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Abstract 

This paper considers power definitions for three-phase power systems with non-sinusoidal and unbalanced voltages and currents. 
By applying the Lyon transformation to three-phase voltages and currents, instantaneous symmetrical components are obtained 
and used to define powers. Definitions of instantaneous apparent and reactive powers are derived, as well as definitions of well-

known quantities based on rms values, such as apparent and reactive powers. The introduced set of power definitions based on the 
same mathematical framework could be used for time-instantaneous and time-average compensation. To provide correct calculation 
of powers for unbalanced three-phase four-wire systems, all wires and related quantities of the three-phase four-wire system are 
treated equally. The instantaneous apparent and reactive powers are also expressed in terms of instantaneous symmetrical 
components derived from the Clarke transformation. The proposed definitions are compared with other power definitions. In the 
case of a three-phase three-wire system, the proposed definitions give the same values of powers as the most known power 
definitions. In the case of a three-phase four-wire system, the proposed definitions give the same value of the apparent power as 
the DIN 40110 Standard and the same value of reactive power as the Currents' Physical Component theory. 
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1. Introduction 

Distortion and unbalance of voltages and currents are very common in modern power systems leading to lower 

power quality and transmission efficiency. Demand for power conditioning devices in low voltage distribution systems 

has been constantly growing over the last years [1]. The development of the new power conditioning devices and 

methods is closely related to the research on power theories. Two different concepts of power definitions have been 

developed: one based on the instantaneous power [2-11], and the other based on the average power [3,7,9-21]. 

Definitions based on the instantaneous power concept aim at keeping instantaneous power unchanged while 

minimizing transmission line losses. On the other hand, the average power concept aims at keeping active (average) 

power unchanged and results in greater reduction of transmission line losses. The instantaneous power theory proves 

to be useful in designing active power-line conditioners known as active filters [9,24]. The average power theories 

brought about the application of time-average compensation that enables the smallest rms values for the compensated 
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currents keeping the same active (average) power of the original load currents [9-11]. Although there are many 

published power theories, there is not much research on the unification of the two concepts.   

Fortescue’s method of symmetrical components [25] is commonly used for the steady-state analysis of 

asymmetrical three-phase power systems. The method’s application to time-dependent quantities is defined by Lyon 

transformation [26]. The Lyon approach also makes it possible to study power systems under transient and non-

sinusoidal conditions [27], [28]. This is an important property due to many causes of distortion and unbalance of 

voltages and currents in power systems. Since it transforms instantaneous voltages and currents, the Lyon 

transformation is applicable in an unmodified form in the presence of voltage and current harmonics which makes it 

a promising mathematical framework for power definitions. Instantaneous symmetrical components obtained by Lyon 

transformation are used to define instantaneous power and its time-independent part in [29]. By replacing the complex 

operator used in Lyon transformation with a phase-shift operator in the time domain, the instantaneous power could 

be defined and divided on average and oscillating power components, as shown for arbitrary voltage and current 

waveforms in [30]. The instantaneous symmetrical components are used for dynamic compensation, balancing and 

control of power systems by means of static compensators [31]. Although the instantaneous power has been defined 

using Lyon transformation and divided into components in previous papers, none of them have considered the 

definitions of instantaneous reactive and apparent power. The set of power definitions in terms of instantaneous 

symmetrical components has not been proposed in literature yet.  

The main contribution of this paper is the proposal and validation of the set of power definitions in terms of 
instantaneous symmetrical components intended to be used in three-phase three-wire and three-phase four-wire 

systems. The proposed definitions are valid for non-sinusoidal and unbalanced voltages and currents, and they can be 

used for time-instantaneous and time-average compensation. The proposed definitions also avoid mistakes caused by 

erroneous treatment of zero-sequence voltages when dealing with three-phase four-wire systems [9]. The results of 

the simulation tests have revealed the similarities of the proposed definitions with the various well-known definitions.  

2. Instantaneous powers  

2.1. Three-phase three-wire system 

Let us assume that electric energy is delivered to a load by its three-phase three-wire supply lines, denoted by a, b, 

and c, as shown in Fig. 1. 

 

 

Fig. 1. Load in a three-phase three-wire system. 

The instantaneous voltages va, vb and vc, and line currents ia, ib and ic are assumed to be periodic quantities of the 

same period T: 
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=
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where Vjk is the rms value of k-th voltage harmonic of phase angle jk, Ijk is the rms value of k-th current harmonic of 

phase angle jk, n is the highest order of the voltage and current harmonics, and  is angular velocity (equal to 2f, f 

being the basic frequency, i.e., f=1/T). 

In the case of three-phase three-wire systems, a virtual star point is assumed for voltage reference, as suggested in 

some of the most known power theories [7,14,15,18]. Such virtual star point ensures the sum of the voltages equal to 

zero, i.e.: va+vb+vc=0. These voltages can be calculated from measurable phase-to-phase voltages: 

1 0 1
1

1 1 0
3

0 1 1

a ab

b bc

c ca

v v

v v

v v

−     
     

= − 
     
     −     

  (3) 

Instantaneous voltages and line currents can be arranged in three-dimensional vectors v and i: 

 
T

a b cv v v=v    (4) 

 
T

a b ci i i=i    (5) 

where T indicates vector or matrix transposition. 

Application of the Lyon transformation to instantaneous voltage and current in a three-phase three-wire system can 

be presented by the following equations: 

1

s'

−=v Α v    (6) 

1

 s'

−=i Α i    (7) 

where vs' and is' are three-dimensional vectors which contain voltage and current symmetrical components in the time 

domain: 

 
T

s' 0' d' i'v v v=v    (8) 

 
T

 s'  0'  d'  i'i i i=i    (9) 

In the previous expressions, v0' and i0' are instantaneous zero-sequence components, vd' and id' are instantaneous 

positive-sequence components and vi' and ii' are instantaneous negative-sequence components. 

Matrix A and its inverse, used in the applications of Lyon transformation (6) and (7), are: 

2

2

1 1 1

1

1

 

 

 
 

=
 
  

Α   (10) 
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 

=
 
  

Α   (11) 

where j2 /3e  = . 

Matrix A has the following property [21,27]: 

T * * 1

3 33 3[ ]−

= = = 1A A AA AA   (12) 

where A* indicates the complex conjugate of matrix A and 
3 3[ ] 1 is a three-dimensional identity matrix. T indicates 

nonconjugate (non-Hermitian) vector or matrix transpose operator. 

Since the Lyon transformation is directly applied to real quantities, the obtained instantaneous zero-sequence 

components v0' and i0' are real quantities, i.e., v0'=v0' and i0'=i0'. The obtained instantaneous positive-sequence 

components vd' and id' and corresponding instantaneous negative-sequence components vi' and ii' are complex conjugate 

quantities, i.e., vd'=vi'
* and id'=ii'*. 

The instantaneous power transferred to the load shown in Fig.1 is: 

T T T T * * T *

s'  s' s'  s' s'  s'( ) ( ) 3p = = = =v i Av Ai v A A i v i  (13) 

which means 

* * *

0' 0' d' d' i' i'3( )p v i v i v i= + +    (14) 

The instantaneous apparent power s is defined as follows [4-6,8]: 

2 2 2 2 2 2 T T( )( ) ( )( )a b c a b cs v v v i i i= + + + + = v v i i   (15) 

The instantaneous apparent power s can be decomposed into two orthogonal components, as follows: 

2 2 2s p q= +    (16) 

where p is the instantaneous power and q is usually assigned to instantaneous reactive power [2,4-6]. 

The instantaneous power p determines the so-called power currents (arranged in vector ip) which instantaneously 

transfer energy to the load [4-10]: 

T

T Tp

p
= =

v i
i v v

v v v v
   (17) 

Powerless currents (arranged in vector iq) result from the difference between actual currents and power currents [4-

10]: 

q p= −i i i    (18) 
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Theoretically, powerless currents can be compensated immediately without energy storage capability of the 

compensator [2,5,9-11]. Such compensators are commonly known as "active filters" and are realised as PWM (Pulse 

Width Modulation) inverter-based switching compensators. 

The following holds true for voltages and currents: 

T 2 2 2 2 2 2 T *

0' d' i' s' s'3( ) 3a b cv v v v v v= + + = + + =v v v v    (19) 

T 2 2 2 2 2 2 T *

0' d' i' s' s'3( ) 3a b ci i i i i i= + + = + + =i i i i    (20) 

where v0', vd', and vi' are the absolute values of voltage symmetrical components, and i0', id', and ii' are the absolute 

values of current symmetrical components. 

By using (13) and (19), power currents can be defined in terms of instantaneous symmetrical components, as 

follows: 

T *

s'  s'
s' s'T * T *

s' s' s' s'3
p

p
= =

v i
i Av Av

v v v v
   (21) 

The expression (21) gives the same currents as (17) which are power currents defined by instantaneous reactive 

power theories [4-10]. 

By using (19) and (20), the instantaneous apparent power s can also be defined in terms of instantaneous 

symmetrical components according to the following: 

2 2 2 2 2 2

0' d' i' 0' d' i'3 ( )( )s v v v i i i= + + + +    (22) 

The zero sequence currents i0' are equal to zero, since the currents ia, ib and ic have to fulfil Kirchhoff’s law. Zero 

sequence voltages v0' are also equal to zero since the assumed virtual star for voltage reference ensures the sum of the 

voltages equal to zero. Therefore, zero sequence quantities can be omitted from expressions (14) and (22). The 

instantaneous power p, instantaneous apparent power s, and instantaneous reactive power q in terms of the 

instantaneous symmetrical components are: 

* *

d'  d' i'  i'3( )p v i v i= +    (23) 

2 2 2 2

d' i' d' i'3 ( )( )s v v i i= + +    (24) 

i' d' d' i'3j ( )q v i v i=  −    (25) 

Since Re{vi' id'}=Re{vd' ii'}, the instantaneous reactive power q defined by (25) is a real quantity. The previous 

expressions of powers (23), (24) and (25) avoid mistakes when the voltage reference differs from the virtual star point 

which ensures the sum of voltages equal to zero. Namely, the choice of voltage reference affect only the zero-sequence 

voltages. By omitting the zero-sequence voltages, the proposed definitions (23), (24) and (25) do not use the common 

content of voltages referred to an arbitrary reference [9]. In such a way, the same results are obtained for an arbitrary 

voltage reference as in the case when the virtual star point is chosen for voltage reference. 

The instantaneous power p, instantaneous apparent power s, and instantaneous reactive power q for three-phase 

three-wire systems can also be expressed in terms of instantaneous symmetrical components derived from the Clarke 

transformation [2-4]: 
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α' α' β' β'p v i v i= +    (26) 

2 2 2 2

α' β' α' β'( )( )s v v i i= + +    (27) 

β' α' α' β'q v i v i= −    (28) 

where the instantaneous symmetrical components vα', vβ', iα', and iβ' are obtained from the following equations [9]: 

1 1
2 2α'

3 3

β' 2 2

1 1 1
0' 2 2 2

1
2

0
3

a

b

c

v v

v v

v v

− −    
    

= −     
        

  (29) 

1 1
2 2α'

3 3

β' 2 2

1 1 1
0' 2 2 2

1
2

0
3

a

b

c

i i

i i

i i

− −    
    

= −     
        

  (30) 

2.2. Three-phase four-wire system 

In the case of three-phase four-wire systems, some of the most known power theories choose the neutral line for 

voltage reference and use three phase-to-neutral voltages for calculation of powers [15,19]. However, such approach 

does not result in a correct calculation of powers when voltages are unbalanced, i.e., in the presence of zero sequence 

voltages [8,9]. Also, the neutral line current contributing to line losses appears in the presence of voltage asymmetry, 

which should be considered. 

The well-known concept for three-phase three-wire systems which used zero-sum voltages has to be extended to 

four-wire systems. Although the neutral line plays a special role in energy distribution systems, all conductors of the 

four-wire system should preferably be treated equally, and power definitions should use zero-sum voltages calculated 

for four conductors.  

Fig.2 shows the load in a three-phase four-wire power system with a virtual star point assumed for voltage reference 

which ensures the sum of voltages equal to zero, i.e.: va+vb+vc+vn=0. 

 

 

Fig. 2. Load in a three-phase four-wire system. 
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To calculate these zero-sum voltages, the following transformation of phase-to-neutral voltages van, vbn and vcn is 

used: 

3 1 1

1 3 11

1 1 34

1 1 1

a

an

b

bn

c

cn

n

v
v

v
v

v
v

v

− −   
    

− −     = 
    − −
      

− − −  

  (31) 

where va, vb, vc and vn are the voltages against the virtual star point, i.e., the zero-sum voltages.  

By using the zero-sum voltages, the instantaneous power p, the instantaneous apparent power s, and the modulus 

of the instantaneous reactive power q are defined as: 

a a b b c c n np v i v i v i v i= + + +    (32) 

2 2 2 2 2 2 2 2( )( )a b c n a b c ns v v v v i i i i= + + + + + +    (33) 

2 2q s p= −    (34) 

In the case of three-phase four-wire systems, symmetrical components are usually used to express asymmetrical 

phase-to-neutral voltages and phase line currents: 

0'

2

d'

2

i'

1 1 1

1

1

an

bn

cn

v v

v v

v v

 

 

     
     

= 
     
          

  (35) 
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1 1 1

1

1
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c

i i

i i

i i

 

 

     
     

= 
     
          

  (36) 

By using (31) and (35), zero-sum voltages can be expressed in terms of the symmetrical components v0', vd', and vi': 

1
4

0'21
4

d'21
4

i'3
4

1 1

0 0

a
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n

v
v

v
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v
v

v

 

 

  
   
    = 
   
     

−   

  (37) 

The neutral line current can also be expressed in terms of symmetrical components: 

 0'3n a b ci i i i i= − − − = −    (38) 



8 

When phase-to-neutral voltages are unbalanced, their zero sequence voltage components v0' are not equal to zero. 

Also, in the presence of voltage or load asymmetry, zero sequence currents i0' are also different from zero since the 

neutral wire provides a path for zero-sequence currents. 

For three-phase four-wire systems, the instantaneous power (32) and instantaneous apparent power (33) can be 

expressed in terms of the instantaneous symmetrical components by using (37) and (38): 

* * *

0' 0' d' d' i' i'3( )p v i v i v i= + +    (39) 

( )2 2 2 2 2 2

0' d' i' 0' d' i'

1
3 4

4
s v v v i i i

 
= + + + + 

 
   (40) 

The previous expressions give the same results as (32) and (33), respectively. 

2.3. Three-phase four-wire system considered as four-phase system 

There is a more elegant approach to define powers for three-phase four-wire systems. The idea is to look at a three-

phase system with a neutral wire as a four-phase system, since all the wires of a four-wire system should be treated 

equally. Therefore, symmetrical components for four-phase systems will be introduced. 

The zero-sum voltages and line currents for three-phase four-wire systems can be expressed as instantaneous four-

dimensional vectors v and i: 

 
T

a b c nv v v v=v    (41) 

 
T

a b c ni i i i=i    (42) 

The application of the Lyon transformation to instantaneous voltage and current in a four-wire system can be 

represented by the following equations: 

1

s"

−=v B v    (43) 

1

 s"

−=i B i    (44) 

where s"v  and  s"i  are four-dimensional vectors which contain voltage and current symmetrical components: 

 
T

s" 0" d" 00" i"v v v v=v    (45) 

 
T

s"  0"  d"  00"  i"i i i i=i    (46) 

In the previous expressions, v0" and i0" are instantaneous zero-sequence components, vd" and id" are instantaneous 

positive-sequence components, v00" and i00" are instantaneous pseudozero-sequence components, and vi" and ii" are 

instantaneous negative-sequence components [28]. The absolute values of instantaneous voltage symmetrical 

components are denoted as v0", vd", v00", and vi", while the absolute values of current symmetrical components are 

denoted as i0", id", i00", and ii". 

Matrix B and its inverse, used in the applications of Lyon transformation (43) and (44), are: 
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3 2

2 2

2 3

1 1 1 1

1

1 1

1

  

 

  

 
 
 =
 
 
  

B   (47) 

2 3

1

2 2

3 2

1 1 1 1

11

1 14

1

  

 

  

−

 
 
 =
 
 
  

B   (48) 

where j2 /4 je  = = . 

Since T * *

4 44[ ] = =B B BB 1 , where 
4 4[ ] 1  is a four-dimensional identity matrix, the following holds true: 

T T *

s"  s"4=v i v i    (49) 

T T *

s" s"4=v v v v    (50) 

T T *

s s4=i i i i    (51) 

Zero sequence currents i0" are equal to zero, since currents ia, ib, ic and in have to fulfil Kirchhoff’s law. Zero- 

sequence voltages v0" are also equal to zero, because zero-sum voltages are used. Instantaneous positive-sequence 

components vd" and id" and the corresponding instantaneous negative-sequence components vi" and ii" are complex 

conjugate quantities, i.e., 
*

d" i"v v=  and *

d" i"i i= . The remaining instantaneous pseudozero-sequence components v00" 

and i00" are real quantities, i.e., v00"=v00" and i00"=i00".  

For three-phase four-wire systems, the instantaneous power p and instantaneous apparent power s in terms of the 

introduced instantaneous symmetrical components for four-phase systems are: 

* * *

d" d" 00" 00" i" i"4( )p v i v i v i= + +    (52) 

2 2 2 2 2 2

d" 00" i" d" 00" i"4 ( )( )s v v v i i i= + + + +    (53) 

The previous expressions give the same results as (39) and (40), respectively. 

For three-phase four-wire systems, instantaneous reactive power behaves as instantaneous space-vector q=4·vs"×is" 

with components qd", q00" and qi": 

d" 00" i" i" 00"4j ( )q v i v i=  −    (54) 

00" i" d" d" i"4j ( )q v i v i=  −    (55) 

i" d" 00" 00" d"4j ( )q v i v i=  −    (56) 
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Since Re{v00" ii"-vi" i00"}=0, Re{vi" id"-vd" ii"}=0, and Re{vd" i00"-v00" id"}=0, the instantaneous reactive power 

components qd", q00" and qi" are real quantities. 

The modulus of the instantaneous reactive power for three-phase four-wire systems in terms of its components is: 

2 2 2

d" 00" i"q q q q= + +    (57) 

The previous expression gives the same result as (34). The sign of the instantaneous reactive power for three-phase 

four-wire systems is disputable since it behaves as a space-vector [5]. 

The power currents (arranged in vector ip) are: 

T *

s"  s"
s" s"T T * T *

s" s" s" s"4
p

p p
= = =



v i
i v Bv Bv

v v v v v v
   (58) 

The previous expression (58) gives the same power currents defined in [7,9,10]. The powerless currents iq are 

defined in the same way as for three-phase three-wire systems, according to (18). 

The instantaneous symmetrical components derived from the Clarke transformation for four-phase systems can 

also be used [28]: 

α"

β"

1 1 1 1

2 2 2 20"

1 1 1 1
00" 2 2 2 2

1 0 1 0

0 1 0 11

2

a

b

c

n

v v

v v

v v

v v

−    
    −
    = 
    
    

− −     

  (59) 

α"

β"

1 1 1 1

2 2 2 20"

1 1 1 1
00" 2 2 2 2

1 0 1 0

0 1 0 11

2

a

b

c

n

i i

i i

i i

i i

−    
    −
    = 
    
    

− −     

  (60) 

where pseudozero-sequence components (v00" and i00") also appear besides α-sequence (vα" and iα"), β-sequence (vβ" 

and iβ"), and zero-sequence components (v0" and i0"). 

The instantaneous power p, the instantaneous apparent power s, and the modulus of the instantaneous reactive 

power q for three-phase four-wire systems in terms of the instantaneous symmetrical components derived from the 

Clarke transformation for four-phase systems are: 

* * *

" " " " 00" 00"p v i v i v i   = + +    (61) 

2 2 2 2 2 2

" " 00" " " 00"( )( )s v v v i i i   = + + + +    (62) 

2 2 2

" " 00"q q q q = + +    (63) 

where the instantaneous reactive power components are: 
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" " 00" 00" "q v i v i  = −    (64) 

" 00" " " 00"q v i v i  = −    (65) 

00" " " " "q v i i i   = −    (66) 

Expressions (61), (62) and (63) render the same results as (52), (53) and (57). 

3. Apparent, active and reactive powers  

3.1. Three-phase three-wire system 

The apparent power for three-phase three-wire systems can be calculated according to the following: 

2 2 2 2 2 2

0 0

1 1
( ) ( )

T T

a b c a b cS v v v dt i i i dt
T T

= + +  + +    (67) 

which is the well-known Buchholz's definition of apparent power based on the product of collective rms values of 

voltages and currents [12]: 

2 2 2 2 2 2

a b c a b cS V V V I I I= + +  + +    (68) 

where Va, Vb, and Vc are rms voltage values, and Ia, Ib and Ic are rms current values. 

Apparent power S can also be defined in terms of instantaneous symmetrical components for three-phase systems 

as follows: 

2 2 2 2

d' i' d' i'

0 0

1 1
3 ( ) ( )

T T

S v v dt i i dt
T T

=  +  +     (69) 

Active power in terms of instantaneous symmetrical components for three-phase systems is defined as: 

* *

d' d' i' i'

0 0

1 1
3 ( )

T T

P p dt v i v i dt
T T

= =  +     (70) 

For three-phase systems with non-sinusoidal voltages and currents, two reactive power definitions stand out: the 

Currents' Physical Component (CPC) theory [14] and Conservative Power Theory (CPT) [15]. By employing 

instantaneous symmetrical components for three-phase systems, both definitions can be obtained. 

The expression for reactive power for three-phase three-wire systems in line with the CPC theory is derived using 

the instantaneous voltage and reactive current symmetrical components:  

2 2 2 2

d' i' r d' r i'

0 0

1 1
3 ( ) ( )

T T

Q v v dt i i dt
T T

=  +  +     (71) 
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The instantaneous reactive current symmetrical components ird’ and iri’ are obtained by summing the symmetrical 

components of reactive current harmonics: 

* *

d' d' i' i'

0
rd' d'

1 2 2

d' i'

0

1
( )

1
( )

T

k k k kn

kT
k

k k

v i v i dt
T

i v

v v dt
T

=

+

= 

+






   (72) 

* *

d' d' i' i'

0
r i' i'

1 2 2

d' i'

0

1
( )

1
( )

T

k k k kn

kT
k

k k

v i v i dt
T

i v

v v dt
T

=

+

= 

+






   (73) 

where vd'k and id'k are instantaneous positive-sequence components for k-th voltage and current harmonics,  vi'k and ii'k 

are instantaneous negative-sequence components for k-th voltage and current harmonics, 
d'

d'

k

k

dv
v

dt
=  and

i'

i'

k

k

dv
v

dt
= . 

The expression for reactive power for three-phase three-wire systems in line with CPT is also derived in terms of 

instantaneous voltage and current symmetrical components: 

2 2

d' i'

0 * *

d' d' i' i'

02 2

d' i'

0

1
( )

1
3 ( )

1
( )

T

T

C
T

v v dt
T

Q v i v i dt
T

v v dt
T

+

=   +

+






  (74) 

where d' d'v v dt=  and i' i'v v dt=  are unbiased integrals of voltages vd' and vi'. Since Im{
* *

d' d' i' i'v i v i+ }=0, expression 

(74) gives a real quantity. 

The reactive power definition according to CPT represents the extension of inductive reactive power definition 

according to Kusters and Moore to three-phase three-wire systems [17,20]. The reactive power definitions according 

to Kusters and Moore are based on optimum shunt reactive elements (capacitors or inductors) used for the 

minimization of the rms value of the current in the line supplying the load [13]. However, in electrical circuits under 

non-sinusoidal conditions, optimal compensation using simple reactive elements does not eliminate all the non-active 

power, nor reactive power. Therefore, the reactive power defined by the CPT does not represent the reactive power of 

the load but the reactive power of the optimal compensator. 

Non-active power is defined in [22,23] as: 

2 2N S P= −    (75) 

Non-active power can be considered as useless power which causes losses in feeding conductors without 

transferring energy to the load. 

Active currents (arranged in vector ia) are defined as line currents of minimal rms values (i.e., the minimal line 

currents) which provide the same active power P as actual currents: 
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a s'

T T *

s' s'

0 0

1 1
3

T T

P P

dt dt
T T

= =

 

i v Av

v v v v

   (76) 

Non-active currents (arranged in vector in) result from the difference between actual currents and active currents: 

n a= −i i i    (77) 

The power factor can be defined by using active and apparent powers or by using the rms values of active and 

actual currents: 

T

2 2 2a a

a a a0

2 2 2

T

0

1

1

T

a b c

T

a b c

dt
I I ITP

PF
S I I I

dt
T

+ +
= = =

+ +





i i

i i

   (78) 

where  aaI , abI , and acI are the rms values of active currents (76) and Ia, Ib, and Ic are the rms values of actual line 

currents. 

 

 

3.2. Three-phase four-wire system 

By using zero-sum voltages, the apparent power for three-phase four-wire systems can be calculated as follows: 

2 2 2 2 2 2 2 2

0 0

1 1
( ) ( )

T T

a b c n a b c nS v v v v dt i i i i dt
T T

= + + +  + + +    (79) 

The apparent power S for three-phase four-wire systems can be expressed in terms of instantaneous symmetrical 

components for three-phase systems as 

( )2 2 2 2 2 2

0' d' i' 0' d' i'

0 0

1 1 1
3 4

4

T T

S v v v dt i i i dt
T T

 
=  + +  + + 

 
    (80) 

or in terms of instantaneous symmetrical components for four-phase systems as 

2 2 2 2 2 2

d" 00" i" d" 00" i"

0 0

1 1
4 ( ) ( )

T T

S v v v dt i i i dt
T T

=  + +  + +    (81) 

The active power for three-phase four-wire systems can be expressed in terms of instantaneous symmetrical 

components for three-phase systems as 
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* * *

0' 0' d' d' i' i'

0 0

1 1
3 ( )

T T

P p dt v i v i v i dt
T T

= =  + +     (82) 

or in terms of instantaneous symmetrical components for four-phase systems as 

* * *

d" d" 00" 00" i" i"

0 0

1 1
4 ( )

T T

P p dt v i v i v i dt
T T

= =  + +    (83) 

The expression for reactive power for three-phase four-wire systems can be derived using the instantaneous voltage 

and reactive current symmetrical components for three-phase systems: 

( )2 2 2 2 2 2

0' d' i' r0' rd' ri'

0 0

1 1 1
3 4

4

T T

Q v v v dt i i i dt
T T

 
=  + +  + + 

 
    (84) 

The instantaneous reactive current symmetrical components ir0’, ird’ and iri’ are obtained by summing the 

symmetrical components of reactive current harmonics: 

* * *

0' 0' d' d' i' i'

0
r0' 0'

1 2 2 2

0' d' i'

0

1
( )

1

41 1

4

T

k k k k k kn

kT
k

k k k

v i v i v i dt
T

i v

v v v
T

=

+ +

= 
 

+ + 
 






  (85) 

* * *

0' 0' d' d' i' i'

0
rd' d'

1 2 2 2

0' d' i'

0

1
( )

1 1

4

T

k k k k k kn

kT
k

k k k

v i v i v i dt
T

i v

v v v
T

=

+ +

= 
 

+ + 
 






   (86) 

* * *

0' 0' d' d' i' i'

0
r i' i'

1 2 2 2

0' d' i'

0

1
( )

1 1

4

T

k k k k k kn

kT
k

k k k

v i v i v i dt
T

i v

v v v
T

=

+ +

= 
 

+ + 
 






   (87) 

The expression for reactive power for three-phase four-wire systems is also derived using the instantaneous voltage 

and reactive current symmetrical components for four-phase systems: 

2 2 2 2 2 2

d" 00" i" rd" r00" r i"

0 0

1 1
4 ( ) ( )

T T

Q v v v dt i i i dt
T T

=  + +  + +    (88) 

The instantaneous reactive current symmetrical components ird”, ir00”, and iri” are obtained by summing the 

symmetrical components of reactive current harmonics:  
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* * *

d" d" 00" 00" i" i"

0
rd" d"

1 2 2 2

d" 00" i"

0

1
( )

1
( )

T

k k k k k kn

kT
k

k k k

v i v i v i dt
T

i v

v v v dt
T

=

+ +

= 

+ +






  (89) 

* * *

d" d" 00" 00" i" i"

0
r00" 00"

1 2 2 2

d" 00" i"

0

1
( )

1
( )

T

k k k k k kn

kT
k

k k k

v i v i v i dt
T

i v

v v v dt
T

=

+ +

= 

+ +






  (90) 

* * *

d" d" 00" 00" i" i"

0
r i" i"

1 2 2 2

d" 00" i"

0

1
( )

1
( )

T

k k k k k kn

kT
k

k k k

v i v i v i dt
T

i v

v v v dt
T

=

+ +

= 

+ +






  (91) 

where vd"k and id”k are instantaneous positive-sequence components for k-th voltage and current harmonics, v00"k and 

i00”k are instantaneous pseudozero components for k-th voltage and current harmonics, vi'k and ii'k are instantaneous 

negative-sequence components for k-th voltage and current harmonics, 
d"

d"

k

k

dv
v

dt
= ,

00"

00"

k

k

dv
v

dt
=  and i"

i"

k

k

dv
v

dt
= . 

Non-active power for three-phase four-wire systems is defined in the same way as for three-wire systems, according 

to (75). 

Active currents (arranged in vector ia) are defined as: 

a s"

T T *

s" s"

0 0

1 1
4

T T

P P

dt dt
T T

= =

 

i v Bv

v v v v

   (92) 

Non-active currents are defined according to (77). 

The power factor for three-phase four-wire systems is defined as: 

T

2 2 2 2a a

a a a a0

2 2 2 2

T

0

1

1

T

a b c n

T

a b c n

dt
I I I ITP

PF
S I I I I

dt
T

+ + +
= = =

+ + +





i i

i i

  (93) 

where aaI , abI , acI and anI are the rms values of active currents (92) and Ia, Ib, Ic and In are the rms values of actual 

line currents. 
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4. Simulation results  

Here, simulation examples show how the proposed definitions can be applied for determining power quantities. 

Fig.3 shows the example of a three-phase supply of a single-phase load [14]. The load and its supply are simplified to 

the structure with a loss-less transformer and parameters shown in Fig.3. The reactive power of the load at the 

fundamental frequency can be entirely compensated by turning on the switch S and connecting the capacitor, as shown 

in Fig.3. In that case, the remaining amount of reactive power results from the presence of fifth harmonic. 

 

 

Fig. 3. Load in a three-phase four-wire system. 

The following unbalanced source voltages for а three-phase three-wire system on the supply side of the transformer 

have been assumed: 

( )1 12 220cos( ) 10cos(5 )arv t t = +    (94) 

1 1

2 10
2 220cos 10cos 5

3 3
brv t t

 
 

    
= − + −    

    

 (95) 

1 1

2 10
2 55cos 2.5cos 5

3 3
crv t t

 
 

    
= + + +    

    

  (96) 

The assumed source voltages are referred to an arbitrary reference r and they are unbalanced since the voltage drop 

of 75% in the third phase line has been assumed. 

To calculate powers for a three-phase three-wire system on the supply side of the transformer, the voltages against 

the virtual star point, i.e., the zero-sum voltages va', vb' and vc' shown in Fig.4(a) have been calculated according to: 

2 1 1
1

1 2 1
3

1 1 2

a a r

b br

c cr

v v

v v

v v

  − −   
     = − −      
    − −     

  (97) 

First, the system shown in Fig.3 is analysed before connecting the capacitor. The line currents on the source side 

(three-phase three-wire system) and the corresponding power currents calculated according to (17) or (21) are also 

shown in Fig.4(a). The instantaneous power p, instantaneous apparent power s and instantaneous reactive power q on 

the source side, calculated according to (23), (24) and (25), are shown in Fig.4(b). The same quantities can also be 

obtained using Clarke transformation, according to (26), (27) and (28). 

Due to the assumed Dyn transformer connection, the voltages on the load side are balanced (va''+vb''+vc''=0, va''=va'- 

vb', vb''=vb'- vc', vc''=vc'- va' and vn''=0). These voltages are shown in Fig.5(a). The line currents on the load side and 
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the corresponding power currents calculated according to (58) are also shown Fig.5(a). The instantaneous power p, 

instantaneous apparent power s and the modulus of instantaneous reactive power q on the load side, calculated 

according to (52), (53) and (57), are shown in Fig.5(b). The quantities shown in Fig.5(b) can also be obtained by using 

Clarke transformation for four-phase systems, according to (61), (62) and (63), or by using the hyper-space vector 

transformation [8,9]. 

Power currents are the aim of time-instantaneous compensation (compensation without energy storage). These 

currents have smaller rms values, but they are more distorted than actual currents. Power currents are time-dependent 

on voltages but also on actual currents, which makes them unsuitable as compensation objectives. Differently from 

power currents, active currents are proportional only to voltages. Besides that, active currents minimize losses in 

feeding conductors providing the same active power P as actual currents. By assuming that active currents are the aim 

of compensation, the load will be compensated to a unity power factor [10,11,16,23]. Active currents on the source 

side calculated according to (76) are shown in Fig.6(a). Active currents on the load side calculated according to (92) 

are shown in Fig.6(b). Active currents appear in all line conductors although a single-phase load is considered.  

 

 

 

Fig. 4. (a) Voltages, line currents and power currents on the source side before connecting the capacitor; (b) Instantaneous power, instantaneous 

apparent power, and instantaneous reactive power on the source side before connecting the capacitor. 

 

Fig. 5. (a) Voltages, line currents and power currents on the load side before connecting the capacitor; (b) Instantaneous power, instantaneous 

apparent power, and instantaneous reactive power on the load side before connecting the capacitor. 



18 

 

Fig. 6. (a) Voltages, active currents, and line currents on the source side (three-phase three-wire system) after connecting the capacitor; (b) 

Voltages, active currents and line currents on the load side (three-phase four-wire system) after connecting the capacitor. 

Fig.6(a) and Fig.6(b) also show the line currents after connecting the capacitor and compensating the reactive power 

of the load at the fundamental frequency. The obtained line currents after the compensation of the load are reduced 

and oscillate around the active currents which are the optimal currents providing a unity power factor. 

For the system shown in Fig.3, the values of the apparent and reactive powers on the source side (three-phase three-

wire system), calculated according to various definitions before and after connecting the capacitor, are shown in Table 

1. The same powers are also calculated for the load side (three-phase four-wire system) and they are shown in Table 

2. All the considered theories give the same value of active power P=29.05 kW. 

In the case of a three-phase three-wire system on the source side, the considered power definitions [14-23] use 

zero-sum voltages. Therefore, all the considered definitions give the same value of the apparent power as the proposed 

apparent power definition in terms of instantaneous symmetrical components (69). However, the considered theories 

[14,15] give various values of reactive power after connecting the capacitor that compensates reactive power of the 

load at the fundamental frequency. The CPT [15] gives a negative value of inductive reactive power for the load that 

is compensated to zero value of reactive power at the fundamental frequency, which means that the remaining reactive 

property of the load at the frequency of the fifth harmonic is not identified correctly. The proposed reactive power 

definition in terms of instantaneous symmetrical components (71) gives the same value of reactive power as the CPC 

theory [14]. 
      Table 1. Apparent and reactive powers for the three-phase three-wire system. 

 Without capacitor With capacitor 

 S (kVA) Q (kvar) S (kVA) Q (kvar) 

IEEE Standard [22] 72.68  35.41  

DIN Standard [23] 72.68  35.41  

CPC theory [14] 72.68 58.15 35.41 12.56 

CPT [15] 72.68 58.15 35.41 -0.11 

Proposed definitions  72.68 58.15 35.41 12.56 

 
Table 2. Apparent and reactive powers for the three-phase four-wire system with balanced voltages. 

 Without capacitor With capacitor 

 S (kVA) Q (kvar) S (kVA) Q (kvar) 

IEEE Standard [22] 125.89  61.33  

DIN Standard [23] 125.89  61.33  

CPC theory [14] 89.02 58.15 43.37 12.56 

CPT [15] 89.02 58.15 43.37 -0.11 

Proposed definitions  125.89 58.15 61.33 12.56 

 

On the load side, the voltages of the considered three-phase four-wire system are balanced, due to the assumed Dyn 

transformer connection. The proposed apparent power definitions in terms of instantaneous symmetrical components 
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(80) and (81) give the same value of the apparent power obtained by IEEE and DIN standards. However, the 

considered theories [14,15] give the smaller values of apparent power compared to standards [22,23] because these 

theories omit the contribution of neutral line currents to the collective rms value of the currents. Again, the proposed 

reactive power definitions in terms of the instantaneous symmetrical components (84) and (88) give the same value 

of reactive power as the CPC theory [14]. 

In order to have unbalanced source voltages supplying the unbalanced load in a three-phase four-wire system, the 

load shown in Fig.3 is directly supplied by source voltages (94), (95) and (96) which are referred to the neutral line 

(var=van, vbr=vbn, vcr=vcn, vn=0). In this case, the load is connected between the phase lines a and b and supplied by 

phase-to-phase voltage vab. The lines c and n are unloaded. Values of the apparent and reactive powers, calculated 

according to various definitions before and after connecting the capacitor, are shown in Table 3. 

Table 3. Apparent and reactive powers for the three-phase four-wire system with unbalanced voltages. 

 Without capacitor With capacitor 

 S (kVA) Q (kvar) S (kVA) Q (kvar) 

IEEE Standard [22] 74.48  36.28  

DIN Standard [23] 73.59  35.85  

CPC theory [14] 76.23 58.15 37.14 12.56 

CPT [15] 76.23 58.15 37.14 -0.11 

Proposed definitions  73.59 58.15 35.85 12.56 

 

As can be seen from Table 3, there is a slight difference between the values of the apparent power calculated 

according to DIN and IEEE standards. The proposed apparent power definitions in terms of instantaneous symmetrical 

components (80) and (81) give the same value of the apparent power obtained by DIN Standard. The considered 

theories [14,15] give different values of apparent power compared to standards because these theories use phase-to-

neutral voltages which are unbalanced in this case. These theories give the unchanged values of reactive power in all 

considered cases, just as the value of active power remains unchanged. This is expected since the voltage applied to 

load terminals is the same and the load impedance and compensating capacitance are unchanged in all considered 

cases. Consequently, the CPT [15] does not give the correct value for the reactive power of the load that is 

compensated to zero value of reactive power at the fundamental frequency. As in previous cases, the proposed reactive 

power definitions in terms of the instantaneous symmetrical components (84) and (86) again give the same value of 

reactive power as the CPC theory [14]. 

5. Conclusion 

The set of power definitions based on instantaneous symmetrical components has been proposed in this paper. The 

proposed definitions can be used for time-instantaneous and time-average compensation. The instantaneous and 

average powers are defined using the same mathematical framework. By applying the Lyon transformation to three-

phase voltages and currents, instantaneous symmetrical components are obtained and used to define the powers for 

three-phase power systems with non-sinusoidal and unbalanced voltages and currents. To provide the correct 

calculation of powers for unbalanced three-phase four-wire systems, the instantaneous symmetrical component for 

the four-phase systems has been introduced and used for power definitions. The proposed definitions avoid common 

mistakes caused by erroneous treatment of zero-sequence voltages. In the case of a three-phase three-wire system, the 

proposed definitions give the same values of powers as the most known power definitions. In the case of a three-phase 

four-wire system, the proposed definitions give the same value of instantaneous reactive power as the methods based 

on Clarke transformation for four-phase systems and hyper-space vector transformation. Also, in the case of a three-

phase four-wire system, the proposed definitions give the same value of the apparent power as the DIN Standard and 

the same value of reactive power as the Currents’ Physical Components (CPC) theory. 
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