. However, for NCI the characteristic
drop of the Charpy energy with decreasing temperature appears over a wider temperature range than
for comparable ferritic steels [9)].

Regarding fracture testing of NCI, “general consensus of the criteria for crack initiation has not been
reached” yet [63] due to the inhomogeneous microstructure of NCI. Current studies utilize the concept
of a so-called “stretch-zone” (e.g. [7, 65, [124]), but an exact definition of respective measures is not
trivial either, especially in the DBT regime [96].

Nevertheless, the correlation of fracture toughness and microstructure is of great practical interest and
has thus been intensively studied (with different measures of the fracture toughness). Figure |2| shows
the compiled fracture toughness values for ferritic NCIs in the ductile regime with different values A
of the mean distance of the graphite particles. The data can adequately be described empirically by a
linear interrelationship with offset as proposed also by Salzbrenner [102] and Pusch et al. [96].

The influence of the microstructure of the matrix on the fracture toughness was also investigated
intensively. In general, it is found that higher contents of pearlite and martensite lead to higher
strengths at the expense of lower fracture toughness values, see Figure 3] Detailed overviews about
fracture mechanics properties of different types of NCI are given in [9] [13] 96]. In addition, numerous
fracture tests under increased rates of loading were performed with several techniques [6, [8, 96} 113], 125].
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Figure 2: Correlation of fracture toughness J. vs. graphite particle distance A times shape factor f for
ferritic NCIs EN-GJS-400 (from [5])

Such tests are relevant for engineering applications but impose the severe practical problem especially
the determination of the current crack length.

2.3.2 Cyclic loading and fatigue

As mentioned before, NCI exhibits a tension-compression asymmetry with a larger compressive yield
stress. Under cyclic loading there is a specific Bauschinger effect characterized by a high internal stress
and an unusual hysteresis loop if the accumulated plastic strain is smaller than 100 %. This is mainly
caused by interactions between matrix and graphite particles. The Bauschinger effect reduces with
further cycling when plastification takes place predominantly in the matrix material [43]. The cyclic
behavior already stabilizes after 15 cycles and the parameters for the isotropic-kinematic hardening are
not much influenced by different microstructure of matrix or graphite particles, resp. [134].

Fatigue properties of NCI and the correlation to microstructural parameters were investigated by a
number of researchers [25] [81], 98]. They found a strong relation between graphite particle size and
fatigue life. Also cyclic loading with variable amplitudes [35] and loading in the VHCF regime [128]
were investigated. A comprehensive database for HCF behavior of NCI of type EN-GJS-400 including
a study on the influence of casting defects on fatigue life is given in [I07]. Common to all cited studies
is the finding, that the fatigue life of NCI is governed by the size of a single graphite particle or casting
defect, resp., from where the fatigue crack initiates. Recently, the field of multi-axial fatigue of NCI
also attained attraction [15] [34].

Regarding the short crack behavior of NCI on the microstructural level, it was found by Palin-Luc
et al. [92], that ferritic-pearlitic NCIs with bulls-eye structure exhibit micro-cracks within the matrix,
which arrest at the ferrite/pearlite interface, at a stress level equal to the conventional endurance limit.
These microcracks do not interact directly with each other. However, they lead to macroscopic changes
of the unloading stiffness. Thus, another limit can be defined below the conventional endurance one,
where micro-cracks do not initiate in the matrix. Furthermore it was found by Endo and Yanase [34]
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Figure 3: Influence of the microstructure of the matrix on fracture toughness and ultimate tensile
strength at room temperature (from [126])

that these micro-cracks do not interact.

Thermo-mechanical fatigue of NCI is of important concern for automotive combustion engine com-
ponents. This topic was investigated by Seifert et al. [I04] and Mellouli et al. [T7]. They found that the
tension-compression asymmetry appears only at large strains. A microstructure with smaller graphite
particles increased the number of cycles to crack initiation and decreased the crack numbers and the
main crack growth rate. Furthermore, it was found by Metzger et al. [T9] that an additional cyclic
loading in the HCF regime superimposed to the thermo-mechanical one leads to a reduced lifetime if a
certain threshold of the amplitudes is exceeded.

2.3.3 Fatigue crack growth

Besides cracks on the microlevel, also macroscopic cracks are important for dimensioning of components
under cyclic loading. These macroscopic cracks may represent casting defects or may evolve from coa-
lesced microcracks. There exist a huge amount of fatigue crack growth data for NCI in the literature
[13, 50l ©96], 129, 134], but restricted to positive stress ratios only. Thereby, the Paris regime is mostly
independent of the material microstructure. There is only a small influence of the graphite particle
distance on the threshold value and the critical cyclic stress intensity factor [81} 96]. Furthermore, by
applying statistical quantile crack growth curves, a procedure for obtaining conservative safety assess-
ment results was developed [48, [96] by using the NASGRO equation. With modern X-ray tomography
[72, [73], 123], where the graphite particles are used as markers, it is possible to analyze the formation
of small fatigue cracks in a restricted volume of one or two mm? up to pm-precision. Combining this
technique with numerical simulation, it is possible to obtain local crack driving forces and closure levels.
Latest achievements in the investigation of fatigue cracks are studies of 3D semi-elliptical surface cracks
by in situ tomography [71] and 3D observation of real casting defects [24]

2.4 Micromechanisms
2.4.1 Monotonic loading

Under monotonic static loading at room temperature, NCI mainly fails by a ductile mechanism. Thereby
the graphite particles start to debond from the metallic matrix when the macroscopic yield strength
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Figure 4: Ductile mechanism in NCI for a tensile test (from [31]): @ macroscopic stress-strain curve,
debonding of graphite particles at point 2, growth of voids at point 3 (point 1: first
microscopic plastification, point 4: final failure)

is reached, see Fig. @l Subsequently, the formed voids grow with increasing plastic straining. Finally,
void growth turns into void coalescence by failure of the intervoid ligaments within a very localized
region [31, 40]. Further details of this void nucleation and growth process in NCI including measured
parameters can be found in [44]. The void growth process is also influenced by the initial void shape
[74].

Debonding of graphite particles, growth of the thereby created voids and finally void coalescence are
also the processes that are observed in front of the crack tip during fracture testing as shown in Figure[5]
However, the strongly elongated shape of the voids prior to coalescence from tensile tests (Figure
is not observed in the fracture process zone (Figure due to the larger hydrostatic stresses there.
Furthermore, Figure [5| shows that graphite particles do not debond only directly in the crack plane but
also in a region around.

Consequently, typical fracture surface of NCI (see Fig. |§[) exhibit the following features: Large pri-
mary voids are located around the graphite particles. Depending on the matrix material the intervoid
ligaments either fail by cleavage (preferably the pearlitic grains and favored also by deviations of the
particles from the spherical shape) or by a ductile mechanisms. A broad overview of different fracture
surfaces of NCI and the associated mechanisms can be found in [76]. Therein, it is documented addi-
tionally, that cleavage fracture in ferritic-pearlitic NCI tends to initiate at the inclusions around the
eutectic cell boundary rather than at the graphite-matrix interface. However, locally limited cleavage



Figure 5: Ductile mechanism in NCI for a fracture test (initial crack tip marked with an arrow; from
[96]): [(a)] begin of crack opening, [(b)| debonding of graphite particles in front of the crack tip,
crack propagation



initiation in NCI in the DBT regime does not lead to a severe drop of the fracture toughness as observed
e.g. with ferritic steels [9] 1011, [108]. Furthermore, the macroscopic crack propagation in NCI can remain
stable (macroscopically apparently ductile) despite local cleavage events [96]. In the upper-shelf regime,
the ductile mechanism is influenced by the spatial distribution of the interacting voids: If the voids are
closely spaced, void coalescence takes place by internal necking of the intervoid ligaments, leaving small
secondary voids (one order of magnitude smaller than the primary ones) at the ridges of the primary
dimples. If the primary voids and the resulting dimples are wider spaced, secondary voids nucleate from
small non-metallic inclusions (MnS, Al;O3, CaO) in the matrix material [40, [74], see Fig. [6d.

Figure 6: Fracture surface of ferritic-pearlitic NCI under monotonic static loading (from [40]): a) frac-
ture surface with b) primary dimples originating from graphite particles, ¢) local transgranular
cleavage and d) secondary voids on ridges between primary dimples

2.4.2 Cyclic loading

Guillemer-Neel et al. [43] investigated the dislocation evolution in NCI during cyclic loading. They found
that dislocation arrangements during strengthening are in accordance to a-iron or Fe-Si polycrystals.
Furthermore, the before-mentioned specific Bauschinger effect is caused by inhomogeneous deformations
between particles and matrix and by the development of enhanced dislocation density in the matrix
originating from the interface between graphite and matrix.

The short crack growth behavior in NCI was studied by Germann et al. [39] by SEM, revealing
that these cracks originate at voids formed after debonding of graphite from the matrix. Also high-



resolution synchrotron X-ray tomography [123] showed that short cracks start at casting defects and
graphite nodules, but most of them arrest before initiating a macroscopic fatigue crack. Recently,
Fischer et al. [37] investigated the VHCF behavior of NCI by puCT scanning and image correlation.
Thereby they were able to reconstruct the strain localization during VHCF loading and so the origin
of macroscopic fracture could be clearly identified, what is not always possible by SEM.

2.4.3 Fatigue crack growth

The growth of macroscopic cracks by fatigue in NCI is strongly influenced by the spatial distribution
of the graphite particles, which debond from the metallic matrix when the fatigue crack approaches
there. Between the particles the crack grows transgranularly resulting in fatigue striations on the
fracture surface. Studies with synchrotron X-ray tomography revealed that there is a non-uniform
closure process along the crack front leading to inhomogeneous arrest and growth, resp., of parts of the
crack front |72} [73].

Cavallini et al. [19] investigated the influence of the matrix material (ferrite, pearlite and bainite) on
fatigue crack growth by SEM. They found that the debonding of the graphite particles mainly influences
the crack closure process, whereby a more pronounced debonding results in a lower crack growth rate.
NCI with pearlitic matrix shows an additional secondary closure mechanism caused by shielding of the
ferritic islands within the pearlite due to their different mechanical properties. It should be noted that
there is only an influence of the microstructure on the fatigue crack propagation rate under high stress
ratios.

Tacoviello et al. [59] found that the graphite debonding is not the main failure mechanism during
fatigue crack growth. There are additional damaging micromechanisms (e.g. the so-called onion-like
mechanism) acting in the graphite particle, which seem to be more evident. Additionally, in pearlitic
NCI damage initiates in the graphite particles in form of secondary microcracks formed already in the
matrix material under loading in the elastic range.

Regarding variable amplitude loading it was found by Hiibner et al. [50] that the occurring effects
after overloads differ from those in steel: In ferritic NCI there is a pronounced crack growth acceleration
when an overload of intermediate to high load level is applied. On the microstructural level debonded
graphite particles and secondary cracks were found in front of the crack tip. Later, Zybell et al. [131]
identified these effects as the start of ductile crack initiation, which are accompanied by the evolution of
a large plastic zone, crack branching, and early stages of ductile crack growth. The same microstructural
characteristics were found in pearlitic NCI, where multiple overloads resulted in a much more tortuous
crack path than that of a normal fatigue crack [60].

3 Classification of models

The modeling approaches used in literature so far can be classified according to several criteria. The
first important criterion is the damage mechanism to be addressed: ductile failure (Figure @), cleavage
(Figure @:) and fatigue or interactions thereof. Regarding ductile failure it can furthermore be distin-
guished whether only the primary voids originated from debonded graphite particles are considered or
whether the typically much smaller secondary voids nucleating from inclusions (Figure @1) are incor-
porated, too. Regarding modeling, the ductile mechanism by growth and coalescence of primary voids
is by far the mostly investigated mechanism. From this point of view all mechanisms of degradation of
the metallic matrix around the primary voids, i.e. nucleation and growth of secondary voids, cleavage
and fatigue, may be termed as secondary damage mechanisms.

Closely related to the damage mechanisms is the classification regarding loading conditions, which
can be subdivided into time history and spatial distribution. Regarding time history the main types are
monotonous loading or cyclic loading, the latter typically for addressing fatigue. One may distinguish
further according to the rate of loading between (quasi-)static and dynamic conditions, i.e. whether
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inertia has to be incorporated or not. The rate of loading determines also whether strain rate sensitivity
of the material is relevant and whether simplifying assumptions like isothermal or adiabatic conditions
are feasible. From the many types of loading (mechanical, thermal, chemical, electrical, etc.) that may
arise in real structures the present paper mainly focuses on mechanical loadings.

The second important issue of the characterization of the loading is its spatial distribution. Here
the main question is whether the characteristic length scales of the macroscopic stress fields and of
the microstructure are comparable or not. If the change of the macroscopic fields over characteristic
length scales of the microstructure is negligible, then the loading is homogeneous with respect to a
characteristic section of the microstructure and scale separation approaches (homogenization techniques,
cell models) can be applied. In contrast, if the relevant length scales of the microstructure compare
to the characteristic length scales of the macroscopic fields, e.g. at crack tips, sharp notches or after
localization, then the loading of a characteristic section of the microstructure is inhomogeneous and
the interaction of the length scales must be incorporated. This can be achieved by resolving the
microstructure discretely in respective regions. Of course, in general the relevant length scales depend
on the active damage mechanisms and thus also on loading conditions (rate, sequence, etc.). In NCI the
heterogeneous microstructure formed by the graphite particles constitutes the relevant scale for several
damage mechanisms. The main criteria for classification of damage mechanisms, loading and models
and their interactions are shown schematically in Figure [7]

In contrast to experiments, the question, whether the loading is homogeneous or inhomogeneous with
respect to characteristic dimensions of the microstructure, is very important for the modeling strategy.
The reason is that the choice of applicable modeling techniques depends strongly on the answer of this
question. That is why within the present paper this distinction is chosen as primary criterion for the
classification of models used in literature.

11
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4 Homogeneous stress states

4.1 Cell models
4.1.1 Concept and analytical solutions

If the macroscopic fields do not change significantly over distances comparable to the spacing of the
graphite particles, it is sufficient to consider one representative cell of the material microstructure within
a homogenization concept. Mostly, an idealized configuration is chosen with a spherical or ellipsoidal
graphite particle arranged regularly within a spherical, cylindrical or polyhedral cell as sketched in
Figure [§] For the homogenization, the macroscopic values of stresses X or rates of deformation D are
prescribed to the cell model of volume V' via suitable static, kinematic or periodic boundary condi-
tions. The respective other (so-called “conjugate”’) quantity then derives from the requirement that the
macroscopic work of deformation shall be equal to the corresponding microscopic average, the so-called
Hill-Mandel condition:

1
E:D:V/o':ddv. (4)
4

Therein, ¢ and d refer to the tensors of stress and rate of deformation at the microscale, respectively. In
the majority of cell models used in literature kinematic boundary conditions are employed (since they
lead to a rigorous upper bound solution). A few studies focusing on shear-dominated loading states
employ periodic boundary conditions. For details we refer to a review article by Benzerga and Leblond
[10]. In cell models the loading state is often characterized by the stress triaxiality 7" which corresponds
to the ratio of hydrostatic and equivalent Mises parts of the macroscopic stress tensor X.

Furthermore, cell models that have used for NCI in the literature so far differ in the geometry of
the cell, in the representation of the graphite, in the constitutive law employed for the metallic matrix
and in the loading history (static or cyclic, see Section . In most of the studies a regular cell with
spherical, cylindrical or cubic shape is investigated. Cubic cells can be arranged to fill a room completely
at the cost that the global response is in general anisotropic, a drawback that is seldom mentioned. In
contrast, spherical or cylindrical cells can fill a given room only approximately (Figure . However, with
corresponding constitutive laws for the constituents, spherical cells lead to a macroscopically isotropic
behavior which is typically expected for a material like NCI. In the literature, spherical cells were almost
exclusively used if the microscopic boundary value problem was to be solved analytically. Aiming at
a closed-form solution, such approaches have to limit the complexity of the representation of matrix
and graphite, i.e. typically an ideal-rigid plastic behavior of the matrix is assumed and the particle is
modeled as a void. Surely, the most famous model of this limit-load type was formulated by Gurson
[46]. Numerous extensions of Gurson’s homogenization approach have been proposed in the literature
taking into account e.g. void-shape effects or secondary voids.

12



4.1.2 Numerical approaches

However, if the behavior on the microscale shall be modeled in more detail, either for improved quanti-
tative predictions or for qualitative understanding of mechanisms like void coalescence, then analytical
solutions are not available anymore and numerical methods are necessary. Mostly, the finite element
method is employed. In such numerical models typically cubic cells or cylindrical cells (implemented by
means of axisymmetric elements) are used due to the periodicity and since especially in large displace-
ment analyses, the implementation of the boundary conditions is easier than with spherical cells. In
this context the pioneering work of Tvergaard and co-workers has to be mentioned [67, 114} [1T5] which
improved considerably the understanding of the ductile failure mechanism in metals. Based on the
results of the cell models, heuristic modifications of the Gurson model were proposed by Tvergaard and
Needleman [114], [TT9], namely the parameters ¢; and the effective void volume fraction f*. This modi-
fied model is today well-established and known as GTN-model. Note that in cell models, independent
of whether treated by numerical or analytical methods, in general the size of the cell, which is related
to the graphite distance A drops out due to division by the volume V in Eq. . Thus, in such mod-
els the resulting macroscopic behavior can only depend on A if approaches for secondary mechanisms
are applied on the microscale incorporating internal lengths (e.g. non-local or gradient approaches or
cohesive zone models). However, even in these cases the resulting influence of A is rather indirect over
relations that then the macroscopic values e.g. of strain to failure or yield stress may depend on the
ratio of the internal length and A.

4.2 Cell models for nodular cast iron
4.2.1 Modeling graphite as primary void

About ten years after the pioneering studies of Tvergaard and Needleman, cell models were applied to
NCI for the first time [18], 27, 31, 69, 109} [130]. In the first studies the graphite particles were modeled
as a priori existing voids with a volume fraction of fy ~ 10%. Thereby, it is essential to represent the
elastic-plastic properties of the matrix material adequately. In [I8] 69, [109] the yield curve of the matrix
was extracted from tensile tests on “ferritic bulk material which has the same mechanical properties
as the matrix material in cast iron”. A similar approach was used by Dong et al. [31] and verified
by microhardness tests on NCI. Focussing on the initial plastification, Dahlberg [27] assumed (almost)
ideal plastic behavior of the matrix. [I30] do not provide sources for their assumed yield curve of the
matrix.

Qualitatively, these cell model studies on NCI comply with the main findings of preliminary stud-
ies [67, 114, [IT5] with much lower void volume fractions, especially regarding the influence of stress
triaxiality on void growth and evolution of void shape, Figure [0] These simulations were also used
quantitatively to calibrate the heuristic parameters of the GTN-model for this material. It was found
that for the large void volume fractions, which are representative for the graphite in NCI, the parameters
g1 and gs of the GTN-model have to be chosen lower than the values ¢; = 1.5 and g5 = 1.0 proposed
by Tvergaard for lower void volume fractions, namely in the range ¢ = 1.1...1.3 and ¢o = 0.7...1.0
[18],[69]. It turned out that the particular spatial arrangement of the voids and the shape of the void
and the cell have only little influence on the initial yield point and the following hardening behavior.
However, spatial arrangement and shape do have a moderate effect on the instant of transition to the
void coalescence stage [69) [109], 130]. For instance it is found that oblate voids whose long axis are
aligned normal to the main loading direction lead to an earlier void coalescence [I8], the reason why
cast iron with lamellar graphite has considerably lower strains to failure than NCI. For low stress tri-
axialities there is also a moderate effect of the third invariant of the stress deviator (expressed typically
by the Lode parameter) on the strain to failure [I32].

Fritzen et al. [38] investigated a cell with a large number of stochastically arranged spherical voids
and compared it to the behavior of the classical simple model of a cell with only a single void, i.e. a
periodic arrangement. Although not aiming explicitly at this material, they used void volume fractions
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Figure 9: Effect of stress triaxiality T (from [69])

of 10%, which are representative for the debonded graphite in NCI. In coincidence with the studies cited
above it is found that the difference of the predicted initial yield stress between the different realizations
is relatively low. In contrast, Nicoletto et al. [87] performed cell model simulations with two voids of
different size to investigate the effect of deviations from periodic arrangements. They report that the
macroscopic yield stress decreases with increasing difference of size of both voids. Presumably, this
finding can be attributed to the employed series connection of both elementary unit cells.

4.2.2 Modeling of graphite particles

Addressing the question whether the graphite can be indeed modeled as void, Brocks and Steglich
[18], 109] performed for comparison cell model simulations with the graphite particle represented as a
rigid, unbonded particle. For low triaxialities ' = 1/3 (i.e. uniform macroscopic tension) they observed
hardly any effect in the initial regime of deformation. However, concerning the initiation of void
coalescence the explicit modeling of the graphite particle has a considerable effect, see Figure The
cell model with graphite particle predicts an earlier coalescence since the graphite hinders the lateral
contraction thus favoring necking of the metallic matrix, compare Figure Modeling the graphite
as rigid particle is of course a strict assumption so that this model surely overestimates the effect of
the graphite. Dong et al. [3I] compared simulations with a void and those with a perfectly bonded
elastic graphite particle. As could be expected from the observed early debonding of graphite particles
reported in Section [2] the model with void gives a better agreement to experimental results. Collini and
Nicoletto [23] investigated cell models with and without unbonded elastic graphite particles. Hardly
any difference between the results of both simulations is observed. However, these authors simulated
only the initial regime of yielding but not the coalescence stage. Bonora and Ruggiero [17] modeled
the graphite particles also as unbonded and elastic but incorporated the cooling from solidification to
room temperature. The different thermal shrinkage of graphite and matrix during cooling leads to
compressive stresses at the graphite matrix interface at room temperature. The authors performed a
systematic parameter study on the effect of the elastic properties of the graphite which are, by the way,
not trivial to determine. Finally, their model allowed adequate predictions of the material behavior
around the yield point and with respect to the tension-compression asymmetry of NCI. Focussing on
the regime of initial yielding, the results of Bonora and Ruggiero [I7] show that above strains of about
0.5 % and for positive stress triaxialities the graphite particles can be modeled as voids. Aiming at
machining simulations, Chuzhoy et al. [22] incorporated also the inelastic properties of the graphite.
A number of recent papers focused on ductile failure under low stress triaxialities or even pure shearing
by means of cell model simulations [88] [117]. These studies investigate the mechanism in principle, thus
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using voids with a volume fraction only up to 5%. It is found that especially under pure shearing the
voids shut thus forming microcracks. Regarding NCI it is clear that the graphite particles will prevent
the closure and will thus affect this mechanism. In this context also inelastic deformation properties of
the graphite have to be taken into account.

4.2.3 Microstructure of the matrix

Another aspect that has been investigated is the microstructure of the metallic matrix, especially
for ferritic-pearlitic cast irons. For this purpose the bull’s eye structure (Figure was resolved in
cell model simulations [22] 23] 64, 86, 87] as shown in Figure Chuzhoy et al. [22] extracted the
elastic-plastic properties of ferrite and pearlite individually from heats resembling both constituents.
In contrast, Collini and Nicoletto [23], 86l [87] performed an inverse parameter identification based on
some ad-hoc assumptions. With these models, Kobayashi and Toda [64] focused on the initiation of
microcracks, whereas Collini and Nicoletto [23] could predict correctly the effect of the ferrite content on
the macroscopic yield stress. The predictions of the macroscopic yield curve were improved in [86], 87]
by considering deviations from the idealized single unit cell model. Metzger and Seifert [80] simulated
the yielding of lamellar cast irons assuming a single yield curve for the pearlite-ferrite composite of the
matrix. This single composite yield curve was determined by an inverse parameter identification.

Furthermore, fractographic investigations of NCI do not exhibit only the large dimples originating
from the graphite particles (Figure @a) but in-between these dimples, smaller ones are found stemming
from a second population of void nucleating particles in the matrix like carbides, Figure [6d. This
finding implies the question for the relevance of these secondary voids to the macroscopic behavior of
the material. Typically, the secondary voids are much smaller than the graphite particles. That is why
already in some of the first papers [I8],[69] on cell models for NCI, comparative studies were performed
modeling the matrix material in a homogenized way by the GTN-model. Brocks et al. [I8] used an
initially present secondary porosity of 0.04% “which did not show any effect”. In contrast, Kuna and
Sun [69] assumed a nucleable secondary porosity of 0.8% which lead indeed to an earlier initiation of
the coalescence of the primary voids originating from the graphite particles. The problem with the
GTN-model and any other constitutive law formulated within the framework of simple materials is that
the boundary value problem becomes ill-posed in the softening regime leading to a pathological mesh
dependency of the results in FE simulations.
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Figure 12: Deformed configurations of the unit cells at final failure for various internal lengths showing
different remaining ligament widths (from [132])

In order to overcome this problem in [I32] an implicit gradient-enriched nonlocal GTN model was
used for the matrix thus also incorporating the mean distance Iy of secondary voids. It is found that
the ratio of [y to the distance of primary voids A influences especially the coalescence stage: the larger
A is compared to Iy, the earlier the primary voids coalesce. This effect was found to correspond to
experimental results of NCI. Correspondingly, A\/ls affects the remanent ligament width at final failure
as shown in Figure For a matrix without secondary voids (Figure , the macroscopic softening is
attributed only to the geometric softening of the ligaments during the plastic collapse (in this context
known also as internal necking).

Bonora and Ruggiero [17] employed heuristically an effective stress-type continuum damage model
to account for the “ductile damage” of the matrix. Chuzhoy et al. [22] utilized a Cocks-Ashby model to
implement the material degradation both of metallic matrix and of the graphite. Recently, Dahlberg
et al. [26] used the Guo-Faleskog-Shih model [45] to reproduce the macroscopically observed tension-
compression asymmetry. This model has been derived analytically similar to Gurson’s one by a limit
load analysis of a spherical cell but using a dilatational Drucker-Prager matrix instead of a Mises matrix.
The Drucker-Prager law of the matrix is not symmetric with respect to tension and compression. In
contrast, Bonora and Ruggiero [I7] explained the macroscopic tension-compression asymmetry with
the contact between matrix and graphite particle as mentioned above. Apparently, the reasons for the
tension-compression asymmetry require further research.

4.3 Cyclic loading and fatigue

Cell model simulations with spherical voids under cyclic loading were first performed by Gilles et al.
[41] demonstrating that, as can be imagined, the behavior does not depend only on the monotonous
yield curve but on the relation between kinematic and isotropic hardening of the matrix. This study
and further ones [e.g.[29] 99, 110] showed an increase of the void volume within each cycle, the so-called
ratcheting effect. This effect was shown to be attributed to the formation of elastic zones after load
reversal. The effect of kinematic and isotropic hardening was also investigated for larger void volume
fractions [106]. Seifert and Riedel [I05] proposed a heuristic extension of the Gurson model to capture
thermomechanical fatigue (TMF) of cast irons.

The results of Gilles et al. [4I] also indicated an accelerated void growth under tension after a
compression preload compared to monotonous tension without preload. In NCI, under compression the
matrix interacts with the graphite particle. This effect was investigated by Rabold and Kuna [97] by
comparing the predictions of cell models with a void and those with a rigid unbonded graphite particle
for a stress ratio of R = —1. The results show that the model with void predicts a stronger ratcheting
than the one with rigid particle, see Figure [I3] This effect depends surely on the stress ratio R as
well as on the particular modeling of the graphite. Chuzhoy et al. [22] applied a more sophisticated
model for the graphite. However, these authors simulated only a single tension-compression cycle as
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Figure 13: Effect of representation of graphite on ratcheting (from [97])

this is relevant for their machining simulations. Fatigue growth of microcracks emanating from graphite
particles was studied applying linear-elastic fracture mechanics by Dahlberg [27].

5 Inhomogeneous stress states

5.1 Fracture simulations with discrete primary voids
5.1.1 Ductile fracture

For the ductile crack propagation in NCI, the mean distance A of graphite particles was recognized as
relevant microstructural length scale since experiments show a strong relation between A and fracture
toughness, compare Figure[2] A straight forward way to investigate the relation between microstructure
and ductile fracture is to resolve the microstructure in the fracture process zone discretely. There,
strong gradients appear which can be accounted for adequately by a discrete representation of the
microstructure. Under the large triaxiality and straining in the process zone, at least under monotonous
mode-I loading to be considered in the following, the graphite particles can be modeled as a priori
existent voids as discussed in Section [l In sufficient distance to the process zone, the gradients of
the field quantities become irrelevant such that the material behavior there can be described in a
homogenized way as shown schematically in Figure Mostly, models of this type are applied to ideal
small scale yielding conditions so that the far-field is uniquely defined by the stress intensity factor K.
This limit case excludes possible effects of the geometry of a particular specimen (constraint effects) —
a big advantage of numerical simulations in the light of the large effort to perform small-scale yielding
fracture experiments for ductile metals. Of course such models with discrete microstructure can be
applied also to specimens of finite size if desired.

The first models with resolved microstructure in form of a single circular discrete void were presented
30 years ago [1L 2]. But it took almost 20 further years until Tvergaard and Hutchinson [I18] considered
a whole set of voids in front of the crack tip and discovered that the mechanism of ductile crack
propagation depends on the initial void volume fraction fy. For low void volume fractions the voids in
the crack plane grow one after another (Figure void-by-void mechanism), whereas for larger void
volume fractions the currently active process zone encompasses several voids and shifts continuously
along the crack plane (Figure , the so-called multiple void mechanism. Tvergaard and Hutchinson
[118] pointed also out that for dimensional reasons the fracture toughness (in terms of the J-integral)
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predicted by such a model must have the structure

)\{;0 = function (fo, %, N) (5)
if the constitutive law of the matrix material does not contain a further length scale. The latter condition
is fulfilled for all laws formulated within the framework of simple materials like Mises plasticity or GTN-
model. In Eq. , 0o and E denote the yield stress and Young’s modulus, respectively, and N is the
hardening exponent.

According to the mentioned results of [I18], NCI with its early debonding graphite particles of a
relatively large volume fraction should exhibit a multiple void mechanism of ductile crack propagation.
The simultaneous growth of several voids in front of the initial crack tip is also observed in experiments,
see Figure However, for this mechanism the model of Tvergaard and Hutchinson [IT8] predicts a
normalized fracture toughness of J./(co\) &~ 0.5. For a ferritic NCI with o¢ = 270 MPa and A = 50 pm
this would correspond to a fracture toughness of J. &~ 6 N/mm. However, Figure shows that measured
values are at least two times higher.

An extension towards a 3D model with spherical voids [62] increased the predicted normalized fracture
toughness J./(ogA) for the multiple void mechanism only moderately. Simultaneously, a model with
discrete voids at the crack tip was applied the first time explicitly to NCI by Dahlberg [2§], though
not aiming at ductile failure but at the crack closure effect during fatigue. However, apparently the
research groups [62] 118] and [28] did not take note of each other.

Reasons why the models of [62, 1I8] strongly underestimate fracture toughness and crack growth
resistance of NCI were identified recently. In [62] TI8] the homogenized behavior outside the discrete
void region was modeled by Mises plasticity with identical parameters of the matrix material. In [57]
such simulations were compared to simulations allowing also for void growth around the process zone.
The void growth around the process zone, which is observed in experiments as well as discussed in
Section [2.4.1] was incorporated by resolving several layers of discrete voids and by embedding this
discrete zone in a homogenized region modeled by the GTN-model. A comparison of the crack growth
resistance curves predicted by this consistent model with the above-mentioned models of a single layer
of voids embedded in Mises material shows that the consistent model predicts an about twice as high
crack growth resistance. The reason of this behavior is that the void growth in the plastic zone shields
the process zone from hydrostatic stresses thus retarding the void growth in the process zone. Of course
the shielding effect is the stronger, the higher the void volume fraction is. Thus, for NCI it plays an
important role.

In all of the studies on fracture simulations cited until now in this section, a hardening exponent of
N = 0.1 and a relative yield stress o9/ E = 0.003 of the matrix material were assumed, both values seen
as representative for intermediate strength steels and light-weight alloys. However, systematic studies
on the effect of these parameters [51], [68] showed that both N and the ratio o¢/F have a very strong
influence on the predicted fracture toughness and on the tearing behavior: the higher N is, the higher
are the normalized fracture toughness J;/(opA) and the slope of the crack growth resistance curve.

The reason for the strong effect especially of the hardening is that with sufficiently ductile matrix ma-
terial, the internal necking of the microligaments between the voids (or graphite particles, respectively)
is the dominating mechanism: after certain straining the geometric softening due to lateral contraction
of the microligaments cannot be compensated anymore by the hardening of the matrix material. In
cell models this limit load is typically defined as the initiation of void coalescence stage. In fracture
simulations with discrete microstructure, at this point the active process zone moves forward even
without material separation which corresponds effectively to crack growth. The competition between
strain hardening and geometric softening explains the strong influence of the elastic-plastic properties
on the ductile R-curve. In [58] the hardening exponent of ferritic matrix material was extracted from
experiments as N = 0.20, i.e. considerable larger than assumed before. R-curves simulated with a
3D model with regularly arranged spherical voids, incorporating the shielding effect and using realistic
elastic-plastic properties of the matrix are plotted in Figure The comparison with corresponding
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Figure 16: Predicted R-curves from simulations with discrete voids in comparison to experimental data
(from [58], for references in legend c.f. [58]; Rpo.2: 0.2% offset yield stress with Rpoo =
250 MPa.. .. 315 MPa )

experimental data for ferritic NCIs EN-GJS-400 shows that the model allows realistic predictions for a
wide range of mean distances A of graphite particles just from the geometry of the microstructure (fo
and \) and elastic-plastic properties of the matrix (og, E, N). Note that Figure [16| contains simulation
results for two basic arrangements of the discrete voids, cubic primitive (cp) and body-centered cubic
(bcc). The curves deviate moderately, similarly as the void volume fractions at coalescence in cell
models depend on the particular geometry. Figure shows that the cp arrangement underestimates
the R-curves. This is plausible since in this case, a layer of voids with shortest distances among each
other is favorably located directly in the crack plane. In the bce arrangement there is no such favor-
able plane of least crack growth resistance. Thus, it is proposed to employ the bcc arrangement for
fracture simulations of NCI with discretely resolved microstructure if the stochastic distribution of the
graphite particles shall not be addressed explicitly. Due to the multiple void mechanism, the effect of
the displaced location of single graphite particles on the ductile failure is surely limited.

The simulated R-curves in Figure [L6| were predicted with a model, which incorporates only internal
necking of the microligaments but no material separation (e.g. due to cleavage or secondary voids,
compare Figure @ This fact raises the suspicion that internal necking is the main mechanisms for
ductile failure of ferritic NCI at room temperature. Apparently, due to the multiple-void mechanism
the actual material separation is of minor importance as long as it happens late enough after the
plastic limit load of the individual microligaments is exceeded. This finding explains the difficulties in
defining suitable measures of crack growth Aa and thus of fracture initiation, both in experiments and
in simulations. It even implies the question for the usefulness of the concept of a “physical” fracture
initiation for this material at all.

Anyway, if a more or less exactly determinable point of the crack growth resistance curves in Figure
is defined as fracture initiation, then Eq. holdsﬂ that means J. is proportional to the graphite
distance A. In contrast, empirical relations as in Figure |2 predict a finite J. for A = 0. We think that

2Eq. does not hold if additional length scales are introduced for the fracture initiation, e.g. if the fracture toughness
is defined as J(Aa = 0.2mm).
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this discrepancy has several reasons: Firstly the additional normalization of J. with respect to the yield
stress og (or Rpo.2, resp.) in Eq. and Figure [16|eliminates the Hall-Petch effect. This effect is surely
relevant in absolute graphs like Figure [2] since grain size and A are proportionally correlated as many
micrographical analyses have shown. Secondly, the uncertainties in measuring Aa in the range of one or
two A, where the simulated curves in Figure [16]|exhibit the first deviation from the blunting line, and the
associated problem of an exact determination of J. should not be underestimated. And thirdly, for fine
dispersed NCIs with A < 20 pm further length scales associated with secondary mechanism (secondary
voids, cleavage) may become relevant.

In all models used to simulate ductile fracture of NCI with resolved microstructure in the process zone,
the graphite is modeled as voids. Results from cell models in Section]showed that this is justified as long
as there are positive hydrostatic stresses and at least moderate plastic deformations. Both is definitely
the case in the fracture process zone. However, results cited above from simulations of crack growth
showed that even the void growth outside the process zone is important for the shielding mechanism. But
somewhere in this region there must be the transition between bonded and debonded graphite particles.
Simulations incorporating the graphite particles and the thermal eigenstrains as in cell models [17] can
shed light on the question whether the debonding affects the shielding effect. A second effect that
is not considered in the cited studies is the strain rate dependence of the yield stress. The available
models with rate-independent plasticity of the matrix predict that already for far-field loading rates K
which are typically considered as “static”, local strain rates evolve in the microligaments which would
lead in macroscopic tensile tests to increased yield stresses. An increased yield stress of the matrix
would, for ideal ductile failure, imply a higher crack growth resistance. On the other hand, fast strain
rates on such small lengths of some ten microns would correspond to quasi-adiabatic conditions and the
heating associated with the large local plastic deformations would lower the yield stress. Anyhow, those
models neglecting debonding, strain rate sensitivity and adiabatic softening allow already reasonable
predictions as demonstrated by the good agreement with experiments in Figure This finding raises
the suspicion that these effects cancel out each other at least under macroscopically quasi-static loading
conditions. Nevertheless, it will be an important issue for future research to incorporate and quantify
these effects since the “weights” between the effects can be shifted, e.g. under dynamic loading or if
secondary damage mechanisms become dominant.

5.1.2 Secondary voids, cleavage and fatigue

In addition to the debonding of graphite particles and the growth of the thereby created primary
voids, secondary damage mechanisms are observed on the microscale. This is the formation of smaller
secondary voids as well as cleavage and fatigue of the metallic matrix, appearing in the ligaments
between primary voids.

Models with discretely resolved primary microstructure in the process zone (Figure , i.e. discrete
graphite particles or voids, are appealing for investigating the effect of secondary damage mechanisms
since the complex interactions are caught directly. The idea to model the secondary mechanisms in
a homogenized way for the matrix material between the discrete primary voids in the process zone
does suggest itself. That is why such models were presented in the 1980s at the same time with the
first models containing a single discrete void in the process zone. So Aoki et al. [I] and Aravas and
McMeeking [3] employed the GTN model to account for the growth of secondary voids (the same way
as in cell models, Section and investigated their effect on ductile fracture initiation. Figure
shows the obtained distribution of the volume fraction of secondary voids between the blunted crack tip
on the left-hand side and the primary void (“hole”). The problem when using the classical GTN model
is that in the softening regime the results exhibit a pathological mesh sensitivity as will be explained in
detail in Section In order to overcome this problem nonlocal [55] and micromorphic extensions [112]
of classical ductile damage models (GTN and Cocks-Ashby, resp.) were used for the matrix material
instead. In addition, such approaches with intrinsic length scale allow to study the effect of the size
of secondary voids. In [55] it is found that for small primary void volume fractions the size of the
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Figure 18: Process zone model with islands of nucleable porosity (from [121])

secondary voids has a strong effect. In contrast, for larger primary void volume fractions this influence
is considerably weaker due to the prevailing multiple-void mechanism.

In several papers Needleman and Tvergaard (e.g. in [84] [R5 121]) employed models with partly
smeared microstructure in the process zone. In particular, they used a (modified) GTN model in the
whole domain for the secondary voids but modeled the microstructure as (circular or spherical) “islands”
of higher nucleable porosity for the primary microstructure as shown in Figure [I§ For the relatively
high volume fraction of islands, e.g. in [84], their simulations exhibit a smooth transition from crack
tip blunting to void growth in agreement with the behavior of NCI observed in experiments and in
simulations with discrete voids. The discrete-islands representation allows a computationally efficient
simulation of relative large regions with discrete microstructure. However, since based on the local
GTN-model the results suffer also from the pathological mesh dependency.

Fatigue is another mechanism of degradation of the metallic matrix that was investigated by means
of models with discretely resolved microstructure. Dahlberg [28] applied a model with several discrete
voids to study fatigue fracture initiation in NCI. For this purpose he applied a post-processing criterion
of Manson-Coffin type to the local plastic strains between the voids. Collini and Pirondi [24] simulated
the fatigue crack growth initiating at a discretely resolved mesoscale casting defect by means of classical
fracture mechanics with a Paris law.

In a similar way, Petti and Dodds [94] evaluated possible cleavage initiation in the DBT regime by
applying a Beremin post-processing criterion to the local fields between the discrete voids. Needleman
and Tvergaard [85], 120] extended their models with islands of nucleable porosity by a node-release
technique with a Ritchie-Knott-Rice criterion to simulate crack propagation by cleavage (“cleavage
grains”). In [54] [56] material degradation by cleavage is additionally incorporated by means of a cohesive
zone in the crack plane between the discrete voids. This approach allows to simulate crack propagation
by cleavage and by the ductile mechanism equivalently. However, it is found that the 2D model in [54]
with circular voids oversimplifies the competition between both mechanism which is why the 3D model
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Figure 19: Evolution of cleavage material degradation D in the crack plane in competition with void
growth with increasing far-field loading J (dashed: initial configuration; from [56])

with spherical voids in [56] is necessary. Figure shows the predicted competition between ductile
mechanism (void growth) and cleavage from the 3D models.

The results in [53], 55 [56] demonstrate that for high primary void volume fractions as representative
for NCI, the predicted crack growth resistance curves are relatively insensitive to certain amounts
of secondary damage, secondary void growth and cleavage resp., due to the prevailing multiple void
mechanism. This explains why the experimental R-curves given in Figure in normalized form lie
within a relatively narrow band compared e.g. to steels which fail by a void-by-void mechanism.

5.2 Fracture simulations with homogenized models
5.2.1 Ductile fracture

Despite their physical validity, the big disadvantage of fracture models with discretely resolved mi-
crostructure in the process zone is the resulting large computational effort. At the beginning of the
development in the 1980s, such models could thus be used only for a few fundamental studies but rarely
for direct engineering applications. That is why for engineering structures, macroscopic material laws
representing the homogenized material behavior in an adequate way were desirable also for simulations
of crack propagation. The GTN-model (and its descendants) are established for describing the homog-
enized failure behavior of ductile metals. The problem of the GTN-model and most of its descendants
is that they are formulated within the framework of simple materials (i.e. only in terms of stresses
and strains). Therefore, they do not contain an intrinsic length scale that could be correlated to the
relevant physical length A. Mathematically speaking, the boundary value problem becomes ill-posed if
a material point reaches the softening regime leading to a pathological mesh sensitivity of the results
of corresponding FEM simulations. Although not completely consistent from a continuum mechanics
point of view, an established heuristic approach to overcome this problem in simulations of ductile crack
propagation is to choose a regular mesh in the ligament and to declare the edge length of the elements in
the ligaments as a material parameter related to the material length A (denoted later as “computational
cell approach” [127]) as sketched in Figure Later, Bernauer and Brocks [14] pointed out that the
height of the elements in the ligaments is the relevant quantity. This approach was also applied to NCI
in several studies [111 18] 30l 32]. Brocks et al. [I8] calibrated the GTN parameters from cell models to
simulate the crack growth resistance curves for two NCIs with different graphite distances A\ proofing
the correlation between the element length and A, see Figure Note that in [IT], [I8] the complete
domain was modeled by the GTN model and not only the single layer of elements as proposed by Xia
and Shih [127]. Thus, the model accounts also for the void growth in the plastic zone and the associated
shielding effect as described in Section [5.1

Within the computational cell approach, the GTN model itself is able to describe the growth of the
voids created from debonded graphite particles. In the literature, other macroscopic models, which

23



elastic—plastic
:claﬂ;t?c material (. N. E,v) Voided Cell

zone (Gurson Mat'l)
‘ ]

:DQIE G o o o\fo ‘£

Ny

Figure 20: Computational cell model (from [I27]; D = A in present notation)

200

-
150 4

I [k¥/m?]

— o
o °
? o Experiment/1AZ

|~ == Simulation /1AZ

o Experiment /3AZ
= Simulation /3AZ
0.0 0.5 1.0 1.5 2.0 2.5

A a{mm]

Figure 21: Predicted R-curves from simulations with computational cells in comparison to experimental
data for two ferritic NCIs (1AZ with A\, = 51pm and 3AZ with A\, = 96 pm ; from [18])

24



account for several additional details of the microscopic mechanisms, were applied to simulate ductile
fracture. So Berdin et al. [I1] incorporated void nucleation terms for the GTN model to address the
experimentally found differences in the unloading stiffness of ferritic and ferritic-pearlitic NCIs. Pardoen
and Hutchinson [93] employed a more sophisticated constitutive law consisting of the GLPD model [42]
for void shape effects in combination with the Thomason model [ITI]. These authors investigated
the effect of elastic-plastic parameters of the matrix (oo/F, N) and the initial void volume fy on
the fracture initiation toughness J. and were able to reproduce the main trends of simulations with
discretely resolved microstructure. In particular, they found that the active process zone becomes wider
(compared to the cell size) with increasing fo. This widening can be interpreted as the transition from
the void-by-void mechanism to the multiple void mechanism. In order to address failure of NCI under
low levels of stress triaxiality, Memhard et al. [78] implemented a Johnson-Cook criterion for immediate
failure of a material point for a dynamic FEM simulation with forward (“explicit”) time integration.

In order to get rid of the pathological mesh dependency of the results, higher-order continuum ap-
proaches like nonlocal or strain-gradient theories are necessary, which introduce a material length con-
sistently in their continuum mechanics formulation. Several heuristic nonlocal extensions of the GTN
model were proposed in the literature and successfully used to simulate ductile crack propagation. To
the authors’ knowledge only in [52] such a model was used with void volume fractions fy that are rep-
resentative for NCI. The results of [52] showed that such a nonlocal model can reproduce the effect of
fo on the mode of crack propagation. The promising strain gradient extension of the GTN model by
Gologanu et al. [42] was not applied to higher void volume fractions yet.

Another established approach to describe ductile crack propagation consistently is to “condense” the
process zone into a cohesive layer embedded within non-damaging elastic-plastic materials (see e.g. [103]
and references therein). To the authors’ knowledge the cohesive zone approach was not applied to NCI
yet either. We think that this approach is inappropriate to simulate the ductile failure of NCI since
it cannot capture the relevant mechanisms for this material adequately, namely the strong interaction
between process zone and void growth in the surrounding plastic zone and the associated shielding
effect.

5.2.2 Secondary voids, cleavage and fatigue

In general it can be stated that it is difficult to incorporate secondary damage mechanisms in the
already complex macroscopic constitutive laws, which capture the material behavior in a homogenized
way. That is why only relatively few examples of this type of models can be found in literature.
Regarding secondary voids, a pragmatic approach is to use a GTN computational cell model with
nucleation terms and to interpret the initial void volume fraction as graphite and the nucleable porosity
as secondary voids [84] [85], 121]. However, in such a model the only state variable is the total void
volume fraction whose primary and secondary contributions cannot be distinguished anymore. A more
detailed homogenized model for the interaction between primary and secondary voids was presented by
Fabrégue and Pardoen [36], but not applied to NCI yet.

Another secondary damage mechanism that was addressed by homogenized models in the literature is
cleavage. For many engineering metals, in particular ferritic steels, cleavage is the underlying mechanism
of brittle failure. That is why post-processing criteria are established to evaluate cleavage initiation
in such steels. The most common ones are of Ritchie-Knott-Rice type [100] or are of Beremin-type
[12] based on the weakest-link assumption. NCI does not display such a direct relation between local
cleavage and brittleness as discussed in Section [2.3.1] due to the multiple-void mechanism. which is why
such post-processing criteria are only of limited applicability and thus not discussed here. For a review
we refer to [53]. The complex interaction between cleavage and the graphite particles in NCI requires
an equivalent modeling of both damage mechanisms.

For this purpose in [68] [82] Kachanov-Lemaitre effective stress type damage models for cleavage were
combined with ductile damage models within a computational cell approach. Another approach that
leads to a well-defined boundary value problem thus overcoming the pathological mesh sensitivity was
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presented in [53]: cleavage was modeled by a cohesive zone in combination with a nonlocal extension
of the GTN model for ductile behavior of the bulk material. This model predicts in accordance with
experimental findings (compare Section, that for high void volume fractions, being representative
for the graphite content in NCI, the crack may propagate stably by cleavage in the upper ductile-brittle
transition region. A modified strip yield model, which has certain similarities with a cohesive zone, was
used in [I33] to simulate fatigue crack growth in NCI including the known overload effects.

5.3 Machining simulations

Machining applications are another field, where the microstructural length scales become important,
because the radius of the cutting tool tip lies typically in the range of a few microns. Especially for
NCI, typical cutting depths are in the range of the distance between neighboring graphite particles.
That is why simulations with discretely resolved microstructure in the cutting zone were performed by
Chuzhoy et al. [20H22] and Ljustina et al. [75]. In a certain distance to the cutting zone a homogenized
description of the material is sufficient as shown in Figure similar to fracture simulations with
discrete microstructure (compare Figure . For certain reasons, machining simulations with discrete
microstructure are even more ambitious than corresponding fracture simulations. Firstly, in contrast
to the process zone of (mode-I dominated) fracture, a low stress triaxiality is found in the shear-
dominated cutting zone. Thus, the graphite particle has to be incorporated in the simulations with its
elastic and inelastic properties. Secondly, the separation of the metallic matrix, dismissed as “secondary
damage” in fracture simulations, is the explicit aim of machining and must thus be incorporated in the
simulations. And thirdly, for practically relevant applications, effects of strain-rate and local heating
and thus temperature dependence of all relevant parameters cannot be neglected.

Maybe due to these difficulties, only 2D models were employed until now in the cited studies de-
scribing all constituents within the framework of simple materials (with the related pathological mesh
dependency). An intensive exchange of experience and knowledge between simulations of machining
and fracture of NCI, which did not take place yet, will surely be advantageous.
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6 Summary and conclusions

Nodular cast iron (NCI) is a widely used iron alloy with nodular graphite particles embedded into the
metallic matrix. Strength and toughness of this material compare to many grades of steel. However,
experiments show also that due to its microstructural inhomogeneity, NCI exhibits some specific ef-
fects which differ from typical steels. This is for instance the tension-compression asymmetry of the
yield behavior or the fact that the graphite particles dominate the ductile mechanism of failure. This
dominance goes so far that the initiation of competing secondary mechanisms on the microscale has a
considerably lower influence on the macroscopic behavior than known from steels. For instance in steels
a macroscopic R-curve behavior is associated with the ductile mechanism and thus the macroscopic be-
havior itself is often denoted as ductile then. However, NCI can exhibit a macroscopic R-curve behavior
despite cleavage on the microscale. Also the interaction of crack closure and ductile mechanism under
cyclic loading is very complex. For this reason it is at first highly recommendable for NCI to distinguish
between macroscopic behavior and mechanisms on the microscale. Secondly, modeling can contribute
significantly to the understanding and prediction of the complex interactions of the micromechanisms.

That is why in the present paper an overview of the strategies for modeling of the mechanical behavior
of NCI was given. The models applied to NCI in the literature can be classified according to several
criteria. One point is whether the material behavior is described in a homogenized way or whether the
microstructure is resolved discretely in more or less detail. Classically, homogenized models are applied
to engineering structures capturing microscopic mechanisms only in a relatively rough way, whereas
models with discrete microstructure serve for the basic understanding of mechanisms. However, with
the computing capacities available today, models with discretely resolved microstructure are becoming
more and more interesting to direct engineering applications. This applies especially to engineering
structures made of NCI where not only the local deformation state but additionally the microstructure
differs significantly due to the casting process.

Regarding models with discrete microstructure, cell models are by far the best investigated ones.
With such models the influences of the representation of the graphite, of the grain structure (content of
ferrite and pearlite/“bull’s eye structure”) and of secondary voids was studied for NCI under monotonous
and cyclic loading under different stress triaxialities. Cell models often serve as a bridge for calibrat-
ing homogenized models. However, in situations where gradients appear over distances comparable
to microstructural length scales, i.e. for NCI the mean distance between graphite particles, classical
homogenized models reach their limits. Resolving the microstructure discretely in such situations in
relevant regions is a suitable and today practicable way to overcome this problem. In literature this
was done successfully for simulations of fracture and machining processes of NCI, where the microstruc-
ture needs to be resolved only within a relatively small region of interest. It will be a promising but
challenging task to transfer the achievements of cell models like representation of graphite, grains, sec-
ondary damage, etc. to simulations of fracture and machining with resolved microstructure. In close
collaboration with experimentalists, such simulations may contribute considerably to improve both the
qualitative understanding of the specific mechanisms of NCI and the quantitative predictions thereof.

One point that should, however, not be forgotten is that more detailed models of the micromechan-
ical processes mostly require also more parameters like elastic-plastic parameters of all constituents or
interface properties. In the cited papers, mainly two strategies were employed to identify these pa-
rameters. The first strategy is to extract parameters directly from tests on pure bulk material of the
respective constituents like ferrite and pearlite. Alternatively, inverse parameter identification strategies
were employed to identify parameters from tests on the “composite” NCI. The latter strategy requires
of course an experimental database of sufficient extent. Available results in literature suggest that the
elastic-plastic parameters (Young’s modulus, yield stress, hardening exponent, etc.) of constituents can
reliably be determined from tests on the individual bulk material. That is why this direct strategy
should be employed were possible and inverse procedures should be limited to those few parameters
which cannot be measured directly. In any case, if an inverse procedure is necessary, a sensitivity analy-
sis on the effect of changes of respective parameters should be performed with the models in advance in
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order to identify firstly the relevant parameters and secondly suitable experimental setups to determine
them.

An interesting task for the future is also whether the modeling achievements made for NCI can be
transferred to cast irons with non-nodular graphite particles (vermicular or lamellar ones). A recent
study on this topic [80] indicates that correct representations of the mechanical behavior of the graphite
is even more important as well of the statistics of shape and orientation of the graphite particles
leads to a dramatically increased computational effort even for macroscopically homogeneous loading
conditions. Predicting fracture toughness values for cast iron with vermicular or lamellar graphite
from the microstructure may be a very demanding task for future work. Furthermore, also for NCI
the role of the graphite particles in shear dominated states or under cyclic loading requires further
research. Regarding cyclic loading and fatigue, it will become possible in the near future to simulate
the micromechanical processes in NCI cycle by cycle for larger numbers of loading cycles that are
relevant to engineering applications.
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