Time Series Data in the ESPON Database
 Martin Charlton, Chris Brunsdon, Conor Cahalane, Lars Pforte

To cite this version:

Martin Charlton, Chris Brunsdon, Conor Cahalane, Lars Pforte. Time Series Data in the ESPON
Database. [Research Report] ESPON. 2015. hal-03609720

HAL Id: hal-03609720

https://hal.science/hal-03609720

Submitted on 15 Mar 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Time Series Data in the ESPON Database

CONTENT

Time series data form inputs to the ESPON Database, at spatial scales including NUTSO, NUTS1, NUTS2 and NUTS3. Series are often incomplete at the lower levels in the NUTS hierarchy. The task is to impute the missing values, and ensure the spatial coherence of the estimates.

A methodology is presented for data imputation based on an autoregressive model which is fitted to the existing data, and used to impute the missing values, using a Bayesian approach. The spatial coherence of the results is also ensured.

The metholodgy has been implemented using the R language, and tested on typical short-run time series for NUTSO, NUTS1, NUTS2 and NUTS3 regions.
R and JAGS code to operationalise the methodology is presented in this report, and a suitable workflow is outlined.

LIST OF AUTHORS

Martin Charlton, National Centre for Geocomputation Chris Brunsdon, National Centre for Geocomputation Conor Cahalane, National Centre for Geocomputation Lars Pforte, National Centre for Geocomputation

Contact

manager@espondb.eu

Address

National Centre for Geocomputation
National University of Ireland, Maynooth
Maynooth
County Kildare
IRELAND

TABLE OF CONTENT

Section Title1 Introduction1
2 ESPON Time Series 2
3 Missing data imputation 11
4 Implementation 21
5 ESPON time series in practice 37
Appendix
1 NUTSO time series plots 42
2 Main analysis and imputation R functions 49
3 Core imputation function 67
4 JAGS code for MCMC (multiple NAs) 70
5 JAGS code for MCMC (single NA) 72
6 Missing data at NUTS0/1/2 74
7 Missing data heatmaps 77
8 Coherence constraint output 112

1. Introduction

A time series is a collection of observations made sequentially in time ${ }^{1}$. Time series are frequently encountered in (i) economics [Beveridge annual wheat price series], (ii) physical sciences [monthly average air temperature] (iii) marketing [monthly product sales] (iv) demography [annual population estimates] and (v) process control [weights of manufactured product sampled hourly] (vi) communication [binary series are common]. While many series are usually measured at regular intervals (e.g.: year, month, week, day, hour, minute), there are series which occur irregularly, for example, major railway disasters, which are known as point processes. Time series analysis is concerned with (i) description of the main properties of the series, (ii) explanation of the relationship between two series taken at the same time [monthly atmospheric temperature readings, monthly measurements of the North Atlantic Oscillation] and (iii) prediction of (usually) future values.

Time series description can take several forms, but are intended to reveal the underlying structure of the series. This structure can include several components ${ }^{2}$:

Trend: an increase or decrease in the value of the series over time
Seasonality: a regular pattern of high and low values related to calendar time Long term cycles: periodicity not related to seasonality Outliers: values which are unusually high or low in comparison with the rest of the data
Abrupt changes: changes to the variation in the series or level
Variance: this may be constant over time or increase/decrease

Sources of data for ESPON series

Many of the tables required can be obtained from EUROSTAT. However, there are much missing data. Depending on the series, the series may be complete to NUTS 3 back to 2000. For earlier years, data may only be available to NUTS2 level. This requires recourse to other sources, for which the most authoritative would be those from the National Statistical Offices (for example: Turkstat, Croatian Bureau of Statistics, Statistics Norway, and Statistische Ämter des Bundes und der Länder). There are other sources, such as the OECD, and the EUROSTAT NewCronos database may be of assistance in completing the time series.

[^0]
2. ESPON Time Series

The character of ESPON Series

The socio-economic time series which appear to be commonly encountered in the ESPON programme are annual counts or ratios for a restricted time period (1990-2013) ${ }^{3}$. This implies that the longest series are less than 25 years, and some are far shorter. Missing data in the middle of a series shorten it still further. Hyndman has reported in the effects of attempting to fit models to short series ${ }^{4}$. In 95 short economic series about $1 / 3$ were random walks (they had no structure).

The series are also presented for the spatial units in the NUTS classification ${ }^{5}$, The NUTS system is a hierarchical system for dividing up the economic territory of the EU for the purposes of the collection o regional statistics, socio-economic analyses and framing EU regional policies. We are concerned mainly with the first 4 levels of the NUTS hierarchy, Tables of the NUTS regions and their codes, and correspondence tables for region adjustments are available from EUROSTAT. The input and outputs from the ESPON database are in the form of rectangular files, as a Excel spreadsheets - each line of data is preceded by its NUTS code. Some sheets, and the EUROSTAT tables present the NUTS codes of every unit in a single column (for example demo_r_gind3), which gives the impression of flattening the hierarchy, The key to the strategy for handling the time series is to think of the cross-sectional structure at each time period, implied by the NUTS codes, explicitly as a tree. We shall return to this later.

The datasets in EUROSTAT and from other sources are often incomplete for the time periods and spatial scales of interest. There might be many reasons population censuses may only be carried out on a decadal basis. While national or regional intercensal population estimates may be provided by the national agencies, data at lower level is less common.

In the case of the RIATE example dataset, the pattern of missing data relative to the Ivarious levels in the NUTS hierarchy is:

	Complete		
NUTSlevel	NotOK	OK	
$\mathbf{0}$	3	31	
$\mathbf{1}$	35	80	
$\mathbf{2}$	113	204	
$\mathbf{3}$	1239	222	

[^1]An entry in the NotOK column means that data for one or more time periods in the series was missing. The pattern was what proportion of data was missing by NUTS level is below:

Number Incomplete																			
NUTSlevel	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{2 1}$	$\mathbf{2 2}$
$\mathbf{0}$	31	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0
$\mathbf{1}$	80	7	3	0	0	1	0	0	0	0	2	0	0	0	0	12	0	4	6
$\mathbf{2}$	204	16	15	0	5	4	2	0	0	0	4	0	15	17	0	26	5	3	1
$\mathbf{3}$	222	113	42	0	0	417	18	44	105	132	108	100	32	0	10	88	30	0	0

While most NUTSO series are complete, 1 is missing four time periods, 1 is missing 16, and one is missing 21! The situation deteriorates as we progress down the hierarchy, but this is to be expected. About 25% of the NUTS1 series are missing a substantial portion of their data (over 72% of each series are missing). At NUTS1 and NUTS2 data is either mostly present or missing to a serious degree.

AT NUTS3 level, the modal group represents 6 missing entries and a moderate number of regions have over 75% of their series missing.

This provides a challenge for the analyst. What should be done about the missing data? In survey analysis a common strategy is to analyses only those cases with complete data for the variables of interest. This raises the question as to whether the mechanism for creating the missing variables is a random process. If it is not, then the possibility of introducing bias into the analysis becomes a problem. With time series the problem is magnified: if a single value is missing from the series, should the analyst remove this series from the analysis, or should some attempt be made to complete the data?

IBM's SPSS software offers several alternatives to allow the analyst to replace missing observations with an estimate. These include ${ }^{6}$

- The mean of the series
- The mean of nearby observations
- The median of nearby observations
- Linear interpolation
- Linear trend using the time series index as a regressor

The mean of the series might be a unwise choice, particular if the series has a rising trend, and the missing observation is at the beginning of the series. Approaches to linear interpolation are described in detail below. Linear trend may or may not be helpful, although if the residuals either side of the trend line are all positive or negative, then the estimated value my be some distance from a desirable value.

Enders ${ }^{7}$ notes that the analyst should make the distinction between the missing data pattern and the missing data mechanism. He notes that the pattern relates to the configuration of observed and unobserved data, whereas the mechanism permits a description of the relationship between the two in terms of probability. Rubin ${ }^{8}$ proposed classified missing data mechamisms into three types: (1) missing at random, (2) missing completely at random and (3) missing not at random. MAR arises when the probability of missing data is related to the values of some other measured variable in the dataset. MCAR arises when the the probability is unrelated to any other variable in the dataset - Elders uses the adjective haphazard for this. MNAR arises when the probability of missing data on a variable is related to the values of the variable itself. Elders uses an example of cancer patients in a trial becoming so ill they are unable to continue participation in the trial. The ESPON time series missing data are likely to arise from an MCAR process - they are certainly not MNAR (the population values are too small to collect). However, they may be too expensive to collect.

Traditional methods for missing data

Expedient methods for dealing with missing data include deletion of the observations with missing data. Listwise deletion, or complete case analysis, removes any observation with one or more missing values. A variant, pairwise deletion, or available-case analysis, removes variables on an analysis-byanalysis case. This would result in the correlations in a correlation matrix potentially being based on different numbers of underlying observations.

Other expedient methods include imputation. Amongst these are replacement by the arithmetic mean, replacement by median, regression imputation, (and stochastic regression imputation which adds a random number from the distribution of residuals), hot-deck imputation (scores are taken from similar

6

http://pic.dhe.ibm.com/infocenter/spssstat/v21rOm0/index.jsp?topic=\%2Fcom.ibm.spss. statistics.help\%2Fidh_rmvx.htm
${ }^{7}$ Enders, CK, 2010, Applied Missing Data Analysis, New York: Guilford Press
${ }^{8}$ Rubin, DB, 1976, Inference and Missing Data, Biometrika, 63(3), 581-592
respondents answers), and last observation carried forward (a variant of this is described below).

Missing observations

An appropriate example is given by the M4D table M4Dpoptot19902011_20120522.xls. This contains estimates of residential population, and is available at NUTSO, NUTS2, NUTS2 and NUTS3, from 1990 to 2012. The metadata in table 1 shows that the sources of data include EUROSTAT and the national statistical agencies. However, in many cases data have not being available from these sources and has been imputed by the team at RIATE. The metadata reveals that 52 separate imputation approaches can be identified, although these are variations on the same underlying imputation process.

Table 1: extracr from metadata in M4Dpoptot1990-2011_20120522.xls

ID	Label	Provider
1	1	Eurostat
2	1 a	Eurostat
3	1*a	Eurostat, NewCronos database
4	1*b	Eurostat, NewCronos database
5	2a	ESPON M4D
6	3 a	Turkstat
7	4a	Croatian Bureau of Statistics
8	4b	Croatian Bureau of Statistics
9	4c	Croatian Bureau of Statistics
10	6a	GUS (Central Statistical Office of Poland)
11	10	Statistics Norway
12	11	Statistics Sweden
13	12	Statistische Ämter des Bundes und der Länder
14	13	Statistics Denmark
15	14	Statistics Portugal
16	15	Statistics Netherlands
17	16	Latvijas Statistika
18	17	Statistics Lithuania
19	18	Fürstentum Liechtenstein
20	20	Statistics Iceland
21	21	Instituto Nacional de Estadistica
22	22	Czech Statistical Office
23	23	Office Fédéral de la Statistique Suisse
24	24	Statistics Estonia
25	25	Statistics Finland
26	26	INSEE (Institut National de la Statistique et des Etudes Economiques)
27	27	Hungarian Central Statistics Office
28	29a	Statistics Belgium - Bestat
29	29b	Statistics Belgium
30	31	Republic of Macedonia, Statistical

31	33	Hellenic Statistical Authority (EIStat)
32	34	UK National Statistics
33	E1b	ESPON M4D
34	E2a	ESPON M4D
35	E2b	ESPON M4D
36	T1a	ESPON M4D
37	T1b	ESPON M4D
38	SE1a	ESPON M4D, New Cronos Database
39	SE1a*	ESPON M4D, New Cronos Database
40	SE1b	ESPON M4D, New Cronos Database
41	SE1c	ESPON M4D, General Register Office for Scotland
42	SE1f	ESPON M4D, Statistical Office of the Republic of Slovenia
43	SE1g	ESPON M4D, Central Statistics Office Ireland
44	SE1h	ESPON M4D, Statistics Iceland
45	SE1i	ESPON M4D, Instituto Nacional de Estadistica
46	SE1j	ESPON M4D, Republic of Macedonia State Statistical Office
47	SE1k	ESPON M4D, UK National statistics
48	SE1I	ESPON M4D, Istituto Nazionale di Statistica
49	SE1m	ESPON M4D, Czech Statistical Office
50	SE1n	ESPON M4D, Statistische Ämter des Bundes und der Länder
51	SE1o	ESPON M4D, Office Fédéral de la Statistique Suisse
52	TE1b	ESPON M4D
53	TE1c	ESPON M4D
54	TE1d	ESPON M4D
55	TE1e	ESPON M4D
56	TE1f	ESPON M4D
57	TE1g	ESPON M4D
58	TE1h	ESPON M4D
59	TE1i	ESPON M4D
60	TE1j	ESPON M4D
61	TE1k	ESPON M4D
62	TE1I	ESPON M4D
63	TE1m	ESPON M4D
64	TE1n	ESPON M4D
65	TE1o	ESPON M4D
66	TE1p	ESPON M4D
67	TE1q	ESPON M4D
68	TE1r	ESPON M4D
69	TE2a	ESPON M4D
70	TE2b	ESPON M4D
71	TE2c	ESPON M4D
72	TE3a	ESPON M4D
73	TE3b	ESPON M4D
74	TE3c	ESPON M4D

75	TE3d	ESPON M4D
76	TE3e	ESPON M4D
77	TE3f	ESPON M4D
78	TE3g	ESPON M4D
79	TE6a	ESPON M4D
80	TE6b	ESPON M4D
81	TE6c	ESPON M4D
82	TE6d	ESPON M4D
83	TE6e	ESPON M4D
84	TE6f	ESPON M4D

The RIATE team observed that data was more often missing for NUTS3 units than NUTS 2, and more often NUTS2 than NUTS1. Their other observation was that data is either missing from the beginning of the series to an intermediate time period, or missing in a run in the middle of the series. That the NUTS hierarchy provides a parent NUTS ${ }_{\text {level-1 }}$ region for any groups of NUTS ${ }_{\text {level }}$ regions lead them to an ingenious group of solutions based around LOCF. These boil down essentially to two strategies.

Let $\mathrm{p}_{\mathrm{t}, \mathrm{r}}$ be the proportion of the parent $\mathrm{NUTS}_{\text {level-1 }}$ region's population for $\mathrm{NUTS}_{\text {level }}$ region r in year t, and N_{r} is the number of NUTS $_{\text {level }}$ regions in a parent NUTS $_{\text {level-1 }}$ region. In any given year the following is true:

$$
\sum_{r=1}^{N r} p_{t, r}=1
$$

Data missing from beginning of series

In the first case, which the RIATE team describe as retropolation, the data are missing from 1990 to the time period last. The proportions are propagated backwards along the series from the earliest known value, $\mathrm{p}_{\text {last }+1, r}$.

$$
\begin{aligned}
& p_{t, r}=p_{\text {last } 11, r} \\
& t=1990 \ldots \text { last }
\end{aligned}
$$

The population estimates for the NUTSlevel regions are then obtained by multiplying the appropriate NUTSlevel-1 population by the retropolated $\mathrm{p}_{\mathrm{t}, \mathrm{r}}$ values.

Data missing from the middle of a series

In the second case, that of interpolation, the data are missing from time period first to time period last inclusive. This implies that the proportions are are known for time period first-1 and time period last+1. The intermediate proportions are obtained by linear interpolation. If $p_{\text {first-1,r }}$ and $p_{\text {last-1,r }}$ are the known proportions of the time periods immediately adjacent to the run of missing observations, then:

$$
\begin{aligned}
& p_{t, r}=\left(p_{\text {last } 1, r}-p_{\text {first }-1, r}\right)\left(\frac{t-\text { first }+1}{\text { last }- \text { first }+2}\right) \\
& t=\text { first...last }
\end{aligned}
$$

The population estimates for the NUTSlevel regions are then obtained by multiplying the appropriate NUTSlevel-1 population by the interpolated $\mathrm{p}_{\mathrm{t}, \mathrm{r}}$ values.

Data missing from the end of the series

In a case analogous to the first, values of the proportions can be propagated forward from the latest known $\mathrm{p}_{\text {first-1,r }}$ to 2012 (or whatever is the last time period in the study) in an extrapolation:

$$
\begin{aligned}
& p_{t, r}=p_{\text {first-1,r }} \\
& t=\text { first } \ldots 2012
\end{aligned}
$$

These imputations represent the application of an $\operatorname{AR}(0)$ time series model where the trend for the first and last case is zero, and linear in the interpolation case. The imputed values will then exhibit the same behavioural characteristics of the parent series.

Partially missing data

In some cases, data is missing for a subset missing of the NUTS ${ }_{\text {level }}$ regions. The proportions are then of the NUTS $_{\text {level-1 }}$ population less the sum of the nonmissing NUTS $_{\text {level }}$ populations. If data is missing for only one region at NUTS ${ }_{\text {level }}$, then we can regard it as embarrassingly estimatable, in that the missing values are obtained from the population for the NUTSlevel-1 region less the sum of the non-missing NUTS $_{\text {level }}$ populations, without the need to bring the LOCF procedures into play.

Estimation and the NUTS hierarchy

The implementation of this approach implies that the estimation strategy is topdown. That is, as the proportions for NUTS ${ }_{\text {level }}$ relative to $\mathrm{NUTS}_{\text {level- } 1}$ are required, then the values at NUTS ${ }_{\text {level- } 1}$ must be obtained first. Therefore, population estimates at NUTS1 must be made first, relative to the NUTSO values. Once these have been obtained, estimates at NUTS2 may be made, and finally, estimates at NUTS3.

The RIATE implementation was undertaken using Excel. Whilst this represents activity and effort which might be regarded as heroic, it is almost impossible to debug, very difficult to check, and cannot be automated. For these reasons, it cannot be recommended.

Missing data scenarios

Populating the tables to NUTS 3 level over the period 1990-2013 with (a) Eurostat data and (b) data from the National Statistical Offices reveals some recurrent patterns with regard to missing data. The diagrams below, we use four colours when depicting the patterns of present and absent data:

Green: Eurostat data present ("present" data series)
Blue: Eurostat data not present; National Statistical Agency data present; both series agree for later (or earlier) time periods ("concordant" data series)
Yellow: Eurostat data not present; National Statistical Agency data present; both series disagree for later (or earlier) time periods ("discordant" data series)
Red: Neither Eurostat nor external data available ("missing" data)
Several scenarios arise when data is missing for several consecutive time periods:

FI1C	Etelä-Suomi	1116597	1119701	1123651	1126593	1127988
FIC1	Varsinais-Suomi		425282	427158	428864	430409
FI1C2	Kanta-Häme		162248	163442	164363	164767
FI1C3	Päijät-Häme		197012	197753	198329	198503
FI1C4	Kymenlaakso		193919	194182	194160	193784
FI1C5	Etelä-Karjala					

- Data is present for a NUTS region, concordant for $n-1$ of the NUTS3 regions which it contains, and discordant for one region.
- Data is present and estimable for all but one time period at NUTS3 but there is a total available for NUTS2

FI19	Länsi-Suomi	1295857	1300085	1304793	1308650	1311353
FI193	Keski-Suomi		257967	259842	261046	261805
FI194	Etelä-Pohjanmaa		201670	201972	202333	202477
FI195	Pohjanmaa		172448	173183	173788	174083
FI196	Satakunta					
FI197	Pirkanmaa					

- Data is present for a NUTS region, concordant for $n-p$ of the NUTS3 regions which it contains, and discordant for p regions.

NL42	Limburg (NL)			1103960	1109841	1115485
NL421	Noord-Limburg	257225	258103	259488	260904	262411
NL422	Midden-Limburg					
NL423	Zuid-Limburg					

- Data is partially present at NUTS2, there is some concordant data at for n-p of the NUTS3 regions which is contains, and discordant data for others.

BE2	Vlaams Gewest	5739736	5767856	5794857	5824628	5847022	5866106	5880357	5898824	5912382	5926838
BE21	Prov. Antwerpen	1597310	1604566	1610695	1619613	1625069	1628710	1631243	1635640	1637857	1640966
BE211	Arr. Antwerpen	922755					933388				
BE212	Arr. Mechelen	294858					300692				
BE213	Arr. Turnhout	379697					394630				

- Data is present at NUTS2, and for one or more time period in the NUTS3 series there is concordant data. The rest of the NUTS3 data are missing.
- Data is present at NUTS2, and for one or more time period in the single NUTS3 series there is concordant data. The rest of the NUTS3 data are missing. (This occurs when the NUTS3 region is also the NUTS2 and NUTS1 region, for example, BE1/BE10/BE100).

Fl19	Länsi-Suomi	1295857	1300085	1304793	1308650	1311353
FI193	Keski-Suomi		257967	259842	261046	261805

- Data is present at NUTS2, and is missing for a single time period at NUTS 2 as part of a concordant series.

- There is missing data at NUTS3 when the NUTS1, NUTS2 and NUTS3 regions are the same spatial unit

- Data is present at NUTS2, and there is a small corpus of concordant NUTS3 data, but for the majority of the n regions all the data at NUTS3 are missing.

- This is an extension of the above cases with missing data for one NUTS3 region when the other $n-1$ regions have concordant data

- Data is missing at NUTS3 for regions where NUTS3 and NUTS2 boundaries are coterminous.

ES21	Pais Vasco	2082258	2087972	2094909	2103441	2113052
ES211	Álava	286426	289140	292028	295699	299103
ES212	Guipúzcoa	673596	675970	678730	680651	683504
ES213	Vizcaya				1127091	1130445

- Eurostat data is present at all part of the series at NUTS 2 and NUTS3. Concordant data in available for $\mathrm{n}-1$ NUTS2 regions and 1 NUTS3 region is missing.

This leads to the conclusion that the missing data can be handling in a manner in which the available data can be used as evidence to complete the missing elements in the various series, and ensure data is also spatially consistent. It also leads us to conclusion that the missing data should be built from the lowest levels in the NUTS hierarchy first. With this in mind we start with the simplest cases, and recursively apply more complex solutions as and when they are required.

3. Missing data imputation

Estimation

The scenarios suggest that we will require three components in the estimating strategy: (a) a suitable model for the existing data and (b) a means of ensuring hierarchical spatial coherence in the series and (c) a means of representing the spatial hierarchy of the NUTS regions in each country

Experimentation of the existing ESPON series suggests that some relatively simple models will yield reasonable results for the first component. Each series can be modelled with either a linear, quadratic or exponential trends, with an autocorrelated error term:

$$
\begin{aligned}
& P_{t}=a_{0}+a_{1} t+\varepsilon_{t} \\
& P t=a_{0}+a_{1} t+a_{2} t^{2}+\varepsilon_{t} \\
& P_{t}=a_{0} e^{a_{1} t}+e_{t}
\end{aligned}
$$

where the error term is $\varepsilon_{0} \sim N(0, \tau)$ and $\varepsilon_{t} \sim N\left(\rho \varepsilon_{t-1}, \tau\right)$ with $t>0$ and $|\rho|<1$.. The parameters a_{0}, a_{1} and a_{2} are to be estimated. Both models can handle missing values - points for which no data is available - as well as provide forecasts, backcasts and interpolation of missing data in the middle of a series. The generic term prediction covers these three eventualities.

Models for time series

To estimate data for a time series we need to start with a model. There are many such models in the time series analysis literature which may be applied. In an autoregressive model the value of the series at time t depends on p previous values:

$$
X_{t}=c+\sum_{i=1}^{p} \varphi_{i} X_{t-i}+\varepsilon_{t}
$$

By contrast in a moving average model, the error at time t depends on q previous values:

$$
X_{t}=\mu+\varepsilon_{t}+\sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j}
$$

These can be combined to give an autoregressive moving average model:

$$
X_{t}=c+\varepsilon_{t}+\sum_{i=1}^{p} \varphi_{i} X_{t-i}+\sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j}
$$

Such models were given extensive treatment in Box and Jenkins (1970) ${ }^{9}$. They are conventionally fitted to a series which is stationary (that is, in which the trend has been removed), a situation obtained by differencing. If the trend is linear, the series might need to be differenced once (i.e. $\Delta_{t}=X_{t}-X_{t-1}$); if the trend is accelerating, second differences might be required. However, typically to obtain reliable estimates of the p autoregressive parameters and the q moving average parameters requires series of perhaps many 10 s of observations. We no have this luxury with the ESPON series.

Al alternative is to consider methods using Bayesian inference. We conventionally model data D with some parameters θ using the probability distribution $\mathrm{P}(\mathrm{D} \mid \theta)$; the θ might be the parameters from a regression model (slope, intercept and error variance). Using Bayes theorem, this can be inverted to yield a probabilistic statement about θ given the data D :

$$
P(\theta \mid D)=P(\theta) \frac{P(D \mid \theta)}{\int_{\theta} P(D \mid \theta) d \theta}
$$

The denominator is not usually analytically soluble; solutions can be found using Markov Chain Monte Carlo (MCMC) techniques which simulate random θ values from $P(\theta \mid D) . P(\theta \mid D)$ is known as the posterior distribution of the parameters.

The MCMC approach has the useful property that it can be used to estimate the missing values. The posterior distribution of the missing data can be considered in the same way other unknown quantities. If D^{*} is the unobserved data, then the posterior predictive distribution of the data is:

$$
P\left(D^{*} \mid D\right) \propto P(\theta) P(D \mid \theta) P\left(D^{*} \mid \theta\right)
$$

This gives a means of estimating the missing data, using the available data as evidence.

Bayes models

Using Bayesian techniques involves a somewhat different approach than traditional frequentist models. Using the example of the Austria population, we will fit an ordinary least squares regression model, a Bayesian version of the same, and then a Bayesian time series model with linear trend.

We start with the data, the population estimate in each year in millions:

```
> AT
    [1] 7.644818 7.710882 7.798899 7.882519 7.928746 7.943489 7.953067 7.964966
    [9] 7.971116 7.982461 8.002186 8.020946 8.063640 8.100273 8.142573 8.201359
[17] 8.254298 8.282984 8.318592 8.355260 8.375290 8.404252
```

These are the populations from 1990 to 2011, and we will regress these against the year number (running from 1 to 22 inclusive).
$>m 1<-\operatorname{lm}(A T \sim$ Year $)$

[^2]```
> summary(m1)
Call:
lm(formula = AT ~ Year)
Residuals:
\begin{tabular}{rrrrr}
Min & \(1 Q\) & Median & 32 & Max \\
-0.076560 & -0.036842 & 0.008816 & 0.018307 & 0.078670
\end{tabular}
Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.689203 0.018510 415.42 < 2e-16 ***
Year 0.032175 0.001409 22.83 8.51e-16 ***
Signif. codes: 0 '***' 0.001 `**' 0.01 `*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.04194 on 20 degrees of freedom
Multiple R-squared: 0.963, Adjusted R-squared: 0.9612
F-statistic: 521.2 on 1 and 20 DF, p-value: 8.512e-16
```

The equation that we construct from these results is $Y_{t}=7.689+0.032 \mathrm{Year}_{\mathrm{t}}$. As the population levels are expressed in millions and thus we interpret the annual population increase to be about 32000, from a start of 7.689 m . The $95 \%$ confidence interval for the intercept is 7.653 to 7.726 , and the slope is from 0.0294 to 0.0349 .

The JAGS model is specified in a slightly different fashion:

```
require(rjags)
modelCode <- "
 model{
 for(i in 1:N) {
 Y[i] ~ dnorm(mu[i], tau)
 mu[i] <- alpha + beta*x[i]
 }
 alpha ~ dnorm(0, 0.0001)
 beta ~ dnorm(0, 0.0001)
 sigma <- 1.0/sqrt(tau)
 tau ~ dgamma(0.001, 0.001)
 }
"
modelData <- list(N=N, Y=AT, X=Year)
modelMCMC <- jags.model(textConnection(modelCode), modelData)
Compiling model graph
 Resolving undeclared variables
 Allocating nodes
 Graph Size: 98
Initializing model
update(modelMCMC, n.iter=1000)
modelOutp <- coda.samples(modelMCMC, n.iter=1000,
variable.names=c("alpha","beta","sigma"))
summary(modelOutp)
Iterations = 1001:2000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 1000
1. Empirical mean and standard deviation for each variable,
 plus standard error of the mean:
 Mean SD Naive SE Time-series SE
alpha 7.68484 0.020033 6.335e-04 0.0017574
beta 0.03250 0.001527 4.829e-05 0.0001331
```

2. Quantiles for each variable:

|  | $2.5 \%$ | $25 \%$ | $50 \%$ | $75 \%$ | $97.5 \%$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| alpha | 7.64190 | 7.67253 | 7.68519 | 7.69708 | 7.72379 |
| beta | 0.02959 | 0.03148 | 0.03250 | 0.03345 | 0.03563 |
| sigma | 0.03289 | 0.03959 | 0.04364 | 0.04841 | 0.06311 |

We are required supply the observation equation for $Y$, the system equation for mu , and our suggestions for the prior distributions. Y will be sampled from a normal distribution, with mean $\mathrm{mu}_{\mathrm{i}}$. The priors for the coefficients, alpha and beta, will be sampled from a normal distribution, and the precision, tau, from a gamma distribution. In JAGS the precision tau is used to specify the variation of the samples, and if we want the value of the standard deviation, sigma, then we must supply the deterministic identity between it and tau.

We subject the model to a burn-in period of 1000 samples, and then we used 1000 samples from the Gibbs Sampler to derive the posterior distributions of the parameters. The mean values for alpha and beta are similar the OLS estimates, and the $95 \%$ quantiles correspond to the OLS $95 \%$ confidence limits. We can also plot the distributions of the posteriors.


The density plots indicate the variability in the posterior estimates. Note that some of the variance has been incorrectly assigned to observation variance, since the terms in the model are autocorrelated.

Tho add in an autocorrelated error term we must make further changes to the model. The autocorrelation is modelled using a multivariate normal distribution. The $\mathrm{mu}_{\mathrm{i}}$ terms are formed as before, but the autocorrelation is represented with a covariance matrix between the terms in the series, where each entry is $\sigma^{2} \rho$ raised to the power of the lag between the terms. The parameter $r$ is the measure of the autocorrelation and we sample from a beta distribution. As with the previous model, the precisions in the prior distributions are purposely small
since we have few initial views as to their values - these are known as noninformative priors.

```
TSmodelCode <- "
model
 {
 # Prior distributions
 alpha ~ dnorm(0.0, 0.001)
 beta ~ dnorm(0.0, 0.000001)
 s2err ~ dgamma(1, 50)
 rho ~ dbeta(10, 10)
 # linear trend
 for(i in 1:N) {
 mu[i] <- alpha + beta*x[i]
 }
 # AR(1)
 for(i in 1:N) {
 for (j in 1:N) {
 tdmat[i,j] <- s2err*rho^abs(i-j)
 }
 }
 Omega <- inverse(tdmat)
 Y ~ dmnorm(mu, Omega)
```

\}
TSmodelData <- list ( $\mathrm{N}=\mathrm{N}, \mathrm{Y}=\mathrm{AT}, \mathrm{x}=$ Year $)$
TSmodelMCMC <- jags.model(textConnection(TSmodelCode), TSmodelData)
update(TSmodelMCMC, n.iter=1000)
TSmodelOutp <- coda.samples(TSmodelMCMC, n.iter=1000,
variable.names=c ("alpha", "beta", "rho"))
summary(TSmodelOutp)
Iterations = 2001:3000
Thinning interval = 1
Number of chains $=1$
Sample size per chain $=1000$

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

|  | Mean | SD | Naive SE Time-series SE |  |
| :--- | ---: | ---: | ---: | ---: |
| alpha | 7.66386 | 0.034738 | $1.099 \mathrm{e}-03$ | 0.0028414 |
| beta | 0.03384 | 0.002524 | $7.981 \mathrm{e}-05$ | 0.0002024 |
| rho | 0.67646 | 0.088610 | $2.802 \mathrm{e}-03$ | 0.0042998 |

2. Quantiles for each variable:

|  | $2.5 \%$ | $25 \%$ | $50 \%$ | $75 \%$ | $97.5 \%$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| alpha 7.59609 | 7.64060 | 7.66482 | 7.68551 | 7.73393 |  |
| beta | 0.02897 | 0.03227 | 0.03377 | 0.03547 | 0.03859 |
| rho | 0.47815 | 0.62342 | 0.68226 | 0.73684 | 0.82952 |
| plot (TSmodelOutp) |  |  |  |  |  |

The terms in the linear trend are little different from the OLS counterparts, although the $95 \%$ quantiles are a little wider. By ignoring the autocorrelation, we underestimated the variability in the intercept and slope terms. The plot below shows the variation in the coefficient distributions.


Some of the ESPON time series appeared to have non-linearity in their trend, so we added a quadratic term into the model to account for this - the coefficient will be near zero if there is insufficient evidence of non-linearity.

Dealing missing values is more complex still. The model is:

## model

\{

```
Prior distributions
b0 ~ dnorm(0.0, 0.000001) # intercept
b1 ~ dnorm(0.0, 0.000001) # linear coefficient on time
b2 ~ dnorm(0.0, 0.000001) # quadratic time term
s2err ~ dgamma(1, 50) # residual variance
rho ~ dbeta(10,10) # AR(1) parameter
Trend component
for(i in 1:N) {
 mu[i] <- b0 + b1*year[i] +b2*yearsq[i]
}
Autocorrelation component
for(i in 1:N) {
 for (j in 1:N) {
 tdmat[i,j] <- s2err*rho^abs(i-j)
} }
for (i in 1:length(seen)) {
 for (j in 1:length(seen)) {
 tdmat22[i,j] <- tdmat[seen[i],seen[j]]
} }
itdmat22 <- inverse(tdmat22)
for (i in 1:length(missing)) {
 for (j in 1:length(missing)) {
 tdmat11[i,j] <- tdmat[missing[i],missing[j]]
```


## \} \}

```
itdmat11 <- inverse(tdmat11)
for (i in 1:length(missing)) {
 for (j in 1:length(seen)) {
 tdmat12[i,j] <- tdmat[missing[i],seen[j]]
}}
for (i in 1:length(seen)) {
 for (j in 1:length(missing)) {
 tdmat21[i,j] <- tdmat[seen[i],missing[j]]
}}
for (i in 1:length(seen)) {
 mu2[i] <- mu[seen[i]]
}
for (i in 1:length(missing)) {
 mu1[i] <- mu[missing[i]]
}
OmegaM <- inverse(tdmat11 - tdmat12 %*% itdmat22 %*% tdmat21)
muM <- mu1 + tdmat12 %*% itdmat22 %*% (ys - mu2)
ys ~ dmnorm(mu2,itdmat22) # non-missing data
ym ~ dmnorm(muM, OmegaM) # missing data
```

The seen and missing variables contain the indices in the time series where the population estimates are present and missing respectively. The linkage between the missing and present values is rather more complex. These results are standard for time series, and can be found in any time series text (e.g.: Chatfield, 1984)

The series is modelled sampling from a multivariate normal distribution, with a vector of means $\mu$ resulting from the trend component, and a precision matrix (the inverse of the matrix of covariances between the terms in the series). If there was no requirement to interpolate missing values, the precision matrix would be:
$\Omega=\left(\sigma^{2} \rho \Lambda\right)^{-1}$
where $\sigma^{2}$ is the variance of the error, $\rho$ is the autocorrelation parameter and $\Lambda$ is a matrix of lags. If the time series had 5 terms, $\Lambda$ would contain:

|  | $[, 1]$ | $[, 2]$ | $[, 3]$ | $[, 4]$ | $[, 5]$ |
| :--- | ---: | ---: | ---: | ---: | ---: |
| $[1]$, | 0 | 1 | 2 | 3 | 4 |
| $[2]$, | 1 | 0 | 1 | 2 | 3 |
| $[3]$, | 2 | 1 | 0 | 1 | 2 |
| $[4]$, | 3 | 2 | 1 | 0 | 1 |
| $[5]$, | 4 | 3 | 2 | 1 | 0 |

The multivariate normal has density:
$\left(\frac{|\Omega|}{2 \pi}\right) e^{-\frac{(x-\mu)^{T} \Omega(x-\mu)}{2}}$
where $\Omega$ is the precision and $\mu$ is the mean. The challenge arises when we have missing data.

The series is divided into the present and missing sub-series. The means for each part are drawn from the trend estimate.

The following covariance submatrices are required:

|  | missing | present |
| :---: | :---: | :---: |
| missing | $\Sigma_{11}$ | $\Sigma_{12}$ |
| present | $\Sigma_{21}$ | $\Sigma_{22}$ |

The precision matrix $\Omega_{\mathrm{p}}$ for the present data is:

$$
\Omega=\left(\sigma^{2} \rho \Lambda_{22}\right)^{-1}
$$

This missing and present terms are linked through the precision matrix used to estimate the posterior distributions of the missing terms, $\Omega_{\mathrm{m}}$ thus:

$$
\Omega_{m}=\left(\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}\right)^{-1}
$$

As well as there being more individual steps in this model, the estimation requires two matrix inversions. In estimations for the ESPON data, the 250000 simulations were used for the burn-in process, and 100000 for the actual sampling. Even so, on a relatively sluggish machine, about 105 seconds were used when estimation a model on data with 22 time periods and 54\% of the data missing.

## Spatial coherence



The second component requires a set of constraints to ensure that predictions for NUTS3 units sum to the appropriate value for their containing NUTS2 units, and that predictions for NUTS2 units sum to the appropriate value for the containing NUTS1 units as so on. We refer to this as hierarchical spatial coherence. If we have a NUTS2 region with population P, and we know the populations of three of its, say 5 , units, $a, b$ and $c$, but not $d$ and $e$, then we can include $\mathrm{P}=a+b+c+d+e$ as $a$ constraint in the Bayesian forecasting framework. This is accomplished via a prior probability distribution: $a+b+c+d+e$ will take the $P$ with a probability of 1 , and zero otherwise. In this fashion we can ensure spatial coherence in the
forecasts.
In practice the application of the this constraint occurs after the individual series have been estimated - we apply an adjustment to the individual NUTS3 region
estimates to the estimates so that their total is that of the containing NUTS2 region. This adjustment applies from the NUTS1 regions downwards to ensure the spatial coherence of the estimates. It has to be remembered that we are not appling a pro-rata to a series of individual estimates, we are adding the posterior distributions together. The highest posterior density of the summed series is the value of the constraining total.

The same idea applies for those data that are considered to be embarrassingly estimatable. Suppose the know the populations of a NUTS2 region, and 3 of the 4 NUTS3 regions which are contained within it. Then $\mathrm{P}_{\text {NUTS3,4 }}=\mathrm{P}_{\text {NUTS2 }}$ ( $\mathrm{P}_{\text {NUTS } 3,1}+\mathrm{P}_{\text {NUTS } 3,2}+\mathrm{P}_{\text {NUTS3,3 }}$ ). The known data can be considered to be sampled from a distribution with a mean corresponding to the known value and infinite precision (i.e. the variance is zero). The known value is then the highest posterior density value, and it has a probability of 1 (with a variance of zero, there can be no other probability!).

Similarly the situation where a NUTS2 value is missing, but the underling NUTS3 values are present, then the same approach yields the estimate $\mathrm{P}_{\text {NuTs2 }}=$ $\mathrm{P}_{\text {NUTS3,1 }}+\mathrm{P}_{\text {NUTS3,2 }}+\mathrm{P}_{\text {NUTS3,3 }}+\mathrm{P}_{\text {NUTS3,4 }}$. Again, the known NUTS3 values are assumed to be sampled from a distribution with a mean of $\mathrm{P}_{\text {NuTs } 3, \mathrm{x}}$ and an infinite precision - which means that the known values have a posterior probability of 1. The resulting posterior distribution for the $P_{\text {NUTS2 }}$ total also has a probability of 1.

We require one further component in operationalisation of the method: a means of identifying the various scenarios and considering the hierarchical coherence. The files of data from Eurostat and the National Statistical agencies usually have the NUTS codes in a single column, and a flat file structure: the rows represent spatial units and the columns variables of interest. This effective;y flattens the hierarchical stricture of the NUTS units, and, if the calculations are restricted to the spreadsheet, renders the task of ensuring hierarchical coherence enormously difficult. An alternative to use the conceptual representation of the BUTS units as belong to some sort of tree structure - like a family tree - in which the higher level units are represented as the parents of lower level units.

Tree structures are extensively used in computer science to represent data. A tree many defined as having a root and one or more subtrees each of which is a tree. For each country, the root is the NUTS0 region, and the NUTS1 regions are the first subtrees. Each NUTS1 subtree has corresponding NUTS2 subtrees, and each NUTS2 region has corresponding NUTS3 subtrees.

The example shows the NUTS hierarchy for the Netherlands. We can see the hierarchy clearly and explicitly. It also forms the basis for the software implementation of the MCMC approach.

## Other issues

One issue which will have to be faced is that of ensuring temporal coherence for the changes that have taken place in the system of NUTS units over the years. Boundaries of zones may be shifted, zones may be merged, and zones may be split. Correspondance tables are available at EUROSTAT.


The diagram above shows the changes in the NUTS regions for the Netherlands. Again, the split/merge/shift operations may be incorporated into the forecasting process though additional constraints in the Bayesian framework.

## 4. Implementation

How are we to implement this? We will require bespoke code, and we will require a means of both handling the Excel spreadsheets, the NUTS hierarchy, and the computations required for the estimating of the missing data.

Software for MCMC approaches has been, until recently, the province of the specialist. This altered with the release of BUGS (Bayesian inference Using Gibbs Sampling) (Lunn et al., 2009, 2012). BUGS has now been extended with a Windows interface (WinBUGS) and to handle spatial data (GeoBUGS). However, data preparation, and post-modelling evaluation requires other software. The release of JAGS (Just Another Gibbs Sampler) (Plummer, 2003) provides a further milestone. This offers a very similar facility to BUGS, but it is open source and may also be used in conjunction with the statistical programming language R via the rjags package in R . This offers R users the capability of fitting models using MCMC, but also exploits the power and flexibility of R, in order to prepare the data, and to provide extensive evaluation of the results. Using JAGS it is possible to obtain posterior distribution for the parameters outlined in the previous sections, and for the missing data. It is also worth noting that this approach also allows the constraint that the sum of all of the NUTS3 regions within a NUTS2 region must equal the statistic associate with that NUTS2 region.

The R package has also been used to implement the data checking procedures, and the RIATE team have also made use of R.


Estimation Stage 1: MCMC estimation

A simple example is provided by the NUTS regions of Austria. Population estimates are missing for all NUTS3 regions, from 1990 to 2001 inclusive. The first stage is to visualise the pattern of missing data.

The figure on the left shows a heatmap of the population totals. The colder colours in the spectrum represent lower populations and the warmer colours represent larger populations. In general the population for AT and its NUTS1 regions have grown over the 22 year time period from 1990 to 2011. However, the trajectory of some individual zones has been different: that for AT21 had considerable growth to the mid 1990s, and then a gradual decline over the rest of the time period. The pattern of missing data is quite clear.


The initial imputation stage took just over an hour on a system with a quad core 3.16 GHz Intel Xeon processor running Windows XP Professional. This scales to about 30 hours for the entire dataset. A more recent Intel Core i72640 M processor running at 2.80 GHz , with Windows 7 Professional, takes around 30 minutes for this task, which scales to around 18 hours for the whole of Europe. On an Intel Core 2 Duo P8600 processor running at 2.4 GHz , with Windows 7 Enterprise, the task took 1 hour 5 minutes. This is with 250000 iterations for the burn-in and 100000 iterations to generate the posterior probability distributions.

Data for 35 NUTS3 regions was missing - the time frame of 12 years represents approximately 55\% of the NUTS3 data. This means that at best, we have 45\% of the NUTS3 data as evidence on which to base the retropolations, although we also have $100 \%$ of the NUTS2 data to act as a constraint.

The values in the heatmap in Figure xx represent the variation in the unadjusted NUTS3 estimations.

## Estimation Stage 2: adjustment for spatial coherence

We now apply the adjustment for the spatial coherence. This works in a bottom-up/top-down down fashion.


We start with the possibly incomplete NUTS2 and NUTS1 time series, and with the MCMC completed NUTS3 series. Any part of a time series at NUTS2 which is NA is completed using the sum of the MCMC populations for the corresponding NUTS regions and time periods. Equivalent completions are made for the missing parts of NUTS1 series, using the summed NUTS

From this it can be seen that missing data in the NUTS0, NUTS1 and NUTS2 regions can be a challenge. We can determine appropriate strategies by examining some cases from the data.

Consider the case of Croatia. A portion of the times series for all of the NUTS regions in Croatia is shown below:

| > Data.estim[Country == "HR", 4:16] |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | p1990 | p1991 | p1992 | p1993 | p1994 | p1995 | p1996 | p1997 | p1998 | p1999 | p2000 | p2001 | p2002 |
| HR | 4778007 | 4784265 | 4470266 | 4641275 | 4649034 | 4668752 | 4493581 | 4572474 | 4501149 | 4553769 | 4381352 | 4437460 | 4444608 |
| HRO | 4778007 | 4784265 | 4470266 | 4641275 | 4649034 | 4668752 | 4493581 | 4572474 | 4501149 | 4553769 | 4381352 | 4437460 | 4444608 |
| HR01 | NA | 1646710 | NA | 1661396 |
| HR02 | NA | 1557342 | NA | 1349105 |
| HR03 | NA | 1580213 | NA | 1434107 |
| HR011 | NA | 777826 | NA | 779145 | 780332 |
| HR012 | NA | 282989 | NA | 309696 | 312046 |
| HR013 | NA | 148779 | NA | 142432 | 141886 |
| HR014 | NA | 187853 | NA | 184769 | 184420 |
| HR015 | NA | 129397 | NA | 124467 | 124161 |
| HR016 | NA | 119866 | NA | 118426 | 118551 |
| HR021 | NA | 144042 | NA | 133084 | 132499 |
| HR022 | NA | 104625 | NA | 93389 | 93029 |
| HR023 | NA | 99334 | NA | 85831 | 85819 |
| HR024 | NA | 174998 | NA | 176765 | 177143 |
| HR025 | NA | 367193 | NA | 330506 | 330293 |
| HR026 | NA | 231241 | NA | 204768 | 204455 |
| HR027 | NA | 184577 | NA | 141787 | 141069 |
| HR028 | NA | 251332 | NA | 185387 | 184798 |
| HR031 | NA | 323130 | NA | 305505 | 305652 |
| HR032 | NA | 85135 | NA | 53677 | 53466 |
| HR033 | NA | 214777 | NA | 162045 | 163642 |
| HR034 | NA | 152477 | NA | 112891 | 113406 |
| HR035 | NA | 474019 | NA | 463676 | 467300 |
| HR036 | NA | 204346 | NA | 206344 | 207112 |
| HR037 | NA | 126329 | NA | 122870 | 123529 |

In 2001 all the NUTS3 data are present at NUTS1 and NUTS3, but not for NUTS2. As none of the NUTS3 values are estimates, then they can be summed over the NUTS2 codes to obtain the desired totals:

```
> tapply(HR[6:26,"p2001"],substr(rownames(HR) [6:26],1,4),sum)
 HR01 HR02 HR03
1658935 1351517 1427008
```

The missing data for NUTS2 and NUTS3 from 1992 to 2000 require two levels of constraint:

1. Use MCMC to estimate values for 1992 to 2000 for all the missing data points
2. Constrain the NUTS2 MCMC estimates to the NUTS1 value
3. Constrain the NUTS3 MCMC estimates to the newly constrained NUTS2 values

This is easily programmed accommodated in the constraining function, as we traverse the tree from the root downwards. By the time we deal with the NUTS3 estimates, the NUTS2 will have been constrained.

In the case of Portugal, there are some other special cases:

| > Data.estim[substr (rownames (Data.estim) , 1, 2) =="PT",] |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | tCode | Level |  |  |  |  | Name | p1990 | p1991 | p1992 | p1993 | p1994 | p1995 | p1996 |
| PT | PT | NUTS0 |  |  |  | Por | tugal | 9970441 | 9912140 | NA | NA | NA | NA | 10043180 |
| PT1 | PT1 | NUTS1 |  |  |  | Conti | nente | NA | NA | NA | NA | NA | NA | 9556916 |
| PT2 | PT2 | NUTS1 | Região | Autónoma | dos | Açores | (PT) | NA | NA | 239336 | 239271 | 239207 | 238807 | 238272 |
| PT3 | PT3 | NUTS1 | Região | Autónoma | da | Madeira | (PT) | NA | NA | 253999 | 253059 | 252120 | 250165 | 247992 |
| PT11 | PT11 | NUTS2 |  |  |  |  | Norte | NA | NA | 3511771 | 3516484 | 3527789 | 3541805 | 3555975 |
| PT15 | PT15 | NUTS2 |  |  |  |  | garve | NA | NA | 341075 | 343336 | 345970 | 349658 | 353309 |
| PT16 | PT16 | NUTS2 |  |  |  | Centro | (PT) | NA | NA | 2272111 | 2270518 | 2271336 | 2276261 | 2281286 |
| PT17 | PT17 | NUTS2 |  |  |  |  | isboa | NA | NA | 2574265 | 2581419 | 2585705 | 2593283 | 2599990 |
| PT18 | PT18 | NUTS2 |  |  |  | Ale | ntejo | NA | NA | 772760 | 770509 | 768468 | 767593 | 766356 |
| PT20 | PT20 | NUTS2 | Região | Autónoma | dos | Açores | (PT) | NA | NA | 239336 | 239271 | 239207 | 238807 | 238272 |
| PT30 | PT30 | NUTS2 | Região | Autónoma | da | Madeira | (PT) | NA | NA | 253999 | 253059 | 252120 | 250165 | 247992 |
| PT111 | PT111 | NUTS3 |  |  |  | Minho | -Lima | NA | NA | 252188 | 251518 | 250382 | 249541 | 248771 |
| PT112 | PT112 | NUTS3 |  |  |  |  | Cávado | NA | NA | 358355 | 360519 | 363498 | 366785 | 369787 |

The NUTS0 and NUTS1 values are missing for 1992 to 1995 for PT1. However, there is complete coverage of PT1 at NUTS2, so the value for PT1 can be obtained by direct summation over the corresponding NUTS2 values. The NUTSO values can then be completed for those years as well.

It would be beneficial to be able to do this prior to MCMC since it is a deterministic operation and provide extra evidence for the MCMC estimation of the PT1 series for 1990 and 1991. Apart from the NUTS0 total, all other data for 1990 and 1991 is missing.

The strategy for 1990 and 1991 follows the top-down strategy outlined above, and provides a general case:

1. Constrain the NUTS1 MCMC estimates to the NUTSO total
2. Constrain the NUTS2 MCMC estimates to the constrained NUTS1 values
3. Constrain the NUTS3 MCMC estimates to the constrained NUTS2 values

Again, this can be easily accomplished using the tree traversal algorithm.
Turkey is rather more of a challenge.


Data are present only for 1990, 2000, 2008-2011 for all NUTS regions, including NUTSO. The strategy here will be to estimate all the missing data using the MCMC technique. Then, we apply the hierarchical constraint working down the tree from NUTS0 to NUTS1, NUTS1 to NUTS2 and finally NUTS2 to NUTS3.

NUTS0, NUTS1 and NUTS2 regions with missing data are listed below:

```
Missing data for PT Portugal
Missing data for TR Turkey
Missing data for UK United Kingdom
**************** NUTS1 Missing ***
Missing data for FR9 Départements d'outre-mer (FR)
Missing data for NL3 West-Nederland
Missing data for PL1 Region Centralny
Missing data for PL2 Region Poludniowy
Missing data for PL3 Region Wschodni
Missing data for PL4 Region Pólnocno-Zachodni
Missing data for PL5 Region Poludniowo-Zachodni
Missing data for PL6 Region Pólnocny
Missing data for PT1 Continente
Missing data for PT2 Região Autónoma dos Açores (PT)
Missing data for PT3 Região Autónoma da Madeira (PT)
Missing data for TR1 Istanbul
Missing data for TR2 Bati Marmara
Missing data for TR3 Ege
Missing data for TR4 Dogu Marmara
```

```
Missing data for TR5 Bati Anadolu
Missing data for TR6 Akdeniz
Missing data for TR7 Orta Anadolu
Missing data for TR8 Bati Karadeniz
Missing data for TR9 Dogu Karadeniz
Missing data for TRA Kuzeydogu Anadolu
Missing data for TRB Ortadogu Anadolu
Missing data for TRC Güneydogu Anadolu
Missing data for UKC North East (UK)
Missing data for UKD North West (UK)
Missing data for UKE Yorkshire and The Humber
Missing data for UKF East Midlands (UK)
Missing data for UKG West Midlands (UK)
Missing data for UKH East of England
Missing data for UKI London
Missing data for UKJ South East (UK)
Missing data for UKK South West (UK)
Missing data for UKL Wales
Missing data for UKM Scotland
Missing data for UKN Northern Ireland (UK)
***************** NUTS2 Missin
Missing data for CZ02 Strední Cechy
Missing data for CZ03 Jihozápad
Missing data for CZ04 Severozápad
Missing data for CZ05 Severovýchod
Missing data for CZ06 Jihovýchod
Missing data for CZ07 Strední Morava
Missing data for CZ08 Moravskoslezsko
Missing data for
Missing data for IE01 Border, Midland and Western
Missing data for IE02 Southern and Eastern
Missing data for PL11 Lódzkie
Missing data for PL12 Mazowieckie
Missing data for PL21 Malopolskie
Missing data for PL22 Slaskie
Missing data for PL31 Lubelskie
Missing data for PL32 Podkarpackie
Missing data for PL33 Swietokrzyskie
Missing data for PL34 Podlaskie
Missing data for PL41 Wielkopolskie
Missing data for PL42 Zachodniopomorskie
Missing data for PL43 Lubuskie
Missing data for PL51 Dolnoslaskie
Missing data for PL52 Opolskie
Missing data for PL61 Kujawsko-Pomorskie
Missing data for PL62 Warminsko-Mazurskie
Missing data for PL63 Pomorskie
Missing data for PT11 Norte
```



```
Missing data for UKK4 Devon
Missing data for UKL1 West Wales and The Valleys
Missing data for UKL2 East Wales
Missing data for UKM2 Eastern Scotland
Missing data for UKM3 South Western Scotland
Missing data for UKM5 North Eastern Scotland
Missing data for UKM6 Highlands and Islands
Missing data for UKNO Northern Ireland (UK)
```


## The NUTS regions structures and missing data

The spreadsheet provides a poor model for the NUTS hierarchy. The rows can be sorted on the NUTS codes sot that the first part of the spreadsheet represents country information, the NUTS1 regions are next, followed by NUTS2 and NUTS3. However, we can't easily identify quickly a NUTS2 region, and then its constituent NUTS3 regions - it may be possible to do this with lookup in an auxiliary table, but this does not provide any flexibility. From the point of estimating missing data, the requirement for spatial coherence requires us to be able to identify these relationships in the data quickly and consistently. We refer to the NUTS hierarchy, but have no mechanism for representing and using that hierarchy.

The solution is to create a data structure and associated travel algorithms so that we can work on the regions in a consistent fashion. An appropriate data structure is the tree. Trees are used widely in computer science for organising and searching for information. In the computing section of many academic bookshops there will be volumes with titles like Data Structures and Algorithms. A classic collection is the volumes in the series The Art of Computer Programming by Professor Donald Knuth. Knuth defines a tree thus:
"... a finite set $T$ of one or more nodes such that
a) There is one specially designated node called the root of the tree, $\operatorname{root}(T)$; and
b) The remaining nodes (excluding the root) are partitioned into $m>=0$ disjoint sets $T_{1}$, ... $T_{m}$ and each of these sets in turn is a tree. The trees $T_{1}, \ldots T_{m}$ are called the subtrees of the root. ${ }^{10}$

This definition is recursive - the tree is defined in terms of trees. Put another way: a tree consists of a root and one or more nodes, each of which is a tree. A root which has no nodes is called a leaf node. There is an analogy with a family tree - a structure much used in genealogy: the non-root nodes are the children and the root represents the parents. As each node is itself a tree, we can also refer to the nodes as subtrees, because each is a tree.

The NUTS hierarchy can be represented as a tree quite naturally in terms of this definition. A node could consist of the NUTS code, and NUTS level and perhaps the population. The root would be the EU, and its 34 nodes contain the 34 NUTSO codes, the value 0 for the level, and the national population. Each of these 34 nodes is itself a tree. Each NUTSO nodes has one or more NUTS1 nodes, and in turn each NUTS1 node has one or more NUTS2 nodes and so on.

[^3]It may be unwieldy to deal with the whole of the EU, so we might confine our attentions to a single country - the root contains the NUTSO code. Here is the structure for Belgium:

```
NUTSO node is BE
 NUTS1 children of BE are BE1 BE2 BE3
 NUTS2 children of BE1 are BE10
 NUTS3 children of BE10 are BE100
 NUTS2 children of BE2 are BE21 BE22 BE23 BE24 BE25
 NUTS3 children of BE21 are BE211 BE212 BE213
 NUTS3 children of BE22 are BE221 BE222 BE223
 NUTS3 children of BE23 are BE231 BE232 BE233 BE234 BE235 BE236
 NUTS3 children of BE24 are BE241 BE242
 NUTS3 children of BE25 are BE251 BE252 BE253 BE254 BE255 BE256 BE257 BE258
 NUTS2 children of BE3 are BE31 BE32 BE33 BE34 BE35
 NUTS3 children of BE31 are BE310
 NUTS3 children of BE32 are BE321 BE322 BE323 BE324 BE325 BE326 BE327
 NUTS3 children of BE33 are BE331 BE332 BE334 BE335 BE336
 NUTS3 children of BE34 are BE341 BE342 BE343 BE344 BE345
 NUTS3 children of BE35 are BE351 BE352 BE353
```

Notice the order in which we have printed the list of regions. BE1, BE2 and BE3 are the child nodes of the root BE. BE1 has only one child BE10. BE2 has 5 children. The operation of visiting every node in a tree is referred to as traversal. The operation of visiting may consist of no more than printing the node NUTS code, but it might also consist of carrying out a spatial consistency check on the population total for the NUTS node and the sum of the population totals for its child nodes, or counting the number of child nodes with missing data. However, the operation might also include estimating any missing elements in a population or economic time series using MCMC techniques.

The order in which we have visited the nodes in the NUTS tree for Belgium is known as pre-order traversal. In a pre-order traversal we visit the root before visiting any of its subtrees.

The traversal is consistent for even for the case in which there is only one NUTS3 region:

```
NUTSO node is LI
 NUTS1 children of LI are LIO
 NUTS2 children of LIO are LIOO
 NUTS3 children of LIOO are LIOOO
```

... or two NUTS3 regions:

```
NUTSO node is MT
 NUTS1 children of MT are MTO
 NUTS2 children of MTO are MTOO
 NUTS3 children of MTOO are MTOO1 MTOO2
```

The R code for this traversal algorithm is quite short:

```
CheckTree <- function(Country,Data) {
 CountryData <- Data[substr(rownames(Data),1,2) == Country,]
 nodes <- rownames(CountryData)
 parent <- substr(rownames(CountryData),1,nchar(rownames(CountryData))-1)
```

```
parent[1] <- ""
ROOT <- which(nodes == Country)
cat("\nTree Walk\n")
 root <- nodes[ROOT]
 cat("NUTSO node is ",root,"\n")
 children1 <- nodes[parent == root]
 cat(" NUTS1 children of", root, "are", children1,"\n")
 Nc1 <- length(children1)
 for (i in 1:Nc1) {
 node2 <- children1[i]
 children2 <- nodes[parent == node2]
 cat(" NUTS2 children of", node2, "are", children2,"\n")
 Nc2 <- length(children2)
 for (j in 1:Nc2) {
 node3 <- children2[j]
 children3 <- nodes[parent == node3]
 cat(" NUTS3 children of", node3, "are", children3,"\n")
 }
 }
```

\}

The argument County contains the two character country code for the country of interest. The argument Data is the data matrix for Europe, where the rows have been indexed by their NUTS code. In our example, the first column of Data contains the NUTS code, code the indexing takes the form of:

## Rownames(Data) <- Data[,1]

The tree for any desired country can be printed by calling the function with the appropriate country code. For the examples above we used:

```
CheckTree("BE",Data)
CheckTree("LI",Data)
CheckTree("MT",Data)
```


## Missing data patterns in the ESPON time series

There are 8 possible patterns of missing data for each node. We can use the tree walk algorithm presented earlier to traverse the tree, and examine the patterns. As we visit each node, then we can tabulate the different patterns over the 22 years of the time series in the example.

The cases that arise for any selected time period are:

| Case | Parent node | Child nodes | Note |
| ---: | :--- | :--- | :--- |
| 1 | Data present | All data present | No estimation required |
| 2 | Data missing | All data present | Parent can be computed |
| 3 | Data present | 1 child node missing data | Child node embarrassingly estimatable |
| 4 | Data present | Some child nodes missing data | Estimation/constraint required |
| 5 | Data present | All child nodes missing data | Estimation/constraint required |
| 6 | Data missing | 1 child node missing data | Higher order estimation required |
| 7 | Data missing | Some child nodes missing data | Higher order estimation required |
| 8 | Data missing | All child nodes missing data | Higher order estimation required |

As we move down the table, the problem for the estimation strategy becomes more complex. Case 1 requires no action - all the data are present. Case 2 and
case 3 are examples of emabrassingly estimatable situations, the child or parent node data can be computed directly from the available data. Cases 4 and 5 require estimation of the child series using MCMC, and then application of the cross-sectional constraint. Cases 6, 7 and 8 are more challenging, and require estimation of the higher order data in order to provide the cross-sectional constraints.

The patterns can either be visualised using a heatmap - these are shown in Appendix 7. We can also use the tree traversal algorithm and a pattern analyser to check the patterns at each node. A sutiable tree traversal function is shown below. As each node is visited, the pattern of cases over the time periods is computed, and the stored in a data frame.

```
CheckMissingPattern <- function(Country,Data,dataCols,verbose=FALSE) {
 CountryData <- Data[substr(rownames(Data),1,2) == Country,]
 IDInfo <- CountryData[,1:3]
 Nc <- dim(IDInfo)[1]
 Results <- data.frame(IDInfo[,1:3],matrix(0,Nc,8))
 rownames(Results) <- rownames(CountryData)
 nodes <- rownames(CountryData)
 parent <- substr(rownames (CountryData),1,nchar(rownames (CountryData)) -1)
 parent[1] <- ""
 Nd <- length(dataCols)
 ### visit.node
 ### for each child(visit.node)
 ROOT <- which(nodes == Country)
 if Iverbose) cat("\nTree Walk\n")
 root <- nodes[ROOT]
 if (verbose) cat("NUTSO node is ",root,"\n")
 children1 <- nodes[parent == root]
 if (verbose) cat(" NUTS1 children of", root, "are", children1,"\n")
 Nc1 <- length(children1)
 CasePattern <- CheckNode(root,children1,Data,dataCols)
 Results[root,4:11] <- CasePattern
 for (i in 1:Ncl) {
 node2 <- children1[i]
 children2 <- nodes[parent == node2]
 if (verbose) cat(" NUTS2 children of", node2, "are", children2,"\n")
 Nc2 <- length(children2)
 CasePattern <- CheckNode(node2,children2,Data,dataCols)
 Results[node2,4:11] <- CasePattern
 for (j in 1:Nc2) {
 node3 <- children2[j]
 children3 <- nodes[parent == node3]
 if (verbose) cat(" NUTS3 children of",node3,"are", children3,"\n")
 Nc3 <- length(children3)
 CasePattern <- CheckNode(node3, children3,Data,dataCols)
 Results[node3,4:11] <- CasePattern
 }
 }
 NUTSlevels <- lapply(Results[,2], as.character)
 print(Results[NUTSlevels <= "NUTS2",])
}
```

This requires a function to carry out the analysis of the missing data patterns associated with each node:

```
CheckNode <- function(parent,children,Data,dataCols){
```

```
Nc <- length(children) # How many children for this parent
MissingParent <- Data[parent,] # Copy parent record
Result <- Data[parent,] # Create result record
Cases <- rep(0,8) # 8 possible outcomes
for (i in dataCols) { # loop over time period for this parent
 MissingParent[i] <- is.na(Data[parent,i])
 Result[i] <- length(which(is.na(Data[children,i])))
 if (!MissingParent[i]) {
 if (Result[i] == 0) k <- 1
 else if (Result[i] == 1) k <- 3
 else if (Result[i] > 1 & Result[i] < Nc) k <- 4
 else k <- 5
 } else {
 if (Result[i] == 0) k <- 2
 else if (Result[i] == 1) k <- 6
 else if (Result[i] > 1 & Result[i] < Nc) k <- 7
 else k <- 8
 }
 Cases[k] <- Cases[k] + 1
 }
 Cases # Return count vector
}
```

Finally, we loop over the countries and report the patterns.

```
CountryList <- levels(as.factor(substr(rownames(Data.estim),1,2)))
Nc <- length(CountryList)
for (i in 1:Nc) {
 CheckMissingPattern(CountryList[i],Data.estim, 4:25)
}
```

The results for Austria are encouraging:

|  | UnitCode | Level | Name | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| AT | AT | NUTS | Austria | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| AT1 | AT1 | NUTS1 | Ostösterreich | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| AT2 | AT2 | NUTS1 | Südösterreich | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| AT3 | AT3 | NUTS1 | Westösterreich | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| AT11 | AT11 | NUTS2 | Burgenland (AT) | 10 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
| AT12 | AT12 | NUTS2 | Niederösterreich | 10 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
| AT13 | AT13 | NUTS2 | Wien | 10 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
| AT21 | AT21 | NUTS2 | Kärnten | 10 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
| AT22 | AT22 | NUTS2 | Steiermark | 10 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
| AT31 | AT31 | NUTS2 | Oberösterreich | 10 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
| AT32 | AT32 | NUTS2 | Salzburg | 10 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
| AT33 | AT33 | NUTS2 | SUTirol | 10 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
| AT34 | AT34 | NUTS2 | Vorarlberg | 10 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |

At NUTS0, NUTS1 and NUTS2 all data are present. In the case of AT13, Wien, 1 of the NUTS3 units is missing data for 10 time periods, but these are embarrassingly estimatable, so the MCMC estimation is not required. For the other NUTS regions, data is missing for all NUTS3 regions connected to them, so estimation using MCMC and cross-sectional constraint will be required.

For Slovakia, the situation is a little more compelx:

|  | Code | Level |  | Name | X1 | X2 | X3 | X4 |  | X | X6 | X7 | X8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SK | SK | NUTS0 |  | Slovakia | 22 | 0 | 0 | 0 |  | 0 | 0 | 0 | 0 |
| SK0 | SK0 | NUTS1 | Slovenská | republika | 16 | 0 | 0 | 0 |  | 6 | 0 | 0 | 0 |
| SK01 | SK01 | NUTS2 | Bratisl | avský kraj | 16 | 0 | 0 | 0 |  | 0 | 6 | 0 | 0 |


| SK02 | SK02 | NUTS2 | Západné | Slovensko | 10 | 0 | 0 | 0 | $\mathbf{6}$ | 0 | 0 | $\mathbf{6}$ |
| :--- | :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SK03 | SK03 | NUTS2 | Stredné | Slovensko | 10 | 0 | 0 | 0 | $\mathbf{6}$ | 0 | 0 | $\mathbf{6}$ |
| SK04 | SK04 | NUTS2 | Východné | Slovensko | 10 | 0 | 0 | 0 | $\mathbf{6}$ | 0 | 0 | $\mathbf{6}$ |

The node tree is:

```
NUTSO node is SK
 NUTS1 children of SK are SKO
 NUTS2 children of SK0 are SK01 SK02 SK03 SK04
 NUTS3 children of SK01 are SK010
 NUTS3 children of SK02 are SK021 SK022 SK023
 NUTS3 children of SK03 are SK031 SK032
 NUTS3 children of SK04 are SK041 SK042
```



## 

Year

For SK0, there are 6 time periods where all the children (SK01, SK02, SK03 and SK04) comprise missing data. For SKO1 there are 6 time periods when the data for SK01 and one of its child nodes are missing. For SK02, SK03 and SK04, there are 6 time periods when data for all the child nodes are missing, but there is crosssectional constraint data. However, there are also 6 cases where all the data for the NUTS3 nodes are missing, and SK02, SK03 and SK04 are lacking data as well.

This is also shown in the plot on the left. For the six year 1990 to 1995 data is missing for both the NUTS3 and NUTS2 regions. For the six years from 1996 to 2001, data is missing for the NUTS3 regions with the exception of SK010.

For 1990 to 1995 the NUTS 3 MCMC estimates will have to be summed across the NUTS2 regions. Then the NUTS2 values can be adjusted to the NUTS1 constraint. Following this, the NUTS 3 units can be constrained to the adjusted NUTS2 values. For SK02, SK03 and SK04 in 1996 to 2001, the constraints already exist at NUTS2 for the NUTS2 MCMC estimates.

The tree traversal algorithm forms the basis for this adjustment process.

## Problem zones with missing data for both child and parent.

|  | UnitCode | Level | Name | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CZ | CZ | NUTS0 | Czech Republic | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| CZO | CZ0 | NUTS1 | Ceská republika | 20 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
| CZO1 | CZ01 | NUTS2 | Praha | 20 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| CZ02 | CZ02 | NUTS2 | Strední Cechy | 20 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |
| CZ03 | CZ03 | NUTS2 | Jihozápad | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| CZ04 | CZ04 | NUTS2 | Severozápad | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| CZ05 | CZ05 | NUTS2 | Severovýchod | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| CZ06 | CZ06 | NUTS2 | Jihovýchod | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| CZ07 | CZ07 | NUTS2 | Strední Morava | 11 | 0 | 0 | 0 | 9 | 0 | 0 | 2 |
| CZ08 | CZ08 | NUTS2 | Moravskoslezsko | 20 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |


|  | UnitCode | Level | Name X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |  |
| :--- | ---: | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| DE4 | DE4 | NUTS1 | Brandenburg | 17 | 0 | 0 | 0 | 5 | 0 | 0 | 0 |
| DE41 | DE41 | NUTS2 | Brandenburg - Nordost | 16 | 0 | 0 | 0 | 1 | 0 | 0 | 5 |
| DE42 | DE42 | NUTS2 | Brandenburg - Südwest | 16 | 0 | 0 | 0 | 1 | 0 | 0 | 5 |
| DED1 | DED1 | NUTS2 | Chemnitz | 15 | 0 | 0 | 0 | 2 | 0 | 0 | 5 |
| DED2 | DED2 | NUTS2 | Dresden | 16 | 0 | 0 | 0 | 1 | 0 | 0 | 5 |
| DED3 | DED3 | NUTS2 | Leipzig | 15 | 0 | 0 | 0 | 2 | 0 | 0 | 5 |

$\left.\begin{array}{|lrrrrrrrrrr|}\hline & \text { UnitCode } & \text { Level } & \text { Name } & \text { X1 } & \text { X2 } & \text { X3 } & \text { X4 } & \text { X5 } & \text { X6 } & \text { X7 } \\ \text { D8 }\end{array}\right]$



| UnitCode Level |  | Name X | X1 X | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PL | PL NUTS0 | Poland 2 | 21 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| PL1 | PL1 NUTS1 | Region Centralny 21 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| PL2 | PL2 NUTS1 | Region Poludniowy 21 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| PL3 | PL3 NUTS1 | Region Wschodni 21 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| PL4 | PL4 NUTS1 | Region Pólnocno-Zachodni 21 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| PL5 | PL5 NUTS1 | Region Poludniowo-Zachodni 21 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| PL6 | PL6 NUTS1 | Region Pólnocny 2 | 21 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| PL11 | PL11 NUTS2 | Lódzkie 11 | 11 | 0 | 0 | 0 | 10 | 0 | 0 | 1 |
| PL12 | PL12 NUTS2 | Mazowieckie 1 | 11 | 0 | 0 | 0 | 10 | 0 | 0 | 1 |
| PL21 | PL21 NUTS2 | Malopolskie 1 | 11 | 0 | 0 | 0 | 10 | 0 | 0 | 1 |
| PL22 | PL22 NUTS2 | Slaskie 1 | 11 | 0 | 0 | 0 | 10 | 0 | 0 | 1 |
| PL31 | PL31 NUTS2 | Lubelskie 1 | 11 | 0 | 0 | 0 | 10 | 0 | 0 | 1 |
| PL32 | PL32 NUTS2 | Podkarpackie 1 | 11 | 0 | 0 | 0 | 10 | 0 | 0 | 1 |
| PL33 | PL33 NUTS2 | Swietokrzyskie 1 | 11 | 0 | 0 | 0 | 10 | 0 | 0 | 1 |
| PL34 | PL34 NUTS2 | Podlaskie 1 | 11 | 0 | 0 | 0 | 10 | 0 | 0 | 1 |
| PL41 | PL41 NUTS2 | Wielkopolskie 1 | 11 | 0 | 0 | 0 | 10 | 0 | 0 | 1 |
| PL42 | PL42 NUTS2 | Zachodniopomorskie 1 | 11 | 0 | 0 | 0 | 10 | 0 | 0 | 1 |
| PL43 | PL43 NUTS2 | Lubuskie 1 | 11 | 0 | 0 | 0 | 10 | 0 | 0 | 1 |
| PL51 | PL51 NUTS2 | Dolnoslaskie 1 | 11 | 0 | 0 | 0 | 10 | 0 | 0 | 1 |
| PL52 | PL52 NUTS2 | Opolskie 1 | 11 | 0 | 0 | 0 | 10 | 0 | 0 | 1 |
| PL61 | PL61 NUTS2 | Kujawsko-Pomorskie 1 | 11 | 0 | 0 | 0 | 10 | 0 | 0 | 1 |
| PL62 | PL62 NUTS2 | Warminsko-Mazurskie 1 | 11 | 0 | 0 | 0 | 10 | 0 | 0 | 1 |
| PL63 | PL63 NUTS2 | Pomorskie 1 | 11 | 0 | 0 | 0 | 10 | 0 | 0 | 1 |



| PT15 | PT15 | NUTS2 | Algarve | 20 | 0 | 0 | 0 | 0 | 2 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PT16 | PT16 | NUTS2 | Centro (PT) | 20 | 0 | 0 | 0 | 0 | 0 | 0 |
| PT17 | PT17 | NUTS2 | Lisboa | 20 | 0 | 0 | 0 | 0 | 0 | 0 |
| PT18 | PT18 | NUTS2 |  | Alentejo | 20 | 0 | 0 | 0 | 0 | 0 |
| PT20 | PT20 | NUTS2 | 2 |  |  |  |  |  |  |  |
| RT30 | RTão Autónoma dos Açores (PT) | 20 | 0 | 0 | 0 | 0 | 2 | 0 | 0 |  |


|  | Code | Level |  | Name | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SK | SK | NUTS0 |  | Slovakia | 22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| SK0 | SK0 | NUTS1 | Slovenská | republika | 16 | 0 | 0 | 0 | 6 | 0 | 0 | 0 |
| SK01 | SK01 | NUTS2 | Bratisla | avský kraj | 16 | 0 | 0 | 0 | 0 | 6 | 0 | 0 |
| SK02 | SK02 | NUTS2 | Západné | Slovensko | 10 | 0 | 0 | 0 | 6 | 0 | 0 | 6 |
| SK03 | SK03 | NUTS2 | Stredné | Slovensko | 10 | 0 | 0 | 0 | 6 | 0 | 0 | 6 |
| SK0 4 | SK04 | NUTS2 | Východné | Slovensko | 10 | 0 | 0 | 0 | 6 | 0 | 0 | 6 |

Tree Walk

|  | UnitCode Level | Name | X1 | X2 | X3 | X4 | X5 | X6 | X7 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TR | TR NUTS0 | Turkey | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
| TR1 | TR1 NUTS1 | Istanbul | 6 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
| TR2 | TR2 NUTS1 | Bati Marmara | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR3 | TR3 NUTS1 | Ege | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR4 | TR4 NUTS1 | Dogu Marmara | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR5 | TR5 NUTS1 | Bati Anadolu | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR6 | TR6 NUTS1 | Akdeniz | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR7 | TR7 NUTS1 | Orta Anadolu | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR8 | TR8 NUTS1 | Bati Karadeniz | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR9 | TR9 NUTS1 | Dogu Karadeniz | 6 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
| TRA | TRA NUTS1 | Kuzeydogu Anadolu | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TRB | TRB NUTS1 | Ortadogu Anadolu | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TRC | TRC NUTS1 | Güneydogu Anadolu | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
| TR10 | TR10 NUTS2 | Istanbul | 6 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
| TR21 | TR21 NUTS2 | Tekirdag | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR22 | TR22 NUTS2 | Balikesir | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR31 | TR31 NUTS2 | Izmir | 6 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
| TR32 | TR32 NUTS2 | Aydin | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR33 | TR33 NUTS2 | Manisa | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR41 | TR41 NUTS2 | Bursa | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR42 | TR42 NUTS2 | Kocaeli | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR51 | TR51 NUTS2 | Ankara | 6 | 0 | 0 | 0 | 0 | 16 | 0 |  |
| TR52 | TR52 NUTS2 | Konya | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR61 | TR61 NUTS2 | Antalya | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR62 | TR62 NUTS2 | Adana | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR63 | TR63 NUTS2 | Hatay | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR71 | TR71 NUTS2 | Kirikkale | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR 72 | TR72 NUTS2 | Kayseri | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR81 | TR81 NUTS2 | Zonguldak | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR82 | TR82 NUTS2 | Kastamonu | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR83 | TR83 NUTS2 | Samsun | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TR90 | TR90 NUTS2 | Trabzon | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TRA1 | TRA1 NUTS2 | Erzurum | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TRA2 | TRA2 NUTS2 | Agri | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TRB1 | TRB1 NUTS2 | Malatya | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TRB2 | TRB2 NUTS2 | Van | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TRC1 | TRC1 NUTS2 | Gaziantep | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TRC2 | TRC2 NUTS2 | Sanliurfa | 6 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| TRC3 | TRC3 NUTS2 | Mardin | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |




## Scalability

The question of the practicability of the approach, given the nature of MCMC estimation shoud be considered. The ESPON series are short run - in the case of the population data, we have no more than 22 observations. In the worst case all 22 observations are missing, and no amount of MCMC will recreate the data. The time required depends on (a) the speed of the processor (b) the number of burn-in cycles and (c) the number of estimation cycles. The more data that is present, the slower the estimation. The plot below depicts the relationship between the proportion of missing data and the time required to estimation the missing data in the series. Counter-intuitively, the more missing data then the quicker the execution time:


The plot shows the execution time for the NL NUTSO series with increasing proportions of missing data.

The MCMC estimation for entire dataset, NUTS0, NUTS1, NUTS2 and NUTS3 took about 60 hours on a quad core 3.16 GHz Intel Xeon processor running Windows XP Professional. This would equate to about 35 hours on a laptop running Windows 7 Professional on a 2.80 GHz Intel Core i7-2640M processor.

## 5. ESPON Time series in practice

The code for the various tasks to be undertaken is included as Appendices 2, 3, 4 and 5 . We can identify as number of tasks which are relevant. It should be noted that the temptation to regard the entire process as automatic should be avoided, although much of the activity can be automated.

## Getting started

Currently the organisation of the activity assumes that the R code and the data are in the same folder. This is Time_Series_Analysis/Sandbox but the code and data can be separated. All code should be in the same folder. The relevant files are:

```
Modelling_and_Imputation.R
ImputeMissingData.R
tfile1.JAGS
tfile2.JAGS
```

The following $R$ libraries are required:

```
gdata
rjags
RColorBrewer
```

Data requires that a current version of the perl ${ }^{11}$ language is installed, and rjags requires that a current version of JAGS is installed ${ }^{12}$.

The various tasks are identified in the code, and are briefly described below.

## Task 1: Data load and pre-processing

The four worksheets in the ESPON Database spreadsheet are read into four separate data frames. We use the read.xls() function for this. Of interest are the Source and Data worksheets.

The Source worksheet is parsed to extract as list of the data providers and their identification codes. The data frame sourceIndex needs to be examined to identify the codes for EUROSTAT and the National Statistical Agencies ${ }^{13}$.

The relevant codes are extracted to another dataframe, sourcesOK, and this is used as a filter for the data extraction. The Data worksheet is split into two data frames which hold (a) the data and (b) the corresponding index codes. Once the non-EUROSTAT/NSA data has be filtered, the resulting data frame Data.estim, will be used in the remainder of the exercise.

[^4]As a final activity under this task the rows in Data.estim are index by their corresponding NUTS codes. This indexing is central to the spatial coherence activity described in a later task.

## Task 2: Missing data pattern analysis

It is important to be aware of the patterns of missing data in the dataset. This gives an overall picture of the patterns in each country, and also an indication of the scale of the problem.

A useful tool for this purpose is the heatmap. The columns in the heatmap represent the individual time periods, and the rows represent the NUTS regions. A separate heatmap can be produced for each country. Data values are colour coded according to their value, so some broad indications of the range of values and the trends in each group of series can be obtained from the heatmap.

The heatmap() function has a number of options, including the re-ordering of the rows and columns as a result of the application of hierarchical clustering. These options are turned off: (Colv=NA, Rowv=NA). The cells in the heatmap which arise from the intersection of a year and a NUTS region with missing data are coloured grey.

The resulting heatmaps are included as separate plots in Appendix 7.

## Task 3: Missing data at NUTSO/1/2

Ensuribng spatial coherence is an important issue for the imputation process. This requires reliable control data for the higher NUTS levels. Inevitably, there will need to be consistent series for the NUTSO level. Task 3 involves an enurmation of NUTSO/1/2 regions with missing data. The complete.cases() function is used to identify NUTS regions with missing data. These are listed.

## Task 4: exploring general patterns

Analysis of the series suggested that an simple linear or exponential trend model might be insufficient to capture the overall trend pattern. Eventually it was decided that a quadratic term would be added to the model. If the empirical trend was more or less linear, then the coefficient on the quadratic term would be close to zero. Four plots are shown below for Austria, France, Netherlands, and Slovenia:

- The non-missing data points
- A line or lines connecting the non-missing data points
- A line to show linear trend
- A line to shown quadratic trend

Whilst the general pattern is modelled well by the linear term, the fit is improved by the quadratic term - very noticeably in the case of Slovenia.


## Task 5: extraction of the data for a single country

Much of the development work took place using the data series for NUTS regions of Austria as an example. The code under Task 5 shows how to extract data for a single country for further analysis.

It also shows how to create a backlink in the spatial hierarchy, so that the 'parent' region for each NUTS region can be identified.

In the normal course of events, this code section need not be used, although it is helpful to have it for testing and debugging purposes.

## Task 6: MCMC estimation

The central task of the exercise is to estimate the missing data in each series using Markov Chain Monte Carlo methods. The main function which organises the data into input for JAGS, ImputeMissingData(), is shown and commented in Appendix 3.

All rows with missing in Data.estim can be estimated with the exception of any row with fewer than 3 observations.

The estimation takes place in a loop, whose start/end locations are controlled by the variables startrow and endrow. In the code these are set to 1 and the number of rows in Data.estim. This task is massively time consuming, and if there is doubt that the computer on which the process is run would stay up, then the estimation could be subdivided.

Once the missing data in a NUTS region has been estimated and the row written to the output matrix, NUTSData.completed, it is not referenced again until Task 6 has completed.

The final step in the Task is to write the intermediate results to a file. The estimation of all the missing data for 1990-2001 for all NUTS0/1/2/3 regions took some 60 hours on a 2.8 GHz Intel Core i7-260M processor, so some precautions are needed to ensure that the task does not have be repeated too many times. Should there be a system failure when the last few estimations are to be completed would be extremely unfortunate, so writing out the intermediate results every 100 or so iterations would be sensible.

The JAGS code appears to be robust - only one series caused a failure, and that was one in which all values were missing.

## Task 6A: Scalability assessment

Task 6a can be omitted - it is present only to allow an assessment of the scalbiluty of the process, using data from the Netherlands as an example. The plot from this Task appears on page 36.

## Task 7: Spatial Coherence Adjustment

One of the most challenging parts of the work has been to develop an algorithm which permits adjustment of lower level NUTS estimations to constraining values at the higher NUTS levels. There are two subtasks.

Task 7a is a manual fix for Portugal. PT is missing years 1992 and 1995. PT1 is missing the same years. However, the NUTS2 regions in PT1 are present. The manual fix is to sum the PT1* regions to PT1, and then PT1+PT2+PT3 to PT. This could be automated, but analysis of other series would be needed to determine whether it is a more widespread problem. The code for the manual fix is present, and therefore is reproducible ${ }^{14}$.

[^5]Task 7b includes the coherence algorithm. This is presented as a function ConstrainTotals2() which takes the missing data pattern data frame, the data frame of unadjusted estimates, and then range of data columns to be adjusted. The output is a spatially coherent data frame of actual data and estimates.

The algorithm is a top down algorithm. The indexing of the rows by their NUTS code means that it is possible to identify the parent region (the NUTS chode is one character shorter). NUTS1 regions are first constrained to the NUTS0 values - with care being taken when only a subset of these has been estimated. The hierarchical relationship between the NUTS levels, and the existence of the 'parent' vector means that this can be coded in a loop.

Once the NUTS1 regions have been constrained, the NUTS2 region estimates can be constrained to the NUTS1 totals. Finally the NUTS3 region estimates can be constrained to the NUTS2 totals.

The resulting data frame can be output to a file if required.

## Other functions

CheckCountry(): this uses the function CheckConstraint() - lists the children for each parent node in the tree
CheckTree(): traverses the tree in order
CheckMissingPattern(): examines the missing data patterns for each parent node.

In the final section are some plots of random numbers drawn in samples of different sizes for different distributions (normal, gamma, beta, multivariate normal), together with random normal for different precisions and a noninformative prior to show the influence of increasing the sample size on the estimates of the mean.

[^6]
## Appendix 1: NUTSO Population Time Series Plots








Slovenia





## Appendix 2: Main analysis and imputation $R$ functions

```
##
###
V5
#
ESPON M4D Multidimensional Database Design and Development
#
Time Series Estimation
#
Data Exploration, Estimation, and Coherence functions
#
#
Authors:
#
Martin Charlton and Chris Brunsdon
#
Address:
#
National Centre for Geocomputation
National University of Ireland, Maynooth
Maynooth, Co Kildare, IRELAND
#
V1.01: June 2014
#
(c) ESPON
#
Code is made avilable under the GNU GENERAL PUBLIC LICENSE, Version 3
Text of the License is at http://www.gnu.org/licenses/gpl.txt
#
###
#########
###
#########
###
Identify a working folder - all data/software in in this folder
###
dsn <- "F:\\Time_Series_Analysis\\Sandbox" # Data stick
setwd(dsn)
###
Load the libraries needed for the analysis and estimation
###
require(RColorBrewer)
require(gdata)
require(rjags)
###
##########
TASK 1: Read the data, identify the EUROSTAT/NSA data and split
data
and source indices into separate worksheets
```

```
\#\#\#\#\#\#\#\#\#\#
```

```
Dataset <- read.xls(paste(dsn,"\\M4D poptot1990-
2011 20120522.xls", sep=""), sheet=1,header=FALSE)
Indicator <- read.xls(paste(dsn,"\\M4D_poptot1990-
2011_20120522.xls",sep=""), sheet=2,header=FALSE)
Source <- read.xls(paste(dsn,"\\M4D poptot1990-
2011 20120522.xls",sep=""), sheet=3,header=FALSE)
Data <- read.xls(paste(dsn,"\\M4D poptot1990-
2011_20120522.xls",sep=""), sheet=4,header=FALSE)
###
Parse the 'Source' worksheet for the provider index codes and names
###
len3 <- dim(Source) [1]
sourceLabels <- which(Source[,1] == "Label")
sourceProvider <- which(Source[,1] == "Provider")
sourceIndex <-
data.frame(Source[sourceLabels, 2], Source[sourceProvider, 3])
colnames(sourceIndex) <- c("Label","Provider")
sourceIndex
```

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
sourcesOK <- sourceIndex[c(1:32),] \# These are the rows for which
data is from
\# EUROSTAT + Nation al Statistical
Agencies
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#
\#\#\# Split 'Data' worksheet into '.data' and '.source' worksheets
\# \# \#
len2 <- dim(Data) [1] \# number
of rows
dataCols <- seq $(5,47,2)$ \# columns
with data
Data.data $<-$ Data[4:len2,c(1,2,4,dataCols)] \# data
Data.source <- Data[4:len2,c(1,2,4,dataCols+1)] \# source
information
colnames (Data.data) <-
c ("UnitCode", "Level", "Name", paste("p", 1990:2011, sep=""))
colnames (Data.source) <-
c ("UnitCode", "Level", "Name", paste("s", 1990:2011, sep=""))
\#\#\#
\#\#\# Create data frame 'Data.estim' which we used as the basis for
subsequent estimation
\# \# \#
as.numeric.factor $<-$ function(x) \{as.numeric(levels(x))[x]\} \#
convert factors to numeric
Data.estim <- Data.data \# Copy
old -> new

```
for (icol in 4:25) {
 # loop
over data columns
 Data.estim[,icol] <- NA
update to NA
 rowsOK <- which((Data.source[,icol] %in% sourcesOK[,1]) == TRUE)
EUROSTAT/NSA?
 Data.estim[rowsOK,icol] <- as.numeric.factor(Data.data[rowsOK,icol])
.. yes - copy data
}
head(Data.estim)
###
Finally index Data.estim by the NUTS code
###
rownames(Data.estim) <- Data.estim[,1]
levels(as.factor(substr(rownames(Data.estim),1,2)))
"AT" "BE" "BG" "CH" "CY" "CZ" "DE" "DK" "EE" "ES" "FI" "FR" "GR" "HR"
"HU"
"IE" "IS" "IT" "LI" "LT" "LU" "LV" "MK" "MT" "NL" "NO" "PL" "PT" "RO"
"SE"
"SI" "SK" "TR" "UK"
###
##########
TASK 2: Create a series of missing data heatmaps for the report
###
##########
CountryCode <- levels(as.factor(substr(rownames(Data.estim),1,2))) #
NUTS codes
CountryName <- Data.estim[match(rownames(Data.estim),CountryCode),3] #
Names
CountryName <- CountryName[!is.na(CountryName)] #
remove NA
Nc <- length(CountryCode) #
How many?
###
Heatmap construction function - many defaults are turned off
###
drawHeatmap <- function(country,title="Population") {
 CountryData <- Data.estim[substr(rownames(Data.estim),1,2) ==
country,]
 PlotOrder <- dim(CountryData) [1]:1
heatmap(as.matrix(CountryData[PlotOrder, 4:25]),Colv=NA,Rowv=NA,main=tit
le,na.rm=T,
 xlab="Year",ylab="NUTS
Region",col=rev(brewer.pal(11,"Spectral")),bg="grey")
}
###
Loop over countries, plotting the heatmap. Store in Mapfiles/aa.png
###
for (i in 1:Nc) {
 fdname <- paste("Mapfiles\\",CountryCode[i],".png",sep="") #
create filename
```

```
 cat(fdname,"\n")
list it
 png(fdname)
 #
open it
 drawHeatmap(CountryCode[i],CountryName[i])
 #
plot heatmap
 dev.off()
 #
close the file
}
drawHeatmap("AT","Austria")
drawHeatmap("BE","Belgium")
drawHeatmap("BG","Bulgaria")
drawHeatmap("CH","Switzerland")
drawHeatmap("CY","Cyprus")
drawHeatmap("CZ","Czech Republic")
drawHeatmap("DE","Germany")
drawHeatmap("DK","Denmark")
drawHeatmap("EE","Estonia")
drawHeatmap("ES","Spain")
drawHeatmap("FI","Finland")
drawHeatmap("FR","France")
drawHeatmap("GR","Greece")
drawHeatmap("HR","Croatia")
drawHeatmap("HU","Hungary")
drawHeatmap("IE","Ireland")
drawHeatmap("IS","Iceland")
drawHeatmap("IT","Italy")
drawHeatmap("LI","Liechtenstein")
drawHeatmap("LT","Lithunia")
drawHeatmap("LU","Luxembourg")
drawHeatmap("LV","Latvia")
drawHeatmap("MK","Macedonia")
drawHeatmap("MT","Malta")
drawHeatmap("NL","Netherlands")
drawHeatmap("NO","Norway")
drawHeatmap("PL","Poland")
drawHeatmap("PT","Portugal")
drawHeatmap("RO","Romania")
drawHeatmap("SE","Sweden")
drawHeatmap("SI","slovakia")
drawHeatmap("SK","Slovak Republic")
drawHeatmap("TR","Turkey")
drawHeatmap("UK","United Kingdom")
###
##########
TASK 3: enumerate areas with missing data at NUTS0/1/2
###
##########
#dataCols <- 4:25
levels(as.factor(substr(rownames(Data.estim),1,2)))
"AT" "BE" "BG" "CH" "CY" "CZ" "DE" "DK" "EE" "ES" "FI" "FR" "GR" "HR"
"HU"
```

```
"IE" "IS" "IT" "LI" "LT" "LU" "LV" "MK" "MT" "NL" "NO" "PL" "PT" "RO"
"SE"
"SI" "SK" "TR" "UK"
###
Area code/name information as in TASK 2:
###
CountryCode <- levels(as.factor(substr(rownames(Data.estim),1,2)))
CountryName <- Data.estim[match(rownames(Data.estim),CountryCode), 3]
CountryName <- CountryName[!is.na(CountryName)]
NUTSlevel <- nchar(rownames(Data.estim)) -2
Nc <- length(CountryCode) #
Countries
Nr <- nrow(Data.estim)\#
NUTS regions
for (i in 1:Nr) {
#
Loop over NUTS codes
 if(NUTSlevel[i] <= 2) {
 if (!complete.cases(Data.estim[i,4:25])) { #
Complete case?
 nCode <- as.character(Data.estim[i,1]) #
... no, get code
 nName <- as.character(Data.estim[i,3]) #
... get name
 cat("Missing data for ",nCode,nName,"\n")
 #
... and report
 }
 }
 }
}
\#
##########################
Task 4: Example plots to explore general patterns in the data
###
##########################
CountryCode <- levels(as.factor(substr(rownames(Data.estim),1,2)))
 year <- 1:22
 yearsq <- year^2
 ###
 ### Each plot has: base data as dots and a line in grey
 ### fit from a linear model in lightblue
 ### fit from the quadratic model in red
 ###
 par(mfrow=c (2,2))
 Popdata <- as.numeric(Data.estim["AT",4:25])
plot(1990:2011,Popdata,xlab="Year",ylab="Population",main="Austria",pch
=16,col="grey")
 lines(1990:2011,Popdata,col="grey")
 lines(1990:2011,(cbind(1,year) %*%
coef(lm(Popdata~year))),col="lightblue")
```

```
 lines(1990:2011,(cbind(1,year,yearsq) %*%
coef(lm(Popdata~year+yearsq))),col="red")
 Popdata <- as.numeric(Data.estim["FR",4:25])
plot(1990:2011,Popdata,xlab="Year",ylab="Population",main="France",pch=
16,col="grey")
 lines(1990:2011,Popdata,col="grey")
 lines(1990:2011,(cbind(1,year) %*%
coef(lm(Popdata~year))),col="lightblue")
 lines(1990:2011,(cbind(1,year,yearsq) %*%
coef(lm(Popdata~year+yearsq))),col="red")
 Popdata <- as.numeric(Data.estim["NL",4:25])
plot(1990:2011,Popdata,xlab="Year",ylab="Population",main="Netherlands"
,pch=16,col="grey")
 lines(1990:2011,Popdata,col="grey")
 lines(1990:2011,(cbind(1,year) %*%
coef(lm(Popdata~year))), col="lightblue")
 lines(1990:2011,(cbind(1,year,yearsq) %*%
coef(lm(Popdata~year+yearsq))), col="red")
 Popdata <- as.numeric(Data.estim["SI",4:25])
plot(1990:2011,Popdata,xlab="Year",ylab="Population",main="Slovenia",pc
h=16,col="grey")
 lines(1990:2011,Popdata,col="grey")
 lines(1990:2011,(cbind(1,year) %*%
coef(lm(Popdata~year))),col="lightblue")
 lines(1990:2011,(cbind(1,year,yearsq) %*%
coef(lm(Popdata~year+yearsq))), col="red")
 par(mfrow=c (1,1))
```

```
###
##########################
TASK 5: Extract data for Austria as test data *** *** *** ONLY FOR
TESTING *** *** ***
###
##########################
Austria <- Data.estim[substr(rownames(Data.estim),1,2) == "AT",]
PlotOrder <- dim(Austria)[1]:1
reverse order for the heatmap
heatmap(as.matrix(Austria[PlotOrder,4:25]),Colv=NA,Rowv=NA,main="Austri
a EUROSTAT Population Data",
 xlab="Year",ylab="NUTS Region",col=rev(brewer.pal(11,"Spectral")))
parent <- substr(rownames(Austria),1,nchar(rownames(Austria))-1)
parent[1] <- ""
NUTS <- rownames(Austria)
NUTSO <- which(nchar(rownames(Austria)) == 2)
NUTS1 <- which(nchar(rownames(Austria)) == 3)
NUTS2 <- which(nchar(rownames(Austria)) == 4)
NUTS3 <- which(nchar(rownames(Austria)) == 5)
```

```
Data.estim <- Austria
```

```
###
############
TASK 6: MCMC estimation of NUTS levels 3 series
###
############
Estimation loop one iteration is about 1.7 minutes for 12 missing
from 22 on
a Intel Xeon X5460 quad core 3.16GHz processor running Windows XP
Professional
#
35 zones for Austria takes about an hour. As a ball park estimate,
the whole of
Europe should take about 36 hours of computing.
#
On an Intel Core i7-2640M processor running at 2.80Ghz it's under a
minute per fit.
This is a 64 bit system running Windows 7 Professional. Austria would
take just
over 30 minutes so about 18 hours for Europe.
NUTS3 tool 199418.4 seconds 55h 24m, say ~55.5h
#
###
###########
###
Load the function definition
###
source("ImputeMissingData.R")
###
Copy start data
###
NUTSData.completed <- Data.estim
```

```
nrow <- dim(Data.estim)[1] # number of
```

nrow <- dim(Data.estim)[1] \# number of
regions
regions
NUTS <- rownames(Data.estim) \# NUTS codes
NUTS <- rownames(Data.estim) \# NUTS codes
NUTSlevel <- nchar(NUTS)-2 \# NUTS lebels
NUTSlevel <- nchar(NUTS)-2 \# NUTS lebels
total.time <- 0
total.time <- 0
startrow <- 1 \# start at 1 ...
startrow <- 1 \# start at 1 ...
endrow <- nrow \# ... and finish
endrow <- nrow \# ... and finish
at nrow
for (i in startrow:endrow) {
\#if(NUTSlevel[i] < 3 \& substr(NUTS[i],1,2) != "UK") {
if(substr(NUTS[i],1,2) != "UK") { \# UK separately
if (complete.cases(Data.estim[i,4:25])) { \# data complete?
cat(NUTS[i],"is complete\n") \# ... yes: ignore
} else {
cat(NUTS[i],"is undergoing imputation\n") \# ... no:
imputation needed
Z <- as.numeric(Data.estim[i,4:25]) \# data series
Years <- 1990:2011 \# time frame
for series

```
```

    N <- length(Z) # length of
    the series
missingYears <- which(is.na(Z)) \# missing
observations
NM <- length(missingYears) \# number of
missing obs
Scale <- 1000 \# scale for
populations
tic <- proc.time()[3]
fitted.model <- ImputeMissingData(Z,Years, missingYears,
Scale) \# imputation
toc <- proc.time()[3] - tic
total.time <- total.time + toc
cat("Elapsed time: ",toc,"seconds\n") \# elapsed
time report
imputedValues <-
summary(fitted.model)\$statistics[(5+(1:NM)),1] \# extract imputations
NUTSData.completed[i,missingYears+3] <-
round(imputedValues*Scale) \# update data vector
}
} else {
cat(NUTS[i],"is NUTS level",NUTSlevel[i],"\n")
}
}
cat("Completed. Total time required was ",total.time," seconds\n")

### 

### Write results to a file - this step takes 60 hours!

### 

write.cSv(NUTSData.completed,"NUTSData_completedN3.cSv") \# store the
results for later
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# End of MCMC estimation
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

```
```

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#

### TASK 6A: Timings for MCMC estimation

### Use Netherlands as an example to get scalbility graphc

### *** Only for report illustrations ***

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#

# Estimation loop one iteration is about 1.7 minutes for 12 missing

from 22 on

# a Intel Xeon X5460 quad core 3.16GHz processor running Windows XP

Professional

# 

# 35 zones for Austria takes about an hour. As a ball park estimate,

the whole of

# Europe should take about 36 hours of computing.

# 

# On an Intel Core i7-2640M processor running at 2.80Ghz it's under a

minute per fit.

```
```


# This is a 64 bit system running Windows 7 Professional. Austria would

take just

# over 30 minutes so about 18 hours for Europe.

# NUTS3 tool 199418.4 seconds 55h 24m, say ~ 55.5h

# 

source("ImputeMissingData.R")
\#nrow <- dim(Data.estim)[1]
\#NUTS <- rownames(Data.estim)
\#NUTSlevel <- nchar(NUTS)-2
TestData <- as.numeric(Data.estim["NL",4:25])
timeTaken <- rep (0,20)
for (i in 10:10) {
Z <- TestData \# data series
Z[1:i] <- NA \# add NAs
Years <- 1990:2011 \# time frame
for series
N <- length(Z) \# length of
the series
missingYears <- which(is.na(Z)) \# missing
observations
NM <- length(missingYears) \# number of
missing obs
Scale <- 1000 \# scale for
populations
tic <- proc.time()[3]
fitted.model <- ImputeMissingData(Z,Years, missingYears,
Scale, 250000, 100000, chains=2) \# imputation
toc <- proc.time()[3] - tic
timeTaken[i] <- toc
cat("Elapsed time: ",toc,"seconds with",i,"missing values\n")

# elapsed time report

}
cat("Completed. Total time required was ",sum(timeTaken)," seconds\n")
timeTaken
gelman.diag(fitted.model) \# convergence
diagnostics
gelman.plot(fitted.model) \# convergence
plot
\#timeTaken2 <- timeTaken * (290/171.52) \# laptop relative to office
desktop
timeTaken2 <- timeTaken
proportionMissing <- 100 * (1:20) / 22
plot(proportionMissing,timeTaken2,ylim=c(0,300),
xlab="Proportion Missing (N=22)",ylab="Time (seconds)",
main="Scalability of MCMC Estimation")

```
```


### Data.estim : raw data from RIATE with only

EUROSTAT/National estimates

### NUTSData.completed : unadjusted MCMC estimates

```
```

NUTSData.adjusted <- NUTSData.completed

# Copy the MCMC estimates

NUTSData.RIATE <- Data.estim

# Copy the NA pattern

NUTSlevel <- nchar(rownames(NUTSData.RIATE)) - 2

# recreate just in case

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

### TASK 7A: Manual adjusment for Portugal (PT 1992:1995 missing)

### Data.estim["PT",c("p1992","p1993","p1994","p1995")] is NA

### should be sum of c("PT1","PT2","PT3")

### "PT1" is c("PT11","PT15","PT16","PT17","PT18")

```
NUTSData.RIATE[substr(rownames (NUTSData.RIATE), 1,2) == "PT" \& NUTSlevel
\(<=2] \quad \\),\(# for a look\)
\#\#\# Fix PT1
for (year in c("p1992","p1993","p1994","p1995")) \{
 NUTSData.adjusted["PT1", year] <-
sum (NUTSData. adjusted [c ("PT11", "PT15", "PT16", "PT17", "PT18") , year])
 NUTSData.RIATE["PT1",year] <- NUTSData.adjusted["PT1", year]
\# update the NA pattern
\}
\#\#\# Fix PT
for (year in c("p1992","p1993","p1994","p1995")) \{
 NUTSData.adjusted["PT", year] <-
sum (NUTSData.adjusted [c ("PT1", "PT2", "PT3"), year])
 NUTSData.RIATE["PT", year] <- NUTSData.adjusted["PT", year]
\# update the NA pattern
\}
NUTSData.adjusted[substr(rownames (NUTSData.adjusted), 1,2) == "PT" \&
NUTSlevel <= 2,] \# ... and check
NUTSData.RIATE[substr(rownames(NUTSData.RIATE), 1,2) == "PT" \& NUTSlevel
\(<=2] \quad \\),\(# ... and check\)
\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\# TASK 7B: Apply spatial constraint for NUTSlevel nodes below
NUTSlevel-1
\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#
\# parent: vector of parent node codes
```


# basic: matrix of data with NAs

# unadjusted: matrix of totals from MCMC operation

# dataCols: columns in which there are data

# 

# adjusted: output: adjusted NUTSlevel node populations

ConstrainTotals2 <- function(basic,unadjusted,dataCols) {
NAPattern <- basic

# working copy

    MCMCestimated <- unadjusted
    
# working copy

    MCMCadjusted <- unadjusted
    
# eventual output from function

    ### tree strcuture
    nodes <- rownames(NAPattern)
    
# tree nodes

    parent <- substr(rownames(NAPattern),1,nchar(rownames (NAPattern))-1)
    
# backtrack to link children

    NUTSlevel <- nchar(rownames(NAPattern)) -2
    
# NUTS level

    parent[which(NUTSlevel == 0)] <- ""
    
# clean up

    Ny <- length(dataCols)
    
# year span

    Years <- rep(0,Ny+3)
    
# create Year list

    Years[dataCols] <- 1990:2011
        #
        # Start from the NUTSO levels
        #
        for (Level in 0:2) {
            cat("\n\n")
    cat("*************************************************************** \n")
cat("* Cross-Sectional Time Series Constraint for NUTS
Level",Level,"*\n")
cat("****************************************************************)
Levelnodes <- nodes[which(NUTSlevel == Level)]
NL <- length(Levelnodes)
for (i in 1:NL) {
children <- nodes[parent == Levelnodes[i]] \#
NUTS1 children of the root
cat("NUTS",(Level+1), "children of", Levelnodes[i], "are",
children,"\n")
Nc <- length(children)

# Number of children

    for (year in dataCols){
    
# loop over the years

            any.missing <- which(is.na(NAPattern[children,year]))
    
# which children have NA

                        if (length(any.missing) == 0) {
    
# ... none missing

                                #cat("** NUTS",(Level+1),"data for",Levelnodes[i],"children
    are present in",Years[year],"\n")

```
```

    } else {
    
# ... missing, so adjust

    valueParent <- MCMCestimated[Levelnodes[i],year]
    
# parent contraint value

    childOK <- children
    
# index of children

    if (!is.na(valueParent)) {
    
# parent value not missing

    missingChild <- is.na(NAPattern[children,year])
    
# missing children

    if (sum(missingChild) < Nc) {
                        ChildOK <- !missingChild
    
# ... nonmissing children

                alreadyOK <-
    sum(MCMCestimated[children[ChildOK],year]) \# ... total for
nonmissing
valueParent <- valueParent - alreadyOK

# reduce constraint value

                        }
                            sumChildren <-
    sum(MCMCestimated[children[missingChild],year]) \# sum of MCMC
estimates
MCMCadjusted[children[missingChild],year] <-
(valueParent/sumChildren) *
MCMCadjusted[children[missingChild],year]

# adjusted MCMC estimates

                            cat("** NUTS",(Level+1),"data
    for",Levelnodes[i],"children constrained in",Years[year],"\n")
} else {
\#cat("** WARNING: missing data
for",Levelnodes[i],"Constraint not possible in",Years[year],"\n")
}
}
}
}
}
MCMCadjusted
}

```
```


### 

### Undertake adjustment, and report time

### 

tic <- proc.time()
NUTSData.final <-
ConstrainTotals2(NUTSData.RIATE,NUTSData.completed,4:25) \#\#\#\# FINAL
OUTPUT \#\#\#
toc <- proc.time()-tic
cat("\nTime Required for adjustment was ",toc,"seconds\n\n")
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

```
```

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

```
```

CheckConstraint <- function(parents,basic,dataCols) {

```
CheckConstraint <- function(parents,basic,dataCols) {
 NUTSCodes <- rownames(basic) # get the NUTD
 NUTSCodes <- rownames(basic) # get the NUTD
codes of the parents
codes of the parents
 Np <- length(parents) # how many NUTS2
 Np <- length(parents) # how many NUTS2
regions
regions
 for (parent in 1:Np) { # loop over the
 for (parent in 1:Np) { # loop over the
NUTS regions
NUTS regions
 NUTS3.units <- (nchar(NUTSCodes) == 5) & (substr(NUTSCodes,1,4)
 NUTS3.units <- (nchar(NUTSCodes) == 5) & (substr(NUTSCodes,1,4)
== parents[parent])
== parents[parent])
 NUTS2.basic <- basic[parents[parent],] # just the
 NUTS2.basic <- basic[parents[parent],] # just the
data for this parent
data for this parent
 NUTS3.basic <- basic[NUTS3.units,]
 NUTS3.basic <- basic[NUTS3.units,]
 NUTS3.this.node <- NUTSCodes[NUTS3.units] # NUTS codes for
 NUTS3.this.node <- NUTSCodes[NUTS3.units] # NUTS codes for
this parent
this parent
 #cat(parents[parent],": ",NUTS3.this.node,"\n")
 #cat(parents[parent],": ",NUTS3.this.node,"\n")
 N3 <- length(NUTS3.this.node)
 N3 <- length(NUTS3.this.node)
 for (i in dataCols) {
 for (i in dataCols) {
 Nmiss <- length(which(is.na(NUTS3.basic[,i])))
 Nmiss <- length(which(is.na(NUTS3.basic[,i])))
 NUTS2.basic[i] <- round(100 * Nmiss / N3)
 NUTS2.basic[i] <- round(100 * Nmiss / N3)
 }
 }
 cat(parents[parent],":", unlist(NUTS2.basic[,dataCols]),"\n")
 cat(parents[parent],":", unlist(NUTS2.basic[,dataCols]),"\n")
 }
 }
}
}
CheckCountry <- function(Country,Data.estim) {
 CountryData <- Data.estim[substr(rownames(Data.estim),1,2) ==
Country,]
 PlotOrder <- dim(CountryData) [1]:1
reverse order for the heatmap
 parent <-
substr(rownames (CountryData),1,nchar(rownames (CountryData)) -1)
 parent[1] <- ""
 NUTS <- rownames(CountryData)
 NUTS0 <- which(nchar(rownames(CountryData)) == 2)
 NUTS1 <- which(nchar(rownames(CountryData)) == 3)
 NUTS2 <- which(nchar(rownames(CountryData)) == 4)
 NUTS3 <- which(nchar(rownames(CountryData)) == 5)
 CheckConstraint(rownames(CountryData)[NUTS2],CountryData, 4:25)
}
CheckCountry("AT",Data.estim)
CheckCountry("SI",Data.estim)
CheckCountry("UK",Data.estim)
#> levels(as.factor(substr(rownames(Data.estim),1,2)))
"AT" "BE" "BG" "CH" "CY" "CZ" "DE" "DK" "EE" "ES" "FI" "FR" "GR" "HR"
"HU"
"IE" "IS" "IT" "LI" "LT" "LU" "LV" "MK" "MT" "NL" "NO" "PL" "PT" "RO"
"SE"
"SI" "SK" "TR" "UK"
CountryList <- levels(as.factor(substr(rownames(Data.estim),1,2)))
```

```
Nc <- length(CountryList)
#Nc <- 5
for (i in 1:Nc) {
 CheckCountry(CountryList[i],Data.estim)
}
```

CheckTree <- function(Country, Data.estim) \{
CountryData <- Data.estim[substr(rownames(Data.estim),1,2) ==
Country,]
nodes <- rownames (CountryData)
parent <-
substr(rownames (CountryData), 1, nchar(rownames (CountryData)) -1)
parent[1] <- ""
\#\#\# visit.node
\#\#\# for each child(visit.node)
ROOT <- which(nodes == Country)
cat("\nTree Walk\n")
root <- nodes[ROOT]
cat("NUTSO node is ",root,"\n")
children1 <- nodes[parent == root]
cat(" NUTS1 children of", root, "are", children1,"\n")
Nc1 <- length(children1)
for (i in 1:Nc1) \{
node2 <- children1[i]
children2 <- nodes[parent == node2]
cat(" NUTS2 children of", node2, "are", children2,"\n")
Nc2 <- length(children2)
for (j in 1:Nc2) \{
node3 <- children2[j]
children3 <- nodes[parent == node3]
cat(" NUTS3 children of", node3, "are",
children3,"\n")
\}
\}
\}
CheckTree("AT", Data.estim)
CheckTree("UK", Data.estim)
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#
\#\#\# Check for singleton missings
CheckMissingPattern $<-$ function(Country, Data, dataCols, verbose=FALSE) \{
CountryData <- Data[substr(rownames(Data),1,2) == Country,]
IDInfo <- CountryData[,1:3]
Nc <- dim(IDInfo) [1]
Results <- data.frame(IDInfo[,1:3], matrix(0,Nc, 8))
rownames (Results) <- rownames (CountryData)

```
 nodes <- rownames(CountryData)
 parent <-
substr(rownames (CountryData),1,nchar(rownames (CountryData)) -1)
 parent[1] <- ""
 Nd <- length(dataCols)
 ### visit.node
 ### for each child(visit.node)
 ROOT <- which(nodes == Country)
 cat("\nTree Walk\n")
 root <- nodes[ROOT]
 if (verbose) cat("NUTSO node is ",root,"\n")
 children1 <- nodes[parent == root]
 if (verbose) cat(" NUTS1 children of", root, "are",
children1,"\n")
 Nc1 <- length(children1)
 CasePattern <- CheckNode(root,children1,Data,dataCols)
 #cat("[",Nc1,"] children", CasePattern,"\n")
 Results[root,4:11] <- CasePattern
 for (i in 1:Nc1) {
 node2 <- children1[i]
 children2 <- nodes[parent == node2]
 if (verbose) cat(" NUTS2 children of", node2, "are",
children2,"\n")
 Nc2 <- length(children2)
 CasePattern <- CheckNode(node2,children2,Data,dataCols)
 #cat("[",Nc2,"] children", CasePattern,"\n")
 Results[node2,4:11] <- CasePattern
 for (j in 1:Nc2) {
 node3 <- children2[j]
 children3 <- nodes[parent == node3]
 if (verbose) cat(" NUTS3 children of", node3, "are",
children3,"\n")
 Nc3 <- length(children3)
 CasePattern <- CheckNode(node3,children3,Data,dataCols)
 Results[node3,4:11] <- CasePattern
 }
 }
 NUTSlevels <- lapply(Results[,2], as.character)
 print(Results[NUTSlevels <= "NUTS2",])
}
#
#
#
CheckNode <- function(parent,children,Data,dataCols){
 Nc <- length(children)
How many children for this parent
 MissingParent <- Data[parent,]
 #
Copy parent record (we'll use data cols)
 Result <- Data[parent,]
 #
Create result record
 Cases <- rep (0,8) # 8
possible outcomes
 for (i in dataCols) {
#
loop over time period for this parent
```

```
 MissingParent[i] <- is.na(Data[parent,i])\#
Is parent missing for this year
 Result[i] <- length(which(is.na(Data[children,i])))\#
Number of children missing for this year
 if (!MissingParent[i]) {
 if (Result[i] == 0) k <- 1 #
Parent present, no children missing - nothing to do!
 else if (Result[i] == 1) k <- 3 #
Parent present, l child missing (embarassingly estimatable)
 else if (Result[i] > 1 & Result[i] < Nc) k <-
Parent present, some children missing - estimate/constrain
 else k <- 5
 #
Present present, all children missing - estimate/constrain
 } else {
 if (Result[i] == 0) k <- 2 #
Parent missing, no children missing (estimate parent!)
 else if (Result[i] == 1) k <- 6 #
Parent missing, 1 child missing - awkward
 else if (Result[i] > 1 & Result[i] < Nc) k <- 7 #
Parent missing, some children missing - awkward
 else k <- 8 #
Parent missing, all children missing - awkward
 }
 Cases[k] <- Cases[k] + 1
 #
update counter
 }
 Cases
}
Return counter vector
CheckMissingPattern("AT",Data.estim,4:25)
```

```
#> levels(as.factor(substr(rownames(Data.estim),1,2)))
```

\#> levels(as.factor(substr(rownames(Data.estim),1,2)))

# "AT" "BE" "BG" "CH" "CY" "CZ" "DE" "DK" "EE" "ES" "FI" "FR" "GR" "HR"

# "AT" "BE" "BG" "CH" "CY" "CZ" "DE" "DK" "EE" "ES" "FI" "FR" "GR" "HR"

"HU"
"HU"

# "IE" "IS" "IT" "LI" "LT" "LU" "LV" "MK" "MT" "NL" "NO" "PL" "PT" "RO"

# "IE" "IS" "IT" "LI" "LT" "LU" "LV" "MK" "MT" "NL" "NO" "PL" "PT" "RO"

"SE"
"SE"

# "SI" "SK" "TR" "UK"

# "SI" "SK" "TR" "UK"

CountryList <- levels(as.factor(substr(rownames(Data.estim),1,2)))
CountryList <- levels(as.factor(substr(rownames(Data.estim),1,2)))
Nc <- length(CountryList)
Nc <- length(CountryList)
for (i in 1:Nc) {
for (i in 1:Nc) {
CheckMissingPattern(CountryList[i],Data.estim, 4:25)
CheckMissingPattern(CountryList[i],Data.estim, 4:25)
}

```
```

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#

### TASK X Austria

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#

```
```

nodes <- rownames(Data.estim)
NUTSlevel <- nchar(nodes) - 2
parents <- substr(nodes,1,(NUTSlevel+1))
AT21children <- nodes[which(parents == "AT21")]
Names <- as.character(Data.estim[AT21children,3])

```
```

AT21MCMCout <- as.matrix(Austria.final[AT21children,4:25]) \#
MCMC outputs
AT21totals <- colSums(AT21MCMCout)\#
AT21 totals from MCMC
AT21factor <- as.numeric(Data.estim["AT21",4:25]) / AT21totals \#
adjustment factors
AT21adjusted <- round(sweep(AT21MCMCout,2,AT21factor,"*"),0) \#
sweep down rows
colSums(AT21adjusted) - Data.estim["AT21",4:25]
and check

```
```

par(mfrow=c (3,1))

```
par(mfrow=c (3,1))
for (i in 1:length(AT21children)) {
for (i in 1:length(AT21children)) {
 NUTS3zone <- AT21children[i]
 NUTS3zone <- AT21children[i]
 mindata <- min(AT21MCMCout[i,],AT21adjusted[NUTS3zone,]) * 0.95
 mindata <- min(AT21MCMCout[i,],AT21adjusted[NUTS3zone,]) * 0.95
 maxdata <- max(AT21MCMCout[i,],AT21adjusted[NUTS3zone,]) * 1.05
```

    maxdata <- max(AT21MCMCout[i,],AT21adjusted[NUTS3zone,]) * 1.05
    ```
plot(1990:2011,AT21MCMCout[i,], col="darkgrey",type="l", xlab="Year", ylab
=NA,
 ylim=c(mindata, maxdata), main=paste(NUTS3zone,Names[i]),lty=2)
 lines(1990:2011,AT21adjusted[NUTS3zone,], col="red", lty=1)
 lines(1990:2011, Data.estim[NUTS3zone, 4:25], col="darkgrey")
 points(1990:2011, Data.estim[NUTS3zone, 4:25], pch=16, col="darkgrey")
\}
\(\operatorname{par}(m f r o w=c(1,1))\)
```

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#

### MONTE CARLO VARIABILITY

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#

```
\#\#\# Random normal variates
\(\operatorname{par}(m f r o w=c(3,3))\)
for (i in c(100,500,1000,5000,10000,50000,100000,500000,1000000)) \{
 hist (rnorm(i, 0, 1), breaks=100,xlim=c (-
\(4,4)\), col="grey", border=NA, main=paste("N=",i,sep=""), xlab=NA, ylab=NA)
\}
\(\operatorname{par}(m f r o w=c(1,1))\)
\#\#\# Random gamma
\(\operatorname{par}(m f r o w=c(3,3))\)
for (i in c(100,500,1000,5000,10000,50000,100000,500000,1000000)) \{
hist (rgamma(i,50),breaks=100,xlim=c \((20,80)\), col="grey", border=NA, main=pa ste("N=",i,sep=""),xlab=NA,ylab=NA)
```

}
par(mfrow=c(1,1))

### random beta

par(mfrow=c (3,3))
for (i in c(100,500,1000,5000,10000,50000,100000,500000,1000000)) {
hist(rbeta(i,1,1),breaks=100,xlim=c (0,1), col="grey",border=NA,main=past
e("N=",i,sep=""),xlab=NA,ylab=NA)
}
par(mfrow=c(1,1))

### mtulivariate normal

Sigma <- matrix(c(10,3,3,2),2,2)
Sigma
par(mfrow=c (3,3))
for (i in c(100,300,750, 1000,3000,7500, 10000,30000,75000)) {
x <- mvrnorm(n=i, c(0,0), Sigma)
plot(x ,col="grey",pch=16, xlim=c(-15,15),ylim=c (-6,6),
main=paste("N=",i,sep=""),xlab=NA,ylab=NA)
lines(lowess(x),col="red")
}
par(mfrow=c(1,1))

### changing precision

par(mfrow=c (3,3))
tau <- c(0.25,1,4, 16,64,256, 1024, 4096, 16384)
for (i in 1:9) {
hist(rnorm(10000,10,1/sqrt(tau[i])),breaks=100,xlim=c(6,14),col="red",b
order="red",main=paste("Tau=",tau[i],sep=""),xlab=NA,ylab=NA)
}
par(mfrow=c(1,1))

### non-informative prior

par(mfrow=c (3,3))
tau <- 4^(-(0:8))
for (i in 1:9) {
hist(rnorm(10000,0,1/sqrt(tau[i])),breaks=100, xlim=c(-
20,20), col="red",border="red",main=paste("Tau=", format(tau[i],digits=3)
,sep=""),xlab=NA,ylab=NA)
}
par(mfrow=c(1,1))

```

\section*{Appendix 3: Core Imputation Function}
```

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

# 

# ESPON M4D Multidimensional Database Design and Development

# 

# Time Series Estimation

# 

# Missing Data Imputation Function

# 

# 

### Authors:

# 

# Martin Charlton and Chris Brunsdon

# 

### Address:

# 

# National Centre for Geocomputation

National University of Ireland, Maynooth

# Maynooth, Co Kildare, IRELAND

V1.01: June 2014

# 

#### (c) ESPON

# 

# Code is made avilable under the GNU GENERAL PUBLIC LICENSE, Version 3

# Text of the License is at http://www.gnu.org/licenses/gpl.txt

# 

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

# 

# Fit estimate missing values in a time series using MCMC with a quadratic

# trend model

Input:
pop: series with Missing data (represented by NA)
years: date range for input series
missing: indices of missing data
yscale: scaling for pop variable (to keep values reasonabley small)
burnin.iters: number of burn-in iterations (default 250000)
coda.iters: number of iterations for estimation (default 100000)
Output:
fitted.model coda.samples rjags output object

# 

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
ImputeMissingData <-
function(pop,years,missing,yscale=1,burnin.iters=250000,coda.iters=100000,chains=1)
{

### 

### Create the regressands for the linear and quadratic trend terms

### 

gyear <- 1:length(years) \# linear term
gyear2 <- gyear^2 \# quadratic term

### 

### Load the correct JAGS code - different cdoe is required when there is

### only one NA. This is an R issue

### 

```
```

    if (length(missing) == 1) {
        tfile = "tfile2.JAGS" # estimator for data with a single NA
    } else {
        tfile = "tfilel.JAGS" # estimator for data with multiple NAs
    }
    ###
    ### Initialisation
    ###
    ### present: indices of the non-missing data
    ### y: time series - the regressor
    ### N: number of terms in the series (both missing and present)
    ### ys: present data
    ### ym: missing data
    ###
    present <- setdiff(gyear,missing) # indices of non-missing data
    y <- pop/yscale # scale the y if necessary
    N <- length(y) # length of the series
    ys <- y[present] # present data values
    ym <- y[missing] # missing data
    ###
    ### Initialise the JAGS input
    ### popdata: list which is used to pass data to JAGS
    ### N: length of the time series
    ### ys: non-missing data values
    ### seen: indices of the non-missing data
    ### missing: indices of the missing data
    ### year: linear regressand
    ### yearsq: quadratic regressand
    ###
    popdata <- list(N=N, ys=ys, seen=present, missing=missing, year=gyear,
    yearsq=gyear2)
\#\#\#
\#\#\# Fit an OLS model to provide some plausible starting values for the
coefficients
\#\#\#
xx <- coef(mdl <- lm(y~gyear+gyear2))
\#\#\#
\#\#\# Load the model
\#\#\# m: rjags object containign the model
\#\#\# file: JAGS code for the MCMC model
\#\#\# data: list of data and regressands for the model
\#\#\# inits: initial values for the parameters
\#\#\# .RNG.name: random number generator to be used
\#\#\# .RNG.seed: random number generator seed (for reproducibility)
\#\#\# n.chains: number of Markov chains to use
\#\#\#
if (chains == 1) {
m <- jags.model(file=tfile,
data=popdata,
inits=list(b0=xx[1],b1=xx[2],b2=xx[3],
.RNG.name='base::Mersenne-Twister',.RNG.seed=290162),
n.chains=1)
} else {
m <- jags.model(file=tfile,
data=popdata,
inits=list(b0=xx[1],b1=xx[2],b2=xx[3]),
n.chains=chains)
}
\#\#\#
\#\#\# Initial burn-in - these results are discarded. Default is 250000 iterations
\#\#\#
update(m, n.iter=burnin.iters)

```
\#\#\#
\#\#\# Fit the model - output is and mcmc.list object which is returned from the function
\#\#\#
coda.samples(m, n.iter=coda.iters, thin=5, variable.names = c("ym","b0","b1","b2", "rho","s2err"))
\}

\section*{Appendix 4: JAGS code for MCMC (multiple NAs)}
```

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

# 

# ESPON M4D Multidimensional Database Design and Development

# 

# Time Series Estimation

# 

# MCMC estimation of time series with missing data [tfile1: several NA values]

# 

# 

### Authors:

# 

# Martin Charlton and Chris Brunsdon

# 

### Address:

# 

# National Centre for Geocomputation

# National University of Ireland, Maynooth

# Maynooth, Co Kildare, IRELAND

# 

# V1.01: June 2014

# 

#### Copyright

# 

# Code is made avilable under the GNU GENERAL PUBLIC LICENSE, Version 3

# Text of the License is at http://www.gnu.org/licenses/gpl.txt

# 

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
model
{

```
\begin{tabular}{lll}
b0 & \(\sim \operatorname{dnorm}(0.0,0.000001)\) & \# intercept \\
b1 & \(\sim \operatorname{dnorm}(0.0,0.000001)\) & \# linear coefficient on time \\
b2 & \(\sim \operatorname{dnorm}(0.0,0.000001)\) & \# quadratic time term \\
s2err \(\sim \operatorname{dgamma}(1,50)\) & \\
\#rho \(\sim \operatorname{dbeta}(0.5,0.5)\) & \# AR(1) parameter \\
rho \(\sim \operatorname{dbeta}(10,10)\) &
\end{tabular}
```


# Prior distributions

```
Prior distributions
Trend component
Trend component
for(i in 1:N) {
for(i in 1:N) {
 mu[i] <- b0 + b1*year[i] +b2*yearsq[i]
 mu[i] <- b0 + b1*year[i] +b2*yearsq[i]
}
}
Autocorrelation component
Autocorrelation component
for(i in 1:N) {
for(i in 1:N) {
 for (j in 1:N) {
 for (j in 1:N) {
 tdmat[i,j] <- s2err*rho^abs(i-j)
 tdmat[i,j] <- s2err*rho^abs(i-j)
} }
} }
for (i in 1:length(seen)) {
for (i in 1:length(seen)) {
 for (j in 1:length(seen)) {
 for (j in 1:length(seen)) {
 tdmat22[i,j] <- tdmat[seen[i],seen[j]]
 tdmat22[i,j] <- tdmat[seen[i],seen[j]]
} }
} }
itdmat22 <- inverse(tdmat22)
```

itdmat22 <- inverse(tdmat22)

```
```

for (i in 1:length(missing)) {
for (j in 1:length(missing)) {
tdmat11[i,j] <- tdmat[missing[i],missing[j]]
} }
itdmat11 <- inverse(tdmat11)
for (i in 1:length(missing)) {
for (j in 1:length(seen)) {
tdmat12[i,j] <- tdmat[missing[i],seen[j]]
} }
for (i in 1:length(seen)) {
for (j in 1:length(missing)) {
tdmat21[i,j] <- tdmat[seen[i],missing[j]]
} }
for (i in 1:length(seen)) {
mu2[i] <- mu[seen[i]]
}
for (i in 1:length(missing)) {
mu1[i] <- mu[missing[i]]
}
OmegaM <- inverse(tdmat11 - tdmat12 %*% itdmat22 %*% tdmat21)
muM <- mu1 + tdmat12 %*% itdmat22 %*% (ys - mu2)
ys ~ dmnorm(mu2,itdmat22) \# non-missing data
ym ~ dmnorm(muM, OmegaM) \# missing data

```

\section*{Appendix 5: JAGS code for MCMC (single NA)}
```

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

# 

# ESPON M4D Multidimensional Database Design and Development

# 

# Time Series Estimation

# 

# MCMC estimation of time series with missing data [tfile2: single NA value]

# 

# 

### Authors:

# 

# Martin Charlton and Chris Brunsdon

# 

### Address:

# 

# National Centre for Geocomputation

# National University of Ireland, Maynooth

# Maynooth, Co Kildare, IRELAND

# 

# V1.01: June 2014

# 

#### Copyright

# 

# Code is made avilable under the GNU GENERAL PUBLIC LICENSE, Version 3

# Text of the License is at http://www.gnu.org/licenses/gpl.txt

# 

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
model
{

```
```


# Prior distributions

b0 ~ dnorm(0.0, 0.000001)
b1 ~ dnorm(0.0, 0.000001)
b2 ~ dnorm(0.0, 0.000001)
s2err ~ dgamma(1,50)
\#rho ~ dbeta(0.5, 0.5)
rho ~ dbeta(10,10)

# Trend component

for(i in 1:N) {
mu[i] <- b0 + b1*year[i] +b2*yearsq[i]

# mu[i] <- b0 + b1*i

}

# Autocorrelation component

for(i in 1:N) {
for (j in 1:N) {
tdmat[i,j] <- s2err*rho^abs(i-j)
}
}
for (i in 1:length(seen)) {
for (j in 1:length(seen)) {
tdmat22[i,j] <- tdmat[seen[i],seen[j]]
} }

```
```

itdmat22 <- inverse(tdmat22)
tdmat11 <- tdmat[missing,missing]
itdmat11 <- 1.0/tdmat11
for (j in 1:length(seen)) {
tdmat12[j] <- tdmat[missing,seen[j]]
}
for (i in 1:length(seen)) {
tdmat21[i] <- tdmat[seen[i],missing]
}
for (i in 1:length(seen)) {
mu2[i] <- mu[seen[i]]
}
for (i in 1:length(seen)) {
for (j in 1:length(seen)) {
oprod12[i,j] <- tdmat12[i] * tdmat21[j]
}
}
mu1 <- mu[missing]
OmegaM <- 1.0/(tdmat11 - inprod(tdmat12,itdmat22 %*% tdmat21))
muM <- mul + inprod(tdmat12, itdmat22 %*% (ys - mu2))
ys ~ dmnorm(mu2,itdmat22)
ym ~ dnorm(muM, OmegaM)

```
\}

\section*{Appendix 6: NUTS0/1/2 Missing Data}
\begin{tabular}{|c|c|c|c|}
\hline Seq & Missing & Name & NUTS Code \\
\hline 28 & 4 & Portugal & PT \\
\hline 33 & 16 & Turkey & TR \\
\hline 34 & 21 & United Kingdom & UK \\
\hline 81 & 2 & Départements d'outre-mer (FR) & FR9 \\
\hline 105 & 1 & West-Nederland & NL3 \\
\hline 108 & 1 & Region Centralny & PL1 \\
\hline 109 & 1 & Region Poludniowy & PL2 \\
\hline 110 & 1 & Region Wschodni & PL3 \\
\hline 111 & 1 & Region Pólnocno-Zachodni & PL4 \\
\hline 112 & 1 & Region Poludniowo-Zachodni & PL5 \\
\hline 113 & 1 & Region Pólnocny & PL6 \\
\hline 114 & 6 & Continente & PT1 \\
\hline 115 & 2 & Região Autónoma dos Açores (PT) & PT2 \\
\hline 116 & 2 & Região Autónoma da Madeira (PT) & PT3 \\
\hline 126 & 16 & Istanbul & TR1 \\
\hline 127 & 16 & Bati Marmara & TR2 \\
\hline 128 & 16 & Ege & TR3 \\
\hline 129 & 16 & Dogu Marmara & TR4 \\
\hline 130 & 16 & Bati Anadolu & TR5 \\
\hline 131 & 16 & Akdeniz & TR6 \\
\hline 132 & 16 & Orta Anadolu & TR7 \\
\hline 133 & 16 & Bati Karadeniz & TR8 \\
\hline 134 & 16 & Dogu Karadeniz & TR9 \\
\hline 135 & 16 & Kuzeydogu Anadolu & TRA \\
\hline 136 & 16 & Ortadogu Anadolu & TRB \\
\hline 137 & 16 & Güneydogu Anadolu & TRC \\
\hline 138 & 21 & North East (UK) & UKC \\
\hline 139 & 21 & North West (UK) & UKD \\
\hline 140 & 22 & Yorkshire and The Humber & UKE \\
\hline 141 & 22 & East Midlands (UK) & UKF \\
\hline 142 & 21 & West Midlands (UK) & UKG \\
\hline 143 & 22 & East of England & UKH \\
\hline 144 & 22 & London & UKI \\
\hline 145 & 21 & South East (UK) & UKJ \\
\hline 146 & 22 & South West (UK) & UKK \\
\hline 147 & 22 & Wales & UKL \\
\hline 148 & 11 & Scotland & UKM \\
\hline 149 & 11 & Northern Ireland (UK) & UKN \\
\hline 184 & 2 & Praha & CZO1 \\
\hline 185 & 2 & Strední Cechy & CZO2 \\
\hline 186 & 2 & Jihozápad & CZO3 \\
\hline 187 & 2 & Severozápad & CZ04 \\
\hline 188 & 2 & Severovýchod & CZO5 \\
\hline 189 & 2 & Jihovýchod & CZ06 \\
\hline 190 & 2 & Strední Morava & CZ07 \\
\hline 191 & 2 & Moravskoslezsko & CZ08 \\
\hline 204 & 5 & Brandenburg - Nordost & DE41 \\
\hline 205 & 5 & Brandenburg - Südwest & DE42 \\
\hline 225 & 5 & Chemnitz & DED1 \\
\hline 226 & 5 & Dresden & DED2 \\
\hline 227 & 5 & Leipzig & DED3 \\
\hline 231 & 17 & Hovedstaden & DK01 \\
\hline 232 & 17 & Sjælland & DK02 \\
\hline 233 & 17 & Syddanmark & DK03 \\
\hline 234 & 17 & Midtjylland & DK04 \\
\hline 235 & 17 & Nordjylland & DK05 \\
\hline 300 & 11 & Sjeverozapadna Hrvatska & HRO1 \\
\hline 301 & 11 & Sredisnja i Istocna (Panonska) Hrvatska & HR02 \\
\hline 302 & 11 & Jadranska Hrvatska & HRO3 \\
\hline 310 & 7 & Border, Midland and Western & IE01 \\
\hline 311 & 7 & Southern and Eastern & IE02 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 359 & 1 & Lódzkie & PL11 \\
\hline 360 & 1 & Mazowieckie & PL12 \\
\hline 361 & 1 & Malopolskie & PL21 \\
\hline 362 & 1 & Slaskie & PL22 \\
\hline 363 & 1 & Lubelskie & PL31 \\
\hline 364 & 1 & Podkarpackie & PL32 \\
\hline 365 & 1 & Swietokrzyskie & PL33 \\
\hline 366 & 1 & Podlaskie & PL34 \\
\hline 367 & 1 & Wielkopolskie & PL41 \\
\hline 368 & 1 & Zachodniopomorskie & PL42 \\
\hline 369 & 1 & Lubuskie & PL43 \\
\hline 370 & 1 & Dolnoslaskie & PL51 \\
\hline 371 & 1 & Opolskie & PL52 \\
\hline 372 & 1 & Kujawsko-Pomorskie & PL61 \\
\hline 373 & 1 & Warminsko-Mazurskie & PL62 \\
\hline 374 & 1 & Pomorskie & PL63 \\
\hline 375 & 2 & Norte & PT11 \\
\hline 376 & 2 & Algarve & PT15 \\
\hline 377 & 2 & Centro (PT) & PT16 \\
\hline 378 & 2 & Lisboa & PT17 \\
\hline 379 & 2 & Alentejo & PT18 \\
\hline 380 & 2 & Região Autónoma dos Açores (PT) & PT20 \\
\hline 381 & 2 & Região Autónoma da Madeira (PT) & PT30 \\
\hline 400 & 6 & Bratislavský kraj & SK01 \\
\hline 401 & 6 & Západné Slovensko & SK02 \\
\hline 402 & 6 & Stredné Slovensko & SK03 \\
\hline 403 & 6 & Východné Slovensko & SK04 \\
\hline 404 & 16 & Istanbul & TR10 \\
\hline 405 & 16 & Tekirdag & TR21 \\
\hline 406 & 16 & Balikesir & TR22 \\
\hline 407 & 16 & Izmir & TR31 \\
\hline 408 & 16 & Aydin & TR32 \\
\hline 409 & 16 & Manisa & TR33 \\
\hline 410 & 16 & Bursa & TR41 \\
\hline 411 & 16 & Kocaeli & TR42 \\
\hline 412 & 16 & Ankara & TR51 \\
\hline 413 & 16 & Konya & TR52 \\
\hline 414 & 16 & Antalya & TR61 \\
\hline 415 & 16 & Adana & TR62 \\
\hline 416 & 16 & Hatay & TR63 \\
\hline 417 & 16 & Kirikkale & TR71 \\
\hline 418 & 16 & Kayseri & TR72 \\
\hline 419 & 16 & Zonguldak & TR81 \\
\hline 420 & 16 & Kastamonu & TR82 \\
\hline 421 & 16 & Samsun & TR83 \\
\hline 422 & 16 & Trabzon & TR90 \\
\hline 423 & 16 & Erzurum & TRA1 \\
\hline 424 & 16 & Agri & TRA2 \\
\hline 425 & 16 & Malatya & TRB1 \\
\hline 426 & 16 & Van & TRB2 \\
\hline 427 & 16 & Gaziantep & TRC1 \\
\hline 428 & 16 & Sanliurfa & TRC2 \\
\hline 429 & 16 & Mardin & TRC3 \\
\hline 430 & 13 & Tees Valley and Durham & UKC1 \\
\hline 431 & 14 & Northumberland and Tyne and Wear & UKC2 \\
\hline 432 & 14 & Cumbria & UKD1 \\
\hline 433 & 13 & Cheshire & UKD2 \\
\hline 434 & 13 & Greater Manchester & UKD3 \\
\hline 435 & 13 & Lancashire & UKD4 \\
\hline 436 & 14 & Merseyside & UKD5 \\
\hline 437 & 14 & East Yorkshire and Northern Lincolnshire & UKE1 \\
\hline 438 & 14 & North Yorkshire & UKE2 \\
\hline 439 & 13 & South Yorkshire & UKE3 \\
\hline 440 & 14 & West Yorkshire & UKE4 \\
\hline 441 & 14 & Derbyshire and Nottinghamshire & UKF1 \\
\hline 442 & 14 & Leicestershire, Rutland and Northamptonshire & UKF2 \\
\hline 443 & 14 & Lincolnshire & UKF3 \\
\hline 444 & 13 & Herefordshire, Worcestershire and Warwickshire & UKG1 \\
\hline 445 & 14 & Shropshire and Staffordshire & UKG2 \\
\hline 446 & 14 & West Midlands & UKG3 \\
\hline 447 & 14 & East Anglia & UKH1 \\
\hline 448 & 14 & Bedfordshire and Hertfordshire & UKH2 \\
\hline 449 & 13 & Essex & UKH3 \\
\hline 450 & 14 & Inner London & UKI1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 451 & 14 & & Outer London & UKI2 \\
\hline 452 & 13 & Berkshire, & Buckinghamshire and Oxfordshire & UKJ1 \\
\hline 453 & 14 & & Surrey, East and West Sussex & UKJ2 \\
\hline 454 & 14 & & Hampshire and Isle of Wight & UKJ3 \\
\hline 455 & 13 & & Kent & UKJ4 \\
\hline 456 & 13 & Gloucestershire, & Wiltshire and Bristol/Bath area & UKK1 \\
\hline 457 & 13 & & Dorset and Somerset & UKK2 \\
\hline 458 & 13 & & Cornwall and Isles of Scilly & UKK3 \\
\hline 459 & 13 & & Devon & UKK4 \\
\hline 460 & 13 & & West Wales and The Valleys & UKL1 \\
\hline 461 & 13 & & East Wales & UKL2 \\
\hline 462 & 22 & & Eastern Scotland & UKM2 \\
\hline 463 & 21 & & South Western Scotland & UKM3 \\
\hline 464 & 21 & & North Eastern Scotland & UKM5 \\
\hline 465 & 21 & & Highlands and Islands & UKM6 \\
\hline 466 & 11 & & Northern Ireland (UK) & UKN0 \\
\hline
\end{tabular}

Appendix 7: Missing Data HeatMaps

\section*{Austria}

\section*{Belgium}

\section*{Bulgaria}

\section*{Switzerland}

NUTS Region

\section*{Cyprus}

\section*{Germany (including former GDR from 1991)}

NUTS Region

Year

\section*{Denmark}

\section*{Estonia}

Spain

Year

Finland

```

NUTS Region

```

```

Year

```

\section*{France}

NUTS Region

Year

Greece

Year

\section*{Croatia}

Hungary

Year

\section*{Ireland}

Iceland

Italy

Year

\section*{Liechtenstein}

\section*{Lithuania}

\section*{Luxembourg}

\section*{Latvia}

\section*{Macedonia}

\section*{Malta}

Netherlands

 Year

Norway

Poland

\section*{Portugal}
NUTS Region

Year

\section*{Romania}

NUTS Region
 Year

Sweden

Slovenia

Slovakia

Turkey

NUTS Region
 Year

\section*{United Kingdom}

\section*{Appendix 8: Coherence Constraint Output}

Note: the listing for the NUTS2 constraint of their contained NUTS3 regions is somewhat lengthy, and most lines have been omitted.
```

*************************************************************

* Cross-Sectional Time Series Constraint for NUTS Level O *
*****************************************************************
NUTS 1 children of AT are AT1 AT2 AT3
NUTS 1 children of BE are BE1 BE2 BE3
NUTS 1 children of BG are BG3 BG4
NUTS 1 children of CH are CHO
NUTS 1 children of CY are CYO
NUTS 1 children of CZ are CZO
NUTS 1 children of DE are DE1 DE2 DE3 DE4 DE5 DE6 DE7 DE8 DE9 DEA DEB DEC DED DEE
DEF DEG
NUTS 1 children of DK are DKO
NUTS 1 children of EE are EEO
NUTS 1 children of ES are ES1 ES2 ES3 ES4 ES5 ES6 ES7
NUTS 1 children of FI are FI1 FI2
NUTS 1 children of FR are FR1 FR2 FR3 FR4 FR5 FR6 FR7 FR8 FR9
** NUTS 1 data for FR children constrained in 2010
** NUTS 1 data for FR children constrained in 2011
NUTS 1 children of GR are GR1 GR2 GR3 GR4
NUTS 1 children of HR are HRO
NUTS 1 children of HU are HU1 HU2 HU3
NUTS 1 children of IE are IEO
NUTS 1 children of IS are ISO
NUTS 1 children of IT are ITC ITD ITE ITF ITG
NUTS 1 children of LI are LIO
NUTS 1 children of LT are LTO
NUTS 1 children of LU are LUO
NUTS 1 children of LV are LVO
NUTS 1 children of MK are MKO
NUTS 1 children of MT are MTO
NUTS 1 children of NL are NL1 NL2 NL3 NL4
** NUTS 1 data for NL children constrained in 2010
NUTS 1 children of NO are NOO
NUTS 1 children of PL are PL1 PL2 PL3 PL4 PL5 PL6
** NUTS 1 data for PL children constrained in 1990
NUTS 1 children of PT are PT1 PT2 PT3
** NUTS 1 data for PT children constrained in 1990
** NUTS 1 data for PT children constrained in 1991
NUTS 1 children of RO are RO1 RO2 RO3 RO4
NUTS 1 children of SE are SE1 SE2 SE3
NUTS 1 children of SI are SIO
NUTS 1 children of SK are SKO
NUTS 1 children of TR are TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9 TRA TRB TRC
** NUTS 1 data for TR children constrained in 1991
** NUTS 1 data for TR children constrained in 1992
** NUTS 1 data for TR children constrained in 1993
** NUTS 1 data for TR children constrained in 1994
** NUTS 1 data for TR children constrained in 1995
** NUTS 1 data for TR children constrained in 1996
** NUTS 1 data for TR children constrained in 1997
** NUTS 1 data for TR children constrained in 1998
** NUTS 1 data for TR children constrained in 1999
** NUTS 1 data for TR children constrained in 2001
** NUTS 1 data for TR children constrained in 2002
** NUTS 1 data for TR children constrained in 2003
** NUTS 1 data for TR children constrained in 2004

```
** NUTS 1 data for TR children constrained in 2005
** NUTS 1 data for TR children constrained in 2006
** NUTS 1 data for TR children constrained in 2007
NUTS 1 children of UK are UKC UKD UKE UKF UKG UKH UKI UKJ UKK UKL UKM UKN
** NUTS 1 data for UK children constrained in 2011
```

*************************************************************

* Cross-Sectional Time Series Constraint for NUTS Level 1 *
******************************************************************

```
NUTS 2 children of AT1 are AT11 AT12 AT13
NUTS 2 children of AT2 are AT21 AT22
NUTS 2 children of AT3 are AT31 AT32 AT33 AT34
NUTS 2 children of BE1 are BE10
NUTS 2 children of BE2 are BE21 BE22 BE23 BE24 BE25
NUTS 2 children of BE3 are BE31 BE32 BE33 BE34 BE35
NUTS 2 children of BG3 are BG31 BG32 BG33 BG34
NUTS 2 children of BG4 are BG41 BG42
NUTS 2 children of CHO are CHO1 CHO2 CHO3 CHO4 CHO5 CHO6 CHO7
NUTS 2 children of CYO are CYOO
NUTS 2 children of CZO are CZO1 CZO2 CZ03 CZO4 CZO5 CZO6 CZO7 CZ08
** NUTS 2 data for CZO children constrained in 1990
** NUTS 2 data for CZO children constrained in 1991
NUTS 2 children of DE1 are DE11 DE12 DE13 DE14
NUTS 2 children of DE2 are DE21 DE22 DE23 DE24 DE25 DE26 DE27
NUTS 2 children of DE3 are DE30
NUTS 2 children of DE4 are DE41 DE42
** NUTS 2 data for DE4 children constrained in 1990
** NUTS 2 data for DE4 children constrained in 1991
** NUTS 2 data for DE4 children constrained in 1992
** NUTS 2 data for DE4 children constrained in 1993
** NUTS 2 data for DE4 children constrained in 1994
NUTS 2 children of DE5 are DE50
NUTS 2 children of DE6 are DE60
NUTS 2 children of DE7 are DE71 DE72 DE73
NUTS 2 children of DE8 are DE80
NUTS 2 children of DE9 are DE91 DE92 DE93 DE94
NUTS 2 children of DEA are DEA1 DEA2 DEA3 DEA4 DEA5
NUTS 2 children of DEB are DEB1 DEB2 DEB3
NUTS 2 children of DEC are DECO
NUTS 2 children of DED are DED1 DED2 DED3
** NUTS 2 data for DED children constrained in 1990
** NUTS 2 data for DED children constrained in 1991
** NUTS 2 data for DED children constrained in 1992
** NUTS 2 data for DED children constrained in 1993
** NUTS 2 data for DED children constrained in 1994
NUTS 2 children of DEE are DEEO
NUTS 2 children of DEF are DEFO
NUTS 2 children of DEG are DEGO
NUTS 2 children of DKO are DKO1 DKO2 DKO3 DKO4 DKO5
** NUTS 2 data for DKO children constrained in 1990
** NUTS 2 data for DKO children constrained in 1991
** NUTS 2 data for DKO children constrained in 1992
** NUTS 2 data for DKO children constrained in 1993
** NUTS 2 data for DKO children constrained in 1994
** NUTS 2 data for DKO children constrained in 1995
** NUTS 2 data for DKO children constrained in 1996
** NUTS 2 data for DKO children constrained in 1997
** NUTS 2 data for DKO children constrained in 1998
** NUTS 2 data for DKO children constrained in 1999
** NUTS 2 data for DKO children constrained in 2000
** NUTS 2 data for DKO children constrained in 2001
** NUTS 2 data for DKO children constrained in 2002
** NUTS 2 data for DKO children constrained in 2003
** NUTS 2 data for DKO children constrained in 2004
** NUTS 2 data for DK0 children constrained in 2005
** NUTS 2 data for DKO children constrained in 2006
NUTS 2 children of EEO are EEOO
```

NUTS 2 children of ES1 are ES11 ES12 ES13
NUTS 2 children of ES2 are ES21 ES22 ES23 ES24
NUTS 2 children of ES3 are ES30
NUTS 2 children of ES4 are ES41 ES42 ES43
NUTS 2 children of ES5 are ES51 ES52 ES53
NUTS 2 children of ES6 are ES61 ES62 ES63 ES64
NUTS 2 children of ES7 are ES70
NUTS 2 children of FI1 are FI13 FI18 FI19 FIIA
NUTS 2 children of FI2 are FI20
NUTS 2 children of FR1 are FR10
NUTS 2 children of FR2 are FR21 FR22 FR23 FR24 FR25 FR26
NUTS 2 children of FR3 are FR30
NUTS 2 children of FR4 are FR41 FR42 FR43
NUTS 2 children of FR5 are FR51 FR52 FR53
NUTS 2 children of FR6 are FR61 FR62 FR63
NUTS 2 children of FR7 are FR71 FR72
NUTS 2 children of FR8 are FR81 FR82 FR83
NUTS 2 children of FR9 are FR91 FR92 FR93 FR94
NUTS 2 children of GR1 are GR11 GR12 GR13 GR14
NUTS 2 children of GR2 are GR21 GR22 GR23 GR24 GR25
NUTS 2 children of GR3 are GR30
NUTS 2 children of GR4 are GR41 GR42 GR43
NUTS 2 children of HRO are HR01 HRO2 HRO3
** NUTS 2 data for HRO children constrained in 1990
** NUTS 2 data for HRO children constrained in 1992
** NUTS 2 data for HRO children constrained in 1993
** NUTS 2 data for HRO children constrained in 1994
** NUTS 2 data for HRO children constrained in 1995
** NUTS 2 data for HRO children constrained in 1996
** NUTS 2 data for HRO children constrained in 1997
** NUTS 2 data for HRO children constrained in 1998
** NUTS 2 data for HR0 children constrained in 1999
** NUTS 2 data for HRO children constrained in 2000
** NUTS 2 data for HRO children constrained in 2001
NUTS 2 children of HU1 are HU10
NUTS 2 children of HU2 are HU21 HU22 HU23
NUTS 2 children of HU3 are HU31 HU32 HU33
NUTS 2 children of IEO are IE01 IEO2
** NUTS 2 data for IEO children constrained in 1990
** NUTS 2 data for IEO children constrained in 1991
** NUTS 2 data for IEO children constrained in 1992
** NUTS 2 data for IEO children constrained in 1993
** NUTS 2 data for IEO children constrained in 1994
** NUTS 2 data for IEO children constrained in 1995
** NUTS 2 data for IEO children constrained in 1996
NUTS 2 children of ISO are ISOO
NUTS 2 children of ITC are ITC1 ITC2 ITC3 ITC4
NUTS 2 children of ITD are ITD1 ITD2 ITD3 ITD4 ITD5
NUTS 2 children of ITE are ITE1 ITE2 ITE3 ITE4
NUTS 2 children of ITF are ITF1 ITF2 ITF3 ITF4 ITF5 ITF6
NUTS 2 children of ITG are ITG1 ITG2
NUTS 2 children of LIO are LIOO
NUTS 2 children of LTO are LTOO
NUTS 2 children of LUO are LUOO
NUTS 2 children of LVO are LVOO
NUTS 2 children of MKO are MKOO
NUTS 2 children of MTO are MTOO
NUTS 2 children of NL1 are NL11 NL12 NL13
NUTS 2 children of NL2 are NL21 NL22 NL23
NUTS 2 children of NL3 are NL31 NL32 NL33 NL34
NUTS 2 children of NL4 are NL41 NL42
NUTS 2 children of NOO are NOO1 NOO2 NOO3 NOO4 NOO5 NOO6 NOO7
NUTS 2 children of PL1 are PL11 PL12
** NUTS 2 data for PL1 children constrained in 1990
NUTS 2 children of PL2 are PL21 PL22
** NUTS 2 data for PL2 children constrained in 1990
NUTS 2 children of PL3 are PL31 PL32 PL33 PL34
** NUTS 2 data for PL3 children constrained in 1990

```

NUTS 2 children of PL4 are PL41 PL42 PL43
** NUTS 2 data for PL4 children constrained in 1990 NUTS 2 children of PL5 are PL51 PL52
** NUTS 2 data for PL5 children constrained in 1990 NUTS 2 children of PL6 are PL61 PL62 PL63
** NUTS 2 data for PL6 children constrained in 1990 NUTS 2 children of PT1 are PT11 PT15 PT16 PT17 PT18
** NUTS 2 data for PT1 children constrained in 1990
** NUTS 2 data for PT1 children constrained in 1991
NUTS 2 children of PT2 are PT20
** NUTS 2 data for PT2 children constrained in 1990
** NUTS 2 data for PT2 children constrained in 1991
NUTS 2 children of PT3 are PT30
** NUTS 2 data for PT3 children constrained in 1990
** NUTS 2 data for PT3 children constrained in 1991
NUTS 2 children of RO1 are RO11 RO12
NUTS 2 children of RO2 are RO21 RO22
NUTS 2 children of RO3 are RO31 RO32
NUTS 2 children of RO4 are RO41 RO42
NUTS 2 children of SE1 are SE11 SE12
NUTS 2 children of SE2 are SE21 SE22 SE23
NUTS 2 children of SE3 are SE31 SE32 SE33
NUTS 2 children of SIO are SIO1 SIO2
NUTS 2 children of SK0 are SK01 SK02 SK03 SK04
** NUTS 2 data for SK0 children constrained in 1990
** NUTS 2 data for SK0 children constrained in 1991
** NUTS 2 data for SKO children constrained in 1992
** NUTS 2 data for SKO children constrained in 1993
** NUTS 2 data for SK0 children constrained in 1994
** NUTS 2 data for SKO children constrained in 1995
NUTS 2 children of TR1 are TR10
** NUTS 2 data for TR1 children constrained in 1991
** NUTS 2 data for TR1 children constrained in 1992
** NUTS 2 data for TR1 children constrained in 1993
** NUTS 2 data for TR1 children constrained in 1994
** NUTS 2 data for TR1 children constrained in 1995
** NUTS 2 data for TR1 children constrained in 1996
** NUTS 2 data for TR1 children constrained in 1997
** NUTS 2 data for TR1 children constrained in 1998
** NUTS 2 data for TR1 children constrained in 1999
** NUTS 2 data for TR1 children constrained in 2001
** NUTS 2 data for TR1 children constrained in 2002
** NUTS 2 data for TR1 children constrained in 2003
** NUTS 2 data for TR1 children constrained in 2004
** NUTS 2 data for TR1 children constrained in 2005
** NUTS 2 data for TR1 children constrained in 2006
** NUTS 2 data for TR1 children constrained in 2007 NUTS 2 children of TR2 are TR21 TR22
** NUTS 2 data for TR2 children constrained in 1991
** NUTS 2 data for TR2 children constrained in 1992
** NUTS 2 data for TR2 children constrained in 1993
** NUTS 2 data for TR2 children constrained in 1994
** NUTS 2 data for TR2 children constrained in 1995
** NUTS 2 data for TR2 children constrained in 1996
** NUTS 2 data for TR2 children constrained in 1997
** NUTS 2 data for TR2 children constrained in 1998
** NUTS 2 data for TR2 children constrained in 1999
** NUTS 2 data for TR2 children constrained in 2001
** NUTS 2 data for TR2 children constrained in 2002
** NUTS 2 data for TR2 children constrained in 2003
** NUTS 2 data for TR2 children constrained in 2004
** NUTS 2 data for TR2 children constrained in 2005
** NUTS 2 data for TR2 children constrained in 2006
** NUTS 2 data for TR2 children constrained in 2007
NUTS 2 children of TR3 are TR31 TR32 TR33
** NUTS 2 data for TR3 children constrained in 1991
** NUTS 2 data for TR3 children constrained in 1992
** NUTS 2 data for TR3 children constrained in 1993
```

** NUTS 2 data for TR3 children constrained in 1994
** NUTS 2 data for TR3 children constrained in 1995
** NUTS 2 data for TR3 children constrained in 1996
** NUTS 2 data for TR3 children constrained in 1997
** NUTS 2 data for TR3 children constrained in 1998
** NUTS 2 data for TR3 children constrained in 1999
** NUTS 2 data for TR3 children constrained in 2001
** NUTS 2 data for TR3 children constrained in 2002
** NUTS 2 data for TR3 children constrained in 2003
** NUTS 2 data for TR3 children constrained in 2004
** NUTS 2 data for TR3 children constrained in 2005
** NUTS 2 data for TR3 children constrained in 2006
** NUTS 2 data for TR3 children constrained in 2007
NUTS 2 children of TR4 are TR41 TR42
** NUTS 2 data for TR4 children constrained in 1991
** NUTS 2 data for TR4 children constrained in 1992
** NUTS 2 data for TR4 children constrained in 1993
** NUTS 2 data for TR4 children constrained in 1994
** NUTS 2 data for TR4 children constrained in 1995
** NUTS 2 data for TR4 children constrained in 1996
** NUTS 2 data for TR4 children constrained in 1997
** NUTS 2 data for TR4 children constrained in 1998
** NUTS 2 data for TR4 children constrained in 1999
** NUTS 2 data for TR4 children constrained in 2001
** NUTS 2 data for TR4 children constrained in 2002
** NUTS 2 data for TR4 children constrained in 2003
** NUTS 2 data for TR4 children constrained in 2004
** NUTS 2 data for TR4 children constrained in 2005
** NUTS 2 data for TR4 children constrained in 2006
** NUTS 2 data for TR4 children constrained in 2007
NUTS 2 children of TR5 are TR51 TR52
** NUTS 2 data for TR5 children constrained in 1991
** NUTS 2 data for TR5 children constrained in 1992
** NUTS 2 data for TR5 children constrained in 1993
** NUTS 2 data for TR5 children constrained in 1994
** NUTS 2 data for TR5 children constrained in 1995
** NUTS 2 data for TR5 children constrained in 1996
** NUTS 2 data for TR5 children constrained in 1997
** NUTS 2 data for TR5 children constrained in 1998
** NUTS 2 data for TR5 children constrained in 1999
** NUTS 2 data for TR5 children constrained in 2001
** NUTS 2 data for TR5 children constrained in 2002
** NUTS 2 data for TR5 children constrained in 2003
** NUTS 2 data for TR5 children constrained in 2004
** NUTS 2 data for TR5 children constrained in 2005
** NUTS 2 data for TR5 children constrained in 2006
** NUTS 2 data for TR5 children constrained in 2007
NUTS 2 children of TR6 are TR61 TR62 TR63
** NUTS 2 data for TR6 children constrained in 1991
** NUTS 2 data for TR6 children constrained in 1992
** NUTS 2 data for TR6 children constrained in 1993
** NUTS 2 data for TR6 children constrained in 1994
** NUTS 2 data for TR6 children constrained in 1995
** NUTS 2 data for TR6 children constrained in 1996
** NUTS 2 data for TR6 children constrained in 1997
** NUTS 2 data for TR6 children constrained in 1998
** NUTS 2 data for TR6 children constrained in 1999
** NUTS 2 data for TR6 children constrained in 2001
** NUTS 2 data for TR6 children constrained in 2002
** NUTS 2 data for TR6 children constrained in 2003
** NUTS 2 data for TR6 children constrained in 2004
** NUTS 2 data for TR6 children constrained in 2005
** NUTS 2 data for TR6 children constrained in 2006
** NUTS 2 data for TR6 children constrained in 2007
NUTS 2 children of TR7 are TR71 TR72
** NUTS 2 data for TR7 children constrained in 1991
** NUTS 2 data for TR7 children constrained in 1992
** NUTS 2 data for TR7 children constrained in 1993

```
```

** NUTS 2 data for TR7 children constrained in 1994
** NUTS 2 data for TR7 children constrained in 1995
** NUTS 2 data for TR7 children constrained in 1996
** NUTS 2 data for TR7 children constrained in 1997
** NUTS 2 data for TR7 children constrained in 1998
** NUTS 2 data for TR7 children constrained in 1999
** NUTS 2 data for TR7 children constrained in 2001
** NUTS 2 data for TR7 children constrained in 2002
** NUTS 2 data for TR7 children constrained in 2003
** NUTS 2 data for TR7 children constrained in 2004
** NUTS 2 data for TR7 children constrained in 2005
** NUTS 2 data for TR7 children constrained in 2006
** NUTS 2 data for TR7 children constrained in 2007
NUTS 2 children of TR8 are TR81 TR82 TR83
** NUTS 2 data for TR8 children constrained in 1991
** NUTS 2 data for TR8 children constrained in 1992
** NUTS 2 data for TR8 children constrained in 1993
** NUTS 2 data for TR8 children constrained in 1994
** NUTS 2 data for TR8 children constrained in 1995
** NUTS 2 data for TR8 children constrained in 1996
** NUTS 2 data for TR8 children constrained in 1997
** NUTS 2 data for TR8 children constrained in 1998
** NUTS 2 data for TR8 children constrained in 1999
** NUTS 2 data for TR8 children constrained in 2001
** NUTS 2 data for TR8 children constrained in 2002
** NUTS 2 data for TR8 children constrained in 2003
** NUTS 2 data for TR8 children constrained in 2004
** NUTS 2 data for TR8 children constrained in 2005
** NUTS 2 data for TR8 children constrained in 2006
** NUTS 2 data for TR8 children constrained in 2007
NUTS 2 children of TR9 are TR90
** NUTS 2 data for TR9 children constrained in 1991
** NUTS 2 data for TR9 children constrained in 1992
** NUTS 2 data for TR9 children constrained in 1993
** NUTS 2 data for TR9 children constrained in 1994
** NUTS 2 data for TR9 children constrained in 1995
** NUTS 2 data for TR9 children constrained in 1996
** NUTS 2 data for TR9 children constrained in 1997
** NUTS 2 data for TR9 children constrained in 1998
** NUTS 2 data for TR9 children constrained in 1999
** NUTS 2 data for TR9 children constrained in 2001
** NUTS 2 data for TR9 children constrained in 2002
** NUTS 2 data for TR9 children constrained in 2003
** NUTS 2 data for TR9 children constrained in 2004
** NUTS 2 data for TR9 children constrained in 2005
** NUTS 2 data for TR9 children constrained in 2006
** NUTS 2 data for TR9 children constrained in 2007
NUTS 2 children of TRA are TRA1 TRA2
** NUTS 2 data for TRA children constrained in 1991
** NUTS 2 data for TRA children constrained in 1992
** NUTS 2 data for TRA children constrained in 1993
** NUTS 2 data for TRA children constrained in 1994
** NUTS 2 data for TRA children constrained in 1995
** NUTS 2 data for TRA children constrained in 1996
** NUTS 2 data for TRA children constrained in 1997
** NUTS 2 data for TRA children constrained in 1998
** NUTS 2 data for TRA children constrained in 1999
** NUTS 2 data for TRA children constrained in 2001
** NUTS 2 data for TRA children constrained in 2002
** NUTS 2 data for TRA children constrained in 2003
** NUTS 2 data for TRA children constrained in 2004
** NUTS 2 data for TRA children constrained in 2005
** NUTS 2 data for TRA children constrained in 2006
** NUTS 2 data for TRA children constrained in 2007
NUTS 2 children of TRB are TRB1 TRB2
** NUTS 2 data for TRB children constrained in 1991
** NUTS 2 data for TRB children constrained in 1992
** NUTS 2 data for TRB children constrained in 1993

```
```

** NUTS 2 data for TRB children constrained in 1994
** NUTS 2 data for TRB children constrained in 1995
** NUTS 2 data for TRB children constrained in 1996
** NUTS 2 data for TRB children constrained in 1997
** NUTS 2 data for TRB children constrained in 1998
** NUTS 2 data for TRB children constrained in 1999
** NUTS 2 data for TRB children constrained in 2001
** NUTS 2 data for TRB children constrained in 2002
** NUTS 2 data for TRB children constrained in 2003
** NUTS 2 data for TRB children constrained in 2004
** NUTS 2 data for TRB children constrained in 2005
** NUTS 2 data for TRB children constrained in 2006
** NUTS 2 data for TRB children constrained in 2007
NUTS 2 children of TRC are TRC1 TRC2 TRC3
** NUTS 2 data for TRC children constrained in 1991
** NUTS 2 data for TRC children constrained in 1992
** NUTS 2 data for TRC children constrained in 1993
** NUTS 2 data for TRC children constrained in 1994
** NUTS 2 data for TRC children constrained in 1995
** NUTS 2 data for TRC children constrained in 1996
** NUTS 2 data for TRC children constrained in 1997
** NUTS 2 data for TRC children constrained in 1998
** NUTS 2 data for TRC children constrained in 1999
** NUTS 2 data for TRC children constrained in 2001
** NUTS 2 data for TRC children constrained in 2002
** NUTS 2 data for TRC children constrained in 2003
** NUTS 2 data for TRC children constrained in 2004
** NUTS 2 data for TRC children constrained in 2005
** NUTS 2 data for TRC children constrained in 2006
** NUTS 2 data for TRC children constrained in 2007
NUTS 2 children of UKC are UKC1 UKC2
** NUTS 2 data for UKC children constrained in 2010
NUTS 2 children of UKD are UKD1 UKD2 UKD3 UKD4 UKD5
** NUTS 2 data for UKD children constrained in 2010
NUTS 2 children of UKE are UKE1 UKE2 UKE3 UKE4
NUTS 2 children of UKF are UKF1 UKF2 UKF3
NUTS 2 children of UKG are UKG1 UKG2 UKG3
** NUTS 2 data for UKG children constrained in 2010
NUTS 2 children of UKH are UKH1 UKH2 UKH3
NUTS 2 children of UKI are UKI1 UKI2
NUTS 2 children of UKJ are UKJ1 UKJ2 UKJ3 UKJ4
** NUTS 2 data for UKJ children constrained in 2010
NUTS 2 children of UKK are UKK1 UKK2 UKK3 UKK4
NUTS 2 children of UKL are UKL1 UKL2
NUTS 2 children of UKM are UKM2 UKM3 UKM5 UKM6
** NUTS 2 data for UKM children constrained in 1990
** NUTS 2 data for UKM children constrained in 1991
** NUTS 2 data for UKM children constrained in 1992
** NUTS 2 data for UKM children constrained in 1993
** NUTS 2 data for UKM children constrained in 1994
** NUTS 2 data for UKM children constrained in 1995
** NUTS 2 data for UKM children constrained in 1996
** NUTS 2 data for UKM children constrained in 1997
** NUTS 2 data for UKM children constrained in 1998
** NUTS 2 data for UKM children constrained in 1999
** NUTS 2 data for UKM children constrained in 2010
NUTS 2 children of UKN are UKNO

```
* Cross-Sectional Time Series Constraint for NUTS Level 2 *

NUTS 3 children of AT11 are AT111 AT112 AT113
** NUTS 3 data for AT11 children constrained in 1990
** NUTS 3 data for AT11 children constrained in 1991
** NUTS 3 data for AT11 children constrained in 1992
** NUTS 3 data for AT11 children constrained in 1993
** NUTS 3 data for AT11 children constrained in 1994
```

** NUTS 3 data for AT11 children constrained in 1995
** NUTS 3 data for AT11 children constrained in 1996
** NUTS 3 data for AT11 children constrained in 1997
** NUTS 3 data for AT11 children constrained in 1998
** NUTS 3 data for AT11 children constrained in 1999
** NUTS 3 data for AT11 children constrained in 2000
** NUTS 3 data for AT11 children constrained in 2001
... ... ... ... ... [similar lines omitted in this listing]
NUTS 3 children of UKM2 are UKM21 UKM22 UKM23 UKM24 UKM25 UKM26 UKM27 UKM28
NUTS 3 children of UKM3 are UKM31 UKM32 UKM33 UKM34 UKM35 UKM36 UKM37 UKM38
NUTS 3 children of UKM5 are UKM50
NUTS 3 children of UKM6 are UKM61 UKM62 UKM63 UKM64 UKM65 UKM66
NUTS 3 children of UKNO are UKN01 UKN02 UKN03 UKN04 UKNO5
** NUTS 3 data for UKNO children constrained in 1990
** NUTS 3 data for UKNO children constrained in 1991
** NUTS 3 data for UKNO children constrained in 1992
** NUTS 3 data for UKNO children constrained in 1993
** NUTS 3 data for UKNO children constrained in 1994
** NUTS 3 data for UKNO children constrained in 1995
** NUTS 3 data for UKNO children constrained in 1996
** NUTS 3 data for UKNO children constrained in 1997
** NUTS 3 data for UKNO children constrained in 1998
** NUTS 3 data for UKNO children constrained in 1999
>
>

```
```


[^0]:    ${ }^{1}$ Chatfield, C, 1989, The Analysis of Time Series, $4^{\text {th }}$ edn, London: Chapman and Hall, p1
    ${ }^{2}$ Shumway RH and Stoffer DS, 2010, Times Series Analysis and its Applications, $3^{\text {rd }}$ edn, New York: Springer

[^1]:    ${ }^{3}$ Commission Regulation 11/2008 specifies the required time series starting years for NUTS levels in 17 statistical domains. The domain Demography has a start year for 1990 for both NUTS2 and NUTS3.
    ${ }^{4}$ Hyndman R, 2014, Fitting models to short time series, URL:rob.hyndman.com/hindsight/short-time-series
    ${ }^{5}$ http://epp.eurostat.ec.europa.eu/portal/page/portal/nuts_nomenclature/introduction

[^2]:    ${ }^{9}$ Box, GEP and Jenkins GM, 1970, Time Series Analysis Forecasting and Control, HoldenDay: San Francisco

[^3]:    ${ }^{10}$ Knuth DE, 1973, Fundamental Algorithms, The Art of Computer Programming, Volume 1, Reading MA: Addison-Wesley, p305

[^4]:    ${ }^{11}$ Perl can be downloaded from http://www.activestate.com/activeperl/downloads
    ${ }^{12}$ JAGS can be installed from http://sourceforge.net/projects/mcmc-jags/files/
    ${ }^{13}$ The data as supplied by the RIATE team contains original data as well as RIATE's own estimations of the missing data

[^5]:    ${ }^{14}$ Reproducibility is science is the ability of an enture study to be reproduced by either the researcher themselves, or by an independent third party. See also Buckheit JB and

[^6]:    Donoho, 1995, WaveLab and Reproducible Research, Dept. of Statistics, Stanford University, Tech. Rep. 474

