Hugues Digonnet

Luisa Silva

Thierry Coupez

Cimlib: A Fully Parallel Application For Numerical Simulations Based On Components Assembly

Keywords: Parallel Computation, OOP, Numerical Simulation, Finite Element

This paper presents CIMLIB with its two main characteristics: an Object Oriented Program and a fully parallel code. CIMLIB aims at providing a set of components that can be organized to build numerical simulation of a certain process. We describe two components: one treats the complex task of parallel remeshing, the other puts the focus o

. n the Finite Element modeling. In a second part, we present some parallel performances and an example of a very large s1mulatwn (over a mesh of 25 millions nodes) that begins with the mesh generation and ends up writing results files, all done usmg 88 processors.

INTRODUCTION

In this paper, we will describe how object oriented programm ing (OOP) helps in building a fully parallel and evolutive application. The context of this work is to provide an application framework in which new developments can take advantage of parallel computation without any knowledge of parallel programm ing languages such has MPI. The application is built using a meta language which defines the components used and their organization.

Each component is specialized for solving one type of problem: for example, we have one component that manages mesh evolution (Eulerian, Lagrangian, ALE, but also meshing and remeshing techniques), another one is used to solve ODE through Finite Element calculations, still another one that enables us to write result files

OOP COMPONENTS

The CIMLIB application is not dedicated to simulate a single process, but aims at providing All these components are provided to help the user in building/modeling the process he wants to simulate and not dedicated to a specific process. Even if CIMLIB is not process dependant, it has been built incrementally by trying to simulate different processes.

At the beginning, it was more focused on Eulerian simulations, so we have started by implementing FE methods. In order to simulate forging processes, we have implemented some new functionalities, like contact detection and adaptive remeshing. For all these reasons, we take particularly care to keep a very good upgradeability: by it making easy to add a new component, but also by implementing components that can be easily derived to solve a large number of problems.

At present, we use script files, like illustrate on figure I, to write a particular process application. ln the future, we plan to have a GUl (graphical user i�terface) to help building such application, starting from process template or from scratch. It is important to notice that in all these script files there is no reference to any parallel instruction. For us it is clear that parallel computation must help in reducing simulation time but doesn't have to be present everywhere. For a user, he only has to specify over how much processors he wants to run using the traditional "mpirun" command.

It is important to enable the components organization to exchange information. For exan1ple the velocity, computed by solving the Stokes equation, needs to be used as a parameter for the transport � quation. To make possible such exchange, we mtroduce the notion of "Field''. By Field we consider common results like velocity, temperature, stress which are represented over the mesh. but also some scalar values like the global volume of the piece. The Field interface is then derived into several interpolation Fields: from the PO interpolation, a constant value over the whole domain, to the discontinuous PO interpolation and continuous Pl interpolation (see figure 2). Field is the main object used to interact between components. One field computed in one component can be used by another one as a parameter. The large majority of the components present into CTMLTB takes as input some parameter Fields and has also some Fields as output. These Fields are the main object to exchange information between components. even if there are other objects. For example, � "Geometer" can be used in a particular component to compute the distance to a particular form.

THE MESH COMPONENT

Here, we shall focus on one particular component dedicated to the mesh. This component includes R adaptation (Eulerian, Lagrangian or ALE mesh evolution), H-adaptation mesh (unstructured mesh refinement or derefinenent) and transport procedures from one mesh to another one. Tf R-adaptation only consists in replacing the mesh coordinates with other ones computed externally to this component, the H adaptation is much more complicated, and evens more in a parallel context.

As we already have a sequential mesher MIC [I]

and that some new developments can occur (for example a recent evolution was to enable anisotropic meshing by replacing the mesh size by a metric) we want to keep it as it is, and only use it in a parallel conte � t '.

For that reason, we have chosen a strategy combmmg local remeshing (inside each processor domain) and parallel mesh repartitioning [START_REF] Basermann | Dynamic load balancing of finite element applications with the drama libray[END_REF] to move the interface inside the domain in order to enable remeshing in a next phase. The next figure (figure 3) shows this strategy applied to a simple square with 4 processors.

THE FINITE ELEMENT COMPONENT

A finite element component is used to determine the solution fields of ODE using the finite element method. To solve such equations, we have to compute, store and solve large linear/non linear systems. Non linear systems being solved using Newton-Raphson method lead to the resolution of several linear systems.

Here again, we must take care of hiding parallel instructions in the part of the code where we are planning to make most future developments [3]. For that, we have chosen to use the PET Sc library [START_REF] Mclnnes | PETSc user manual[END_REF] that provides functions to store and solve large systems in The time dedicated to write output files on the hard disk is almost independent on the number of processors used. It is easily explained by the fact that these results files are written for a sequential post processor. Output Fields are first gathered onto one processor and then this processor writes the output file.

The cost of the gathering phase explains a Speed-Up lower than one but it is clear that it could almost be neglected compared to the time spent in the writing process.

Regarding the resolution of the FE problem, the time spent is divided by the number of used processors (even more due to cache effect), therefore this parallelisation is optimal. This is also the case with the time spent computing the metric mesh size with a Speed-Up of 7.64 with 8 processors.

For the remeshing phase, we only obtain a Speed Up of 5.96 with 8 processors. This is not optimal, but it is due to the strategy used: with one processor only one remeshing phase is done, but several remeshing/ repartitioning phases are iterated with several processors. Even if the cost of the successive phases decreases (there is less work to do at each time) the overhead cannot be neglected. We currently try to reduce this overhead and hope to make it small enough so that it will be negligible. As an example, the time needed to only run the mesher and exit is currently too high if we compare it to a theoretical null cost.

The overall speed-up is close to 6, which is a good result, as we take into account absolutely all the operations: reading data files, first partitioning phase, writing the results files. It is also important to mention that in this test case the ratio between FE resolution and remeshing is lower than in the general cases, because the constitutive equation is generally more complex with strong thermal dependency. A higher ratio would increase the time spent into a very well parallelized section of the code and then improve the over all Speed-Up.

FULLY PARALLEL CASE

The This case is run on our new cluster of PCs, which is composed by 24 bi-processors bi-cores AMD Opteron 280 with 8 GB of RAM. The network is InfiniBand.

To calibrate the test, we first need to think how to determine the limits of such architecture by taking into account the global RAM. Here, every processor (core) has 2 GB that corresponds solving linear systems with around 1.2 million unknowns (after estimation). This results into 115 millions of unknowns for the cluster.

As this cluster is not used by a single person and that some nodes could be out of order, we have chosen a test case that requires solving systems with 100 millions unknowns. The largest system is for solving the Stokes equations, using the mini-element Pl +/Pl [START_REF] Coupez | Stable-stabilized finite element for 3d forming calculation[END_REF] in velocity and pressure. In a 3D case, we have 3 unknowns for each node for the velocity and 1 unknown more for the pressure. At the end, we build a mesh containing around 25 million nodes (figure 6 represents the initial mesh and one portion of the 25 million nodes fine mesh). We remark that it is impossible to build such a mesh sequentially, as the highest value of memory we can allocate to one of our sequential computer is 16GB, which is not enough to even store the mesh. To build it, we used the mesh component of CIMLIB and we stored the mesh under its partitioned form. We started with the coarse mesh and then refined it successively by reducing the metric mesh size and by increasing the number of processors at each iteration.

Computing such a mesh was the first challenge. After that, running the test case was not so difficult, as soon as the maximum of memory used is well dimensioned.

The computed simulation is close to the injection process even thought we use a simplified model with only one resolution of the Stokes equations:

{div(217Vv-pl)= 0. div(v) = 0 (1)
After that, the transport equation is solved using a Level-Set method, according to the computed velocity:

aa -+v.Va=O dt (2)
The simulation was carried out by first doing one resolution of the Stokes equation, and then by continuing with 1250 time increments to inject the polymer inside the cavity. This globally gives:

one linear system with 100 000 000 unknowns for the Stokes equation (4 unknowns per node) 1250 linear systems of 25 000 000 unknowns for the transport equation (1 unknown per node and one linear system per increment) By using 88 processors (cores) of the cluster, we have been able to do this computation. The global simulation time was close to 28 hours, with a little more than 2 hours to solve the Stokes problem, 21 hours solving transport equations and the last 5 hours to carry out some other computations, including writing results files.

The next figure 6, we present the position of the front after one hundred time increments on the coarse mesh and on the very fine one. The front is illustrated by the zero iso-surface of the Level-Set. Of course, here the difference is very impressive and an intermediate mesh with some mesh adaptation techniques can be preferable in terms of precision vs computation cost. But the calculation made can be used as good reference for comparing with other computations. The accuracy of the results on the 25 million nodes fine mesh is really impressive compared to the one of the coarse mesh. This is clearly due to the very large computations that we have been able to do. For example, on this small part of the global piece we have more than 5 millions nodes. The precision of this 3D calculation can be compared to what we are able to do in sequential but in 2D. The size of the elements with such a mesh is close to a pixel.

CONCLUSION

The strategy chosen to develop CIMLIB usmg OOP is a success. It is easy to introduce new developments and even if the application is fully parallel, most of the news functionalities are done by common developers in some part of the code were there is no need of parallel knowledge. It seems a paradox to see that sequential developments increase the proportion of parallel code and do not reduce it, leading to a very good parallel efficiency of the code. This full parallelization of CIMLIB allows using all the power delivered by parallel computers. We have successfully used all the memory distributed over the 88 processors to simulate a very large test over a 25 millions nodes mesh built in parallel.

Making such a simulation, points out the fact that all the parts of numerical simulation need to be run in parallel. In particular, for visualization, we need parallel post-processors (using a sequential post processor we only could visualize a part of the domain containing around 5 million nodes like in figure 6)

ACKNOWLEDGMENTS

The author would like to thank FEUP for the access to the NxPy cluster. This allowed performing some parallel efficiency tests of CIMLIB on another platform during a post-doctoral period. We would also like to acknowledge Transvalor and Cetim for the test case used in this paper

 components and the engine to enable to numerically simulating what the user wants. It is an application programm ing interface containing several components that solve specialized problems (like FE equations, .) with a main program that is able to construct and organize the different components to build the process we want to simulate. Thus, we can define CIMLIB as: a set of components, each of which allows solving one particular problem like remeshing, boundary conditions, ... an engine that organizes the components and therefore allows simulating a particular process like forging, polymer injection ... We can divide the components in two main groups; one group represents functional components that can be interpreted like the classical instructions present in every language. By instruction, we mean "bloc/(', "if then else", "while" ... The other group is composed by specialized components and is much more focus on numerical simulations: we have some components treating the mesh, other solving FE problems with large linear/non linear systems.

FIGURE I .

 I FIGURE I. An example of a short script organization. FJrst, we solve Stokes equations and then we make increments that solve the transport equation and store the results until the end (current time equal to final simulation time).

FIGURE 2 .

 2 FIGURE 2. Examples of different Field interpolation: a global value like the viscosity, a discontinuous PO interpolation representing the partition of the domain and a continuous Pl interpolation for the velocity.

FIGURE 3 .

 3 FIGURE 3. Illustration of the strategy used to parallelize the mesher. On the left we have the partition of the domain and on the right the normalized quality of the elements. From the top to the end we have the successive steps of

FIGURE 4 .

 4 FIGURE 4. Illustrations of a parallel structure using a local interface "SimplexSystem" derived into a multitude of local FE solvers developed in sequential by common developers.

 presented case clearly illustrates what parallel computation enables. Performing such a test is really challenging and needs a full parallelization of all parts of the code. The only part which hasn't been executed in parallel is the visualization. This restricts us to visualize only some parts of the domain at the same time, and this even on a powerful computer with 3.5 GB ofRAM.

FIGURE 5 .

 5 FIGURE 5. At the top, the initial coarse mesh of the part with 11 866 nodes and 37 657 elements. At the bottom, the mesh of only one of the 88 partitions used to represent the global piece. This subdomain contains 304 252 nodes and 1 637 436 elements and will be treated by one processor (one core).

FIGURE 6 .

 6 FIGURE 6. At the top, the predicted front position on the coarse mesh after 0.1 second, at the bottom the same front position at the same time using the 25 millions nodes mesh.

TABLE 1 .

 1 Parallel performance for 1 and 2 processors

	Times (s) I	1 processor	2 processors
	Speed-Up	t	s	t	s
	Outputs	520		530	0.98
	FE resolution	10102		5606	1.80
	Metric	1589		795	2.00
	Remeshing	7944		5341	1.49
	Sum	20155		12272	1.64
	Wall-clock	20722		12586	1.65
	Neglected	567		314	1.81

TABLE 2 .

 2 Parallel performance for 4 and 8 processors

	Times (s) I	4 processors	8 processors
	Speed-Up	t	s	t	s
	Outputs	527	0.99	525	0.99
	FE resolution	2425	4.16	1081	9.34
	Metric	405	3.92	208	7.64
	Remeshing	2944	2.70	1334	5.96
	Sum	6301	3.20	3421	6.06
	Wall-clock	6468	3.20	3520	5.89
	Neglected	167	3.40	99	5.72