
HAL Id: hal-03609720
https://hal.science/hal-03609720v1

Submitted on 15 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Time Series Data in the ESPON Database
Martin Charlton, Chris Brunsdon, Conor Cahalane, Lars Pforte

To cite this version:
Martin Charlton, Chris Brunsdon, Conor Cahalane, Lars Pforte. Time Series Data in the ESPON
Database. [Research Report] ESPON. 2015. �hal-03609720�

https://hal.science/hal-03609720v1
https://hal.archives-ouvertes.fr

 i

Time Series Data in the

ESPON Database

June 2014

CONTENT

Time series data form inputs to the ESPON

Database, at spatial scales including NUTS0,

NUTS1, NUTS2 and NUTS3. Series are often

incomplete at the lower levels in the NUTS

hierarchy. The task is to impute the missing

values, and ensure the spatial coherence of

the estimates.

A methodology is presented for data

imputation based on an autoregressive

model which is fitted to the existing data,

and used to impute the missing values,

using a Bayesian approach. The spatial

coherence of the results is also ensured.

The metholodgy has been implemented

using the R language, and tested on typical

short-run time series for NUTS0, NUTS1,

NUTS2 and NUTS3 regions.

R and JAGS code to operationalise the

methodology is presented in this report,

and a suitable workflow is outlined.

 ii

LIST OF AUTHORS

Martin Charlton, National Centre for Geocomputation

Chris Brunsdon, National Centre for Geocomputation

Conor Cahalane, National Centre for Geocomputation

Lars Pforte, National Centre for Geocomputation

Contact

manager@espondb.eu

Address

National Centre for Geocomputation

National University of Ireland, Maynooth

Maynooth

County Kildare

IRELAND

mailto:manager@espondb.eu

 iii

TABLE OF CONTENT

Section Title Page

1 Introduction

1

2 ESPON Time Series

2

3 Missing data imputation

11

4 Implementation

21

5 ESPON time series in practice 37

Appendix

1 NUTS0 time series plots

42

2 Main analysis and imputation R functions

49

3 Core imputation function

67

4 JAGS code for MCMC (multiple NAs)

70

5 JAGS code for MCMC (single NA)

72

6 Missing data at NUTS0/1/2

74

7 Missing data heatmaps

77

8 Coherence constraint output 112

 1

1. Introduction

A time series is a collection of observations made sequentially in time1. Time
series are frequently encountered in (i) economics [Beveridge annual wheat

price series], (ii) physical sciences [monthly average air temperature] (iii)
marketing [monthly product sales] (iv) demography [annual population

estimates] and (v) process control [weights of manufactured product sampled
hourly] (vi) communication [binary series are common]. While many series are

usually measured at regular intervals (e.g.: year, month, week, day, hour,
minute), there are series which occur irregularly, for example, major railway
disasters, which are known as point processes. Time series analysis is

concerned with (i) description of the main properties of the series, (ii)
explanation of the relationship between two series taken at the same time

[monthly atmospheric temperature readings, monthly measurements of the
North Atlantic Oscillation] and (iii) prediction of (usually) future values.

Time series description can take several forms, but are intended to reveal the
underlying structure of the series. This structure can include several

components2:

Trend: an increase or decrease in the value of the series over time

Seasonality: a regular pattern of high and low values related to calendar time
Long term cycles: periodicity not related to seasonality

Outliers: values which are unusually high or low in comparison with the rest of
the data
Abrupt changes: changes to the variation in the series or level

Variance: this may be constant over time or increase/decrease

Sources of data for ESPON series

Many of the tables required can be obtained from EUROSTAT. However, there

are much missing data. Depending on the series, the series may be complete to
NUTS 3 back to 2000. For earlier years, data may only be available to NUTS2

level. This requires recourse to other sources, for which the most authoritative
would be those from the National Statistical Offices (for example: Turkstat,
Croatian Bureau of Statistics, Statistics Norway, and Statistische Ämter des

Bundes und der Länder). There are other sources, such as the OECD, and the
EUROSTAT NewCronos database may be of assistance in completing the time

series.

1 Chatfield, C, 1989, The Analysis of Time Series, 4th edn, London: Chapman and Hall, p1
2 Shumway RH and Stoffer DS, 2010, Times Series Analysis and its Applications, 3rd edn,

New York: Springer

 2

2. ESPON Time Series

The character of ESPON Series

The socio-economic time series which appear to be commonly encountered in
the ESPON programme are annual counts or ratios for a restricted time period

(1990-2013)3. This implies that the longest series are less than 25 years, and
some are far shorter. Missing data in the middle of a series shorten it still

further. Hyndman has reported in the effects of attempting to fit models to short
series4. In 95 short economic series about 1/3 were random walks (they had no

structure).

The series are also presented for the spatial units in the NUTS classification5, The

NUTS system is a hierarchical system for dividing up the economic territory of
the EU for the purposes of the collection o regional statistics, socio-economic

analyses and framing EU regional policies. We are concerned mainly with the
first 4 levels of the NUTS hierarchy, Tables of the NUTS regions and their codes,
and correspondence tables for region adjustments are available from EUROSTAT.

The input and outputs from the ESPON database are in the form of rectangular
files, as a Excel spreadsheets – each line of data is preceded by its NUTS code.

Some sheets, and the EUROSTAT tables present the NUTS codes of every unit in
a single column (for example demo_r_gind3), which gives the impression of
flattening the hierarchy, The key to the strategy for handling the time series is

to think of the cross-sectional structure at each time period, implied by the
NUTS codes, explicitly as a tree. We shall return to this later.

The datasets in EUROSTAT and from other sources are often incomplete for the
time periods and spatial scales of interest. There might be many reasons –

population censuses may only be carried out on a decadal basis. While national
or regional intercensal population estimates may be provided by the national

agencies, data at lower level is less common.

In the case of the RIATE example dataset, the pattern of missing data relative to

the lvarious levels in the NUTS hierarchy is:

 Complete

NUTSlevel NotOK OK

 0 3 31

 1 35 80

 2 113 204

 3 1239 222

3 Commission Regulation 11/2008 specifies the required time series starting years for

NUTS levels in 17 statistical domains. The domain Demography has a start year for 1990

for both NUTS2 and NUTS3.
4 Hyndman R, 2014, Fitting models to short time series,

URL:rob.hyndman.com/hindsight/short-time-series
5 http://epp.eurostat.ec.europa.eu/portal/page/portal/nuts_nomenclature/introduction

 3

An entry in the NotOK column means that data for one or more time periods in
the series was missing. The pattern was what proportion of data was missing by

NUTS level is below:

 NumberIncomplete

NUTSlevel 0 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 21 22

 0 31 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

 1 80 7 3 0 0 1 0 0 0 0 2 0 0 0 0 12 0 4 6

 2 204 16 15 0 5 4 2 0 0 0 4 0 15 17 0 26 5 3 1

 3 222 113 42 0 0 417 18 44 105 132 108 100 32 0 10 88 30 0 0

While most NUTS0 series are complete, 1 is missing four time periods, 1 is

missing 16, and one is missing 21! The situation deteriorates as we progress
down the hierarchy, but this is to be expected. About 25% of the NUTS1 series
are missing a substantial portion of their data (over 72% of each series are

missing). At NUTS1 and NUTS2 data is either mostly present or missing to a
serious degree.

AT NUTS3 level, the modal group represents 6 missing entries and a moderate

number of regions have over 75% of their series missing.

This provides a challenge for the analyst. What should be done about the
missing data? In survey analysis a common strategy is to analyses only those
cases with complete data for the variables of interest. This raises the question as

to whether the mechanism for creating the missing variables is a random
process. If it is not, then the possibility of introducing bias into the analysis

becomes a problem. With time series the problem is magnified: if a single value
is missing from the series, should the analyst remove this series from the
analysis, or should some attempt be made to complete the data?

0 3 6 9 12 16 20

NUTS0

0
5

1
0

2
0

3
0

0 3 6 9 12 16 20

NUTS1

0
2
0

4
0

6
0

8
0

0 3 6 9 12 16 20

NUTS2

0
5
0

1
0
0

1
5
0

2
0
0

0 3 6 9 12 16 20

NUTS3

0
1
0
0

2
0
0

3
0
0

4
0
0

 4

IBM's SPSS software offers several alternatives to allow the analyst to replace
missing observations with an estimate. These include6

 The mean of the series

 The mean of nearby observations

 The median of nearby observations

 Linear interpolation

 Linear trend using the time series index as a regressor

The mean of the series might be a unwise choice, particular if the series has a

rising trend, and the missing observation is at the beginning of the series.
Approaches to linear interpolation are described in detail below. Linear trend
may or may not be helpful, although if the residuals either side of the trend line

are all positive or negative, then the estimated value my be some distance from
a desirable value.

Enders7 notes that the analyst should make the distinction between the missing
data pattern and the missing data mechanism. He notes that the pattern

relates to the configuration of observed and unobserved data, whereas the
mechanism permits a description of the relationship between the two in terms of

probability. Rubin8 proposed classified missing data mechamisms into three
types: (1) missing at random, (2) missing completely at random and (3) missing
not at random. MAR arises when the probability of missing data is related to the

values of some other measured variable in the dataset. MCAR arises when the
the probability is unrelated to any other variable in the dataset – Elders uses the

adjective haphazard for this. MNAR arises when the probability of missing data
on a variable is related to the values of the variable itself. Elders uses an
example of cancer patients in a trial becoming so ill they are unable to continue

participation in the trial. The ESPON time series missing data are likely to arise
from an MCAR process – they are certainly not MNAR (the population values are

too small to collect). However, they may be too expensive to collect.

Traditional methods for missing data

Expedient methods for dealing with missing data include deletion of the

observations with missing data. Listwise deletion, or complete case analysis,
removes any observation with one or more missing values. A variant, pairwise
deletion, or available-case analysis, removes variables on an analysis-by-

analysis case. This would result in the correlations in a correlation matrix
potentially being based on different numbers of underlying observations.

Other expedient methods include imputation. Amongst these are replacement by
the arithmetic mean, replacement by median, regression imputation, (and

stochastic regression imputation which adds a random number from the
distribution of residuals), hot-deck imputation (scores are taken from similar

6

http://pic.dhe.ibm.com/infocenter/spssstat/v21r0m0/index.jsp?topic=%2Fcom.ibm.spss.

statistics.help%2Fidh_rmvx.htm
7 Enders, CK, 2010, Applied Missing Data Analysis, New York: Guilford Press
8 Rubin, DB, 1976, Inference and Missing Data, Biometrika, 63(3), 581-592

 5

respondents answers), and last observation carried forward (a variant of this is
described below).

Missing observations

An appropriate example is given by the M4D table M4Dpoptot1990-
2011_20120522.xls. This contains estimates of residential population, and is

available at NUTS0, NUTS2, NUTS2 and NUTS3, from 1990 to 2012. The
metadata in table 1 shows that the sources of data include EUROSTAT and the

national statistical agencies. However, in many cases data have not being
available from these sources and has been imputed by the team at RIATE. The
metadata reveals that 52 separate imputation approaches can be identified,

although these are variations on the same underlying imputation process.

Table 1: extracr from metadata in M4Dpoptot1990-2011_20120522.xls

ID Label Provider

1 1 Eurostat

2 1a Eurostat

3 1*a Eurostat, NewCronos database

4 1*b Eurostat, NewCronos database

5 2a ESPON M4D

6 3a Turkstat

7 4a Croatian Bureau of Statistics

8 4b Croatian Bureau of Statistics

9 4c Croatian Bureau of Statistics

10 6a GUS (Central Statistical Office of Poland)

11 10 Statistics Norway

12 11 Statistics Sweden

13 12 Statistische Ämter des Bundes und der Länder

14 13 Statistics Denmark

15 14 Statistics Portugal

16 15 Statistics Netherlands

17 16 Latvijas Statistika

18 17 Statistics Lithuania

19 18 Fürstentum Liechtenstein

20 20 Statistics Iceland

21 21 Instituto Nacional de Estadistica

22 22 Czech Statistical Office

23 23 Office Fédéral de la Statistique Suisse

24 24 Statistics Estonia

25 25 Statistics Finland

26 26 INSEE (Institut National de la Statistique et des Etudes Economiques)

27 27 Hungarian Central Statistics Office

28 29a Statistics Belgium - Bestat

29 29b Statistics Belgium

30 31 Republic of Macedonia, Statistical

 6

31 33 Hellenic Statistical Authority (ElStat)

32 34 UK National Statistics

33 E1b ESPON M4D

34 E2a ESPON M4D

35 E2b ESPON M4D

36 T1a ESPON M4D

37 T1b ESPON M4D

38 SE1a ESPON M4D, New Cronos Database

39 SE1a* ESPON M4D, New Cronos Database

40 SE1b ESPON M4D, New Cronos Database

41 SE1c ESPON M4D, General Register Office for Scotland

42 SE1f ESPON M4D, Statistical Office of the Republic of Slovenia

43 SE1g ESPON M4D, Central Statistics Office Ireland

44 SE1h ESPON M4D, Statistics Iceland

45 SE1i ESPON M4D, Instituto Nacional de Estadistica

46 SE1j ESPON M4D, Republic of Macedonia State Statistical Office

47 SE1k ESPON M4D, UK National statistics

48 SE1l ESPON M4D, Istituto Nazionale di Statistica

49 SE1m ESPON M4D, Czech Statistical Office

50 SE1n ESPON M4D, Statistische Ämter des Bundes und der Länder

51 SE1o ESPON M4D, Office Fédéral de la Statistique Suisse

52 TE1b ESPON M4D

53 TE1c ESPON M4D

54 TE1d ESPON M4D

55 TE1e ESPON M4D

56 TE1f ESPON M4D

57 TE1g ESPON M4D

58 TE1h ESPON M4D

59 TE1i ESPON M4D

60 TE1j ESPON M4D

61 TE1k ESPON M4D

62 TE1l ESPON M4D

63 TE1m ESPON M4D

64 TE1n ESPON M4D

65 TE1o ESPON M4D

66 TE1p ESPON M4D

67 TE1q ESPON M4D

68 TE1r ESPON M4D

69 TE2a ESPON M4D

70 TE2b ESPON M4D

71 TE2c ESPON M4D

72 TE3a ESPON M4D

73 TE3b ESPON M4D

74 TE3c ESPON M4D

 7

75 TE3d ESPON M4D

76 TE3e ESPON M4D

77 TE3f ESPON M4D

78 TE3g ESPON M4D

79 TE6a ESPON M4D

80 TE6b ESPON M4D

81 TE6c ESPON M4D

82 TE6d ESPON M4D

83 TE6e ESPON M4D

84 TE6f ESPON M4D

The RIATE team observed that data was more often missing for NUTS3 units

than NUTS 2, and more often NUTS2 than NUTS1. Their other observation was
that data is either missing from the beginning of the series to an intermediate
time period, or missing in a run in the middle of the series. That the NUTS

hierarchy provides a parent NUTSlevel-1 region for any groups of NUTSlevel regions
lead them to an ingenious group of solutions based around LOCF. These boil

down essentially to two strategies.

Let pt,r be the proportion of the parent NUTSlevel-1 region's population for NUTSlevel

region r in year t, and Nr is the number of NUTSlevel regions in a parent NUTSlevel-1
region. In any given year the following is true:





Nr

r

rtp
1

, 1

Data missing from beginning of series

In the first case, which the RIATE team describe as retropolation, the data are

missing from 1990 to the time period last. The proportions are propagated
backwards along the series from the earliest known value, plast+1,r.

lastt

pp rlastrt

...1990

,1,



 

The population estimates for the NUTSlevel regions are then obtained by

multiplying the appropriate NUTSlevel-1 population by the retropolated pt,r
values.

Data missing from the middle of a series

In the second case, that of interpolation, the data are missing from time period
first to time period last inclusive. This implies that the proportions are are known
for time period first-1 and time period last+1. The intermediate proportions are

obtained by linear interpolation. If pfirst-1,r and plast-1,r are the known proportions
of the time periods immediately adjacent to the run of missing observations,

then:

 8

 

lastfirstt

firstlast

firstt
ppp rfirstrlastrt

...

2

1
,1,1,















 

The population estimates for the NUTSlevel regions are then obtained by

multiplying the appropriate NUTSlevel-1 population by the interpolated pt,r
values.

Data missing from the end of the series

In a case analogous to the first, values of the proportions can be propagated
forward from the latest known pfirst-1,r to 2012 (or whatever is the last time
period in the study) in an extrapolation:

2012...

,1,

firstt

pp rfirstrt



 

These imputations represent the application of an AR(0) time series model
where the trend for the first and last case is zero, and linear in the interpolation

case. The imputed values will then exhibit the same behavioural characteristics
of the parent series.

Partially missing data

In some cases, data is missing for a subset missing of the NUTSlevel regions. The
proportions are then of the NUTSlevel-1 population less the sum of the non-
missing NUTSlevel populations. If data is missing for only one region at NUTSlevel,

then we can regard it as embarrassingly estimatable, in that the missing values
are obtained from the population for the NUTSlevel-1 region less the sum of the

non-missing NUTSlevel populations, without the need to bring the LOCF
procedures into play.

Estimation and the NUTS hierarchy

The implementation of this approach implies that the estimation strategy is top-
down. That is, as the proportions for NUTSlevel relative to NUTSlevel-1 are required,
then the values at NUTSlevel-1 must be obtained first. Therefore, population

estimates at NUTS1 must be made first, relative to the NUTS0 values. Once
these have been obtained, estimates at NUTS2 may be made, and finally,

estimates at NUTS3.

The RIATE implementation was undertaken using Excel. Whilst this represents

activity and effort which might be regarded as heroic, it is almost impossible to
debug, very difficult to check, and cannot be automated. For these reasons, it

cannot be recommended.

 9

Missing data scenarios

Populating the tables to NUTS 3 level over the period 1990-2013 with (a)

Eurostat data and (b) data from the National Statistical Offices reveals some
recurrent patterns with regard to missing data. The diagrams below, we use four

colours when depicting the patterns of present and absent data:

Green: Eurostat data present ("present" data series)

Blue: Eurostat data not present; National Statistical Agency data present;
both series agree for later (or earlier) time periods ("concordant" data

series)
Yellow: Eurostat data not present; National Statistical Agency data present;

both series disagree for later (or earlier) time periods ("discordant"

data series)
Red: Neither Eurostat nor external data available ("missing" data)

Several scenarios arise when data is missing for several consecutive time
periods:

 Data is present for a NUTS region, concordant for n-1 of the NUTS3 regions which it contains,

and discordant for one region.

 Data is present and estimable for all but one time period at NUTS3 but there is a total
available for NUTS2

 Data is present for a NUTS region, concordant for n-p of the NUTS3 regions which it contains,

and discordant for p regions.

 Data is partially present at NUTS2, there is some concordant data at for n-p of the NUTS3

regions which is contains, and discordant data for others.

 Data is present at NUTS2, and for one or more time period in the NUTS3 series there is

concordant data. The rest of the NUTS3 data are missing.

 10

 Data is present at NUTS2, and for one or more time period in the single NUTS3 series there is
concordant data. The rest of the NUTS3 data are missing. (This occurs when the NUTS3
region is also the NUTS2 and NUTS1 region, for example, BE1/BE10/BE100).

 Data is present at NUTS2, and is missing for a single time period at NUTS 2 as part of a

concordant series.

 There is missing data at NUTS3 when the NUTS1, NUTS2 and NUTS3 regions are the same

spatial unit

 Data is present at NUTS2, and there is a small corpus of concordant NUTS3 data, but for the

majority of the n regions all the data at NUTS3 are missing.

 This is an extension of the above cases with missing data for one NUTS3 region when the

other n-1 regions have concordant data

 Data is missing at NUTS3 for regions where NUTS3 and NUTS2 boundaries are coterminous.

 Eurostat data is present at all part of the series at NUTS 2 and NUTS3. Concordant data in

available for n-1 NUTS2 regions and 1 NUTS3 region is missing.

This leads to the conclusion that the missing data can be handling in a manner in
which the available data can be used as evidence to complete the missing
elements in the various series, and ensure data is also spatially consistent. It

also leads us to conclusion that the missing data should be built from the lowest
levels in the NUTS hierarchy first. With this in mind we start with the simplest

cases, and recursively apply more complex solutions as and when they are
required.

 11

3. Missing data imputation

Estimation

The scenarios suggest that we will require three components in the estimating
strategy: (a) a suitable model for the existing data and (b) a means of ensuring

hierarchical spatial coherence in the series and (c) a means of representing the
spatial hierarchy of the NUTS regions in each country

Experimentation of the existing ESPON series suggests that some relatively

simple models will yield reasonable results for the first component. Each series
can be modelled with either a linear, quadratic or exponential trends, with an
autocorrelated error term:

t

ta

t

t

tt

eeaP

tataaPt

taaP







1

0

2

210

10





where the error term is 0~N(0,) and t~N(t-1,) with t > 0 and ||<1.. The
parameters a0, a1 and a2 are to be estimated. Both models can handle missing
values – points for which no data is available – as well as provide forecasts,

backcasts and interpolation of missing data in the middle of a series. The generic
term prediction covers these three eventualities.

Models for time series

To estimate data for a time series we need to start with a model. There are
many such models in the time series analysis literature which may be applied. In

an autoregressive model the value of the series at time t depends on p previous
values:




 
p

i

titit XcX
1



By contrast in a moving average model, the error at time t depends on q

previous values:





q

j

jtjttX
1



These can be combined to give an autoregressive moving average model:








 
q

j

jtj

p

i

ititt XcX
11



 12

Such models were given extensive treatment in Box and Jenkins (1970)9. They
are conventionally fitted to a series which is stationary (that is, in which the

trend has been removed), a situation obtained by differencing. If the trend is

linear, the series might need to be differenced once (i.e. t = Xt – Xt-1); if the

trend is accelerating, second differences might be required. However, typically
to obtain reliable estimates of the p autoregressive parameters and the q
moving average parameters requires series of perhaps many 10s of

observations. We no have this luxury with the ESPON series.

Al alternative is to consider methods using Bayesian inference. We

conventionally model data D with some parameters  using the probability

distribution P(D|); the  might be the parameters from a regression model

(slope, intercept and error variance). Using Bayes theorem, this can be inverted

to yield a probabilistic statement about  given the data D:











dDP

DP
PDP

)|(

)|(
)()|(

The denominator is not usually analytically soluble; solutions can be found using

Markov Chain Monte Carlo (MCMC) techniques which simulate random  values

from P(|D). P(|D) is known as the posterior distribution of the parameters.

The MCMC approach has the useful property that it can be used to estimate the
missing values. The posterior distribution of the missing data can be considered
in the same way other unknown quantities. If D* is the unobserved data, then

the posterior predictive distribution of the data is:

)|()|()()|(**  DPDPPDDP 

This gives a means of estimating the missing data, using the available data as
evidence.

Bayes models

Using Bayesian techniques involves a somewhat different approach than
traditional frequentist models. Using the example of the Austria population, we

will fit an ordinary least squares regression model, a Bayesian version of the
same, and then a Bayesian time series model with linear trend.

We start with the data, the population estimate in each year in millions:

> AT

 [1] 7.644818 7.710882 7.798899 7.882519 7.928746 7.943489 7.953067 7.964966

 [9] 7.971116 7.982461 8.002186 8.020946 8.063640 8.100273 8.142573 8.201359

[17] 8.254298 8.282984 8.318592 8.355260 8.375290 8.404252

These are the populations from 1990 to 2011, and we will regress these against
the year number (running from 1 to 22 inclusive).

> m1 <- lm(AT ~ Year)

9 Box, GEP and Jenkins GM, 1970, Time Series Analysis Forecasting and Control, Holden-

Day: San Francisco

 13

> summary(m1)

Call:

lm(formula = AT ~ Year)

Residuals:

 Min 1Q Median 3Q Max

-0.076560 -0.036842 0.008816 0.018307 0.078670

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.689203 0.018510 415.42 < 2e-16 ***

Year 0.032175 0.001409 22.83 8.51e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.04194 on 20 degrees of freedom

Multiple R-squared: 0.963, Adjusted R-squared: 0.9612

F-statistic: 521.2 on 1 and 20 DF, p-value: 8.512e-16

The equation that we construct from these results is Yt = 7.689 + 0.032Yeart.
As the population levels are expressed in millions and thus we interpret the
annual population increase to be about 32000, from a start of 7.689m. The

95% confidence interval for the intercept is 7.653 to 7.726, and the slope is
from 0.0294 to 0.0349.

The JAGS model is specified in a slightly different fashion:

require(rjags)

modelCode <- "

 model{

 for(i in 1:N) {

 Y[i] ~ dnorm(mu[i], tau)

 mu[i] <- alpha + beta*x[i]

 }

 alpha ~ dnorm(0, 0.0001)

 beta ~ dnorm(0, 0.0001)

 sigma <- 1.0/sqrt(tau)

 tau ~ dgamma(0.001, 0.001)

 }

"

modelData <- list(N=N, Y=AT, x=Year)

modelMCMC <- jags.model(textConnection(modelCode), modelData)

Compiling model graph

 Resolving undeclared variables

 Allocating nodes

 Graph Size: 98

Initializing model

update(modelMCMC, n.iter=1000)

modelOutp <- coda.samples(modelMCMC, n.iter=1000,

variable.names=c("alpha","beta","sigma"))

summary(modelOutp)

Iterations = 1001:2000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,

 plus standard error of the mean:

 Mean SD Naive SE Time-series SE

alpha 7.68484 0.020033 6.335e-04 0.0017574

beta 0.03250 0.001527 4.829e-05 0.0001331

 14

sigma 0.04456 0.007543 2.385e-04 0.0002708

2. Quantiles for each variable:

 2.5% 25% 50% 75% 97.5%

alpha 7.64190 7.67253 7.68519 7.69708 7.72379

beta 0.02959 0.03148 0.03250 0.03345 0.03563

sigma 0.03289 0.03959 0.04364 0.04841 0.06311

We are required supply the observation equation for Y, the system equation for
mu, and our suggestions for the prior distributions. Y will be sampled from a

normal distribution, with mean mui. The priors for the coefficients, alpha and
beta, will be sampled from a normal distribution, and the precision, tau, from a

gamma distribution. In JAGS the precision tau is used to specify the variation of
the samples, and if we want the value of the standard deviation, sigma, then we

must supply the deterministic identity between it and tau.

We subject the model to a burn-in period of 1000 samples, and then we used

1000 samples from the Gibbs Sampler to derive the posterior distributions of the
parameters. The mean values for alpha and beta are similar the OLS estimates,

and the 95% quantiles correspond to the OLS 95% confidence limits. We can
also plot the distributions of the posteriors.

The density plots indicate the variability in the posterior estimates. Note that

some of the variance has been incorrectly assigned to observation variance,
since the terms in the model are autocorrelated.

Tho add in an autocorrelated error term we must make further changes to the
model. The autocorrelation is modelled using a multivariate normal distribution.

The mui terms are formed as before, but the autocorrelation is represented with

a covariance matrix between the terms in the series, where each entry is 2


raised to the power of the lag between the terms. The parameter r is the

measure of the autocorrelation and we sample from a beta distribution. As with
the previous model, the precisions in the prior distributions are purposely small

1000 1200 1400 1600 1800 2000

7
.6

0
7
.6

5
7
.7

0
7
.7

5

Iterations

Trace of alpha

7.60 7.65 7.70 7.75

0
5

1
0

1
5

2
0

Density of alpha

N = 1000 Bandw idth = 0.004879

1000 1200 1400 1600 1800 2000

0
.0

2
8

0
.0

3
4

Iterations

Trace of beta

0.026 0.030 0.034 0.038

0
5
0

1
5
0

2
5
0

Density of beta

N = 1000 Bandw idth = 0.0003902

1000 1200 1400 1600 1800 2000

0
.0

3
0
.0

5
0
.0

7
0
.0

9

Iterations

Trace of sigma

0.02 0.04 0.06 0.08 0.10

0
1
0

3
0

5
0

Density of sigma

N = 1000 Bandw idth = 0.001753

 15

since we have few initial views as to their values – these are known as non-
informative priors.

TSmodelCode <- "

model

 {

 # Prior distributions

 alpha ~ dnorm(0.0, 0.001)

 beta ~ dnorm(0.0, 0.000001)

 s2err ~ dgamma(1, 50)

 rho ~ dbeta(10, 10)

 # linear trend

 for(i in 1:N) {

 mu[i] <- alpha + beta*x[i]

 }

 # AR(1)

 for(i in 1:N) {

 for (j in 1:N) {

 tdmat[i,j] <- s2err*rho^abs(i-j)

 }

 }

 Omega <- inverse(tdmat)

 Y ~ dmnorm(mu, Omega)

}

"

TSmodelData <- list(N=N, Y=AT, x=Year)

TSmodelMCMC <- jags.model(textConnection(TSmodelCode), TSmodelData)

update(TSmodelMCMC, n.iter=1000)

TSmodelOutp <- coda.samples(TSmodelMCMC, n.iter=1000,

variable.names=c("alpha","beta","rho"))

summary(TSmodelOutp)

Iterations = 2001:3000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,

 plus standard error of the mean:

 Mean SD Naive SE Time-series SE

alpha 7.66386 0.034738 1.099e-03 0.0028414

beta 0.03384 0.002524 7.981e-05 0.0002024

rho 0.67646 0.088610 2.802e-03 0.0042998

2. Quantiles for each variable:

 2.5% 25% 50% 75% 97.5%

alpha 7.59609 7.64060 7.66482 7.68551 7.73393

beta 0.02897 0.03227 0.03377 0.03547 0.03859

rho 0.47815 0.62342 0.68226 0.73684 0.82952

plot(TSmodelOutp)

The terms in the linear trend are little different from the OLS counterparts,
although the 95% quantiles are a little wider. By ignoring the autocorrelation,
we underestimated the variability in the intercept and slope terms. The plot

below shows the variation in the coefficient distributions.

 16

Some of the ESPON time series appeared to have non-linearity in their trend, so
we added a quadratic term into the model to account for this – the coefficient

will be near zero if there is insufficient evidence of non-linearity.

Dealing missing values is more complex still. The model is:

model

{

 # Prior distributions

 b0 ~ dnorm(0.0, 0.000001) # intercept

 b1 ~ dnorm(0.0, 0.000001) # linear coefficient on time

 b2 ~ dnorm(0.0, 0.000001) # quadratic time term

 s2err ~ dgamma(1, 50) # residual variance

 rho ~ dbeta(10,10) # AR(1) parameter

 # Trend component

 for(i in 1:N) {

 mu[i] <- b0 + b1*year[i] +b2*yearsq[i]

 }

 # Autocorrelation component

 for(i in 1:N) {

 for (j in 1:N) {

 tdmat[i,j] <- s2err*rho^abs(i-j)

 }}

 for (i in 1:length(seen)) {

 for (j in 1:length(seen)) {

 tdmat22[i,j] <- tdmat[seen[i],seen[j]]

 }}

 itdmat22 <- inverse(tdmat22)

 for (i in 1:length(missing)) {

 for (j in 1:length(missing)) {

 tdmat11[i,j] <- tdmat[missing[i],missing[j]]

2000 2200 2400 2600 2800 3000

7
.5

0
7
.6

0
7
.7

0

Iterations

Trace of alpha

7.50 7.55 7.60 7.65 7.70 7.75 7.80

0
2

4
6

8
1
2

Density of alpha

N = 1000 Bandw idth = 0.008923

2000 2200 2400 2600 2800 3000

0
.0

2
5

0
.0

3
5

0
.0

4
5

Iterations

Trace of beta

0.020 0.025 0.030 0.035 0.040 0.045

0
5
0

1
0
0

1
5
0

Density of beta

N = 1000 Bandw idth = 0.0006359

2000 2200 2400 2600 2800 3000

0
.4

0
.6

0
.8

Iterations

Trace of rho

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
1

2
3

4

Density of rho

N = 1000 Bandw idth = 0.02254

 17

 }}

 itdmat11 <- inverse(tdmat11)

 for (i in 1:length(missing)) {

 for (j in 1:length(seen)) {

 tdmat12[i,j] <- tdmat[missing[i],seen[j]]

 }}

 for (i in 1:length(seen)) {

 for (j in 1:length(missing)) {

 tdmat21[i,j] <- tdmat[seen[i],missing[j]]

 }}

 for (i in 1:length(seen)) {

 mu2[i] <- mu[seen[i]]

 }

 for (i in 1:length(missing)) {

 mu1[i] <- mu[missing[i]]

 }

 OmegaM <- inverse(tdmat11 - tdmat12 %*% itdmat22 %*% tdmat21)

 muM <- mu1 + tdmat12 %*% itdmat22 %*% (ys - mu2)

 ys ~ dmnorm(mu2,itdmat22) # non-missing data

 ym ~ dmnorm(muM, OmegaM) # missing data

}

The seen and missing variables contain the indices in the time series where the

population estimates are present and missing respectively. The linkage between
the missing and present values is rather more complex. These results are

standard for time series, and can be found in any time series text (e.g.:
Chatfield, 1984)

The series is modelled sampling from a multivariate normal distribution, with a

vector of means  resulting from the trend component, and a precision matrix
(the inverse of the matrix of covariances between the terms in the series). If

there was no requirement to interpolate missing values, the precision matrix
would be:

  12 
 

where 2 is the variance of the error,  is the autocorrelation parameter and  is

a matrix of lags. If the time series had 5 terms,  would contain:

 [,1] [,2] [,3] [,4] [,5]

[1,] 0 1 2 3 4

[2,] 1 0 1 2 3

[3,] 2 1 0 1 2

[4,] 3 2 1 0 1

[5,] 4 3 2 1 0

The multivariate normal has density:

2

)()(

2




















  xTx

e

 18

where  is the precision and  is the mean. The challenge arises when we have
missing data.

The series is divided into the present and missing sub-series. The means for

each part are drawn from the trend estimate.

The following covariance submatrices are required:

2221

1211

present

missing

presentmissing





The precision matrix p for the present data is:

  1

22

2 
 

This missing and present terms are linked through the precision matrix used to

estimate the posterior distributions of the missing terms, m thus:

1

21

1

221211)( m

As well as there being more individual steps in this model, the estimation

requires two matrix inversions. In estimations for the ESPON data, the 250000
simulations were used for the burn-in process, and 100000 for the actual

sampling. Even so, on a relatively sluggish machine, about 105 seconds were
used when estimation a model on data with 22 time periods and 54% of the data
missing.

Spatial coherence

The second component requires a set of constraints to
ensure that predictions for NUTS3 units sum to the

appropriate value for their containing NUTS2 units,
and that predictions for NUTS2 units sum to the

appropriate value for the containing NUTS1 units as so
on. We refer to this as hierarchical spatial coherence.
If we have a NUTS2 region with population P, and we

know the populations of three of its, say 5, units, a, b
and c, but not d and e, then we can include

P=a+b+c+d+e as a constraint in the Bayesian
forecasting framework. This is accomplished via a
prior probability distribution: a+b+c+d+e will take the

P with a probability of 1, and zero otherwise. In this
fashion we can ensure spatial coherence in the

forecasts.

In practice the application of the this constraint occurs after the individual series

have been estimated - we apply an adjustment to the individual NUTS3 region

 19

estimates to the estimates so that their total is that of the containing NUTS2
region. This adjustment applies from the NUTS1 regions downwards to ensure

the spatial coherence of the estimates. It has to be remembered that we are not
appling a pro-rata to a series of individual estimates, we are adding the posterior

distributions together. The highest posterior density of the summed series is the
value of the constraining total.

The same idea applies for those data that are considered to be embarrassingly
estimatable. Suppose the know the populations of a NUTS2 region, and 3 of the

4 NUTS3 regions which are contained within it. Then PNUTS3,4 = PNUTS2 -
(PNUTS3,1+PNUTS3,2+PNUTS3,3). The known data can be considered to be sampled
from a distribution with a mean corresponding to the known value and infinite

precision (i.e. the variance is zero). The known value is then the highest
posterior density value, and it has a probability of 1 (with a variance of zero,

there can be no other probability!).

Similarly the situation where a NUTS2 value is missing, but the underling NUTS3

values are present, then the same approach yields the estimate PNUTS2 =
PNUTS3,1+PNUTS3,2+PNUTS3,3+ PNUTS3,4. Again, the known NUTS3 values are

assumed to be sampled from a distribution with a mean of PNUTS3,x and an infinite
precision - which means that the known values have a posterior probability of 1.

The resulting posterior distribution for the PNUTS2 total also has a probability of 1.

We require one further component in operationalisation of the method: a means

of identifying the various scenarios and considering the hierarchical coherence.
The files of data from Eurostat and the National Statistical agencies usually have

the NUTS codes in a single column, and a flat file structure: the rows represent
spatial units and the columns variables of interest. This effective;y flattens the
hierarchical stricture of the NUTS units, and, if the calculations are restricted to

the spreadsheet, renders the task of ensuring hierarchical coherence enormously
difficult. An alternative to use the conceptual representation of the BUTS units as

belong to some sort of tree structure – like a family tree – in which the higher
level units are represented as the parents of lower level units.

Tree structures are extensively used in computer science to represent data. A
tree many defined as having a root and one or more subtrees each of which is a

tree. For each country, the root is the NUTS0 region, and the NUTS1 regions are
the first subtrees. Each NUTS1 subtree has corresponding NUTS2 subtrees, and
each NUTS2 region has corresponding NUTS3 subtrees.

The example shows the NUTS hierarchy for the Netherlands. We can see the

hierarchy clearly and explicitly. It also forms the basis for the software
implementation of the MCMC approach.

Other issues

One issue which will have to be faced is that of ensuring temporal coherence for
the changes that have taken place in the system of NUTS units over the years.
Boundaries of zones may be shifted, zones may be merged, and zones may be

split. Correspondance tables are available at EUROSTAT.

 20

The diagram above shows the changes in the NUTS regions for the Netherlands.
Again, the split/merge/shift operations may be incorporated into the forecasting
process though additional constraints in the Bayesian framework.

 21

p
1

9
9

0

p
1

9
9

1

p
1

9
9

2

p
1

9
9

3

p
1

9
9

4

p
1

9
9

5

p
1

9
9

6

p
1

9
9

7

p
1

9
9

8

p
1

9
9

9

p
2

0
0

0

p
2

0
0

1

p
2

0
0

2

p
2

0
0

3

p
2

0
0

4

p
2

0
0

5

p
2

0
0

6

p
2

0
0

7

p
2

0
0

8

p
2

0
0

9

p
2

0
1

0

p
2

0
1

1

Year

AT342
AT341
AT335
AT334
AT333
AT332
AT331
AT323
AT322
AT321
AT315
AT314
AT313
AT312
AT311
AT226
AT225
AT224
AT223
AT222
AT221
AT213
AT212
AT211
AT130
AT127
AT126
AT125
AT124
AT123
AT122
AT121
AT113
AT112
AT111
AT34
AT33
AT32
AT31
AT22
AT21
AT13
AT12
AT11
AT3
AT2
AT1
AT

N
U

T
S

 R
e

g
io

n

Austria Unadjusted Populations

4. Implementation

How are we to implement this? We will require bespoke code, and we will
require a means of both handling the Excel spreadsheets, the NUTS hierarchy,
and the computations required for the estimating of the missing data.

Software for MCMC approaches has been, until recently, the province of the

specialist. This altered with the release of BUGS (Bayesian inference Using Gibbs
Sampling) (Lunn et al., 2009, 2012). BUGS has now been extended with a

Windows interface (WinBUGS) and to handle spatial data (GeoBUGS). However,
data preparation, and post-modelling evaluation requires other software. The
release of JAGS (Just Another Gibbs Sampler) (Plummer, 2003) provides a

further milestone. This offers a very similar facility to BUGS, but it is open
source and may also be used in conjunction with the statistical programming

language R via the rjags package in R. This offers R users the capability of fitting
models using MCMC, but also exploits the power and flexibility of R, in order to
prepare the data, and to provide extensive evaluation of the results. Using JAGS

it is possible to obtain posterior distribution for the parameters outlined in the
previous sections, and for the missing data. It is also worth noting that this

approach also allows the constraint that the sum of all of the NUTS3 regions
within a NUTS2 region must equal the statistic associate with that NUTS2 region.

The R package has also been used to implement the data checking procedures,
and the RIATE team have also made use of R.

Estimation Stage 1: MCMC

estimation

A simple example is provided by the

NUTS regions of Austria. Population
estimates are missing for all NUTS3
regions, from 1990 to 2001 inclusive.

The first stage is to visualise the pattern
of missing data.

The figure on the left shows a heatmap
of the population totals. The colder

colours in the spectrum represent lower
populations and the warmer colours

represent larger populations. In general
the population for AT and its NUTS1
regions have grown over the 22 year

time period from 1990 to 2011.
However, the trajectory of some individual zones has been different: that for

AT21 had considerable growth to the mid 1990s, and then a gradual decline over
the rest of the time period. The pattern of missing data is quite clear.

 22

p
1

9
9

0

p
1

9
9

1

p
1

9
9

2

p
1

9
9

3

p
1

9
9

4

p
1

9
9

5

p
1

9
9

6

p
1

9
9

7

p
1

9
9

8

p
1

9
9

9

p
2

0
0

0

p
2

0
0

1

p
2

0
0

2

p
2

0
0

3

p
2

0
0

4

p
2

0
0

5

p
2

0
0

6

p
2

0
0

7

p
2

0
0

8

p
2

0
0

9

p
2

0
1

0

p
2

0
1

1

Year

AT342
AT341
AT335
AT334
AT333
AT332
AT331
AT323
AT322
AT321
AT315
AT314
AT313
AT312
AT311
AT226
AT225
AT224
AT223
AT222
AT221
AT213
AT212
AT211
AT130
AT127
AT126
AT125
AT124
AT123
AT122
AT121
AT113
AT112
AT111
AT34
AT33
AT32
AT31
AT22
AT21
AT13
AT12
AT11
AT3
AT2
AT1
AT

N
U

T
S

 R
e

g
io

n

Austria Unadjusted Populations

p
1

9
9

0

p
1

9
9

1

p
1

9
9

2

p
1

9
9

3

p
1

9
9

4

p
1

9
9

5

p
1

9
9

6

p
1

9
9

7

p
1

9
9

8

p
1

9
9

9

p
2

0
0

0

p
2

0
0

1

p
2

0
0

2

p
2

0
0

3

p
2

0
0

4

p
2

0
0

5

p
2

0
0

6

p
2

0
0

7

p
2

0
0

8

p
2

0
0

9

p
2

0
1

0

p
2

0
1

1

Year

AT342
AT341
AT335
AT334
AT333
AT332
AT331
AT323
AT322
AT321
AT315
AT314
AT313
AT312
AT311
AT226
AT225
AT224
AT223
AT222
AT221
AT213
AT212
AT211
AT130
AT127
AT126
AT125
AT124
AT123
AT122
AT121
AT113
AT112
AT111
AT34
AT33
AT32
AT31
AT22
AT21
AT13
AT12
AT11
AT3
AT2
AT1
AT

N
U

T
S

 R
e

g
io

n

Austria Spatially Coherent Populations

The initial imputation stage took just
over an hour on a system with a quad

core 3.16GHz Intel Xeon processor
running Windows XP Professional. This

scales to about 30 hours for the entire
dataset. A more recent Intel Core i7-
2640M processor running at 2.80GHz,

with Windows 7 Professional, takes
around 30 minutes for this task, which

scales to around 18 hours for the whole
of Europe. On an Intel Core 2 Duo
P8600 processor running at 2.4GHz,

with Windows 7 Enterprise, the task
took 1 hour 5 minutes. This is with

250000 iterations for the burn-in and
100000 iterations to generate the
posterior probability distributions.

Data for 35 NUTS3 regions was missing – the time frame of 12 years represents

approximately 55% of the NUTS3 data. This means that at best, we have 45%
of the NUTS3 data as evidence on which to base the retropolations, although we

also have 100% of the NUTS2 data to act as a constraint.

The values in the heatmap in Figure xx represent the variation in the unadjusted

NUTS3 estimations.

Estimation Stage 2: adjustment for spatial coherence

We now apply the adjustment for the spatial coherence. This works in a bottom-

up/top-down down fashion.

We start with the possibly incomplete
NUTS2 and NUTS1 time series, and with
the MCMC completed NUTS3 series.

Any part of a time series at NUTS2
which is NA is completed using the sum

of the MCMC populations for the
corresponding NUTS regions and time
periods. Equivalent completions are

made for the missing parts of NUTS1
series, using the summed NUTS

 23

From this it can be seen that missing data in the NUTS0, NUTS1 and NUTS2
regions can be a challenge. We can determine appropriate strategies by

examining some cases from the data.

Consider the case of Croatia. A portion of the times series for all of the NUTS
regions in Croatia is shown below:

> Data.estim[Country == "HR",4:16]

 p1990 p1991 p1992 p1993 p1994 p1995 p1996 p1997 p1998 p1999 p2000 p2001 p2002

HR 4778007 4784265 4470266 4641275 4649034 4668752 4493581 4572474 4501149 4553769 4381352 4437460 4444608

HR0 4778007 4784265 4470266 4641275 4649034 4668752 4493581 4572474 4501149 4553769 4381352 4437460 4444608

HR01 NA 1646710 NA NA NA NA NA NA NA NA NA NA 1661396

HR02 NA 1557342 NA NA NA NA NA NA NA NA NA NA 1349105

HR03 NA 1580213 NA NA NA NA NA NA NA NA NA NA 1434107

HR011 NA 777826 NA NA NA NA NA NA NA NA NA 779145 780332

HR012 NA 282989 NA NA NA NA NA NA NA NA NA 309696 312046

HR013 NA 148779 NA NA NA NA NA NA NA NA NA 142432 141886

HR014 NA 187853 NA NA NA NA NA NA NA NA NA 184769 184420

HR015 NA 129397 NA NA NA NA NA NA NA NA NA 124467 124161

HR016 NA 119866 NA NA NA NA NA NA NA NA NA 118426 118551

HR021 NA 144042 NA NA NA NA NA NA NA NA NA 133084 132499

HR022 NA 104625 NA NA NA NA NA NA NA NA NA 93389 93029

HR023 NA 99334 NA NA NA NA NA NA NA NA NA 85831 85819

HR024 NA 174998 NA NA NA NA NA NA NA NA NA 176765 177143

HR025 NA 367193 NA NA NA NA NA NA NA NA NA 330506 330293

HR026 NA 231241 NA NA NA NA NA NA NA NA NA 204768 204455

HR027 NA 184577 NA NA NA NA NA NA NA NA NA 141787 141069

HR028 NA 251332 NA NA NA NA NA NA NA NA NA 185387 184798

HR031 NA 323130 NA NA NA NA NA NA NA NA NA 305505 305652

HR032 NA 85135 NA NA NA NA NA NA NA NA NA 53677 53466

HR033 NA 214777 NA NA NA NA NA NA NA NA NA 162045 163642

HR034 NA 152477 NA NA NA NA NA NA NA NA NA 112891 113406

HR035 NA 474019 NA NA NA NA NA NA NA NA NA 463676 467300

HR036 NA 204346 NA NA NA NA NA NA NA NA NA 206344 207112

HR037 NA 126329 NA NA NA NA NA NA NA NA NA 122870 123529

In 2001 all the NUTS3 data are present at NUTS1 and NUTS3, but not for

NUTS2. As none of the NUTS3 values are estimates, then they can be summed
over the NUTS2 codes to obtain the desired totals:

> tapply(HR[6:26,"p2001"],substr(rownames(HR)[6:26],1,4),sum)

 HR01 HR02 HR03

1658935 1351517 1427008

The missing data for NUTS2 and NUTS3 from 1992 to 2000 require two levels of
constraint:

1. Use MCMC to estimate values for 1992 to 2000 for all the missing data points
2. Constrain the NUTS2 MCMC estimates to the NUTS1 value
3. Constrain the NUTS3 MCMC estimates to the newly constrained NUTS2 values

This is easily programmed accommodated in the constraining function, as we

traverse the tree from the root downwards. By the time we deal with the NUTS3
estimates, the NUTS2 will have been constrained.

In the case of Portugal, there are some other special cases:

> Data.estim[substr(rownames(Data.estim),1,2)=="PT",]

 UnitCode Level Name p1990 p1991 p1992 p1993 p1994 p1995 p1996

PT PT NUTS0 Portugal 9970441 9912140 NA NA NA NA 10043180

PT1 PT1 NUTS1 Continente NA NA NA NA NA NA 9556916

PT2 PT2 NUTS1 Região Autónoma dos Açores (PT) NA NA 239336 239271 239207 238807 238272

PT3 PT3 NUTS1 Região Autónoma da Madeira (PT) NA NA 253999 253059 252120 250165 247992

PT11 PT11 NUTS2 Norte NA NA 3511771 3516484 3527789 3541805 3555975

PT15 PT15 NUTS2 Algarve NA NA 341075 343336 345970 349658 353309

PT16 PT16 NUTS2 Centro (PT) NA NA 2272111 2270518 2271336 2276261 2281286

PT17 PT17 NUTS2 Lisboa NA NA 2574265 2581419 2585705 2593283 2599990

PT18 PT18 NUTS2 Alentejo NA NA 772760 770509 768468 767593 766356

PT20 PT20 NUTS2 Região Autónoma dos Açores (PT) NA NA 239336 239271 239207 238807 238272

PT30 PT30 NUTS2 Região Autónoma da Madeira (PT) NA NA 253999 253059 252120 250165 247992

PT111 PT111 NUTS3 Minho-Lima NA NA 252188 251518 250382 249541 248771

PT112 PT112 NUTS3 Cávado NA NA 358355 360519 363498 366785 369787

 24

The NUTS0 and NUTS1 values are missing for 1992 to 1995 for PT1. However,
there is complete coverage of PT1 at NUTS2, so the value for PT1 can be

obtained by direct summation over the corresponding NUTS2 values. The NUTS0
values can then be completed for those years as well.

It would be beneficial to be able to do this prior to MCMC since it is a
deterministic operation and provide extra evidence for the MCMC estimation of

the PT1 series for 1990 and 1991. Apart from the NUTS0 total, all other data for
1990 and 1991 is missing.

The strategy for 1990 and 1991 follows the top-down strategy outlined above,
and provides a general case:

1. Constrain the NUTS1 MCMC estimates to the NUTS0 total
2. Constrain the NUTS2 MCMC estimates to the constrained NUTS1 values
3. Constrain the NUTS3 MCMC estimates to the constrained NUTS2 values

Again, this can be easily accomplished using the tree traversal algorithm.

Turkey is rather more of a challenge.

 UnitCode Level Name p1990 p1991 p1992 p1993 p1994 p1995 p1996 p1997

TR TR NUTS0 Turkey 56473035 NA NA NA NA NA NA NA

 p1998 p1999 p2000 p2001 p2002 p2003 p2004 p2005 p2006 p2007 p2008

TR NA NA 67803927 NA NA NA NA NA NA NA 70586256

 p2009 p2010 p2011

TR 71517100 72561312 73722988

Data are present only for 1990, 2000, 2008-2011 for all NUTS regions, including
NUTS0. The strategy here will be to estimate all the missing data using the

MCMC technique. Then, we apply the hierarchical constraint working down the
tree from NUTS0 to NUTS1, NUTS1 to NUTS2 and finally NUTS2 to NUTS3.

NUTS0, NUTS1 and NUTS2 regions with missing data are listed below:
Missing data for PT Portugal

Missing data for TR Turkey

Missing data for UK United Kingdom

**************** NUTS1 Missing **

Missing data for FR9 Départements d'outre-mer (FR)

Missing data for NL3 West-Nederland

Missing data for PL1 Region Centralny

Missing data for PL2 Region Poludniowy

Missing data for PL3 Region Wschodni

Missing data for PL4 Region Pólnocno-Zachodni

Missing data for PL5 Region Poludniowo-Zachodni

Missing data for PL6 Region Pólnocny

Missing data for PT1 Continente

Missing data for PT2 Região Autónoma dos Açores (PT)

Missing data for PT3 Região Autónoma da Madeira (PT)

Missing data for TR1 Istanbul

Missing data for TR2 Bati Marmara

Missing data for TR3 Ege

Missing data for TR4 Dogu Marmara

 25

Missing data for TR5 Bati Anadolu

Missing data for TR6 Akdeniz

Missing data for TR7 Orta Anadolu

Missing data for TR8 Bati Karadeniz

Missing data for TR9 Dogu Karadeniz

Missing data for TRA Kuzeydogu Anadolu

Missing data for TRB Ortadogu Anadolu

Missing data for TRC Güneydogu Anadolu

Missing data for UKC North East (UK)

Missing data for UKD North West (UK)

Missing data for UKE Yorkshire and The Humber

Missing data for UKF East Midlands (UK)

Missing data for UKG West Midlands (UK)

Missing data for UKH East of England

Missing data for UKI London

Missing data for UKJ South East (UK)

Missing data for UKK South West (UK)

Missing data for UKL Wales

Missing data for UKM Scotland

Missing data for UKN Northern Ireland (UK)

**************** NUTS2 Missing **

Missing data for CZ01 Praha

Missing data for CZ02 Strední Cechy

Missing data for CZ03 Jihozápad

Missing data for CZ04 Severozápad

Missing data for CZ05 Severovýchod

Missing data for CZ06 Jihovýchod

Missing data for CZ07 Strední Morava

Missing data for CZ08 Moravskoslezsko

Missing data for DE41 Brandenburg - Nordost

Missing data for DE42 Brandenburg - Südwest

Missing data for DED1 Chemnitz

Missing data for DED2 Dresden

Missing data for DED3 Leipzig

Missing data for DK01 Hovedstaden

Missing data for DK02 Sjælland

Missing data for DK03 Syddanmark

Missing data for DK04 Midtjylland

Missing data for DK05 Nordjylland

Missing data for HR01 Sjeverozapadna Hrvatska

Missing data for HR02 Sredisnja i Istocna (Panonska) Hrvatska

Missing data for HR03 Jadranska Hrvatska

Missing data for IE01 Border, Midland and Western

Missing data for IE02 Southern and Eastern

Missing data for PL11 Lódzkie

Missing data for PL12 Mazowieckie

Missing data for PL21 Malopolskie

Missing data for PL22 Slaskie

Missing data for PL31 Lubelskie

Missing data for PL32 Podkarpackie

Missing data for PL33 Swietokrzyskie

Missing data for PL34 Podlaskie

Missing data for PL41 Wielkopolskie

Missing data for PL42 Zachodniopomorskie

Missing data for PL43 Lubuskie

Missing data for PL51 Dolnoslaskie

Missing data for PL52 Opolskie

Missing data for PL61 Kujawsko-Pomorskie

Missing data for PL62 Warminsko-Mazurskie

Missing data for PL63 Pomorskie

Missing data for PT11 Norte

 26

Missing data for PT15 Algarve

Missing data for PT16 Centro (PT)

Missing data for PT17 Lisboa

Missing data for PT18 Alentejo

Missing data for PT20 Região Autónoma dos Açores (PT)

Missing data for PT30 Região Autónoma da Madeira (PT)

Missing data for SK01 Bratislavský kraj

Missing data for SK02 Západné Slovensko

Missing data for SK03 Stredné Slovensko

Missing data for SK04 Východné Slovensko

Missing data for TR10 Istanbul

Missing data for TR21 Tekirdag

Missing data for TR22 Balikesir

Missing data for TR31 Izmir

Missing data for TR32 Aydin

Missing data for TR33 Manisa

Missing data for TR41 Bursa

Missing data for TR42 Kocaeli

Missing data for TR51 Ankara

Missing data for TR52 Konya

Missing data for TR61 Antalya

Missing data for TR62 Adana

Missing data for TR63 Hatay

Missing data for TR71 Kirikkale

Missing data for TR72 Kayseri

Missing data for TR81 Zonguldak

Missing data for TR82 Kastamonu

Missing data for TR83 Samsun

Missing data for TR90 Trabzon

Missing data for TRA1 Erzurum

Missing data for TRA2 Agri

Missing data for TRB1 Malatya

Missing data for TRB2 Van

Missing data for TRC1 Gaziantep

Missing data for TRC2 Sanliurfa

Missing data for TRC3 Mardin

Missing data for UKC1 Tees Valley and Durham

Missing data for UKC2 Northumberland and Tyne and Wear

Missing data for UKD1 Cumbria

Missing data for UKD2 Cheshire

Missing data for UKD3 Greater Manchester

Missing data for UKD4 Lancashire

Missing data for UKD5 Merseyside

Missing data for UKE1 East Yorkshire and Northern Lincolnshire

Missing data for UKE2 North Yorkshire

Missing data for UKE3 South Yorkshire

Missing data for UKE4 West Yorkshire

Missing data for UKF1 Derbyshire and Nottinghamshire

Missing data for UKF2 Leicestershire, Rutland and Northamptonshire

Missing data for UKF3 Lincolnshire

Missing data for UKG1 Herefordshire, Worcestershire and Warwickshire

Missing data for UKG2 Shropshire and Staffordshire

Missing data for UKG3 West Midlands

Missing data for UKH1 East Anglia

Missing data for UKH2 Bedfordshire and Hertfordshire

Missing data for UKH3 Essex

Missing data for UKI1 Inner London

Missing data for UKI2 Outer London

Missing data for UKJ1 Berkshire, Buckinghamshire and Oxfordshire

Missing data for UKJ2 Surrey, East and West Sussex

Missing data for UKJ3 Hampshire and Isle of Wight

Missing data for UKJ4 Kent

Missing data for UKK1 Gloucestershire, Wiltshire and Bristol/Bath area

Missing data for UKK2 Dorset and Somerset

Missing data for UKK3 Cornwall and Isles of Scilly

 27

Missing data for UKK4 Devon

Missing data for UKL1 West Wales and The Valleys

Missing data for UKL2 East Wales

Missing data for UKM2 Eastern Scotland

Missing data for UKM3 South Western Scotland

Missing data for UKM5 North Eastern Scotland

Missing data for UKM6 Highlands and Islands

Missing data for UKN0 Northern Ireland (UK)

The NUTS regions structures and missing data

The spreadsheet provides a poor model for the NUTS hierarchy. The rows can

be sorted on the NUTS codes sot that the first part of the spreadsheet
represents country information, the NUTS1 regions are next, followed by NUTS2

and NUTS3. However, we can't easily identify quickly a NUTS2 region, and then
its constituent NUTS3 regions – it may be possible to do this with lookup in an
auxiliary table, but this does not provide any flexibility. From the point of

estimating missing data, the requirement for spatial coherence requires us to be
able to identify these relationships in the data quickly and consistently. We refer

to the NUTS hierarchy, but have no mechanism for representing and using that
hierarchy.

The solution is to create a data structure and associated travel algorithms so
that we can work on the regions in a consistent fashion. An appropriate data

structure is the tree. Trees are used widely in computer science for organising
and searching for information. In the computing section of many academic
bookshops there will be volumes with titles like Data Structures and Algorithms.

A classic collection is the volumes in the series The Art of Computer
Programming by Professor Donald Knuth. Knuth defines a tree thus:

"… a finite set T of one or more nodes such that

a) There is one specially designated node called the root of the tree, root(T); and
b) The remaining nodes (excluding the root) are partitioned into m >= 0 disjoint sets T1,

… Tm and each of these sets in turn is a tree. The trees T1, … Tm are called the
subtrees of the root."10

This definition is recursive – the tree is defined in terms of trees. Put another

way: a tree consists of a root and one or more nodes, each of which is a tree. A
root which has no nodes is called a leaf node. There is an analogy with a family

tree – a structure much used in genealogy: the non-root nodes are the children
and the root represents the parents. As each node is itself a tree, we can also
refer to the nodes as subtrees, because each is a tree.

The NUTS hierarchy can be represented as a tree quite naturally in terms of this

definition. A node could consist of the NUTS code, and NUTS level and perhaps
the population. The root would be the EU, and its 34 nodes contain the 34
NUTS0 codes, the value 0 for the level, and the national population. Each of

these 34 nodes is itself a tree. Each NUTS0 nodes has one or more NUTS1
nodes, and in turn each NUTS1 node has one or more NUTS2 nodes and so on.

10 Knuth DE, 1973, Fundamental Algorithms, The Art of Computer Programming, Volume

1, Reading MA: Addison-Wesley, p305

 28

It may be unwieldy to deal with the whole of the EU, so we might confine our

attentions to a single country – the root contains the NUTS0 code. Here is the
structure for Belgium:

NUTS0 node is BE

 NUTS1 children of BE are BE1 BE2 BE3

 NUTS2 children of BE1 are BE10

 NUTS3 children of BE10 are BE100

 NUTS2 children of BE2 are BE21 BE22 BE23 BE24 BE25

 NUTS3 children of BE21 are BE211 BE212 BE213

 NUTS3 children of BE22 are BE221 BE222 BE223

 NUTS3 children of BE23 are BE231 BE232 BE233 BE234 BE235 BE236

 NUTS3 children of BE24 are BE241 BE242

 NUTS3 children of BE25 are BE251 BE252 BE253 BE254 BE255 BE256 BE257 BE258

 NUTS2 children of BE3 are BE31 BE32 BE33 BE34 BE35

 NUTS3 children of BE31 are BE310

 NUTS3 children of BE32 are BE321 BE322 BE323 BE324 BE325 BE326 BE327

 NUTS3 children of BE33 are BE331 BE332 BE334 BE335 BE336

 NUTS3 children of BE34 are BE341 BE342 BE343 BE344 BE345

 NUTS3 children of BE35 are BE351 BE352 BE353

Notice the order in which we have printed the list of regions. BE1, BE2 and BE3
are the child nodes of the root BE. BE1 has only one child BE10. BE2 has 5

children. The operation of visiting every node in a tree is referred to as traversal.
The operation of visiting may consist of no more than printing the node NUTS
code, but it might also consist of carrying out a spatial consistency check on the

population total for the NUTS node and the sum of the population totals for its
child nodes, or counting the number of child nodes with missing data. However,

the operation might also include estimating any missing elements in a population
or economic time series using MCMC techniques.

The order in which we have visited the nodes in the NUTS tree for Belgium is
known as pre-order traversal. In a pre-order traversal we visit the root before

visiting any of its subtrees.

The traversal is consistent for even for the case in which there is only one

NUTS3 region:

NUTS0 node is LI

 NUTS1 children of LI are LI0

 NUTS2 children of LI0 are LI00

 NUTS3 children of LI00 are LI000

… or two NUTS3 regions:

NUTS0 node is MT

 NUTS1 children of MT are MT0

 NUTS2 children of MT0 are MT00

 NUTS3 children of MT00 are MT001 MT002

The R code for this traversal algorithm is quite short:

CheckTree <- function(Country,Data) {

 CountryData <- Data[substr(rownames(Data),1,2) == Country,]

 nodes <- rownames(CountryData)

 parent <- substr(rownames(CountryData),1,nchar(rownames(CountryData))-1)

 29

 parent[1] <- ""

 ROOT <- which(nodes == Country)

 cat("\nTree Walk\n")

 root <- nodes[ROOT]

 cat("NUTS0 node is ",root,"\n")

 children1 <- nodes[parent == root]

 cat(" NUTS1 children of", root, "are", children1,"\n")

 Nc1 <- length(children1)

 for (i in 1:Nc1) {

 node2 <- children1[i]

 children2 <- nodes[parent == node2]

 cat(" NUTS2 children of", node2, "are", children2,"\n")

 Nc2 <- length(children2)

 for (j in 1:Nc2) {

 node3 <- children2[j]

 children3 <- nodes[parent == node3]

 cat(" NUTS3 children of", node3, "are", children3,"\n")

 }

 }

}

The argument County contains the two character country code for the country of

interest. The argument Data is the data matrix for Europe, where the rows have

been indexed by their NUTS code. In our example, the first column of Data
contains the NUTS code, code the indexing takes the form of:

Rownames(Data) <- Data[,1]

The tree for any desired country can be printed by calling the function with the
appropriate country code. For the examples above we used:

CheckTree("BE",Data)

CheckTree("LI",Data)

CheckTree("MT",Data)

Missing data patterns in the ESPON time series

There are 8 possible patterns of missing data for each node. We can use the
tree walk algorithm presented earlier to traverse the tree, and examine the

patterns. As we visit each node, then we can tabulate the different patterns
over the 22 years of the time series in the example.

The cases that arise for any selected time period are:

Case Parent node Child nodes Note

1 Data present All data present No estimation required

2 Data missing All data present Parent can be computed

3 Data present 1 child node missing data Child node embarrassingly estimatable

4 Data present Some child nodes missing data Estimation/constraint required

5 Data present All child nodes missing data Estimation/constraint required

6 Data missing 1 child node missing data Higher order estimation required

7 Data missing Some child nodes missing data Higher order estimation required

8 Data missing All child nodes missing data Higher order estimation required

As we move down the table, the problem for the estimation strategy becomes
more complex. Case 1 requires no action – all the data are present. Case 2 and

 30

case 3 are examples of emabrassingly estimatable situations, the child or parent
node data can be computed directly from the available data. Cases 4 and 5

require estimation of the child series using MCMC, and then application of the
cross-sectional constraint. Cases 6, 7 and 8 are more challenging, and require

estimation of the higher order data in order to provide the cross-sectional
constraints.

The patterns can either be visualised using a heatmap – these are shown in
Appendix 7. We can also use the tree traversal algorithm and a pattern analyser

to check the patterns at each node. A sutiable tree traversal function is shown
below. As each node is visited, the pattern of cases over the time periods is
computed, and the stored in a data frame.

CheckMissingPattern <- function(Country,Data,dataCols,verbose=FALSE) {

 CountryData <- Data[substr(rownames(Data),1,2) == Country,]

 IDInfo <- CountryData[,1:3]

 Nc <- dim(IDInfo)[1]

 Results <- data.frame(IDInfo[,1:3],matrix(0,Nc,8))

 rownames(Results) <- rownames(CountryData)

 nodes <- rownames(CountryData)

 parent <- substr(rownames(CountryData),1,nchar(rownames(CountryData))-1)

 parent[1] <- ""

 Nd <- length(dataCols)

 ### visit.node

 ### for each child(visit.node)

 ROOT <- which(nodes == Country)

 if Iverbose) cat("\nTree Walk\n")

 root <- nodes[ROOT]

 if (verbose) cat("NUTS0 node is ",root,"\n")

 children1 <- nodes[parent == root]

 if (verbose) cat(" NUTS1 children of", root, "are", children1,"\n")

 Nc1 <- length(children1)

 CasePattern <- CheckNode(root,children1,Data,dataCols)

 Results[root,4:11] <- CasePattern

 for (i in 1:Nc1) {

 node2 <- children1[i]

 children2 <- nodes[parent == node2]

 if (verbose) cat(" NUTS2 children of", node2, "are", children2,"\n")

 Nc2 <- length(children2)

 CasePattern <- CheckNode(node2,children2,Data,dataCols)

 Results[node2,4:11] <- CasePattern

 for (j in 1:Nc2) {

 node3 <- children2[j]

 children3 <- nodes[parent == node3]

 if (verbose) cat(" NUTS3 children of",node3,"are", children3,"\n")

 Nc3 <- length(children3)

 CasePattern <- CheckNode(node3,children3,Data,dataCols)

 Results[node3,4:11] <- CasePattern

 }

 }

 NUTSlevels <- lapply(Results[,2], as.character)

 print(Results[NUTSlevels <= "NUTS2",])

}

This requires a function to carry out the analysis of the missing data patterns
associated with each node:

CheckNode <- function(parent,children,Data,dataCols){

 31

 Nc <- length(children) # How many children for this parent

 MissingParent <- Data[parent,] # Copy parent record

 Result <- Data[parent,] # Create result record

 Cases <- rep(0,8) # 8 possible outcomes

 for (i in dataCols) { # loop over time period for this parent

 MissingParent[i] <- is.na(Data[parent,i])

 Result[i] <- length(which(is.na(Data[children,i])))

 if (!MissingParent[i]) {

 if (Result[i] == 0) k <- 1

 else if (Result[i] == 1) k <- 3

 else if (Result[i] > 1 & Result[i] < Nc) k <- 4

 else k <- 5

 } else {

 if (Result[i] == 0) k <- 2

 else if (Result[i] == 1) k <- 6

 else if (Result[i] > 1 & Result[i] < Nc) k <- 7

 else k <- 8

 }

 Cases[k] <- Cases[k] + 1

 }

 Cases # Return count vector

}

Finally, we loop over the countries and report the patterns.

CountryList <- levels(as.factor(substr(rownames(Data.estim),1,2)))

Nc <- length(CountryList)

for (i in 1:Nc) {

 CheckMissingPattern(CountryList[i],Data.estim, 4:25)

}

The results for Austria are encouraging:

 UnitCode Level Name X1 X2 X3 X4 X5 X6 X7 X8

AT AT NUTS0 Austria 22 0 0 0 0 0 0 0

AT1 AT1 NUTS1 Ostösterreich 22 0 0 0 0 0 0 0

AT2 AT2 NUTS1 Südösterreich 22 0 0 0 0 0 0 0

AT3 AT3 NUTS1 Westösterreich 22 0 0 0 0 0 0 0

AT11 AT11 NUTS2 Burgenland (AT) 10 0 0 0 12 0 0 0

AT12 AT12 NUTS2 Niederösterreich 10 0 0 0 12 0 0 0

AT13 AT13 NUTS2 Wien 10 0 12 0 0 0 0 0

AT21 AT21 NUTS2 Kärnten 10 0 0 0 12 0 0 0

AT22 AT22 NUTS2 Steiermark 10 0 0 0 12 0 0 0

AT31 AT31 NUTS2 Oberösterreich 10 0 0 0 12 0 0 0

AT32 AT32 NUTS2 Salzburg 10 0 0 0 12 0 0 0

AT33 AT33 NUTS2 Tirol 10 0 0 0 12 0 0 0

AT34 AT34 NUTS2 Vorarlberg 10 0 0 0 12 0 0 0

At NUTS0, NUTS1 and NUTS2 all data are present. In the case of AT13, Wien, 1
of the NUTS3 units is missing data for 10 time periods, but these are

embarrassingly estimatable, so the MCMC estimation is not required. For the
other NUTS regions, data is missing for all NUTS3 regions connected to them, so

estimation using MCMC and cross-sectional constraint will be required.

For Slovakia, the situation is a little more compelx:

 UnitCode Level Name X1 X2 X3 X4 X5 X6 X7 X8

SK SK NUTS0 Slovakia 22 0 0 0 0 0 0 0

SK0 SK0 NUTS1 Slovenská republika 16 0 0 0 6 0 0 0

SK01 SK01 NUTS2 Bratislavský kraj 16 0 0 0 0 6 0 0

 32

SK02 SK02 NUTS2 Západné Slovensko 10 0 0 0 6 0 0 6

SK03 SK03 NUTS2 Stredné Slovensko 10 0 0 0 6 0 0 6

SK04 SK04 NUTS2 Východné Slovensko 10 0 0 0 6 0 0 6

The node tree is:

NUTS0 node is SK

 NUTS1 children of SK are SK0

 NUTS2 children of SK0 are SK01 SK02 SK03 SK04

 NUTS3 children of SK01 are SK010

 NUTS3 children of SK02 are SK021 SK022 SK023

 NUTS3 children of SK03 are SK031 SK032

 NUTS3 children of SK04 are SK041 SK042

For SK0, there are 6 time periods where all the
children (SK01, SK02, SK03 and SK04)

comprise missing data. For SK01 there are 6
time periods when the data for SK01 and one of

its child nodes are missing. For SK02, SK03 and
SK04, there are 6 time periods when data for all
the child nodes are missing, but there is cross-

sectional constraint data. However, there are
also 6 cases where all the data for the NUTS3

nodes are missing, and SK02, SK03 and SK04
are lacking data as well.

This is also shown in the plot on the left. For the
six year 1990 to 1995 data is missing for both

the NUTS3 and NUTS2 regions. For the six years from 1996 to 2001, data is
missing for the NUTS3 regions with the exception of SK010.

For 1990 to 1995 the NUTS 3 MCMC estimates will have to be summed across
the NUTS2 regions. Then the NUTS2 values can be adjusted to the NUTS1

constraint. Following this, the NUTS 3 units can be constrained to the adjusted
NUTS2 values. For SK02, SK03 and SK04 in 1996 to 2001, the constraints
already exist at NUTS2 for the NUTS2 MCMC estimates.

The tree traversal algorithm forms the basis for this adjustment process.

Problem zones with missing data for both child and parent.

 UnitCode Level Name X1 X2 X3 X4 X5 X6 X7 X8

CZ CZ NUTS0 Czech Republic 22 0 0 0 0 0 0 0

CZ0 CZ0 NUTS1 Ceská republika 20 0 0 0 2 0 0 0

CZ01 CZ01 NUTS2 Praha 20 0 0 0 0 2 0 0

CZ02 CZ02 NUTS2 Strední Cechy 20 0 0 0 0 2 0 0

CZ03 CZ03 NUTS2 Jihozápad 20 0 0 0 0 0 0 2

CZ04 CZ04 NUTS2 Severozápad 20 0 0 0 0 0 0 2

CZ05 CZ05 NUTS2 Severovýchod 20 0 0 0 0 0 0 2

CZ06 CZ06 NUTS2 Jihovýchod 20 0 0 0 0 0 0 2

CZ07 CZ07 NUTS2 Strední Morava 11 0 0 0 9 0 0 2

CZ08 CZ08 NUTS2 Moravskoslezsko 20 0 0 0 0 2 0 0

 33

 UnitCode Level Name X1 X2 X3 X4 X5 X6 X7 X8

DE4 DE4 NUTS1 Brandenburg 17 0 0 0 5 0 0 0

DE41 DE41 NUTS2 Brandenburg - Nordost 16 0 0 0 1 0 0 5

DE42 DE42 NUTS2 Brandenburg - Südwest 16 0 0 0 1 0 0 5

DED1 DED1 NUTS2 Chemnitz 15 0 0 0 2 0 0 5

DED2 DED2 NUTS2 Dresden 16 0 0 0 1 0 0 5

DED3 DED3 NUTS2 Leipzig 15 0 0 0 2 0 0 5

 UnitCode Level Name X1 X2 X3 X4 X5 X6 X7 X8

DK DK NUTS0 Denmark 22 0 0 0 0 0 0 0

DK0 DK0 NUTS1 Danmark 5 0 0 0 17 0 0 0

DK01 DK01 NUTS2 Hovedstaden 5 0 0 0 0 0 17 0

DK02 DK02 NUTS2 Sjælland 5 0 0 0 0 0 0 17

DK03 DK03 NUTS2 Syddanmark 5 0 0 0 0 17 0 0

DK04 DK04 NUTS2 Midtjylland 5 0 0 0 0 0 0 17

DK05 DK05 NUTS2 Nordjylland 5 0 0 0 0 17 0 0

 UnitCode Level Name X1 X2 X3 X4 X5 X6 X7 X8

HR HR NUTS0 Croatia 22 0 0 0 0 0 0 0

HR0 HR0 NUTS1 Hrvatska 11 0 0 0 11 0 0 0

HR01 HR01 NUTS2 Sjeverozapadna Hrvatska 11 1 0 0 0 0 0 10

HR02 HR02 NUTS2 Sredisnja i Istocna (Panonska) Hrvatska 11 1 0 0 0 0 0 10

HR03 HR03 NUTS2 Jadranska Hrvatska 11 1 0 0 0 0 0 10

 UnitCode Level Name X1 X2 X3 X4 X5 X6 X7 X8

IE IE NUTS0 Ireland 22 0 0 0 0 0 0 0

IE0 IE0 NUTS1 Éire/Ireland 15 0 0 0 7 0 0 0

IE01 IE01 NUTS2 Border, Midland and Western 5 0 0 0 10 0 0 7

IE02 IE02 NUTS2 Southern and Eastern 5 0 0 0 10 0 0 7

 UnitCode Level Name X1 X2 X3 X4 X5 X6 X7 X8

PL PL NUTS0 Poland 21 0 0 0 1 0 0 0

PL1 PL1 NUTS1 Region Centralny 21 0 0 0 0 0 0 1

PL2 PL2 NUTS1 Region Poludniowy 21 0 0 0 0 0 0 1

PL3 PL3 NUTS1 Region Wschodni 21 0 0 0 0 0 0 1

PL4 PL4 NUTS1 Region Pólnocno-Zachodni 21 0 0 0 0 0 0 1

PL5 PL5 NUTS1 Region Poludniowo-Zachodni 21 0 0 0 0 0 0 1

PL6 PL6 NUTS1 Region Pólnocny 21 0 0 0 0 0 0 1

PL11 PL11 NUTS2 Lódzkie 11 0 0 0 10 0 0 1

PL12 PL12 NUTS2 Mazowieckie 11 0 0 0 10 0 0 1

PL21 PL21 NUTS2 Malopolskie 11 0 0 0 10 0 0 1

PL22 PL22 NUTS2 Slaskie 11 0 0 0 10 0 0 1

PL31 PL31 NUTS2 Lubelskie 11 0 0 0 10 0 0 1

PL32 PL32 NUTS2 Podkarpackie 11 0 0 0 10 0 0 1

PL33 PL33 NUTS2 Swietokrzyskie 11 0 0 0 10 0 0 1

PL34 PL34 NUTS2 Podlaskie 11 0 0 0 10 0 0 1

PL41 PL41 NUTS2 Wielkopolskie 11 0 0 0 10 0 0 1

PL42 PL42 NUTS2 Zachodniopomorskie 11 0 0 0 10 0 0 1

PL43 PL43 NUTS2 Lubuskie 11 0 0 0 10 0 0 1

PL51 PL51 NUTS2 Dolnoslaskie 11 0 0 0 10 0 0 1

PL52 PL52 NUTS2 Opolskie 11 0 0 0 10 0 0 1

PL61 PL61 NUTS2 Kujawsko-Pomorskie 11 0 0 0 10 0 0 1

PL62 PL62 NUTS2 Warminsko-Mazurskie 11 0 0 0 10 0 0 1

PL63 PL63 NUTS2 Pomorskie 11 0 0 0 10 0 0 1

 UnitCode Level Name X1 X2 X3 X4 X5 X6 X7 X8

PT PT NUTS0 Portugal 16 0 0 0 2 4 0 0

PT1 PT1 NUTS1 Continente 16 4 0 0 0 0 0 2

PT2 PT2 NUTS1 Região Autónoma dos Açores (PT) 20 0 0 0 0 2 0 0

PT3 PT3 NUTS1 Região Autónoma da Madeira (PT) 20 0 0 0 0 2 0 0

PT11 PT11 NUTS2 Norte 20 0 0 0 0 0 0 2

 34

PT15 PT15 NUTS2 Algarve 20 0 0 0 0 2 0 0

PT16 PT16 NUTS2 Centro (PT) 20 0 0 0 0 0 0 2

PT17 PT17 NUTS2 Lisboa 20 0 0 0 0 0 0 2

PT18 PT18 NUTS2 Alentejo 20 0 0 0 0 0 0 2

PT20 PT20 NUTS2 Região Autónoma dos Açores (PT) 20 0 0 0 0 2 0 0

PT30 PT30 NUTS2 Região Autónoma da Madeira (PT) 20 0 0 0 0 2 0 0

 UnitCode Level Name X1 X2 X3 X4 X5 X6 X7 X8

SK SK NUTS0 Slovakia 22 0 0 0 0 0 0 0

SK0 SK0 NUTS1 Slovenská republika 16 0 0 0 6 0 0 0

SK01 SK01 NUTS2 Bratislavský kraj 16 0 0 0 0 6 0 0

SK02 SK02 NUTS2 Západné Slovensko 10 0 0 0 6 0 0 6

SK03 SK03 NUTS2 Stredné Slovensko 10 0 0 0 6 0 0 6

SK04 SK04 NUTS2 Východné Slovensko 10 0 0 0 6 0 0 6

Tree Walk

 UnitCode Level Name X1 X2 X3 X4 X5 X6 X7 X8

TR TR NUTS0 Turkey 6 0 0 0 0 0 0 16

TR1 TR1 NUTS1 Istanbul 6 0 0 0 0 16 0 0

TR2 TR2 NUTS1 Bati Marmara 6 0 0 0 0 0 0 16

TR3 TR3 NUTS1 Ege 6 0 0 0 0 0 0 16

TR4 TR4 NUTS1 Dogu Marmara 6 0 0 0 0 0 0 16

TR5 TR5 NUTS1 Bati Anadolu 6 0 0 0 0 0 0 16

TR6 TR6 NUTS1 Akdeniz 6 0 0 0 0 0 0 16

TR7 TR7 NUTS1 Orta Anadolu 6 0 0 0 0 0 0 16

TR8 TR8 NUTS1 Bati Karadeniz 6 0 0 0 0 0 0 16

TR9 TR9 NUTS1 Dogu Karadeniz 6 0 0 0 0 16 0 0

TRA TRA NUTS1 Kuzeydogu Anadolu 6 0 0 0 0 0 0 16

TRB TRB NUTS1 Ortadogu Anadolu 6 0 0 0 0 0 0 16

TRC TRC NUTS1 Güneydogu Anadolu 6 0 0 0 0 0 0 16

TR10 TR10 NUTS2 Istanbul 6 0 0 0 0 16 0 0

TR21 TR21 NUTS2 Tekirdag 6 0 0 0 0 0 0 16

TR22 TR22 NUTS2 Balikesir 6 0 0 0 0 0 0 16

TR31 TR31 NUTS2 Izmir 6 0 0 0 0 16 0 0

TR32 TR32 NUTS2 Aydin 6 0 0 0 0 0 0 16

TR33 TR33 NUTS2 Manisa 6 0 0 0 0 0 0 16

TR41 TR41 NUTS2 Bursa 6 0 0 0 0 0 0 16

TR42 TR42 NUTS2 Kocaeli 6 0 0 0 0 0 0 16

TR51 TR51 NUTS2 Ankara 6 0 0 0 0 16 0 0

TR52 TR52 NUTS2 Konya 6 0 0 0 0 0 0 16

TR61 TR61 NUTS2 Antalya 6 0 0 0 0 0 0 16

TR62 TR62 NUTS2 Adana 6 0 0 0 0 0 0 16

TR63 TR63 NUTS2 Hatay 6 0 0 0 0 0 0 16

TR71 TR71 NUTS2 Kirikkale 6 0 0 0 0 0 0 16

TR72 TR72 NUTS2 Kayseri 6 0 0 0 0 0 0 16

TR81 TR81 NUTS2 Zonguldak 6 0 0 0 0 0 0 16

TR82 TR82 NUTS2 Kastamonu 6 0 0 0 0 0 0 16

TR83 TR83 NUTS2 Samsun 6 0 0 0 0 0 0 16

TR90 TR90 NUTS2 Trabzon 6 0 0 0 0 0 0 16

TRA1 TRA1 NUTS2 Erzurum 6 0 0 0 0 0 0 16

TRA2 TRA2 NUTS2 Agri 6 0 0 0 0 0 0 16

TRB1 TRB1 NUTS2 Malatya 6 0 0 0 0 0 0 16

TRB2 TRB2 NUTS2 Van 6 0 0 0 0 0 0 16

TRC1 TRC1 NUTS2 Gaziantep 6 0 0 0 0 0 0 16

TRC2 TRC2 NUTS2 Sanliurfa 6 0 0 0 0 0 0 16

TRC3 TRC3 NUTS2 Mardin 6 0 0 0 0 0 0 16

 UnitCode Level Name X1 X2 X3 X4 X5 X6 X7 X8

UK UK NUTS0 United Kingdom 0 0 0 0 1 0 11 10

UKC UKC NUTS1 North East (UK) 0 8 1 0 0 0 0 13

UKD UKD NUTS1 North West (UK) 0 8 0 1 0 0 0 13

UKE UKE NUTS1 Yorkshire and The Humber 0 8 0 0 0 0 1 13

UKF UKF NUTS1 East Midlands (UK) 0 8 0 0 0 0 0 14

UKG UKG NUTS1 West Midlands (UK) 0 8 0 1 0 0 0 13

UKH UKH NUTS1 East of England 0 8 0 0 0 0 1 13

UKI UKI NUTS1 London 0 8 0 0 0 0 0 14

 35

UKJ UKJ NUTS1 South East (UK) 0 8 0 1 0 0 0 13

UKK UKK NUTS1 South West (UK) 0 9 0 0 0 0 0 13

UKL UKL NUTS1 Wales 0 9 0 0 0 0 0 13

UKM UKM NUTS1 Scotland 0 0 1 0 10 0 0 11

UKN UKN NUTS1 Northern Ireland (UK) 11 0 0 0 0 11 0 0

UKC1 UKC1 NUTS2 Tees Valley and Durham 1 12 0 0 8 0 0 1

UKC2 UKC2 NUTS2 Northumberland and Tyne and Wear 0 13 0 0 8 0 0 1

UKD1 UKD1 NUTS2 Cumbria 0 13 0 0 8 0 0 1

UKD2 UKD2 NUTS2 Cheshire 1 12 0 0 8 0 0 1

UKD3 UKD3 NUTS2 Greater Manchester 1 12 0 0 8 0 0 1

UKD4 UKD4 NUTS2 Lancashire 1 12 0 0 8 0 0 1

UKD5 UKD5 NUTS2 Merseyside 0 13 0 0 8 0 0 1

UKE1 UKE1 NUTS2East Yorkshire and Northern Lincolnshire 0 13 0 0 8 0 0 1

UKE2 UKE2 NUTS2 North Yorkshire 0 13 0 0 8 0 0 1

UKE3 UKE3 NUTS2 South Yorkshire 1 12 0 0 8 0 0 1

UKE4 UKE4 NUTS2 West Yorkshire 0 13 0 0 8 0 0 1

UKF1 UKF1 NUTS2 Derbyshire and Nottinghamshire 0 13 0 0 8 0 0 1

UKF2 UKF2 NUTS2 Leicester, Rutland and Northamptons 0 13 0 0 8 0 0 1

UKF3 UKF3 NUTS2 Lincolnshire 0 13 8 0 0 1 0 0

UKG1 UKG1 NUTS2 Hereford, Worcester and Warwick 1 12 0 0 8 0 0 1

UKG2 UKG2 NUTS2 Shropshire and Staffordshire 0 13 0 0 8 0 0 1

UKG3 UKG3 NUTS2 West Midlands 0 13 0 0 8 0 0 1

UKH1 UKH1 NUTS2 East Anglia 0 13 0 0 8 0 0 1

UKH2 UKH2 NUTS2 Bedfordshire and Hertfordshire 0 13 0 0 8 0 0 1

UKH3 UKH3 NUTS2 Essex 1 12 0 0 8 0 0 1

UKI1 UKI1 NUTS2 Inner London 0 13 0 0 8 0 0 1

UKI2 UKI2 NUTS2 Outer London 0 13 0 0 8 0 0 1

UKJ1 UKJ1 NUTS2 Berkshire, Buckingham and Oxford 1 12 0 0 8 0 0 1

UKJ2 UKJ2 NUTS2 Surrey, East and West Sussex 0 13 0 0 8 0 0 1

UKJ3 UKJ3 NUTS2 Hampshire and Isle of Wight 0 13 0 0 8 0 0 1

UKJ4 UKJ4 NUTS2 Kent 1 12 0 0 8 0 0 1

UKK1 UKK1 NUTS2 Gloucester, Wiltshire and Bristol/Bath 1 12 0 0 8 0 0 1

UKK2 UKK2 NUTS2 Dorset and Somerset 1 12 0 0 8 0 0 1

UKK3 UKK3 NUTS2 Cornwall and Isles of Scilly 1 12 8 0 0 1 0 0

UKK4 UKK4 NUTS2 Devon 1 12 0 0 8 0 0 1

UKL1 UKL1 NUTS2 West Wales and The Valleys 1 12 0 0 8 0 0 1

UKL2 UKL2 NUTS2 East Wales 1 12 0 0 8 0 0 1

UKM2 UKM2 NUTS2 Eastern Scotland 0 11 0 0 0 0 0 11

UKM3 UKM3 NUTS2 South Western Scotland 1 10 0 0 0 0 0 11

UKM5 UKM5 NUTS2 North Eastern Scotland 1 10 0 0 0 11 0 0

UKM6 UKM6 NUTS2 Highlands and Islands 1 10 0 0 0 0 0 11

UKN0 UKN0 NUTS2 Northern Ireland (UK) 1 10 0 0 10

0 0 1

>

Scalability

The question of the practicability of the approach, given the nature of MCMC

estimation shoud be considered. The ESPON series are short run - in the case of
the population data, we have no more than 22 observations. In the worst case
all 22 observations are missing, and no amount of MCMC will recreate the data.

The time required depends on (a) the speed of the processor (b) the number of
burn-in cycles and (c) the number of estimation cycles. The more data that is

present, the slower the estimation. The plot below depicts the relationship
between the proportion of missing data and the time required to estimation the
missing data in the series. Counter-intuitively, the more missing data then the

quicker the execution time:

 36

The plot shows the execution time for the NL NUTS0 series with increasing
proportions of missing data.

The MCMC estimation for entire dataset, NUTS0, NUTS1, NUTS2 and NUTS3

took about 60 hours on a quad core 3.16GHz Intel Xeon processor running
Windows XP Professional. This would equate to about 35 hours on a laptop
running Windows 7 Professional on a 2.80GHz Intel Core i7-2640M processor.

20 40 60 80

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0
3

0
0

Scalability of MCMC Estimation

Proportion Missing (N=22)

T
im

e
 (

s
e

c
o

n
d

s
)

 37

5. ESPON Time series in practice

The code for the various tasks to be undertaken is included as Appendices 2, 3,
4 and 5. We can identify as number of tasks which are relevant. It should be
noted that the temptation to regard the entire process as automatic should be

avoided, although much of the activity can be automated.

Getting started

Currently the organisation of the activity assumes that the R code and the data

are in the same folder. This is Time_Series_Analysis/Sandbox but the code
and data can be separated. All code should be in the same folder. The relevant
files are:

Modelling_and_Imputation.R

ImputeMissingData.R

tfile1.JAGS

tfile2.JAGS

The following R libraries are required:

gdata

rjags

RColorBrewer

Data requires that a current version of the perl11 language is installed, and rjags
requires that a current version of JAGS is installed12.

The various tasks are identified in the code, and are briefly described below.

Task 1: Data load and pre-processing

The four worksheets in the ESPON Database spreadsheet are read into four

separate data frames. We use the read.xls() function for this. Of interest are the
Source and Data worksheets.

The Source worksheet is parsed to extract as list of the data providers and their

identification codes. The data frame sourceIndex needs to be examined to
identify the codes for EUROSTAT and the National Statistical Agencies13.

The relevant codes are extracted to another dataframe, sourcesOK, and this is
used as a filter for the data extraction. The Data worksheet is split into two data

frames which hold (a) the data and (b) the corresponding index codes. Once the
non-EUROSTAT/NSA data has be filtered, the resulting data frame Data.estim,
will be used in the remainder of the exercise.

11 Perl can be downloaded from http://www.activestate.com/activeperl/downloads
12 JAGS can be installed from http://sourceforge.net/projects/mcmc-jags/files/
13 The data as supplied by the RIATE team contains original data as well as RIATE's own

estimations of the missing data

 38

As a final activity under this task the rows in Data.estim are index by their

corresponding NUTS codes. This indexing is central to the spatial coherence
activity described in a later task.

Task 2: Missing data pattern analysis

It is important to be aware of the patterns of missing data in the dataset. This
gives an overall picture of the patterns in each country, and also an indication of

the scale of the problem.

A useful tool for this purpose is the heatmap. The columns in the heatmap

represent the individual time periods, and the rows represent the NUTS regions.
A separate heatmap can be produced for each country. Data values are colour

coded according to their value, so some broad indications of the range of values
and the trends in each group of series can be obtained from the heatmap.

The heatmap() function has a number of options, including the re-ordering of
the rows and columns as a result of the application of hierarchical clustering.

These options are turned off: (Colv=NA, Rowv=NA). The cells in the heatmap
which arise from the intersection of a year and a NUTS region with missing data

are coloured grey.

The resulting heatmaps are included as separate plots in Appendix 7.

Task 3: Missing data at NUTS0/1/2

Ensuribng spatial coherence is an important issue for the imputation process.
This requires reliable control data for the higher NUTS levels. Inevitably, there

will need to be consistent series for the NUTS0 level. Task 3 involves an
enurmation of NUTS0/1/2 regions with missing data. The complete.cases()

function is used to identify NUTS regions with missing data. These are listed.

Task 4: exploring general patterns

Analysis of the series suggested that an simple linear or exponential trend model

might be insufficient to capture the overall trend pattern. Eventually it was
decided that a quadratic term would be added to the model. If the empirical
trend was more or less linear, then the coefficient on the quadratic term would

be close to zero. Four plots are shown below for Austria, France, Netherlands,
and Slovenia:

 The non-missing data points
 A line or lines connecting the non-missing data points

 A line to show linear trend
 A line to shown quadratic trend

Whilst the general pattern is modelled well by the linear term, the fit is improved
by the quadratic term – very noticeably in the case of Slovenia.

 39

Task 5: extraction of the data for a single country

Much of the development work took place using the data series for NUTS regions
of Austria as an example. The code under Task 5 shows how to extract data for

a single country for further analysis.

It also shows how to create a backlink in the spatial hierarchy, so that the

'parent' region for each NUTS region can be identified.

In the normal course of events, this code section need not be used, although it
is helpful to have it for testing and debugging purposes.

Task 6: MCMC estimation

1990 1995 2000 2005 2010

7
8
0
0
0
0
0

8
2
0
0
0
0
0

Austria

Year

P
o
p
u
la

ti
o
n

1990 1995 2000 2005 2010

5
.8

e
+

0
7

6
.1

e
+

0
7

6
.4

e
+

0
7

France

Year

P
o
p
u
la

ti
o
n

1990 1995 2000 2005 2010

1
5
0
0
0
0
0
0

1
6
0
0
0
0
0
0

Netherlands

Year

P
o
p
u
la

ti
o
n

1990 1995 2000 2005 2010

1
9
8
0
0
0
0

2
0
1
0
0
0
0

2
0
4
0
0
0
0

Slovenia

Year

P
o
p
u
la

ti
o
n

 40

The central task of the exercise is to estimate the missing data in each series
using Markov Chain Monte Carlo methods. The main function which organises

the data into input for JAGS, ImputeMissingData(), is shown and commented in
Appendix 3.

All rows with missing in Data.estim can be estimated with the exception of any
row with fewer than 3 observations.

The estimation takes place in a loop, whose start/end locations are controlled by

the variables startrow and endrow. In the code these are set to 1 and the
number of rows in Data.estim. This task is massively time consuming, and if
there is doubt that the computer on which the process is run would stay up, then

the estimation could be subdivided.

Once the missing data in a NUTS region has been estimated and the row written
to the output matrix, NUTSData.completed, it is not referenced again until Task
6 has completed.

The final step in the Task is to write the intermediate results to a file. The

estimation of all the missing data for 1990-2001 for all NUTS0/1/2/3 regions
took some 60 hours on a 2.8GHz Intel Core i7-260M processor, so some

precautions are needed to ensure that the task does not have be repeated too
many times. Should there be a system failure when the last few estimations are
to be completed would be extremely unfortunate, so writing out the intermediate

results every 100 or so iterations would be sensible.

The JAGS code appears to be robust – only one series caused a failure, and that
was one in which all values were missing.

Task 6A: Scalability assessment

Task 6a can be omitted – it is present only to allow an assessment of the
scalbiluty of the process, using data from the Netherlands as an example. The
plot from this Task appears on page 36.

Task 7: Spatial Coherence Adjustment

One of the most challenging parts of the work has been to develop an algorithm
which permits adjustment of lower level NUTS estimations to constraining values

at the higher NUTS levels. There are two subtasks.

Task 7a is a manual fix for Portugal. PT is missing years 1992 and 1995. PT1
is missing the same years. However, the NUTS2 regions in PT1 are present. The
manual fix is to sum the PT1* regions to PT1, and then PT1+PT2+PT3 to PT.

This could be automated, but analysis of other series would be needed to
determine whether it is a more widespread problem. The code for the manual

fix is present, and therefore is reproducible14.

14 Reproducibility is science is the ability of an enture study to be reproduced by either
the researcher themselves, or by an independent third party. See also Buckheit JB and

 41

Task 7b includes the coherence algorithm. This is presented as a function

ConstrainTotals2() which takes the missing data pattern data frame, the data
frame of unadjusted estimates, and then range of data columns to be adjusted.

The output is a spatially coherent data frame of actual data and estimates.

The algorithm is a top down algorithm. The indexing of the rows by their NUTS

code means that it is possible to identify the parent region (the NUTS chode is
one character shorter). NUTS1 regions are first constrained to the NUTS0 values

– with care being taken when only a subset of these has been estimated. The
hierarchical relationship between the NUTS levels, and the existence of the
'parent' vector means that this can be coded in a loop.

Once the NUTS1 regions have been constrained, the NUTS2 region estimates can
be constrained to the NUTS1 totals. Finally the NUTS3 region estimates can be
constrained to the NUTS2 totals.

The resulting data frame can be output to a file if required.

Other functions

CheckCountry(): this uses the function CheckConstraint() – lists the children for
each parent node in the tree

CheckTree(): traverses the tree in order

CheckMissingPattern(): examines the missing data patterns for each parent
node.

In the final section are some plots of random numbers drawn in samples of
different sizes for different distributions (normal, gamma, beta, multivariate

normal), together with random normal for different precisions and a non-
informative prior to show the influence of increasing the sample size on the
estimates of the mean.

Donoho, 1995, WaveLab and Reproducible Research, Dept. of Statistics, Stanford University,
Tech. Rep. 474

 42

Appendix 1: NUTS0 Population Time Series Plots

Austria

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

7
8
0
0
0
0
0

8
2
0
0
0
0
0

Belgium

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

1
0
0
0
0
0
0
0

1
0
4
0
0
0
0
0

1
0
8
0
0
0
0
0

Bulgaria

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

7
6
0
0
0
0
0

8
2
0
0
0
0
0

8
8
0
0
0
0
0

 43

Switzerland

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

6
8
0
0
0
0
0

7
4
0
0
0
0
0

Cyprus

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

6
0
0
0
0
0

7
0
0
0
0
0

8
0
0
0
0
0

Czech Republic

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 20101
0
2
0
0
0
0
0

1
0
3
5
0
0
0
0

1
0
5
0
0
0
0
0

Germany (including former GDR from 1991)

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 20107
9
0
0
0
0
0
0

8
0
5
0
0
0
0
0

8
2
0
0
0
0
0
0

Denmark

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

5
2
0
0
0
0
0

5
4
0
0
0
0
0

Estonia

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

1
3
5
0
0
0
0

1
4
5
0
0
0
0

1
5
5
0
0
0
0

 44

Spain

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

4
.0

e
+
0
7

4
.4

e
+
0
7

Finland

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

5
0
0
0
0
0
0

5
2
0
0
0
0
0

France

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

5
.8

e
+
0
7

6
.1

e
+
0
7

6
.4

e
+
0
7

Greece

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

1
0
2
0
0
0
0
0

1
0
8
0
0
0
0
0

Croatia

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

4
4
0
0
0
0
0

4
6
0
0
0
0
0

4
8
0
0
0
0
0

Hungary

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

1
0
0
0
0
0
0
0

1
0
2
0
0
0
0
0

 45

Ireland

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

3
6
0
0
0
0
0

4
0
0
0
0
0
0

4
4
0
0
0
0
0

Iceland

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

2
6
0
0
0
0

2
9
0
0
0
0

3
2
0
0
0
0

Italy

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

5
.7

e
+
0
7

5
.9

e
+
0
7

Liechtenstein

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

3
0
0
0
0

3
4
0
0
0

Lithuania

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

3
3
0
0
0
0
0

3
5
0
0
0
0
0

3
7
0
0
0
0
0

Luxembourg

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

3
8
0
0
0
0

4
4
0
0
0
0

5
0
0
0
0
0

 46

Latvia

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

2
3
0
0
0
0
0

2
5
0
0
0
0
0

Macedonia

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

1
9
0
0
0
0
0

2
0
0
0
0
0
0

Malta

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 20103
5
0
0
0
0

3
8
0
0
0
0

4
1
0
0
0
0

Netherlands

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

1
5
0
0
0
0
0
0

1
6
0
0
0
0
0
0

Norway

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

4
3
0
0
0
0
0

4
6
0
0
0
0
0

4
9
0
0
0
0
0

Poland

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 20103
8
0
0
0
0
0
0

3
8
3
0
0
0
0
0

3
8
6
0
0
0
0
0

 47

Portugal

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

1
0
0
0
0
0
0
0

1
0
4
0
0
0
0
0

Romania

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

2
1
5
0
0
0
0
0

2
2
5
0
0
0
0
0

Sweden

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

8
6
0
0
0
0
0

9
0
0
0
0
0
0

9
4
0
0
0
0
0

Slovenia

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

1
9
8
0
0
0
0

2
0
1
0
0
0
0

2
0
4
0
0
0
0

Slovakia

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

5
3
0
0
0
0
0

5
4
0
0
0
0
0

Turkey

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

6
.0

e
+
0
7

7
.0

e
+
0
7

 48

United Kingdom

Time

P
o
p
u
la

tio
n

1990 1995 2000 2005 2010

5
.8

e
+
0
7

6
.0

e
+
0
7

6
.2

e
+
0
7

 49

Appendix 2: Main analysis and imputation R functions

###

V5

ESPON M4D Multidimensional Database Design and Development

Time Series Estimation

Data Exploration, Estimation, and Coherence functions

Authors:

Martin Charlton and Chris Brunsdon

Address:

National Centre for Geocomputation

National University of Ireland, Maynooth

Maynooth, Co Kildare, IRELAND

V1.01: June 2014

(c) ESPON

Code is made avilable under the GNU GENERAL PUBLIC LICENSE, Version 3

Text of the License is at http://www.gnu.org/licenses/gpl.txt

###

#########

###

#########

Identify a working folder - all data/software in in this folder

dsn <- "F:\\Time_Series_Analysis\\Sandbox" # Data stick

setwd(dsn)

Load the libraries needed for the analysis and estimation

require(RColorBrewer)

require(gdata)

require(rjags)

###

##########

TASK 1: Read the data, identify the EUROSTAT/NSA data and split

data

and source indices into separate worksheets

 50

###

##########

Dataset <- read.xls(paste(dsn,"\\M4D_poptot1990-

2011_20120522.xls",sep=""), sheet=1,header=FALSE)

Indicator <- read.xls(paste(dsn,"\\M4D_poptot1990-

2011_20120522.xls",sep=""), sheet=2,header=FALSE)

Source <- read.xls(paste(dsn,"\\M4D_poptot1990-

2011_20120522.xls",sep=""), sheet=3,header=FALSE)

Data <- read.xls(paste(dsn,"\\M4D_poptot1990-

2011_20120522.xls",sep=""), sheet=4,header=FALSE)

Parse the 'Source' worksheet for the provider index codes and names

len3 <- dim(Source)[1]

sourceLabels <- which(Source[,1] == "Label")

sourceProvider <- which(Source[,1] == "Provider")

sourceIndex <-

data.frame(Source[sourceLabels,2],Source[sourceProvider,3])

colnames(sourceIndex) <- c("Label","Provider")

sourceIndex

sourcesOK <- sourceIndex[c(1:32),] # These are the rows for which

data is from

 # EUROSTAT + Nation al Statistical

Agencies

Split 'Data' worksheet into '.data' and '.source' worksheets

len2 <- dim(Data)[1] # number

of rows

dataCols <- seq(5,47,2) # columns

with data

Data.data <- Data[4:len2,c(1,2,4,dataCols)] # data

Data.source <- Data[4:len2,c(1,2,4,dataCols+1)] # source

information

colnames(Data.data) <-

c("UnitCode","Level","Name",paste("p",1990:2011,sep=""))

colnames(Data.source) <-

c("UnitCode","Level","Name",paste("s",1990:2011,sep=""))

Create data frame 'Data.estim' which we used as the basis for

subsequent estimation

as.numeric.factor <- function(x) {as.numeric(levels(x))[x]} #

convert factors to numeric

Data.estim <- Data.data # Copy

old -> new

 51

for (icol in 4:25) { # loop

over data columns

 Data.estim[,icol] <- NA

update to NA

 rowsOK <- which((Data.source[,icol] %in% sourcesOK[,1]) == TRUE)

EUROSTAT/NSA?

 Data.estim[rowsOK,icol] <- as.numeric.factor(Data.data[rowsOK,icol])

.. yes - copy data

}

head(Data.estim)

Finally index Data.estim by the NUTS code

rownames(Data.estim) <- Data.estim[,1]

levels(as.factor(substr(rownames(Data.estim),1,2)))

"AT" "BE" "BG" "CH" "CY" "CZ" "DE" "DK" "EE" "ES" "FI" "FR" "GR" "HR"

"HU"

"IE" "IS" "IT" "LI" "LT" "LU" "LV" "MK" "MT" "NL" "NO" "PL" "PT" "RO"

"SE"

"SI" "SK" "TR" "UK"

###

##########

TASK 2: Create a series of missing data heatmaps for the report

###

##########

CountryCode <- levels(as.factor(substr(rownames(Data.estim),1,2))) #

NUTS codes

CountryName <- Data.estim[match(rownames(Data.estim),CountryCode),3] #

Names

CountryName <- CountryName[!is.na(CountryName)] #

remove NA

Nc <- length(CountryCode) #

How many?

Heatmap construction function - many defaults are turned off

drawHeatmap <- function(country,title="Population") {

 CountryData <- Data.estim[substr(rownames(Data.estim),1,2) ==

country,]

 PlotOrder <- dim(CountryData)[1]:1

heatmap(as.matrix(CountryData[PlotOrder,4:25]),Colv=NA,Rowv=NA,main=tit

le,na.rm=T,

 xlab="Year",ylab="NUTS

Region",col=rev(brewer.pal(11,"Spectral")),bg="grey")

}

Loop over countries, plotting the heatmap. Store in Mapfiles/aa.png

for (i in 1:Nc) {

 fdname <- paste("Mapfiles\\",CountryCode[i],".png",sep="") #

create filename

 52

 cat(fdname,"\n") #

list it

 png(fdname) #

open it

 drawHeatmap(CountryCode[i],CountryName[i]) #

plot heatmap

 dev.off() #

close the file

}

drawHeatmap("AT","Austria")

drawHeatmap("BE","Belgium")

drawHeatmap("BG","Bulgaria")

drawHeatmap("CH","Switzerland")

drawHeatmap("CY","Cyprus")

drawHeatmap("CZ","Czech Republic")

drawHeatmap("DE","Germany")

drawHeatmap("DK","Denmark")

drawHeatmap("EE","Estonia")

drawHeatmap("ES","Spain")

drawHeatmap("FI","Finland")

drawHeatmap("FR","France")

drawHeatmap("GR","Greece")

drawHeatmap("HR","Croatia")

drawHeatmap("HU","Hungary")

drawHeatmap("IE","Ireland")

drawHeatmap("IS","Iceland")

drawHeatmap("IT","Italy")

drawHeatmap("LI","Liechtenstein")

drawHeatmap("LT","Lithunia")

drawHeatmap("LU","Luxembourg")

drawHeatmap("LV","Latvia")

drawHeatmap("MK","Macedonia")

drawHeatmap("MT","Malta")

drawHeatmap("NL","Netherlands")

drawHeatmap("NO","Norway")

drawHeatmap("PL","Poland")

drawHeatmap("PT","Portugal")

drawHeatmap("RO","Romania")

drawHeatmap("SE","Sweden")

drawHeatmap("SI","slovakia")

drawHeatmap("SK","Slovak Republic")

drawHeatmap("TR","Turkey")

drawHeatmap("UK","United Kingdom")

###

##########

TASK 3: enumerate areas with missing data at NUTS0/1/2

###

##########

#dataCols <- 4:25

levels(as.factor(substr(rownames(Data.estim),1,2)))

"AT" "BE" "BG" "CH" "CY" "CZ" "DE" "DK" "EE" "ES" "FI" "FR" "GR" "HR"

"HU"

 53

"IE" "IS" "IT" "LI" "LT" "LU" "LV" "MK" "MT" "NL" "NO" "PL" "PT" "RO"

"SE"

"SI" "SK" "TR" "UK"

Area code/name information as in TASK 2:

CountryCode <- levels(as.factor(substr(rownames(Data.estim),1,2)))

CountryName <- Data.estim[match(rownames(Data.estim),CountryCode),3]

CountryName <- CountryName[!is.na(CountryName)]

NUTSlevel <- nchar(rownames(Data.estim))-2

Nc <- length(CountryCode) #

Countries

Nr <- nrow(Data.estim) #

NUTS regions

for (i in 1:Nr) { #

Loop over NUTS codes

 if(NUTSlevel[i] <= 2) {

 if (!complete.cases(Data.estim[i,4:25])) { #

Complete case?

 nCode <- as.character(Data.estim[i,1]) #

... no, get code

 nName <- as.character(Data.estim[i,3]) #

... get name

 cat("Missing data for ",nCode,nName,"\n") #

... and report

 }

 }

 }

}

###

##########################

Task 4: Example plots to explore general patterns in the data

###

##########################

CountryCode <- levels(as.factor(substr(rownames(Data.estim),1,2)))

 year <- 1:22

 yearsq <- year^2

 ###

 ### Each plot has: base data as dots and a line in grey

 ### fit from a linear model in lightblue

 ### fit from the quadratic model in red

 ###

 par(mfrow=c(2,2))

 Popdata <- as.numeric(Data.estim["AT",4:25])

plot(1990:2011,Popdata,xlab="Year",ylab="Population",main="Austria",pch

=16,col="grey")

 lines(1990:2011,Popdata,col="grey")

 lines(1990:2011,(cbind(1,year) %*%

coef(lm(Popdata~year))),col="lightblue")

 54

 lines(1990:2011,(cbind(1,year,yearsq) %*%

coef(lm(Popdata~year+yearsq))),col="red")

 Popdata <- as.numeric(Data.estim["FR",4:25])

plot(1990:2011,Popdata,xlab="Year",ylab="Population",main="France",pch=

16,col="grey")

 lines(1990:2011,Popdata,col="grey")

 lines(1990:2011,(cbind(1,year) %*%

coef(lm(Popdata~year))),col="lightblue")

 lines(1990:2011,(cbind(1,year,yearsq) %*%

coef(lm(Popdata~year+yearsq))),col="red")

 Popdata <- as.numeric(Data.estim["NL",4:25])

plot(1990:2011,Popdata,xlab="Year",ylab="Population",main="Netherlands"

,pch=16,col="grey")

 lines(1990:2011,Popdata,col="grey")

 lines(1990:2011,(cbind(1,year) %*%

coef(lm(Popdata~year))),col="lightblue")

 lines(1990:2011,(cbind(1,year,yearsq) %*%

coef(lm(Popdata~year+yearsq))),col="red")

 Popdata <- as.numeric(Data.estim["SI",4:25])

plot(1990:2011,Popdata,xlab="Year",ylab="Population",main="Slovenia",pc

h=16,col="grey")

 lines(1990:2011,Popdata,col="grey")

 lines(1990:2011,(cbind(1,year) %*%

coef(lm(Popdata~year))),col="lightblue")

 lines(1990:2011,(cbind(1,year,yearsq) %*%

coef(lm(Popdata~year+yearsq))),col="red")

 par(mfrow=c(1,1))

###

##########################

TASK 5: Extract data for Austria as test data *** *** *** ONLY FOR

TESTING *** *** ***

###

##########################

Austria <- Data.estim[substr(rownames(Data.estim),1,2) == "AT",]

PlotOrder <- dim(Austria)[1]:1 #

reverse order for the heatmap

heatmap(as.matrix(Austria[PlotOrder,4:25]),Colv=NA,Rowv=NA,main="Austri

a EUROSTAT Population Data",

 xlab="Year",ylab="NUTS Region",col=rev(brewer.pal(11,"Spectral")))

parent <- substr(rownames(Austria),1,nchar(rownames(Austria))-1)

parent[1] <- ""

NUTS <- rownames(Austria)

NUTS0 <- which(nchar(rownames(Austria)) == 2)

NUTS1 <- which(nchar(rownames(Austria)) == 3)

NUTS2 <- which(nchar(rownames(Austria)) == 4)

NUTS3 <- which(nchar(rownames(Austria)) == 5)

 55

Data.estim <- Austria

###

############

TASK 6: MCMC estimation of NUTS levels 3 series

###

############

Estimation loop one iteration is about 1.7 minutes for 12 missing

from 22 on

a Intel Xeon X5460 quad core 3.16GHz processor running Windows XP

Professional

35 zones for Austria takes about an hour. As a ball park estimate,

the whole of

Europe should take about 36 hours of computing.

On an Intel Core i7-2640M processor running at 2.80Ghz it's under a

minute per fit.

This is a 64 bit system running Windows 7 Professional. Austria would

take just

over 30 minutes so about 18 hours for Europe.

NUTS3 tool 199418.4 seconds 55h 24m, say ~55.5h

###

###########

Load the function definition

source("ImputeMissingData.R")

Copy start data

NUTSData.completed <- Data.estim

nrow <- dim(Data.estim)[1] # number of

regions

NUTS <- rownames(Data.estim) # NUTS codes

NUTSlevel <- nchar(NUTS)-2 # NUTS lebels

total.time <- 0

startrow <- 1 # start at 1 ...

endrow <- nrow # ... and finish

at nrow

for (i in startrow:endrow) {

 #if(NUTSlevel[i] < 3 & substr(NUTS[i],1,2) != "UK") {

 if(substr(NUTS[i],1,2) != "UK") { # UK separately

 if (complete.cases(Data.estim[i,4:25])) { # data complete?

 cat(NUTS[i],"is complete\n") # ... yes: ignore

 } else {

 cat(NUTS[i],"is undergoing imputation\n") # ... no:

imputation needed

 Z <- as.numeric(Data.estim[i,4:25]) # data series

 Years <- 1990:2011 # time frame

for series

 56

 N <- length(Z) # length of

the series

 missingYears <- which(is.na(Z)) # missing

observations

 NM <- length(missingYears) # number of

missing obs

 Scale <- 1000 # scale for

populations

 tic <- proc.time()[3]

 fitted.model <- ImputeMissingData(Z,Years, missingYears,

Scale) # imputation

 toc <- proc.time()[3] - tic

 total.time <- total.time + toc

 cat("Elapsed time: ",toc,"seconds\n") # elapsed

time report

 imputedValues <-

summary(fitted.model)$statistics[(5+(1:NM)),1] # extract imputations

 NUTSData.completed[i,missingYears+3] <-

round(imputedValues*Scale) # update data vector

 }

 } else {

 cat(NUTS[i],"is NUTS level",NUTSlevel[i],"\n")

 }

}

cat("Completed. Total time required was ",total.time," seconds\n")

Write results to a file - this step takes 60 hours!

write.csv(NUTSData.completed,"NUTSData_completedN3.csv") # store the

results for later

######################### End of MCMC estimation

###

#######################

###

############

TASK 6A: Timings for MCMC estimation

Use Netherlands as an example to get scalbility graphc

*** Only for report illustrations ***

###

############

Estimation loop one iteration is about 1.7 minutes for 12 missing

from 22 on

a Intel Xeon X5460 quad core 3.16GHz processor running Windows XP

Professional

35 zones for Austria takes about an hour. As a ball park estimate,

the whole of

Europe should take about 36 hours of computing.

On an Intel Core i7-2640M processor running at 2.80Ghz it's under a

minute per fit.

 57

This is a 64 bit system running Windows 7 Professional. Austria would

take just

over 30 minutes so about 18 hours for Europe.

NUTS3 tool 199418.4 seconds 55h 24m, say ~55.5h

source("ImputeMissingData.R")

#nrow <- dim(Data.estim)[1]

#NUTS <- rownames(Data.estim)

#NUTSlevel <- nchar(NUTS)-2

TestData <- as.numeric(Data.estim["NL",4:25])

timeTaken <- rep(0,20)

for (i in 10:10) {

 Z <- TestData # data series

 Z[1:i] <- NA # add NAs

 Years <- 1990:2011 # time frame

for series

 N <- length(Z) # length of

the series

 missingYears <- which(is.na(Z)) # missing

observations

 NM <- length(missingYears) # number of

missing obs

 Scale <- 1000 # scale for

populations

 tic <- proc.time()[3]

 fitted.model <- ImputeMissingData(Z,Years, missingYears,

Scale, 250000, 100000, chains=2) # imputation

 toc <- proc.time()[3] - tic

 timeTaken[i] <- toc

 cat("Elapsed time: ",toc,"seconds with",i,"missing values\n")

elapsed time report

}

cat("Completed. Total time required was ",sum(timeTaken)," seconds\n")

timeTaken

gelman.diag(fitted.model) # convergence

diagnostics

gelman.plot(fitted.model) # convergence

plot

#timeTaken2 <- timeTaken * (290/171.52) # laptop relative to office

desktop

timeTaken2 <- timeTaken

proportionMissing <- 100 * (1:20) / 22

plot(proportionMissing,timeTaken2,ylim=c(0,300),

 xlab="Proportion Missing (N=22)",ylab="Time (seconds)",

 main="Scalability of MCMC Estimation")

 58

###

#######################

TASK 7: Spatial Coherence Adjustment

###

#######################

Data.estim : raw data from RIATE with only

EUROSTAT/National estimates

NUTSData.completed : unadjusted MCMC estimates

NUTSData.adjusted <- NUTSData.completed

Copy the MCMC estimates

NUTSData.RIATE <- Data.estim

Copy the NA pattern

NUTSlevel <- nchar(rownames(NUTSData.RIATE)) - 2

recreate just in case

###

#######################

TASK 7A: Manual adjusment for Portugal (PT 1992:1995 missing)

Data.estim["PT",c("p1992","p1993","p1994","p1995")] is NA

should be sum of c("PT1","PT2","PT3")

"PT1" is c("PT11","PT15","PT16","PT17","PT18")

NUTSData.RIATE[substr(rownames(NUTSData.RIATE),1,2) == "PT" & NUTSlevel

<= 2,] # for a look

Fix PT1

for (year in c("p1992","p1993","p1994","p1995")) {

 NUTSData.adjusted["PT1",year] <-

sum(NUTSData.adjusted[c("PT11","PT15","PT16","PT17","PT18"),year])

 NUTSData.RIATE["PT1",year] <- NUTSData.adjusted["PT1",year]

update the NA pattern

}

Fix PT

for (year in c("p1992","p1993","p1994","p1995")) {

 NUTSData.adjusted["PT",year] <-

sum(NUTSData.adjusted[c("PT1","PT2","PT3"),year])

 NUTSData.RIATE["PT",year] <- NUTSData.adjusted["PT",year]

update the NA pattern

}

NUTSData.adjusted[substr(rownames(NUTSData.adjusted),1,2) == "PT" &

NUTSlevel <= 2,] # ... and check

NUTSData.RIATE[substr(rownames(NUTSData.RIATE),1,2) == "PT" & NUTSlevel

<= 2,] # ... and check

###

###################

TASK 7B: Apply spatial constraint for NUTSlevel nodes below

NUTSlevel-1

###

###################

parent: vector of parent node codes

 59

basic: matrix of data with NAs

unadjusted: matrix of totals from MCMC operation

dataCols: columns in which there are data

adjusted: output: adjusted NUTSlevel node populations

ConstrainTotals2 <- function(basic,unadjusted,dataCols) {

 NAPattern <- basic

working copy

 MCMCestimated <- unadjusted

working copy

 MCMCadjusted <- unadjusted

eventual output from function

 ### tree strcuture

 nodes <- rownames(NAPattern)

tree nodes

 parent <- substr(rownames(NAPattern),1,nchar(rownames(NAPattern))-1)

backtrack to link children

 NUTSlevel <- nchar(rownames(NAPattern))-2

NUTS level

 parent[which(NUTSlevel == 0)] <- ""

clean up

 Ny <- length(dataCols)

year span

 Years <- rep(0,Ny+3)

create Year list

 Years[dataCols] <- 1990:2011

 #

 # Start from the NUTS0 levels

 #

 for (Level in 0:2) {

 cat("\n\n")

cat("***\n")

 cat("* Cross-Sectional Time Series Constraint for NUTS

Level",Level,"*\n")

cat("***\n")

 Levelnodes <- nodes[which(NUTSlevel == Level)]

 NL <- length(Levelnodes)

 for (i in 1:NL) {

 children <- nodes[parent == Levelnodes[i]] #

NUTS1 children of the root

 cat("NUTS",(Level+1), "children of", Levelnodes[i], "are",

children,"\n")

 Nc <- length(children)

Number of children

 for (year in dataCols){

loop over the years

 any.missing <- which(is.na(NAPattern[children,year]))

which children have NA

 if (length(any.missing) == 0) {

... none missing

 #cat("** NUTS",(Level+1),"data for",Levelnodes[i],"children

are present in",Years[year],"\n")

 60

 } else {

... missing, so adjust

 valueParent <- MCMCestimated[Levelnodes[i],year]

parent contraint value

 childOK <- children

index of children

 if (!is.na(valueParent)) {

parent value not missing

 missingChild <- is.na(NAPattern[children,year])

missing children

 if (sum(missingChild) < Nc) {

 ChildOK <- !missingChild

... nonmissing children

 alreadyOK <-

sum(MCMCestimated[children[ChildOK],year]) # ... total for

nonmissing

 valueParent <- valueParent - alreadyOK

reduce constraint value

 }

 sumChildren <-

sum(MCMCestimated[children[missingChild],year]) # sum of MCMC

estimates

 MCMCadjusted[children[missingChild],year] <-

(valueParent/sumChildren) *

 MCMCadjusted[children[missingChild],year]

adjusted MCMC estimates

 cat("** NUTS",(Level+1),"data

for",Levelnodes[i],"children constrained in",Years[year],"\n")

 } else {

 #cat("** WARNING: missing data

for",Levelnodes[i],"Constraint not possible in",Years[year],"\n")

 }

 }

 }

 }

 }

 MCMCadjusted

}

Undertake adjustment, and report time

tic <- proc.time()

NUTSData.final <-

ConstrainTotals2(NUTSData.RIATE,NUTSData.completed,4:25) #### FINAL

OUTPUT ###

toc <- proc.time()-tic

cat("\nTime Required for adjustment was ",toc,"seconds\n\n")

###

##############################

###

##############################

 61

###

##############################

CheckConstraint <- function(parents,basic,dataCols) {

 NUTSCodes <- rownames(basic) # get the NUTD

codes of the parents

 Np <- length(parents) # how many NUTS2

regions

 for (parent in 1:Np) { # loop over the

NUTS regions

 NUTS3.units <- (nchar(NUTSCodes) == 5) & (substr(NUTSCodes,1,4)

== parents[parent])

 NUTS2.basic <- basic[parents[parent],] # just the

data for this parent

 NUTS3.basic <- basic[NUTS3.units,]

 NUTS3.this.node <- NUTSCodes[NUTS3.units] # NUTS codes for

this parent

 #cat(parents[parent],": ",NUTS3.this.node,"\n")

 N3 <- length(NUTS3.this.node)

 for (i in dataCols) {

 Nmiss <- length(which(is.na(NUTS3.basic[,i])))

 NUTS2.basic[i] <- round(100 * Nmiss / N3)

 }

 cat(parents[parent],":", unlist(NUTS2.basic[,dataCols]),"\n")

 }

}

CheckCountry <- function(Country,Data.estim) {

 CountryData <- Data.estim[substr(rownames(Data.estim),1,2) ==

Country,]

 PlotOrder <- dim(CountryData)[1]:1

reverse order for the heatmap

 parent <-

substr(rownames(CountryData),1,nchar(rownames(CountryData))-1)

 parent[1] <- ""

 NUTS <- rownames(CountryData)

 NUTS0 <- which(nchar(rownames(CountryData)) == 2)

 NUTS1 <- which(nchar(rownames(CountryData)) == 3)

 NUTS2 <- which(nchar(rownames(CountryData)) == 4)

 NUTS3 <- which(nchar(rownames(CountryData)) == 5)

 CheckConstraint(rownames(CountryData)[NUTS2],CountryData,4:25)

}

CheckCountry("AT",Data.estim)

CheckCountry("SI",Data.estim)

CheckCountry("UK",Data.estim)

#> levels(as.factor(substr(rownames(Data.estim),1,2)))

"AT" "BE" "BG" "CH" "CY" "CZ" "DE" "DK" "EE" "ES" "FI" "FR" "GR" "HR"

"HU"

"IE" "IS" "IT" "LI" "LT" "LU" "LV" "MK" "MT" "NL" "NO" "PL" "PT" "RO"

"SE"

"SI" "SK" "TR" "UK"

CountryList <- levels(as.factor(substr(rownames(Data.estim),1,2)))

 62

Nc <- length(CountryList)

#Nc <- 5

for (i in 1:Nc) {

 CheckCountry(CountryList[i],Data.estim)

}

CheckTree <- function(Country,Data.estim) {

 CountryData <- Data.estim[substr(rownames(Data.estim),1,2) ==

Country,]

 nodes <- rownames(CountryData)

 parent <-

substr(rownames(CountryData),1,nchar(rownames(CountryData))-1)

 parent[1] <- ""

 ### visit.node

 ### for each child(visit.node)

 ROOT <- which(nodes == Country)

 cat("\nTree Walk\n")

 root <- nodes[ROOT]

 cat("NUTS0 node is ",root,"\n")

 children1 <- nodes[parent == root]

 cat(" NUTS1 children of", root, "are", children1,"\n")

 Nc1 <- length(children1)

 for (i in 1:Nc1) {

 node2 <- children1[i]

 children2 <- nodes[parent == node2]

 cat(" NUTS2 children of", node2, "are", children2,"\n")

 Nc2 <- length(children2)

 for (j in 1:Nc2) {

 node3 <- children2[j]

 children3 <- nodes[parent == node3]

 cat(" NUTS3 children of", node3, "are",

children3,"\n")

 }

 }

}

CheckTree("AT",Data.estim)

CheckTree("UK",Data.estim)

###

#########

###

#########

###

#########

Check for singleton missings

CheckMissingPattern <- function(Country,Data,dataCols,verbose=FALSE) {

 CountryData <- Data[substr(rownames(Data),1,2) == Country,]

 IDInfo <- CountryData[,1:3]

 Nc <- dim(IDInfo)[1]

 Results <- data.frame(IDInfo[,1:3],matrix(0,Nc,8))

 rownames(Results) <- rownames(CountryData)

 63

 nodes <- rownames(CountryData)

 parent <-

substr(rownames(CountryData),1,nchar(rownames(CountryData))-1)

 parent[1] <- ""

 Nd <- length(dataCols)

 ### visit.node

 ### for each child(visit.node)

 ROOT <- which(nodes == Country)

 cat("\nTree Walk\n")

 root <- nodes[ROOT]

 if (verbose) cat("NUTS0 node is ",root,"\n")

 children1 <- nodes[parent == root]

 if (verbose) cat(" NUTS1 children of", root, "are",

children1,"\n")

 Nc1 <- length(children1)

 CasePattern <- CheckNode(root,children1,Data,dataCols)

 #cat("[",Nc1,"] children", CasePattern,"\n")

 Results[root,4:11] <- CasePattern

 for (i in 1:Nc1) {

 node2 <- children1[i]

 children2 <- nodes[parent == node2]

 if (verbose) cat(" NUTS2 children of", node2, "are",

children2,"\n")

 Nc2 <- length(children2)

 CasePattern <- CheckNode(node2,children2,Data,dataCols)

 #cat("[",Nc2,"] children", CasePattern,"\n")

 Results[node2,4:11] <- CasePattern

 for (j in 1:Nc2) {

 node3 <- children2[j]

 children3 <- nodes[parent == node3]

 if (verbose) cat(" NUTS3 children of", node3, "are",

children3,"\n")

 Nc3 <- length(children3)

 CasePattern <- CheckNode(node3,children3,Data,dataCols)

 Results[node3,4:11] <- CasePattern

 }

 }

 NUTSlevels <- lapply(Results[,2], as.character)

 print(Results[NUTSlevels <= "NUTS2",])

}

CheckNode <- function(parent,children,Data,dataCols){

 Nc <- length(children) #

How many children for this parent

 MissingParent <- Data[parent,] #

Copy parent record (we'll use data cols)

 Result <- Data[parent,] #

Create result record

 Cases <- rep(0,8) # 8

possible outcomes

 for (i in dataCols) { #

loop over time period for this parent

 64

 MissingParent[i] <- is.na(Data[parent,i]) #

Is parent missing for this year

 Result[i] <- length(which(is.na(Data[children,i]))) #

Number of children missing for this year

 if (!MissingParent[i]) {

 if (Result[i] == 0) k <- 1 #

Parent present, no children missing - nothing to do!

 else if (Result[i] == 1) k <- 3 #

Parent present, 1 child missing (embarassingly estimatable)

 else if (Result[i] > 1 & Result[i] < Nc) k <- 4 #

Parent present, some children missing - estimate/constrain

 else k <- 5 #

Present present, all children missing - estimate/constrain

 } else {

 if (Result[i] == 0) k <- 2 #

Parent missing, no children missing (estimate parent!)

 else if (Result[i] == 1) k <- 6 #

Parent missing, 1 child missing - awkward

 else if (Result[i] > 1 & Result[i] < Nc) k <- 7 #

Parent missing, some children missing - awkward

 else k <- 8 #

Parent missing, all children missing - awkward

 }

 Cases[k] <- Cases[k] + 1 #

update counter

 }

 Cases

} #

Return counter vector

CheckMissingPattern("AT",Data.estim,4:25)

#> levels(as.factor(substr(rownames(Data.estim),1,2)))

"AT" "BE" "BG" "CH" "CY" "CZ" "DE" "DK" "EE" "ES" "FI" "FR" "GR" "HR"

"HU"

"IE" "IS" "IT" "LI" "LT" "LU" "LV" "MK" "MT" "NL" "NO" "PL" "PT" "RO"

"SE"

"SI" "SK" "TR" "UK"

CountryList <- levels(as.factor(substr(rownames(Data.estim),1,2)))

Nc <- length(CountryList)

for (i in 1:Nc) {

 CheckMissingPattern(CountryList[i],Data.estim, 4:25)

}

###

##########

TASK X Austria

###

##########

 65

nodes <- rownames(Data.estim)

NUTSlevel <- nchar(nodes) - 2

parents <- substr(nodes,1,(NUTSlevel+1))

AT21children <- nodes[which(parents == "AT21")]

Names <- as.character(Data.estim[AT21children,3])

AT21MCMCout <- as.matrix(Austria.final[AT21children,4:25]) #

MCMC outputs

AT21totals <- colSums(AT21MCMCout) #

AT21 totals from MCMC

AT21factor <- as.numeric(Data.estim["AT21",4:25]) / AT21totals #

adjustment factors

AT21adjusted <- round(sweep(AT21MCMCout,2,AT21factor,"*"),0) #

sweep down rows

colSums(AT21adjusted) - Data.estim["AT21",4:25] #

and check

par(mfrow=c(3,1))

for (i in 1:length(AT21children)) {

 NUTS3zone <- AT21children[i]

 mindata <- min(AT21MCMCout[i,],AT21adjusted[NUTS3zone,]) * 0.95

 maxdata <- max(AT21MCMCout[i,],AT21adjusted[NUTS3zone,]) * 1.05

plot(1990:2011,AT21MCMCout[i,],col="darkgrey",type="l",xlab="Year",ylab

=NA,

 ylim=c(mindata,maxdata), main=paste(NUTS3zone,Names[i]),lty=2)

 lines(1990:2011,AT21adjusted[NUTS3zone,],col="red",lty=1)

 lines(1990:2011,Data.estim[NUTS3zone,4:25],col="darkgrey")

 points(1990:2011,Data.estim[NUTS3zone,4:25],pch=16,col="darkgrey")

}

par(mfrow=c(1,1))

###

##########

MONTE CARLO VARIABILITY

###

##########

Random normal variates

par(mfrow=c(3,3))

for (i in c(100,500,1000,5000,10000,50000,100000,500000,1000000)) {

 hist(rnorm(i,0,1),breaks=100,xlim=c(-

4,4),col="grey",border=NA,main=paste("N=",i,sep=""),xlab=NA,ylab=NA)

}

par(mfrow=c(1,1))

Random gamma

par(mfrow=c(3,3))

for (i in c(100,500,1000,5000,10000,50000,100000,500000,1000000)) {

hist(rgamma(i,50),breaks=100,xlim=c(20,80),col="grey",border=NA,main=pa

ste("N=",i,sep=""),xlab=NA,ylab=NA)

 66

}

par(mfrow=c(1,1))

random beta

par(mfrow=c(3,3))

for (i in c(100,500,1000,5000,10000,50000,100000,500000,1000000)) {

hist(rbeta(i,1,1),breaks=100,xlim=c(0,1),col="grey",border=NA,main=past

e("N=",i,sep=""),xlab=NA,ylab=NA)

}

par(mfrow=c(1,1))

mtulivariate normal

Sigma <- matrix(c(10,3,3,2),2,2)

Sigma

par(mfrow=c(3,3))

for (i in c(100,300,750, 1000,3000,7500, 10000,30000,75000)) {

 x <- mvrnorm(n=i, c(0,0), Sigma)

 plot(x ,col="grey",pch=16, xlim=c(-15,15),ylim=c(-6,6),

main=paste("N=",i,sep=""),xlab=NA,ylab=NA)

 lines(lowess(x),col="red")

}

par(mfrow=c(1,1))

changing precision

par(mfrow=c(3,3))

tau <- c(0.25,1,4, 16,64,256, 1024, 4096, 16384)

for (i in 1:9) {

hist(rnorm(10000,10,1/sqrt(tau[i])),breaks=100,xlim=c(6,14),col="red",b

order="red",main=paste("Tau=",tau[i],sep=""),xlab=NA,ylab=NA)

}

par(mfrow=c(1,1))

non-informative prior

par(mfrow=c(3,3))

tau <- 4^(-(0:8))

for (i in 1:9) {

 hist(rnorm(10000,0,1/sqrt(tau[i])),breaks=100,xlim=c(-

20,20),col="red",border="red",main=paste("Tau=",format(tau[i],digits=3)

,sep=""),xlab=NA,ylab=NA)

}

par(mfrow=c(1,1))

 67

Appendix 3: Core Imputation Function

ESPON M4D Multidimensional Database Design and Development

Time Series Estimation

Missing Data Imputation Function

Authors:

Martin Charlton and Chris Brunsdon

Address:

National Centre for Geocomputation

National University of Ireland, Maynooth

Maynooth, Co Kildare, IRELAND

V1.01: June 2014

(c) ESPON

Code is made avilable under the GNU GENERAL PUBLIC LICENSE, Version 3

Text of the License is at http://www.gnu.org/licenses/gpl.txt

Fit estimate missing values in a time series using MCMC with a quadratic

trend model

Input:

pop: series with Missing data (represented by NA)

years: date range for input series

missing: indices of missing data

yscale: scaling for pop variable (to keep values reasonabley small)

burnin.iters: number of burn-in iterations (default 250000)

coda.iters: number of iterations for estimation (default 100000)

Output:

fitted.model coda.samples rjags output object

ImputeMissingData <-

function(pop,years,missing,yscale=1,burnin.iters=250000,coda.iters=100000,chains=1)

{

 ###

 ### Create the regressands for the linear and quadratic trend terms

 ###

 gyear <- 1:length(years) # linear term

 gyear2 <- gyear^2 # quadratic term

 ###

 ### Load the correct JAGS code - different cdoe is required when there is

 ### only one NA. This is an R issue

 ###

 68

 if (length(missing) == 1) {

 tfile = "tfile2.JAGS" # estimator for data with a single NA

 } else {

 tfile = "tfile1.JAGS" # estimator for data with multiple NAs

 }

 ###

 ### Initialisation

 ###

 ### present: indices of the non-missing data

 ### y: time series - the regressor

 ### N: number of terms in the series (both missing and present)

 ### ys: present data

 ### ym: missing data

 ###

 present <- setdiff(gyear,missing) # indices of non-missing data

 y <- pop/yscale # scale the y if necessary

 N <- length(y) # length of the series

 ys <- y[present] # present data values

 ym <- y[missing] # missing data

 ###

 ### Initialise the JAGS input

 ### popdata: list which is used to pass data to JAGS

 ### N: length of the time series

 ### ys: non-missing data values

 ### seen: indices of the non-missing data

 ### missing: indices of the missing data

 ### year: linear regressand

 ### yearsq: quadratic regressand

 ###

 popdata <- list(N=N, ys=ys, seen=present, missing=missing, year=gyear,

yearsq=gyear2)

 ###

 ### Fit an OLS model to provide some plausible starting values for the

coefficients

 ###

 xx <- coef(mdl <- lm(y~gyear+gyear2))

 ###

 ### Load the model

 ### m: rjags object containign the model

 ### file: JAGS code for the MCMC model

 ### data: list of data and regressands for the model

 ### inits: initial values for the parameters

 ### .RNG.name: random number generator to be used

 ### .RNG.seed: random number generator seed (for reproducibility)

 ### n.chains: number of Markov chains to use

 ###

 if (chains == 1) {

 m <- jags.model(file=tfile,

 data=popdata,

 inits=list(b0=xx[1],b1=xx[2],b2=xx[3],

 .RNG.name='base::Mersenne-Twister',.RNG.seed=290162),

 n.chains=1)

 } else {

 m <- jags.model(file=tfile,

 data=popdata,

 inits=list(b0=xx[1],b1=xx[2],b2=xx[3]),

 n.chains=chains)

 }

 ###

 ### Initial burn-in - these results are discarded. Default is 250000 iterations

 ###

 update(m, n.iter=burnin.iters)

 69

 ###

 ### Fit the model - output is and mcmc.list object which is returned from the

function

 ###

 coda.samples(m, n.iter=coda.iters, thin=5, variable.names =

c("ym","b0","b1","b2","rho","s2err"))

}

 70

Appendix 4: JAGS code for MCMC (multiple NAs)

ESPON M4D Multidimensional Database Design and Development

Time Series Estimation

MCMC estimation of time series with missing data [tfile1: several NA values]

Authors:

Martin Charlton and Chris Brunsdon

Address:

National Centre for Geocomputation

National University of Ireland, Maynooth

Maynooth, Co Kildare, IRELAND

V1.01: June 2014

Copyright

Code is made avilable under the GNU GENERAL PUBLIC LICENSE, Version 3

Text of the License is at http://www.gnu.org/licenses/gpl.txt

model

{

 # Prior distributions

 b0 ~ dnorm(0.0, 0.000001) # intercept

 b1 ~ dnorm(0.0, 0.000001) # linear coefficient on time

 b2 ~ dnorm(0.0, 0.000001) # quadratic time term

 s2err ~ dgamma(1,50)

 #rho ~ dbeta(0.5, 0.5)

 rho ~ dbeta(10,10) # AR(1) parameter

 # Trend component

 for(i in 1:N) {

 mu[i] <- b0 + b1*year[i] +b2*yearsq[i]

 }

 # Autocorrelation component

 for(i in 1:N) {

 for (j in 1:N) {

 tdmat[i,j] <- s2err*rho^abs(i-j)

 }}

 for (i in 1:length(seen)) {

 for (j in 1:length(seen)) {

 tdmat22[i,j] <- tdmat[seen[i],seen[j]]

 }}

 itdmat22 <- inverse(tdmat22)

 71

 for (i in 1:length(missing)) {

 for (j in 1:length(missing)) {

 tdmat11[i,j] <- tdmat[missing[i],missing[j]]

 }}

 itdmat11 <- inverse(tdmat11)

 for (i in 1:length(missing)) {

 for (j in 1:length(seen)) {

 tdmat12[i,j] <- tdmat[missing[i],seen[j]]

 }}

 for (i in 1:length(seen)) {

 for (j in 1:length(missing)) {

 tdmat21[i,j] <- tdmat[seen[i],missing[j]]

 }}

 for (i in 1:length(seen)) {

 mu2[i] <- mu[seen[i]]

 }

 for (i in 1:length(missing)) {

 mu1[i] <- mu[missing[i]]

 }

 OmegaM <- inverse(tdmat11 - tdmat12 %*% itdmat22 %*% tdmat21)

 muM <- mu1 + tdmat12 %*% itdmat22 %*% (ys - mu2)

 ys ~ dmnorm(mu2,itdmat22) # non-missing data

 ym ~ dmnorm(muM, OmegaM) # missing data

}

 72

Appendix 5: JAGS code for MCMC (single NA)

ESPON M4D Multidimensional Database Design and Development

Time Series Estimation

MCMC estimation of time series with missing data [tfile2: single NA value]

Authors:

Martin Charlton and Chris Brunsdon

Address:

National Centre for Geocomputation

National University of Ireland, Maynooth

Maynooth, Co Kildare, IRELAND

V1.01: June 2014

Copyright

Code is made avilable under the GNU GENERAL PUBLIC LICENSE, Version 3

Text of the License is at http://www.gnu.org/licenses/gpl.txt

model

{

 # Prior distributions

 b0 ~ dnorm(0.0, 0.000001)

 b1 ~ dnorm(0.0, 0.000001)

 b2 ~ dnorm(0.0, 0.000001)

 s2err ~ dgamma(1,50)

 #rho ~ dbeta(0.5, 0.5)

 rho ~ dbeta(10,10)

 # Trend component

 for(i in 1:N) {

 mu[i] <- b0 + b1*year[i] +b2*yearsq[i]

 # mu[i] <- b0 + b1*i

 }

 # Autocorrelation component

 for(i in 1:N) {

 for (j in 1:N) {

 tdmat[i,j] <- s2err*rho^abs(i-j)

 }

 }

 for (i in 1:length(seen)) {

 for (j in 1:length(seen)) {

 tdmat22[i,j] <- tdmat[seen[i],seen[j]]

 }}

 73

 itdmat22 <- inverse(tdmat22)

 tdmat11 <- tdmat[missing,missing]

 itdmat11 <- 1.0/tdmat11

 for (j in 1:length(seen)) {

 tdmat12[j] <- tdmat[missing,seen[j]]

 }

 for (i in 1:length(seen)) {

 tdmat21[i] <- tdmat[seen[i],missing]

 }

 for (i in 1:length(seen)) {

 mu2[i] <- mu[seen[i]]

 }

 for (i in 1:length(seen)) {

 for (j in 1:length(seen)) {

 oprod12[i,j] <- tdmat12[i] * tdmat21[j]

 }

 }

 mu1 <- mu[missing]

 OmegaM <- 1.0/(tdmat11 - inprod(tdmat12,itdmat22 %*% tdmat21))

 muM <- mu1 + inprod(tdmat12, itdmat22 %*% (ys - mu2))

 ys ~ dmnorm(mu2,itdmat22)

 ym ~ dnorm(muM, OmegaM)

}

 74

Appendix 6: NUTS0/1/2 Missing Data

Seq Missing Name NUTS Code

 28 4 Portugal PT

 33 16 Turkey TR

 34 21 United Kingdom UK

 81 2 Départements d'outre-mer (FR) FR9

105 1 West-Nederland NL3

108 1 Region Centralny PL1

109 1 Region Poludniowy PL2

110 1 Region Wschodni PL3

111 1 Region Pólnocno-Zachodni PL4

112 1 Region Poludniowo-Zachodni PL5

113 1 Region Pólnocny PL6

114 6 Continente PT1

115 2 Região Autónoma dos Açores (PT) PT2

116 2 Região Autónoma da Madeira (PT) PT3

126 16 Istanbul TR1

127 16 Bati Marmara TR2

128 16 Ege TR3

129 16 Dogu Marmara TR4

130 16 Bati Anadolu TR5

131 16 Akdeniz TR6

132 16 Orta Anadolu TR7

133 16 Bati Karadeniz TR8

134 16 Dogu Karadeniz TR9

135 16 Kuzeydogu Anadolu TRA

136 16 Ortadogu Anadolu TRB

137 16 Güneydogu Anadolu TRC

138 21 North East (UK) UKC

139 21 North West (UK) UKD

140 22 Yorkshire and The Humber UKE

141 22 East Midlands (UK) UKF

142 21 West Midlands (UK) UKG

143 22 East of England UKH

144 22 London UKI

145 21 South East (UK) UKJ

146 22 South West (UK) UKK

147 22 Wales UKL

148 11 Scotland UKM

149 11 Northern Ireland (UK) UKN

184 2 Praha CZ01

185 2 Strední Cechy CZ02

186 2 Jihozápad CZ03

187 2 Severozápad CZ04

188 2 Severovýchod CZ05

189 2 Jihovýchod CZ06

190 2 Strední Morava CZ07

191 2 Moravskoslezsko CZ08

204 5 Brandenburg - Nordost DE41

205 5 Brandenburg - Südwest DE42

225 5 Chemnitz DED1

226 5 Dresden DED2

227 5 Leipzig DED3

231 17 Hovedstaden DK01

232 17 Sjælland DK02

233 17 Syddanmark DK03

234 17 Midtjylland DK04

235 17 Nordjylland DK05

300 11 Sjeverozapadna Hrvatska HR01

301 11 Sredisnja i Istocna (Panonska) Hrvatska HR02

302 11 Jadranska Hrvatska HR03

310 7 Border, Midland and Western IE01

311 7 Southern and Eastern IE02

 75

359 1 Lódzkie PL11

360 1 Mazowieckie PL12

361 1 Malopolskie PL21

362 1 Slaskie PL22

363 1 Lubelskie PL31

364 1 Podkarpackie PL32

365 1 Swietokrzyskie PL33

366 1 Podlaskie PL34

367 1 Wielkopolskie PL41

368 1 Zachodniopomorskie PL42

369 1 Lubuskie PL43

370 1 Dolnoslaskie PL51

371 1 Opolskie PL52

372 1 Kujawsko-Pomorskie PL61

373 1 Warminsko-Mazurskie PL62

374 1 Pomorskie PL63

375 2 Norte PT11

376 2 Algarve PT15

377 2 Centro (PT) PT16

378 2 Lisboa PT17

379 2 Alentejo PT18

380 2 Região Autónoma dos Açores (PT) PT20

381 2 Região Autónoma da Madeira (PT) PT30

400 6 Bratislavský kraj SK01

401 6 Západné Slovensko SK02

402 6 Stredné Slovensko SK03

403 6 Východné Slovensko SK04

404 16 Istanbul TR10

405 16 Tekirdag TR21

406 16 Balikesir TR22

407 16 Izmir TR31

408 16 Aydin TR32

409 16 Manisa TR33

410 16 Bursa TR41

411 16 Kocaeli TR42

412 16 Ankara TR51

413 16 Konya TR52

414 16 Antalya TR61

415 16 Adana TR62

416 16 Hatay TR63

417 16 Kirikkale TR71

418 16 Kayseri TR72

419 16 Zonguldak TR81

420 16 Kastamonu TR82

421 16 Samsun TR83

422 16 Trabzon TR90

423 16 Erzurum TRA1

424 16 Agri TRA2

425 16 Malatya TRB1

426 16 Van TRB2

427 16 Gaziantep TRC1

428 16 Sanliurfa TRC2

429 16 Mardin TRC3

430 13 Tees Valley and Durham UKC1

431 14 Northumberland and Tyne and Wear UKC2

432 14 Cumbria UKD1

433 13 Cheshire UKD2

434 13 Greater Manchester UKD3

435 13 Lancashire UKD4

436 14 Merseyside UKD5

437 14 East Yorkshire and Northern Lincolnshire UKE1

438 14 North Yorkshire UKE2

439 13 South Yorkshire UKE3

440 14 West Yorkshire UKE4

441 14 Derbyshire and Nottinghamshire UKF1

442 14 Leicestershire, Rutland and Northamptonshire UKF2

443 14 Lincolnshire UKF3

444 13 Herefordshire, Worcestershire and Warwickshire UKG1

445 14 Shropshire and Staffordshire UKG2

446 14 West Midlands UKG3

447 14 East Anglia UKH1

448 14 Bedfordshire and Hertfordshire UKH2

449 13 Essex UKH3

450 14 Inner London UKI1

 76

451 14 Outer London UKI2

452 13 Berkshire, Buckinghamshire and Oxfordshire UKJ1

453 14 Surrey, East and West Sussex UKJ2

454 14 Hampshire and Isle of Wight UKJ3

455 13 Kent UKJ4

456 13 Gloucestershire, Wiltshire and Bristol/Bath area UKK1

457 13 Dorset and Somerset UKK2

458 13 Cornwall and Isles of Scilly UKK3

459 13 Devon UKK4

460 13 West Wales and The Valleys UKL1

461 13 East Wales UKL2

462 22 Eastern Scotland UKM2

463 21 South Western Scotland UKM3

464 21 North Eastern Scotland UKM5

465 21 Highlands and Islands UKM6

466 11 Northern Ireland (UK) UKN0

 77

Appendix 7: Missing Data HeatMaps

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

 100

 101

 102

 103

 104

 105

 106

 107

 108

 109

 110

 111

 112

Appendix 8: Coherence Constraint Output

Note: the listing for the NUTS2 constraint of their contained NUTS3 regions is
somewhat lengthy, and most lines have been omitted.

* Cross-Sectional Time Series Constraint for NUTS Level 0 *

NUTS 1 children of AT are AT1 AT2 AT3

NUTS 1 children of BE are BE1 BE2 BE3

NUTS 1 children of BG are BG3 BG4

NUTS 1 children of CH are CH0

NUTS 1 children of CY are CY0

NUTS 1 children of CZ are CZ0

NUTS 1 children of DE are DE1 DE2 DE3 DE4 DE5 DE6 DE7 DE8 DE9 DEA DEB DEC DED DEE

DEF DEG

NUTS 1 children of DK are DK0

NUTS 1 children of EE are EE0

NUTS 1 children of ES are ES1 ES2 ES3 ES4 ES5 ES6 ES7

NUTS 1 children of FI are FI1 FI2

NUTS 1 children of FR are FR1 FR2 FR3 FR4 FR5 FR6 FR7 FR8 FR9

** NUTS 1 data for FR children constrained in 2010

** NUTS 1 data for FR children constrained in 2011

NUTS 1 children of GR are GR1 GR2 GR3 GR4

NUTS 1 children of HR are HR0

NUTS 1 children of HU are HU1 HU2 HU3

NUTS 1 children of IE are IE0

NUTS 1 children of IS are IS0

NUTS 1 children of IT are ITC ITD ITE ITF ITG

NUTS 1 children of LI are LI0

NUTS 1 children of LT are LT0

NUTS 1 children of LU are LU0

NUTS 1 children of LV are LV0

NUTS 1 children of MK are MK0

NUTS 1 children of MT are MT0

NUTS 1 children of NL are NL1 NL2 NL3 NL4

** NUTS 1 data for NL children constrained in 2010

NUTS 1 children of NO are NO0

NUTS 1 children of PL are PL1 PL2 PL3 PL4 PL5 PL6

** NUTS 1 data for PL children constrained in 1990

NUTS 1 children of PT are PT1 PT2 PT3

** NUTS 1 data for PT children constrained in 1990

** NUTS 1 data for PT children constrained in 1991

NUTS 1 children of RO are RO1 RO2 RO3 RO4

NUTS 1 children of SE are SE1 SE2 SE3

NUTS 1 children of SI are SI0

NUTS 1 children of SK are SK0

NUTS 1 children of TR are TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9 TRA TRB TRC

** NUTS 1 data for TR children constrained in 1991

** NUTS 1 data for TR children constrained in 1992

** NUTS 1 data for TR children constrained in 1993

** NUTS 1 data for TR children constrained in 1994

** NUTS 1 data for TR children constrained in 1995

** NUTS 1 data for TR children constrained in 1996

** NUTS 1 data for TR children constrained in 1997

** NUTS 1 data for TR children constrained in 1998

** NUTS 1 data for TR children constrained in 1999

** NUTS 1 data for TR children constrained in 2001

** NUTS 1 data for TR children constrained in 2002

** NUTS 1 data for TR children constrained in 2003

** NUTS 1 data for TR children constrained in 2004

 113

** NUTS 1 data for TR children constrained in 2005

** NUTS 1 data for TR children constrained in 2006

** NUTS 1 data for TR children constrained in 2007

NUTS 1 children of UK are UKC UKD UKE UKF UKG UKH UKI UKJ UKK UKL UKM UKN

** NUTS 1 data for UK children constrained in 2011

* Cross-Sectional Time Series Constraint for NUTS Level 1 *

NUTS 2 children of AT1 are AT11 AT12 AT13

NUTS 2 children of AT2 are AT21 AT22

NUTS 2 children of AT3 are AT31 AT32 AT33 AT34

NUTS 2 children of BE1 are BE10

NUTS 2 children of BE2 are BE21 BE22 BE23 BE24 BE25

NUTS 2 children of BE3 are BE31 BE32 BE33 BE34 BE35

NUTS 2 children of BG3 are BG31 BG32 BG33 BG34

NUTS 2 children of BG4 are BG41 BG42

NUTS 2 children of CH0 are CH01 CH02 CH03 CH04 CH05 CH06 CH07

NUTS 2 children of CY0 are CY00

NUTS 2 children of CZ0 are CZ01 CZ02 CZ03 CZ04 CZ05 CZ06 CZ07 CZ08

** NUTS 2 data for CZ0 children constrained in 1990

** NUTS 2 data for CZ0 children constrained in 1991

NUTS 2 children of DE1 are DE11 DE12 DE13 DE14

NUTS 2 children of DE2 are DE21 DE22 DE23 DE24 DE25 DE26 DE27

NUTS 2 children of DE3 are DE30

NUTS 2 children of DE4 are DE41 DE42

** NUTS 2 data for DE4 children constrained in 1990

** NUTS 2 data for DE4 children constrained in 1991

** NUTS 2 data for DE4 children constrained in 1992

** NUTS 2 data for DE4 children constrained in 1993

** NUTS 2 data for DE4 children constrained in 1994

NUTS 2 children of DE5 are DE50

NUTS 2 children of DE6 are DE60

NUTS 2 children of DE7 are DE71 DE72 DE73

NUTS 2 children of DE8 are DE80

NUTS 2 children of DE9 are DE91 DE92 DE93 DE94

NUTS 2 children of DEA are DEA1 DEA2 DEA3 DEA4 DEA5

NUTS 2 children of DEB are DEB1 DEB2 DEB3

NUTS 2 children of DEC are DEC0

NUTS 2 children of DED are DED1 DED2 DED3

** NUTS 2 data for DED children constrained in 1990

** NUTS 2 data for DED children constrained in 1991

** NUTS 2 data for DED children constrained in 1992

** NUTS 2 data for DED children constrained in 1993

** NUTS 2 data for DED children constrained in 1994

NUTS 2 children of DEE are DEE0

NUTS 2 children of DEF are DEF0

NUTS 2 children of DEG are DEG0

NUTS 2 children of DK0 are DK01 DK02 DK03 DK04 DK05

** NUTS 2 data for DK0 children constrained in 1990

** NUTS 2 data for DK0 children constrained in 1991

** NUTS 2 data for DK0 children constrained in 1992

** NUTS 2 data for DK0 children constrained in 1993

** NUTS 2 data for DK0 children constrained in 1994

** NUTS 2 data for DK0 children constrained in 1995

** NUTS 2 data for DK0 children constrained in 1996

** NUTS 2 data for DK0 children constrained in 1997

** NUTS 2 data for DK0 children constrained in 1998

** NUTS 2 data for DK0 children constrained in 1999

** NUTS 2 data for DK0 children constrained in 2000

** NUTS 2 data for DK0 children constrained in 2001

** NUTS 2 data for DK0 children constrained in 2002

** NUTS 2 data for DK0 children constrained in 2003

** NUTS 2 data for DK0 children constrained in 2004

** NUTS 2 data for DK0 children constrained in 2005

** NUTS 2 data for DK0 children constrained in 2006

NUTS 2 children of EE0 are EE00

 114

NUTS 2 children of ES1 are ES11 ES12 ES13

NUTS 2 children of ES2 are ES21 ES22 ES23 ES24

NUTS 2 children of ES3 are ES30

NUTS 2 children of ES4 are ES41 ES42 ES43

NUTS 2 children of ES5 are ES51 ES52 ES53

NUTS 2 children of ES6 are ES61 ES62 ES63 ES64

NUTS 2 children of ES7 are ES70

NUTS 2 children of FI1 are FI13 FI18 FI19 FI1A

NUTS 2 children of FI2 are FI20

NUTS 2 children of FR1 are FR10

NUTS 2 children of FR2 are FR21 FR22 FR23 FR24 FR25 FR26

NUTS 2 children of FR3 are FR30

NUTS 2 children of FR4 are FR41 FR42 FR43

NUTS 2 children of FR5 are FR51 FR52 FR53

NUTS 2 children of FR6 are FR61 FR62 FR63

NUTS 2 children of FR7 are FR71 FR72

NUTS 2 children of FR8 are FR81 FR82 FR83

NUTS 2 children of FR9 are FR91 FR92 FR93 FR94

NUTS 2 children of GR1 are GR11 GR12 GR13 GR14

NUTS 2 children of GR2 are GR21 GR22 GR23 GR24 GR25

NUTS 2 children of GR3 are GR30

NUTS 2 children of GR4 are GR41 GR42 GR43

NUTS 2 children of HR0 are HR01 HR02 HR03

** NUTS 2 data for HR0 children constrained in 1990

** NUTS 2 data for HR0 children constrained in 1992

** NUTS 2 data for HR0 children constrained in 1993

** NUTS 2 data for HR0 children constrained in 1994

** NUTS 2 data for HR0 children constrained in 1995

** NUTS 2 data for HR0 children constrained in 1996

** NUTS 2 data for HR0 children constrained in 1997

** NUTS 2 data for HR0 children constrained in 1998

** NUTS 2 data for HR0 children constrained in 1999

** NUTS 2 data for HR0 children constrained in 2000

** NUTS 2 data for HR0 children constrained in 2001

NUTS 2 children of HU1 are HU10

NUTS 2 children of HU2 are HU21 HU22 HU23

NUTS 2 children of HU3 are HU31 HU32 HU33

NUTS 2 children of IE0 are IE01 IE02

** NUTS 2 data for IE0 children constrained in 1990

** NUTS 2 data for IE0 children constrained in 1991

** NUTS 2 data for IE0 children constrained in 1992

** NUTS 2 data for IE0 children constrained in 1993

** NUTS 2 data for IE0 children constrained in 1994

** NUTS 2 data for IE0 children constrained in 1995

** NUTS 2 data for IE0 children constrained in 1996

NUTS 2 children of IS0 are IS00

NUTS 2 children of ITC are ITC1 ITC2 ITC3 ITC4

NUTS 2 children of ITD are ITD1 ITD2 ITD3 ITD4 ITD5

NUTS 2 children of ITE are ITE1 ITE2 ITE3 ITE4

NUTS 2 children of ITF are ITF1 ITF2 ITF3 ITF4 ITF5 ITF6

NUTS 2 children of ITG are ITG1 ITG2

NUTS 2 children of LI0 are LI00

NUTS 2 children of LT0 are LT00

NUTS 2 children of LU0 are LU00

NUTS 2 children of LV0 are LV00

NUTS 2 children of MK0 are MK00

NUTS 2 children of MT0 are MT00

NUTS 2 children of NL1 are NL11 NL12 NL13

NUTS 2 children of NL2 are NL21 NL22 NL23

NUTS 2 children of NL3 are NL31 NL32 NL33 NL34

NUTS 2 children of NL4 are NL41 NL42

NUTS 2 children of NO0 are NO01 NO02 NO03 NO04 NO05 NO06 NO07

NUTS 2 children of PL1 are PL11 PL12

** NUTS 2 data for PL1 children constrained in 1990

NUTS 2 children of PL2 are PL21 PL22

** NUTS 2 data for PL2 children constrained in 1990

NUTS 2 children of PL3 are PL31 PL32 PL33 PL34

** NUTS 2 data for PL3 children constrained in 1990

 115

NUTS 2 children of PL4 are PL41 PL42 PL43

** NUTS 2 data for PL4 children constrained in 1990

NUTS 2 children of PL5 are PL51 PL52

** NUTS 2 data for PL5 children constrained in 1990

NUTS 2 children of PL6 are PL61 PL62 PL63

** NUTS 2 data for PL6 children constrained in 1990

NUTS 2 children of PT1 are PT11 PT15 PT16 PT17 PT18

** NUTS 2 data for PT1 children constrained in 1990

** NUTS 2 data for PT1 children constrained in 1991

NUTS 2 children of PT2 are PT20

** NUTS 2 data for PT2 children constrained in 1990

** NUTS 2 data for PT2 children constrained in 1991

NUTS 2 children of PT3 are PT30

** NUTS 2 data for PT3 children constrained in 1990

** NUTS 2 data for PT3 children constrained in 1991

NUTS 2 children of RO1 are RO11 RO12

NUTS 2 children of RO2 are RO21 RO22

NUTS 2 children of RO3 are RO31 RO32

NUTS 2 children of RO4 are RO41 RO42

NUTS 2 children of SE1 are SE11 SE12

NUTS 2 children of SE2 are SE21 SE22 SE23

NUTS 2 children of SE3 are SE31 SE32 SE33

NUTS 2 children of SI0 are SI01 SI02

NUTS 2 children of SK0 are SK01 SK02 SK03 SK04

** NUTS 2 data for SK0 children constrained in 1990

** NUTS 2 data for SK0 children constrained in 1991

** NUTS 2 data for SK0 children constrained in 1992

** NUTS 2 data for SK0 children constrained in 1993

** NUTS 2 data for SK0 children constrained in 1994

** NUTS 2 data for SK0 children constrained in 1995

NUTS 2 children of TR1 are TR10

** NUTS 2 data for TR1 children constrained in 1991

** NUTS 2 data for TR1 children constrained in 1992

** NUTS 2 data for TR1 children constrained in 1993

** NUTS 2 data for TR1 children constrained in 1994

** NUTS 2 data for TR1 children constrained in 1995

** NUTS 2 data for TR1 children constrained in 1996

** NUTS 2 data for TR1 children constrained in 1997

** NUTS 2 data for TR1 children constrained in 1998

** NUTS 2 data for TR1 children constrained in 1999

** NUTS 2 data for TR1 children constrained in 2001

** NUTS 2 data for TR1 children constrained in 2002

** NUTS 2 data for TR1 children constrained in 2003

** NUTS 2 data for TR1 children constrained in 2004

** NUTS 2 data for TR1 children constrained in 2005

** NUTS 2 data for TR1 children constrained in 2006

** NUTS 2 data for TR1 children constrained in 2007

NUTS 2 children of TR2 are TR21 TR22

** NUTS 2 data for TR2 children constrained in 1991

** NUTS 2 data for TR2 children constrained in 1992

** NUTS 2 data for TR2 children constrained in 1993

** NUTS 2 data for TR2 children constrained in 1994

** NUTS 2 data for TR2 children constrained in 1995

** NUTS 2 data for TR2 children constrained in 1996

** NUTS 2 data for TR2 children constrained in 1997

** NUTS 2 data for TR2 children constrained in 1998

** NUTS 2 data for TR2 children constrained in 1999

** NUTS 2 data for TR2 children constrained in 2001

** NUTS 2 data for TR2 children constrained in 2002

** NUTS 2 data for TR2 children constrained in 2003

** NUTS 2 data for TR2 children constrained in 2004

** NUTS 2 data for TR2 children constrained in 2005

** NUTS 2 data for TR2 children constrained in 2006

** NUTS 2 data for TR2 children constrained in 2007

NUTS 2 children of TR3 are TR31 TR32 TR33

** NUTS 2 data for TR3 children constrained in 1991

** NUTS 2 data for TR3 children constrained in 1992

** NUTS 2 data for TR3 children constrained in 1993

 116

** NUTS 2 data for TR3 children constrained in 1994

** NUTS 2 data for TR3 children constrained in 1995

** NUTS 2 data for TR3 children constrained in 1996

** NUTS 2 data for TR3 children constrained in 1997

** NUTS 2 data for TR3 children constrained in 1998

** NUTS 2 data for TR3 children constrained in 1999

** NUTS 2 data for TR3 children constrained in 2001

** NUTS 2 data for TR3 children constrained in 2002

** NUTS 2 data for TR3 children constrained in 2003

** NUTS 2 data for TR3 children constrained in 2004

** NUTS 2 data for TR3 children constrained in 2005

** NUTS 2 data for TR3 children constrained in 2006

** NUTS 2 data for TR3 children constrained in 2007

NUTS 2 children of TR4 are TR41 TR42

** NUTS 2 data for TR4 children constrained in 1991

** NUTS 2 data for TR4 children constrained in 1992

** NUTS 2 data for TR4 children constrained in 1993

** NUTS 2 data for TR4 children constrained in 1994

** NUTS 2 data for TR4 children constrained in 1995

** NUTS 2 data for TR4 children constrained in 1996

** NUTS 2 data for TR4 children constrained in 1997

** NUTS 2 data for TR4 children constrained in 1998

** NUTS 2 data for TR4 children constrained in 1999

** NUTS 2 data for TR4 children constrained in 2001

** NUTS 2 data for TR4 children constrained in 2002

** NUTS 2 data for TR4 children constrained in 2003

** NUTS 2 data for TR4 children constrained in 2004

** NUTS 2 data for TR4 children constrained in 2005

** NUTS 2 data for TR4 children constrained in 2006

** NUTS 2 data for TR4 children constrained in 2007

NUTS 2 children of TR5 are TR51 TR52

** NUTS 2 data for TR5 children constrained in 1991

** NUTS 2 data for TR5 children constrained in 1992

** NUTS 2 data for TR5 children constrained in 1993

** NUTS 2 data for TR5 children constrained in 1994

** NUTS 2 data for TR5 children constrained in 1995

** NUTS 2 data for TR5 children constrained in 1996

** NUTS 2 data for TR5 children constrained in 1997

** NUTS 2 data for TR5 children constrained in 1998

** NUTS 2 data for TR5 children constrained in 1999

** NUTS 2 data for TR5 children constrained in 2001

** NUTS 2 data for TR5 children constrained in 2002

** NUTS 2 data for TR5 children constrained in 2003

** NUTS 2 data for TR5 children constrained in 2004

** NUTS 2 data for TR5 children constrained in 2005

** NUTS 2 data for TR5 children constrained in 2006

** NUTS 2 data for TR5 children constrained in 2007

NUTS 2 children of TR6 are TR61 TR62 TR63

** NUTS 2 data for TR6 children constrained in 1991

** NUTS 2 data for TR6 children constrained in 1992

** NUTS 2 data for TR6 children constrained in 1993

** NUTS 2 data for TR6 children constrained in 1994

** NUTS 2 data for TR6 children constrained in 1995

** NUTS 2 data for TR6 children constrained in 1996

** NUTS 2 data for TR6 children constrained in 1997

** NUTS 2 data for TR6 children constrained in 1998

** NUTS 2 data for TR6 children constrained in 1999

** NUTS 2 data for TR6 children constrained in 2001

** NUTS 2 data for TR6 children constrained in 2002

** NUTS 2 data for TR6 children constrained in 2003

** NUTS 2 data for TR6 children constrained in 2004

** NUTS 2 data for TR6 children constrained in 2005

** NUTS 2 data for TR6 children constrained in 2006

** NUTS 2 data for TR6 children constrained in 2007

NUTS 2 children of TR7 are TR71 TR72

** NUTS 2 data for TR7 children constrained in 1991

** NUTS 2 data for TR7 children constrained in 1992

** NUTS 2 data for TR7 children constrained in 1993

 117

** NUTS 2 data for TR7 children constrained in 1994

** NUTS 2 data for TR7 children constrained in 1995

** NUTS 2 data for TR7 children constrained in 1996

** NUTS 2 data for TR7 children constrained in 1997

** NUTS 2 data for TR7 children constrained in 1998

** NUTS 2 data for TR7 children constrained in 1999

** NUTS 2 data for TR7 children constrained in 2001

** NUTS 2 data for TR7 children constrained in 2002

** NUTS 2 data for TR7 children constrained in 2003

** NUTS 2 data for TR7 children constrained in 2004

** NUTS 2 data for TR7 children constrained in 2005

** NUTS 2 data for TR7 children constrained in 2006

** NUTS 2 data for TR7 children constrained in 2007

NUTS 2 children of TR8 are TR81 TR82 TR83

** NUTS 2 data for TR8 children constrained in 1991

** NUTS 2 data for TR8 children constrained in 1992

** NUTS 2 data for TR8 children constrained in 1993

** NUTS 2 data for TR8 children constrained in 1994

** NUTS 2 data for TR8 children constrained in 1995

** NUTS 2 data for TR8 children constrained in 1996

** NUTS 2 data for TR8 children constrained in 1997

** NUTS 2 data for TR8 children constrained in 1998

** NUTS 2 data for TR8 children constrained in 1999

** NUTS 2 data for TR8 children constrained in 2001

** NUTS 2 data for TR8 children constrained in 2002

** NUTS 2 data for TR8 children constrained in 2003

** NUTS 2 data for TR8 children constrained in 2004

** NUTS 2 data for TR8 children constrained in 2005

** NUTS 2 data for TR8 children constrained in 2006

** NUTS 2 data for TR8 children constrained in 2007

NUTS 2 children of TR9 are TR90

** NUTS 2 data for TR9 children constrained in 1991

** NUTS 2 data for TR9 children constrained in 1992

** NUTS 2 data for TR9 children constrained in 1993

** NUTS 2 data for TR9 children constrained in 1994

** NUTS 2 data for TR9 children constrained in 1995

** NUTS 2 data for TR9 children constrained in 1996

** NUTS 2 data for TR9 children constrained in 1997

** NUTS 2 data for TR9 children constrained in 1998

** NUTS 2 data for TR9 children constrained in 1999

** NUTS 2 data for TR9 children constrained in 2001

** NUTS 2 data for TR9 children constrained in 2002

** NUTS 2 data for TR9 children constrained in 2003

** NUTS 2 data for TR9 children constrained in 2004

** NUTS 2 data for TR9 children constrained in 2005

** NUTS 2 data for TR9 children constrained in 2006

** NUTS 2 data for TR9 children constrained in 2007

NUTS 2 children of TRA are TRA1 TRA2

** NUTS 2 data for TRA children constrained in 1991

** NUTS 2 data for TRA children constrained in 1992

** NUTS 2 data for TRA children constrained in 1993

** NUTS 2 data for TRA children constrained in 1994

** NUTS 2 data for TRA children constrained in 1995

** NUTS 2 data for TRA children constrained in 1996

** NUTS 2 data for TRA children constrained in 1997

** NUTS 2 data for TRA children constrained in 1998

** NUTS 2 data for TRA children constrained in 1999

** NUTS 2 data for TRA children constrained in 2001

** NUTS 2 data for TRA children constrained in 2002

** NUTS 2 data for TRA children constrained in 2003

** NUTS 2 data for TRA children constrained in 2004

** NUTS 2 data for TRA children constrained in 2005

** NUTS 2 data for TRA children constrained in 2006

** NUTS 2 data for TRA children constrained in 2007

NUTS 2 children of TRB are TRB1 TRB2

** NUTS 2 data for TRB children constrained in 1991

** NUTS 2 data for TRB children constrained in 1992

** NUTS 2 data for TRB children constrained in 1993

 118

** NUTS 2 data for TRB children constrained in 1994

** NUTS 2 data for TRB children constrained in 1995

** NUTS 2 data for TRB children constrained in 1996

** NUTS 2 data for TRB children constrained in 1997

** NUTS 2 data for TRB children constrained in 1998

** NUTS 2 data for TRB children constrained in 1999

** NUTS 2 data for TRB children constrained in 2001

** NUTS 2 data for TRB children constrained in 2002

** NUTS 2 data for TRB children constrained in 2003

** NUTS 2 data for TRB children constrained in 2004

** NUTS 2 data for TRB children constrained in 2005

** NUTS 2 data for TRB children constrained in 2006

** NUTS 2 data for TRB children constrained in 2007

NUTS 2 children of TRC are TRC1 TRC2 TRC3

** NUTS 2 data for TRC children constrained in 1991

** NUTS 2 data for TRC children constrained in 1992

** NUTS 2 data for TRC children constrained in 1993

** NUTS 2 data for TRC children constrained in 1994

** NUTS 2 data for TRC children constrained in 1995

** NUTS 2 data for TRC children constrained in 1996

** NUTS 2 data for TRC children constrained in 1997

** NUTS 2 data for TRC children constrained in 1998

** NUTS 2 data for TRC children constrained in 1999

** NUTS 2 data for TRC children constrained in 2001

** NUTS 2 data for TRC children constrained in 2002

** NUTS 2 data for TRC children constrained in 2003

** NUTS 2 data for TRC children constrained in 2004

** NUTS 2 data for TRC children constrained in 2005

** NUTS 2 data for TRC children constrained in 2006

** NUTS 2 data for TRC children constrained in 2007

NUTS 2 children of UKC are UKC1 UKC2

** NUTS 2 data for UKC children constrained in 2010

NUTS 2 children of UKD are UKD1 UKD2 UKD3 UKD4 UKD5

** NUTS 2 data for UKD children constrained in 2010

NUTS 2 children of UKE are UKE1 UKE2 UKE3 UKE4

NUTS 2 children of UKF are UKF1 UKF2 UKF3

NUTS 2 children of UKG are UKG1 UKG2 UKG3

** NUTS 2 data for UKG children constrained in 2010

NUTS 2 children of UKH are UKH1 UKH2 UKH3

NUTS 2 children of UKI are UKI1 UKI2

NUTS 2 children of UKJ are UKJ1 UKJ2 UKJ3 UKJ4

** NUTS 2 data for UKJ children constrained in 2010

NUTS 2 children of UKK are UKK1 UKK2 UKK3 UKK4

NUTS 2 children of UKL are UKL1 UKL2

NUTS 2 children of UKM are UKM2 UKM3 UKM5 UKM6

** NUTS 2 data for UKM children constrained in 1990

** NUTS 2 data for UKM children constrained in 1991

** NUTS 2 data for UKM children constrained in 1992

** NUTS 2 data for UKM children constrained in 1993

** NUTS 2 data for UKM children constrained in 1994

** NUTS 2 data for UKM children constrained in 1995

** NUTS 2 data for UKM children constrained in 1996

** NUTS 2 data for UKM children constrained in 1997

** NUTS 2 data for UKM children constrained in 1998

** NUTS 2 data for UKM children constrained in 1999

** NUTS 2 data for UKM children constrained in 2010

NUTS 2 children of UKN are UKN0

* Cross-Sectional Time Series Constraint for NUTS Level 2 *

NUTS 3 children of AT11 are AT111 AT112 AT113

** NUTS 3 data for AT11 children constrained in 1990

** NUTS 3 data for AT11 children constrained in 1991

** NUTS 3 data for AT11 children constrained in 1992

** NUTS 3 data for AT11 children constrained in 1993

** NUTS 3 data for AT11 children constrained in 1994

 119

** NUTS 3 data for AT11 children constrained in 1995

** NUTS 3 data for AT11 children constrained in 1996

** NUTS 3 data for AT11 children constrained in 1997

** NUTS 3 data for AT11 children constrained in 1998

** NUTS 3 data for AT11 children constrained in 1999

** NUTS 3 data for AT11 children constrained in 2000

** NUTS 3 data for AT11 children constrained in 2001

… … … … …

… … … … … [similar lines omitted in this listing]

… … … …

NUTS 3 children of UKM2 are UKM21 UKM22 UKM23 UKM24 UKM25 UKM26 UKM27 UKM28

NUTS 3 children of UKM3 are UKM31 UKM32 UKM33 UKM34 UKM35 UKM36 UKM37 UKM38

NUTS 3 children of UKM5 are UKM50

NUTS 3 children of UKM6 are UKM61 UKM62 UKM63 UKM64 UKM65 UKM66

NUTS 3 children of UKN0 are UKN01 UKN02 UKN03 UKN04 UKN05

** NUTS 3 data for UKN0 children constrained in 1990

** NUTS 3 data for UKN0 children constrained in 1991

** NUTS 3 data for UKN0 children constrained in 1992

** NUTS 3 data for UKN0 children constrained in 1993

** NUTS 3 data for UKN0 children constrained in 1994

** NUTS 3 data for UKN0 children constrained in 1995

** NUTS 3 data for UKN0 children constrained in 1996

** NUTS 3 data for UKN0 children constrained in 1997

** NUTS 3 data for UKN0 children constrained in 1998

** NUTS 3 data for UKN0 children constrained in 1999

>

>

