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Time Series Data in the ESPON Database

à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A methodology is presented for data imputation based on an autoregressive model which is fitted to the existing data, and used to impute the missing values, using a Bayesian approach. The spatial coherence of the results is also ensured.

The metholodgy has been implemented using the R language, and tested on typical short-run time series for NUTS0, NUTS1, NUTS2 and NUTS3 regions. R and JAGS code to operationalise the methodology is presented in this report, and a suitable workflow is outlined.

Introduction

A time series is a collection of observations made sequentially in time 1 . Time series are frequently encountered in (i) economics [Beveridge annual wheat price series], (ii) physical sciences [monthly average air temperature] (iii) marketing [monthly product sales] (iv) demography [annual population estimates] and (v) process control [weights of manufactured product sampled hourly] (vi) communication [binary series are common]. While many series are usually measured at regular intervals (e.g.: year, month, week, day, hour, minute), there are series which occur irregularly, for example, major railway disasters, which are known as point processes. Time series analysis is concerned with (i) description of the main properties of the series, (ii) explanation of the relationship between two series taken at the same time [monthly atmospheric temperature readings, monthly measurements of the North Atlantic Oscillation] and (iii) prediction of (usually) future values.

Time series description can take several forms, but are intended to reveal the underlying structure of the series. This structure can include several components2 :

Trend: an increase or decrease in the value of the series over time Seasonality: a regular pattern of high and low values related to calendar time Long term cycles: periodicity not related to seasonality Outliers: values which are unusually high or low in comparison with the rest of the data Abrupt changes: changes to the variation in the series or level Variance: this may be constant over time or increase/decrease

Sources of data for ESPON series

Many of the tables required can be obtained from EUROSTAT. However, there are much missing data. Depending on the series, the series may be complete to NUTS 3 back to 2000. For earlier years, data may only be available to NUTS2 level. This requires recourse to other sources, for which the most authoritative would be those from the National Statistical Offices (for example: Turkstat, Croatian Bureau of Statistics, Statistics Norway, and Statistische Ämter des Bundes und der Länder). There are other sources, such as the OECD, and the EUROSTAT NewCronos database may be of assistance in completing the time series.

ESPON Time Series

The character of ESPON Series

The socio-economic time series which appear to be commonly encountered in the ESPON programme are annual counts or ratios for a restricted time period 3 . This implies that the longest series are less than 25 years, and some are far shorter. Missing data in the middle of a series shorten it still further. Hyndman has reported in the effects of attempting to fit models to short series 4 . In 95 short economic series about 1/3 were random walks (they had no structure).

The series are also presented for the spatial units in the NUTS classification 5 , The NUTS system is a hierarchical system for dividing up the economic territory of the EU for the purposes of the collection o regional statistics, socio-economic analyses and framing EU regional policies. We are concerned mainly with the first 4 levels of the NUTS hierarchy, Tables of the NUTS regions and their codes, and correspondence tables for region adjustments are available from EUROSTAT.

The input and outputs from the ESPON database are in the form of rectangular files, as a Excel spreadsheets -each line of data is preceded by its NUTS code. Some sheets, and the EUROSTAT tables present the NUTS codes of every unit in a single column (for example demo_r_gind3), which gives the impression of flattening the hierarchy, The key to the strategy for handling the time series is to think of the cross-sectional structure at each time period, implied by the NUTS codes, explicitly as a tree. We shall return to this later.

The datasets in EUROSTAT and from other sources are often incomplete for the time periods and spatial scales of interest. There might be many reasonspopulation censuses may only be carried out on a decadal basis. While national or regional intercensal population estimates may be provided by the national agencies, data at lower level is less common.

In the case of the RIATE example dataset, the pattern of missing data relative to the lvarious levels in the NUTS hierarchy is: While most NUTS0 series are complete, 1 is missing four time periods, 1 is missing 16, and one is missing 21! The situation deteriorates as we progress down the hierarchy, but this is to be expected. About 25% of the NUTS1 series are missing a substantial portion of their data (over 72% of each series are missing). At NUTS1 and NUTS2 data is either mostly present or missing to a serious degree.

AT NUTS3 level, the modal group represents 6 missing entries and a moderate number of regions have over 75% of their series missing. This provides a challenge for the analyst. What should be done about the missing data? In survey analysis a common strategy is to analyses only those cases with complete data for the variables of interest. This raises the question as to whether the mechanism for creating the missing variables is a random process. If it is not, then the possibility of introducing bias into the analysis becomes a problem. With time series the problem is magnified: if a single value is missing from the series, should the analyst remove this series from the analysis, or should some attempt be made to complete the data? IBM's SPSS software offers several alternatives to allow the analyst to replace missing observations with an estimate. These include 6 The mean of the series  The mean of nearby observations  The median of nearby observations  Linear interpolation  Linear trend using the time series index as a regressor

The mean of the series might be a unwise choice, particular if the series has a rising trend, and the missing observation is at the beginning of the series.

Approaches to linear interpolation are described in detail below. Linear trend may or may not be helpful, although if the residuals either side of the trend line are all positive or negative, then the estimated value my be some distance from a desirable value.

Enders7 notes that the analyst should make the distinction between the missing data pattern and the missing data mechanism. He notes that the pattern relates to the configuration of observed and unobserved data, whereas the mechanism permits a description of the relationship between the two in terms of probability. Rubin8 proposed classified missing data mechamisms into three types: (1) missing at random, (2) missing completely at random and (3) missing not at random. MAR arises when the probability of missing data is related to the values of some other measured variable in the dataset. MCAR arises when the the probability is unrelated to any other variable in the dataset -Elders uses the adjective haphazard for this. MNAR arises when the probability of missing data on a variable is related to the values of the variable itself. Elders uses an example of cancer patients in a trial becoming so ill they are unable to continue participation in the trial. The ESPON time series missing data are likely to arise from an MCAR process -they are certainly not MNAR (the population values are too small to collect). However, they may be too expensive to collect.

Traditional methods for missing data

Expedient methods for dealing with missing data include deletion of the observations with missing data. Listwise deletion, or complete case analysis, removes any observation with one or more missing values. A variant, pairwise deletion, or available-case analysis, removes variables on an analysis-byanalysis case. This would result in the correlations in a correlation matrix potentially being based on different numbers of underlying observations.

Other expedient methods include imputation. Amongst these are replacement by the arithmetic mean, replacement by median, regression imputation, (and stochastic regression imputation which adds a random number from the distribution of residuals), hot-deck imputation (scores are taken from similar respondents answers), and last observation carried forward (a variant of this is described below).

Missing observations

An appropriate example is given by the M4D table M4Dpoptot1990-2011_20120522.xls. This contains estimates of residential population, and is available at NUTS0, NUTS2, NUTS2 and NUTS3, from 1990 to 2012. The metadata in table 1 shows that the sources of data include EUROSTAT and the national statistical agencies. However, in many cases data have not being available from these sources and has been imputed by the team at RIATE. The metadata reveals that 52 separate imputation approaches can be identified, although these are variations on the same underlying imputation process. The RIATE team observed that data was more often missing for NUTS3 units than NUTS 2, and more often NUTS2 than NUTS1. Their other observation was that data is either missing from the beginning of the series to an intermediate time period, or missing in a run in the middle of the series. That the NUTS hierarchy provides a parent NUTS level-1 region for any groups of NUTS level regions lead them to an ingenious group of solutions based around LOCF. These boil down essentially to two strategies.

Let p t,r be the proportion of the parent NUTS level-1 region's population for NUTS level region r in year t, and N r is the number of NUTS level regions in a parent NUTS level-1 region. In any given year the following is true:

   Nr r r t p 1 , 1

Data missing from beginning of series

In the first case, which the RIATE team describe as retropolation, the data are missing from 1990 to the time period last. The proportions are propagated backwards along the series from the earliest known value, p last+1,r .

last t p p r last r t ... 1990 , 1 ,   
The population estimates for the NUTSlevel regions are then obtained by multiplying the appropriate NUTSlevel-1 population by the retropolated p t,r values.

Data missing from the middle of a series

In the second case, that of interpolation, the data are missing from time period first to time period last inclusive. This implies that the proportions are are known for time period first-1 and time period last+1. The intermediate proportions are obtained by linear interpolation. If p first-1,r and p last-1,r are the known proportions of the time periods immediately adjacent to the run of missing observations, then:
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The population estimates for the NUTSlevel regions are then obtained by multiplying the appropriate NUTSlevel-1 population by the interpolated p t,r values.

Data missing from the end of the series

In a case analogous to the first, values of the proportions can be propagated forward from the latest known p first-1,r to 2012 (or whatever is the last time period in the study) in an extrapolation:
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These imputations represent the application of an AR(0) time series model where the trend for the first and last case is zero, and linear in the interpolation case. The imputed values will then exhibit the same behavioural characteristics of the parent series.

Partially missing data

In some cases, data is missing for a subset missing of the NUTS level regions. The proportions are then of the NUTS level-1 population less the sum of the nonmissing NUTS level populations. If data is missing for only one region at NUTS level , then we can regard it as embarrassingly estimatable, in that the missing values are obtained from the population for the NUTSlevel-1 region less the sum of the non-missing NUTS level populations, without the need to bring the LOCF procedures into play.

Estimation and the NUTS hierarchy

The implementation of this approach implies that the estimation strategy is topdown. That is, as the proportions for NUTS level relative to NUTS level-1 are required, then the values at NUTS level-1 must be obtained first. Therefore, population estimates at NUTS1 must be made first, relative to the NUTS0 values. Once these have been obtained, estimates at NUTS2 may be made, and finally, estimates at NUTS3.

The RIATE implementation was undertaken using Excel. Whilst this represents activity and effort which might be regarded as heroic, it is almost impossible to debug, very difficult to check, and cannot be automated. For these reasons, it cannot be recommended.

Missing data scenarios

Populating the tables to NUTS 3 level over the period 1990-2013 with (a) Eurostat data and (b) data from the National Statistical Offices reveals some recurrent patterns with regard to missing data. The diagrams below, we use four colours when depicting the patterns of present and absent data: Green: Eurostat data present ("present" data series) Blue:

Eurostat data not present; National Statistical Agency data present; both series agree for later (or earlier) time periods ("concordant" data series) Yellow: Eurostat data not present; National Statistical Agency data present;

both series disagree for later (or earlier) time periods ("discordant" data series) Red:

Neither Eurostat nor external data available ("missing" data)

Several scenarios arise when data is missing for several consecutive time periods:

 Data is present for a NUTS region, concordant for n-1 of the NUTS3 regions which it contains, and discordant for one region.  Data is present and estimable for all but one time period at NUTS3 but there is a total available for NUTS2

 Data is present for a NUTS region, concordant for n-p of the NUTS3 regions which it contains, and discordant for p regions.

 Data is partially present at NUTS2, there is some concordant data at for n-p of the NUTS3 regions which is contains, and discordant data for others.

 Data is present at NUTS2, and for one or more time period in the NUTS3 series there is concordant data. The rest of the NUTS3 data are missing.

 Data is present at NUTS2, and for one or more time period in the single NUTS3 series there is concordant data. The rest of the NUTS3 data are missing. (This occurs when the NUTS3 region is also the NUTS2 and NUTS1 region, for example, BE1/BE10/BE100).

 Data is present at NUTS2, and is missing for a single time period at NUTS 2 as part of a concordant series.

 There is missing data at NUTS3 when the NUTS1, NUTS2 and NUTS3 regions are the same spatial unit  Data is present at NUTS2, and there is a small corpus of concordant NUTS3 data, but for the majority of the n regions all the data at NUTS3 are missing.

 This is an extension of the above cases with missing data for one NUTS3 region when the other n-1 regions have concordant data  Data is missing at NUTS3 for regions where NUTS3 and NUTS2 boundaries are coterminous.

 Eurostat data is present at all part of the series at NUTS 2 and NUTS3. Concordant data in available for n-1 NUTS2 regions and 1 NUTS3 region is missing.

This leads to the conclusion that the missing data can be handling in a manner in which the available data can be used as evidence to complete the missing elements in the various series, and ensure data is also spatially consistent. It also leads us to conclusion that the missing data should be built from the lowest levels in the NUTS hierarchy first. With this in mind we start with the simplest cases, and recursively apply more complex solutions as and when they are required.

Missing data imputation Estimation

The scenarios suggest that we will require three components in the estimating strategy: (a) a suitable model for the existing data and (b) a means of ensuring hierarchical spatial coherence in the series and (c) 
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where the error term is  0 ~N(0,) and  t ~N( t-1 ,) with t > 0 and ||<1.. The parameters a 0 , a 1 and a 2 are to be estimated. Both models can handle missing values -points for which no data is available -as well as provide forecasts, backcasts and interpolation of missing data in the middle of a series. The generic term prediction covers these three eventualities.

Models for time series

To estimate data for a time series we need to start with a model. There are many such models in the time series analysis literature which may be applied. In an autoregressive model the value of the series at time t depends on p previous values:
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By contrast in a moving average model, the error at time t depends on q previous values:
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These can be combined to give an autoregressive moving average model:
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Such models were given extensive treatment in Box and Jenkins (1970) 9 . They are conventionally fitted to a series which is stationary (that is, in which the trend has been removed), a situation obtained by differencing. If the trend is linear, the series might need to be differenced once (i.e.  t = X t -X t-1 ); if the trend is accelerating, second differences might be required. However, typically to obtain reliable estimates of the p autoregressive parameters and the q moving average parameters requires series of perhaps many 10s of observations. We no have this luxury with the ESPON series.

Al alternative is to consider methods using Bayesian inference. We conventionally model data D with some parameters  using the probability distribution P(D|); the  might be the parameters from a regression model (slope, intercept and error variance). Using Bayes theorem, this can be inverted to yield a probabilistic statement about  given the data D:
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The denominator is not usually analytically soluble; solutions can be found using Markov Chain Monte Carlo (MCMC) techniques which simulate random  values from P(|D). P(|D) is known as the posterior distribution of the parameters.

The MCMC approach has the useful property that it can be used to estimate the missing values. The posterior distribution of the missing data can be considered in the same way other unknown quantities. If D* is the unobserved data, then the posterior predictive distribution of the data is:
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This gives a means of estimating the missing data, using the available data as evidence.

Bayes models

Using Bayesian techniques involves a somewhat different approach than traditional frequentist models. Using the example of the Austria population, we will fit an ordinary least squares regression model, a Bayesian version of the same, and then a Bayesian time series model with linear trend.

We start with the data, the population estimate in each year in millions:

> AT [1] These are the populations from 1990 to 2011, and we will regress these against the year number (running from 1 to 22 inclusive).

> m1 <-lm(AT ~ Year) The equation that we construct from these results is Y t = 7.689 + 0.032Year t . As the population levels are expressed in millions and thus we interpret the annual population increase to be about 32000, from a start of 7.689m. The 95% confidence interval for the intercept is 7.653 to 7.726, and the slope is from 0.0294 to 0.0349.

The JAGS model is specified in a slightly different fashion: We are required supply the observation equation for Y, the system equation for mu, and our suggestions for the prior distributions. Y will be sampled from a normal distribution, with mean mu i . The priors for the coefficients, alpha and beta, will be sampled from a normal distribution, and the precision, tau, from a gamma distribution. In JAGS the precision tau is used to specify the variation of the samples, and if we want the value of the standard deviation, sigma, then we must supply the deterministic identity between it and tau.

We subject the model to a burn-in period of 1000 samples, and then we used 1000 samples from the Gibbs Sampler to derive the posterior distributions of the parameters. The mean values for alpha and beta are similar the OLS estimates, and the 95% quantiles correspond to the OLS 95% confidence limits. We can also plot the distributions of the posteriors.

The density plots indicate the variability in the posterior estimates. Note that some of the variance has been incorrectly assigned to observation variance, since the terms in the model are autocorrelated.

Tho add in an autocorrelated error term we must make further changes to the model. The autocorrelation is modelled using a multivariate normal distribution. The mu i terms are formed as before, but the autocorrelation is represented with a covariance matrix between the terms in the series, where each entry is  2  raised to the power of the lag between the terms. The parameter r is the measure of the autocorrelation and we sample from a beta distribution. As with the previous model, the precisions in the prior distributions are purposely small 

(i in 1:N) { mu[i] <-alpha + beta*x[i] } # AR(1) for(i in 1:N) { for (j in 1:N) { tdmat[i,j] <-s2err*rho^abs(i-j) } } Omega <-inverse(tdmat) Y ~ dmnorm(mu, Omega) } " TSmodelData <-list(N=N, Y=AT, x=Year)
TSmodelMCMC <-jags.model(textConnection(TSmodelCode), TSmodelData) update(TSmodelMCMC, n.iter=1000) TSmodelOutp <-coda.samples(TSmodelMCMC, n.iter=1000, variable.names=c("alpha","beta","rho")) summary(TSmodelOutp) Iterations = 2001:3000 Thinning interval = 1 Number of chains = 1 Sample size per chain = 1000 The terms in the linear trend are little different from the OLS counterparts, although the 95% quantiles are a little wider. By ignoring the autocorrelation, we underestimated the variability in the intercept and slope terms. The plot below shows the variation in the coefficient distributions. Some of the ESPON time series appeared to have non-linearity in their trend, so we added a quadratic term into the model to account for this -the coefficient will be near zero if there is insufficient evidence of non-linearity.

Dealing missing values is more complex still. The model is: 

(i in 1:N) { mu[i] <-b0 + b1*year[i] +b2*yearsq[i] } # Autocorrelation component for(i in 1:N) { for (j in 1:N) { tdmat[i,j] <-s2err*rho^abs(i-j) }} for (i in 1:length(seen)) {
for (j in 1:length(seen)) { tdmat22 [i,j] <-tdmat[seen [i],seen [j]] }} itdmat22 <-inverse(tdmat22) for (i in 1:length(missing)) { for (j in 1:length(missing)) { tdmat11 [i,j] <-tdmat[missing [i],missing [j]] for (i in 1:length(missing)) { for (j in 1:length(seen)) { tdmat12 [i,j] <-tdmat[missing [i],seen [j]] }} for (i in 1:length(seen)) { for (j in 1:length(missing)) { tdmat21 [i,j] <-tdmat[seen [i],missing [j]] }}

for (i in 1:length(seen)) { mu2[i] <-mu[seen[i]] } for (i in 1:length(missing)) { mu1[i] <-mu[missing[i]] } OmegaM <-inverse(tdmat11 -tdmat12 %*% itdmat22 %*% tdmat21) muM <-mu1 + tdmat12 %*% itdmat22 %*% (ys -mu2) ys ~ dmnorm(mu2,itdmat22) # non-missing data ym ~ dmnorm(muM, OmegaM)
# missing data }

The seen and missing variables contain the indices in the time series where the population estimates are present and missing respectively. The linkage between the missing and present values is rather more complex.

These results are standard for time series, and can be found in any time series text (e.g.: Chatfield, 1984) The series is modelled sampling from a multivariate normal distribution, with a vector of means  resulting from the trend component, and a precision matrix (the inverse of the matrix of covariances between the terms in the series). If there was no requirement to interpolate missing values, the precision matrix would be:

  1 2      
where  2 is the variance of the error,  is the autocorrelation parameter and  is a matrix of lags. If the time series had 5 terms,  would contain:

[,1] [,2] [,3] [,4] [,5] [1,] 0 1 2 3 4 [2,] 1 0 1 2 3 [3,] 2 1 0 1 2 [4,] 3 2 1 0 1 [5,] 4 3 2 1 0
The multivariate normal has density:
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where  is the precision and  is the mean. The challenge arises when we have missing data.

The series is divided into the present and missing sub-series. The means for each part are drawn from the trend estimate.

The following covariance submatrices are required: The precision matrix  p for the present data is:

  1 22 2      
This missing and present terms are linked through the precision matrix used to estimate the posterior distributions of the missing terms,  m thus:
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As well as there being more individual steps in this model, the estimation requires two matrix inversions. In estimations for the ESPON data, the 250000 simulations were used for the burn-in process, and 100000 for the actual sampling. Even so, on a relatively sluggish machine, about 105 seconds were used when estimation a model on data with 22 time periods and 54% of the data missing.

Spatial coherence

The second component requires a set of constraints to ensure that predictions for NUTS3 units sum to the appropriate value for their containing NUTS2 units, and that predictions for NUTS2 units sum to the appropriate value for the containing NUTS1 units as so on. We refer to this as hierarchical spatial coherence. If we have a NUTS2 region with population P, and we know the populations of three of its, say 5, units, a, b and c, but not d and e, then we can include P=a+b+c+d+e as a constraint in the Bayesian forecasting framework. This is accomplished via a prior probability distribution: a+b+c+d+e will take the P with a probability of 1, and zero otherwise. In this fashion we can ensure spatial coherence in the forecasts.

In practice the application of the this constraint occurs after the individual series have been estimated -we apply an adjustment to the individual NUTS3 region estimates to the estimates so that their total is that of the containing NUTS2 region. This adjustment applies from the NUTS1 regions downwards to ensure the spatial coherence of the estimates. It has to be remembered that we are not appling a pro-rata to a series of individual estimates, we are adding the posterior distributions together. The highest posterior density of the summed series is the value of the constraining total.

The same idea applies for those data that are considered to be embarrassingly estimatable. Suppose the know the populations of a NUTS2 region, and 3 of the 4 NUTS3 regions which are contained within it. Then P NUTS3,4 = P NUTS2 -(P NUTS3,1 +P NUTS3,2 +P NUTS3,3 ). The known data can be considered to be sampled from a distribution with a mean corresponding to the known value and infinite precision (i.e. the variance is zero). The known value is then the highest posterior density value, and it has a probability of 1 (with a variance of zero, there can be no other probability!).

Similarly the situation where a NUTS2 value is missing, but the underling NUTS3 values are present, then the same approach yields the estimate P NUTS2 = P NUTS3,1 +P NUTS3,2 +P NUTS3,3 + P NUTS3,4 .

Again, the known NUTS3 values are assumed to be sampled from a distribution with a mean of P NUTS3,x and an infinite precision -which means that the known values have a posterior probability of 1. The resulting posterior distribution for the P NUTS2 total also has a probability of 1.

We require one further component in operationalisation of the method: a means of identifying the various scenarios and considering the hierarchical coherence. The files of data from Eurostat and the National Statistical agencies usually have the NUTS codes in a single column, and a flat file structure: the rows represent spatial units and the columns variables of interest. This effective;y flattens the hierarchical stricture of the NUTS units, and, if the calculations are restricted to the spreadsheet, renders the task of ensuring hierarchical coherence enormously difficult. An alternative to use the conceptual representation of the BUTS units as belong to some sort of tree structure -like a family tree -in which the higher level units are represented as the parents of lower level units.

Tree structures are extensively used in computer science to represent data. A tree many defined as having a root and one or more subtrees each of which is a tree. For each country, the root is the NUTS0 region, and the NUTS1 regions are the first subtrees. Each NUTS1 subtree has corresponding NUTS2 subtrees, and each NUTS2 region has corresponding NUTS3 subtrees.

The example shows the NUTS hierarchy for the Netherlands. We can see the hierarchy clearly and explicitly.

It also forms the basis for the software implementation of the MCMC approach.

Other issues

One issue which will have to be faced is that of ensuring temporal coherence for the changes that have taken place in the system of NUTS units over the years. Boundaries of zones may be shifted, zones may be merged, and zones may be split. Correspondance tables are available at EUROSTAT. The diagram above shows the changes in the NUTS regions for the Netherlands. Again, the split/merge/shift operations may be incorporated into the forecasting process though additional constraints in the Bayesian framework. 

Implementation

How are we to implement this? We will require bespoke code, and we will require a means of both handling the Excel spreadsheets, the NUTS hierarchy, and the computations required for the estimating of the missing data.

Software for MCMC approaches has been, until recently, the province of the specialist. This altered with the release of BUGS (Bayesian inference Using Gibbs Sampling) (Lunn et al., 2009(Lunn et al., , 2012)). BUGS has now been extended with a Windows interface (WinBUGS) and to handle spatial data (GeoBUGS). However, data preparation, and post-modelling evaluation requires other software. The release of JAGS (Just Another Gibbs Sampler) (Plummer, 2003) provides a further milestone. This offers a very similar facility to BUGS, but it is open source and may also be used in conjunction with the statistical programming language R via the rjags package in R. This offers R users the capability of fitting models using MCMC, but also exploits the power and flexibility of R, in order to prepare the data, and to provide extensive evaluation of the results. Using JAGS it is possible to obtain posterior distribution for the parameters outlined in the previous sections, and for the missing data. It is also worth noting that this approach also allows the constraint that the sum of all of the NUTS3 regions within a NUTS2 region must equal the statistic associate with that NUTS2 region.

The R package has also been used to implement the data checking procedures, and the RIATE team have also made use of R.

Estimation Stage 1: MCMC estimation

A simple example is provided by the NUTS regions of Austria. Population estimates are missing for all NUTS3 regions, from 1990 to 2001 inclusive. The first stage is to visualise the pattern of missing data.

The figure on the left shows a heatmap of the population totals. The colder colours in the spectrum represent lower populations and the warmer colours represent larger populations. In general the population for AT and its NUTS1 regions have grown over the 22 year time period from 1990 to 2011. However, the trajectory of some individual zones has been different: that for AT21 had considerable growth to the mid 1990s, and then a gradual decline over the rest of the time period. The pattern of missing data is quite clear. Data for 35 NUTS3 regions was missing -the time frame of 12 years represents approximately 55% of the NUTS3 data. This means that at best, we have 45% of the NUTS3 data as evidence on which to base the retropolations, although we also have 100% of the NUTS2 data to act as a constraint.

The values in the heatmap in Figure xx represent the variation in the unadjusted NUTS3 estimations.

Estimation Stage 2: adjustment for spatial coherence

We now apply the adjustment for the spatial coherence. This works in a bottomup/top-down down fashion.

We start with the possibly incomplete NUTS2 and NUTS1 time series, and with the MCMC completed NUTS3 series. Any part of a time series at NUTS2 which is NA is completed using the sum of the MCMC populations for the corresponding NUTS regions and time periods.

Equivalent completions are made for the missing parts of NUTS1 series, using the summed NUTS From this it can be seen that missing data in the NUTS0, NUTS1 and NUTS2 regions can be a challenge. We can determine appropriate strategies by examining some cases from the data.

Consider the case of Croatia. A portion of the times series for all of the NUTS regions in Croatia is shown below: In 2001 all the NUTS3 data are present at NUTS1 and NUTS3, but not for NUTS2. As none of the NUTS3 values are estimates, then they can be summed over the NUTS2 codes to obtain the desired totals: The missing data for NUTS2 and NUTS3 from 1992 to 2000 require two levels of constraint:

1. Use MCMC to estimate values for 1992 to 2000 for all the missing data points 2. Constrain the NUTS2 MCMC estimates to the NUTS1 value 3. Constrain the NUTS3 MCMC estimates to the newly constrained NUTS2 values This is easily programmed accommodated in the constraining function, as we traverse the tree from the root downwards. By the time we deal with the NUTS3 estimates, the NUTS2 will have been constrained.

In the case of Portugal, there are some other special cases: The NUTS0 and NUTS1 values are missing for 1992 to 1995 for PT1. However, there is complete coverage of PT1 at NUTS2, so the value for PT1 can be obtained by direct summation over the corresponding NUTS2 values. The NUTS0 values can then be completed for those years as well.

It would be beneficial to be able to do this prior to MCMC since it is a deterministic operation and provide extra evidence for the MCMC estimation of the PT1 series for 1990 and 1991. Apart from the NUTS0 total, all other data for 1990 and 1991 is missing.

The strategy for 1990 and 1991 follows the top-down strategy outlined above, and provides a general case:

1. Constrain the NUTS1 MCMC estimates to the NUTS0 total 2. Constrain the NUTS2 MCMC estimates to the constrained NUTS1 values 3. Constrain the NUTS3 MCMC estimates to the constrained NUTS2 values

Again, this can be easily accomplished using the tree traversal algorithm.

Turkey is rather more of a challenge. 

The NUTS regions structures and missing data

The spreadsheet provides a poor model for the NUTS hierarchy. The rows can be sorted on the NUTS codes sot that the first part of the spreadsheet represents country information, the NUTS1 regions are next, followed by NUTS2 and NUTS3. However, we can't easily identify quickly a NUTS2 region, and then its constituent NUTS3 regions -it may be possible to do this with lookup in an auxiliary table, but this does not provide any flexibility. From the point of estimating missing data, the requirement for spatial coherence requires us to be able to identify these relationships in the data quickly and consistently. We refer to the NUTS hierarchy, but have no mechanism for representing and using that hierarchy.

The solution is to create a data structure and associated travel algorithms so that we can work on the regions in a consistent fashion. An appropriate data structure is the tree. Trees are used widely in computer science for organising and searching for information. In the computing section of many academic bookshops there will be volumes with titles like Data Structures and Algorithms. A classic collection is the volumes in the series The Art of Computer Programming by Professor Donald Knuth. Knuth defines a tree thus: "… a finite set T of one or more nodes such that a) There is one specially designated node called the root of the tree, root(T); and b) The remaining nodes (excluding the root) are partitioned into m >= 0 disjoint sets T 1 , … T m and each of these sets in turn is a tree. The trees T 1 , … T m are called the subtrees of the root."10 

This definition is recursive -the tree is defined in terms of trees. Put another way: a tree consists of a root and one or more nodes, each of which is a tree. A root which has no nodes is called a leaf node. There is an analogy with a family tree -a structure much used in genealogy: the non-root nodes are the children and the root represents the parents. As each node is itself a tree, we can also refer to the nodes as subtrees, because each is a tree.

The NUTS hierarchy can be represented as a tree quite naturally in terms of this definition. A node could consist of the NUTS code, and NUTS level and perhaps the population. The root would be the EU, and its 34 nodes contain the 34 NUTS0 codes, the value 0 for the level, and the national population. Each of these 34 nodes is itself a tree. Each NUTS0 nodes has one or more NUTS1 nodes, and in turn each NUTS1 node has one or more NUTS2 nodes and so on.

It may be unwieldy to deal with the whole of the EU, so we might confine our attentions to a single country -the root contains the NUTS0 code. Here is the structure for Belgium:

NUTS0 node is BE NUTS1 children of BE are BE1 BE2 BE3 NUTS2 children of BE1 are BE10 NUTS3 children of BE10 are BE100 NUTS2 children of BE2 are BE21 BE22 BE23 BE24 BE25 NUTS3 children of BE21 are BE211 BE212 BE213 NUTS3 children of BE22 are BE221 BE222 BE223 NUTS3 children of BE23 are BE231 BE232 BE233 BE234 BE235 BE236 NUTS3 children of BE24 are BE241 BE242 NUTS3 children of BE25 are BE251 BE252 BE253 BE254 BE255 BE256 BE257 BE258 NUTS2 children of BE3 are BE31 BE32 BE33 BE34 BE35 NUTS3 children of BE31 are BE310 NUTS3 children of BE32 are BE321 BE322 BE323 BE324 BE325 BE326 BE327 NUTS3 children of BE33 are BE331 BE332 BE334 BE335 BE336 NUTS3 children of BE34 are BE341 BE342 BE343 BE344 BE345 NUTS3 children of BE35 are BE351 BE352 BE353
Notice the order in which we have printed the list of regions. BE1, BE2 and BE3 are the child nodes of the root BE. BE1 has only one child BE10. BE2 has 5 children. The operation of visiting every node in a tree is referred to as traversal.

The operation of visiting may consist of no more than printing the node NUTS code, but it might also consist of carrying out a spatial consistency check on the population total for the NUTS node and the sum of the population totals for its child nodes, or counting the number of child nodes with missing data. However, the operation might also include estimating any missing elements in a population or economic time series using MCMC techniques.

The order in which we have visited the nodes in the NUTS tree for Belgium is known as pre-order traversal. In a pre-order traversal we visit the root before visiting any of its subtrees.

The traversal is consistent for even for the case in which there is only one NUTS3 region:

NUTS0 node is LI NUTS1 children of LI are LI0 NUTS2 children of LI0 are LI00 NUTS3 children of LI00 are LI000
… or two NUTS3 regions:

NUTS0 node is MT NUTS1 children of MT are MT0 NUTS2 children of MT0 are MT00 NUTS3 children of MT00 are MT001 MT002
The R code for this traversal algorithm is quite short:

CheckTree <-function(Country,Data) { CountryData <-Data[substr(rownames(Data),1,2) == Country,] nodes <-rownames(CountryData) parent <-substr(rownames(CountryData),1,nchar(rownames(CountryData))-1)

parent [1] <-"" ROOT <-which(nodes == Country) cat("\nTree Walk\n") root <-nodes[ROOT] cat("NUTS0 node is ",root,"\n") children1 <-nodes[parent == root] cat(" NUTS1 children of", root, "are", children1,"\n") Nc1 <-length(children1) for (i in 1:Nc1) { node2 <-children1 [i] children2 <-nodes[parent == node2] cat(" NUTS2 children of", node2, "are", children2,"\n") Nc2 <-length(children2) for (j in 1:

Nc2) { node3 <-children2[j] children3 <-nodes[parent == node3] cat(" NUTS3 children of", node3, "are", children3,"\n") } } }
The argument County contains the two character country code for the country of interest. The argument Data is the data matrix for Europe, where the rows have been indexed by their NUTS code. In our example, the first column of Data contains the NUTS code, code the indexing takes the form of:

Rownames(Data) <-Data[,1]
The tree for any desired country can be printed by calling the function with the appropriate country code. For the examples above we used: CheckTree("BE",Data) CheckTree("LI",Data) CheckTree("MT",Data)

Missing data patterns in the ESPON time series

There are 8 possible patterns of missing data for each node. We can use the tree walk algorithm presented earlier to traverse the tree, and examine the patterns. As we visit each node, then we can tabulate the different patterns over the 22 years of the time series in the example.

The cases that arise for any selected time period are: 

[i] <-is.na(Data[parent,i]) Result[i] <-length(which(is.na(Data[children,i]))) if (!MissingParent[i]) { if (Result[i] == 0) k <-1 else if (Result[i] == 1) k <-3 else if (Result[i] > 1 & Result[i] < Nc) k <-4 else k <-5 } else { if (Result[i] == 0) k <-2 else if (Result[i] == 1) k <-6 else if (Result[i] > 1 & Result[i] < Nc) k <-7 else k <-8 } Cases[k] <-Cases[k] + 1 } Cases # Return count vector }
Finally, we loop over the countries and report the patterns.

CountryList <-levels(as.factor(substr(rownames(Data.estim),1,2))) Nc <-length(CountryList) for (i in 1:Nc) { CheckMissingPattern(CountryList [i],Data.estim, 4:25) }

The results for Austria are encouraging:

UnitCode Level

Name X1 X2 X3 X4 X5 X6 X7 X8 AT AT NUTS0 Austria 22 0 0 0 0 0 0 0 AT1 AT1 NUTS1 Ostösterreich 22 0 0 0 0 0 0 0 AT2 AT2 NUTS1 Südösterreich 22 0 0 0 0 0 0 0 AT3 AT3 NUTS1 Westösterreich 22 0 0 0 0 0 0 0 AT11 AT11 NUTS2 Burgenland (AT) 10 0 0 0 12 0 0 0 AT12 AT12 NUTS2 Niederösterreich 10 0 0 0 12 0 0 0 AT13 AT13 NUTS2 Wien 10 0 12 0 0 0 0 0 AT21 AT21 NUTS2 Kärnten 10 0 0 0 12 0 0 0 AT22 AT22 NUTS2 Steiermark 10 0 0 0 12 0 0 0 AT31 AT31 NUTS2 Oberösterreich 10 0 0 0 12 0 0 0 AT32 AT32 NUTS2 Salzburg 10 0 0 0 12 0 0 0 AT33 AT33 NUTS2 Tirol 10 0 0 0 12 0 0 0 AT34 AT34 NUTS2 Vorarlberg 10 0 0 0 12 0 0 0 At NUTS0, NUTS1 and NUTS2 all data are present. In the case of AT13, Wien, 1 of the NUTS3 units is missing data for 10 time periods, but these are embarrassingly estimatable, so the MCMC estimation is not required. For the other NUTS regions, data is missing for all NUTS3 regions connected to them, so estimation using MCMC and cross-sectional constraint will be required.

For Slovakia, the situation is a little more compelx:

UnitCode Level Name X1 X2 X3 X4 X5 X6 X7 X8 SK SK NUTS0 Slovakia 22 0 0 0 0 0 0 0 SK0 SK0 NUTS1 Slovenská republika 16 0 0 0 6 0 0 0 SK01 SK01 NUTS2 Bratislavský kraj 16 0 0 0 0 6 0 0 SK02 SK02 NUTS2 Západné Slovensko 10 0 0 0 6 0 0 6 SK03 SK03 NUTS2 Stredné Slovensko 10 0 0 0 6 0 0 6 SK04 SK04 NUTS2 Východné Slovensko 10 0 0 0 6 0 0 6

The node tree is:

NUTS0 node is SK NUTS1 children of SK are SK0 NUTS2 children of SK0 are SK01 SK02 SK03 SK04 NUTS3 children of SK01 are SK010 NUTS3 children of SK02 are SK021 SK022 SK023 NUTS3 children of SK03 are SK031 SK032 NUTS3 children of SK04 are SK041 SK042
For SK0, there are 6 time periods where all the children (SK01, SK02, SK03 and SK04) comprise missing data. For SK01 there are 6 time periods when the data for SK01 and one of its child nodes are missing. For SK02, SK03 and SK04, there are 6 time periods when data for all the child nodes are missing, but there is crosssectional constraint data. However, there are also 6 cases where all the data for the NUTS3 nodes are missing, and SK02, SK03 and SK04 are lacking data as well.

This is also shown in the plot on the left. For the six year 1990 to 1995 data is missing for both the NUTS3 and NUTS2 regions. For the six years from 1996 to 2001, data is missing for the NUTS3 regions with the exception of SK010.

For 1990 to 1995 the NUTS 3 MCMC estimates will have to be summed across the NUTS2 regions. Then the NUTS2 values can be adjusted to the NUTS1 constraint. Following this, the NUTS 3 units can be constrained to the adjusted NUTS2 values. For SK02, SK03 and SK04 in 1996 to 2001, the constraints already exist at NUTS2 for the NUTS2 MCMC estimates.

The tree traversal algorithm forms the basis for this adjustment process. 

Problem zones with missing data for both child and parent.

UnitCode

Scalability

The question of the practicability of the approach, given the nature of MCMC estimation shoud be considered. The ESPON series are short run -in the case of the population data, we have no more than 22 observations. In the worst case all 22 observations are missing, and no amount of MCMC will recreate the data. The time required depends on (a) the speed of the processor (b) the number of burn-in cycles and (c) the number of estimation cycles. The more data that is present, the slower the estimation. The plot below depicts the relationship between the proportion of missing data and the time required to estimation the missing data in the series. Counter-intuitively, the more missing data then the quicker the execution time:

The plot shows the execution time for the NL NUTS0 series with increasing proportions of missing data.

The MCMC estimation for entire dataset, NUTS0, NUTS1, NUTS2 and NUTS3 took about 60 hours on a quad core 3.16GHz Intel Xeon processor running Windows XP Professional. This would equate to about 35 hours on a laptop running Windows 7 Professional on a 2.80GHz Intel Core i7-2640M processor. 

Scalability of MCMC Estimation

Proportion Missing (N=22) Time (seconds)

ESPON Time series in practice

The code for the various tasks to be undertaken is included as Appendices 2, 3, 4 and 5. We can identify as number of tasks which are relevant. It should be noted that the temptation to regard the entire process as automatic should be avoided, although much of the activity can be automated.

Getting started

Currently the organisation of the activity assumes that the R code and the data are in the same folder. This is Time_Series_Analysis/Sandbox but the code and data can be separated. All code should be in the same folder. The relevant files are:

Modelling_and_Imputation.R ImputeMissingData.R tfile1.JAGS tfile2.JAGS
The following R libraries are required:

gdata rjags RColorBrewer

Data requires that a current version of the perl11 language is installed, and rjags requires that a current version of JAGS is installed12 .

The various tasks are identified in the code, and are briefly described below.

Task 1: Data load and pre-processing

The four worksheets in the ESPON Database spreadsheet are read into four separate data frames. We use the read.xls() function for this. Of interest are the Source and Data worksheets.

The Source worksheet is parsed to extract as list of the data providers and their identification codes. The data frame sourceIndex needs to be examined to identify the codes for EUROSTAT and the National Statistical Agencies13 .

The relevant codes are extracted to another dataframe, sourcesOK, and this is used as a filter for the data extraction. The Data worksheet is split into two data frames which hold (a) the data and (b) the corresponding index codes. Once the non-EUROSTAT/NSA data has be filtered, the resulting data frame Data.estim, will be used in the remainder of the exercise.

As a final activity under this task the rows in Data.estim are index by their corresponding NUTS codes. This indexing is central to the spatial coherence activity described in a later task.

Task 2: Missing data pattern analysis

It is important to be aware of the patterns of missing data in the dataset. This gives an overall picture of the patterns in each country, and also an indication of the scale of the problem.

A useful tool for this purpose is the heatmap. The columns in the heatmap represent the individual time periods, and the rows represent the NUTS regions.

A separate heatmap can be produced for each country. Data values are colour coded according to their value, so some broad indications of the range of values and the trends in each group of series can be obtained from the heatmap.

The heatmap() function has a number of options, including the re-ordering of the rows and columns as a result of the application of hierarchical clustering. These options are turned off: (Colv=NA, Rowv=NA). The cells in the heatmap which arise from the intersection of a year and a NUTS region with missing data are coloured grey.

The resulting heatmaps are included as separate plots in Appendix 7.

Task 3: Missing data at NUTS0/1/2

Ensuribng spatial coherence is an important issue for the imputation process. This requires reliable control data for the higher NUTS levels. Inevitably, there will need to be consistent series for the NUTS0 level. Task 3 involves an enurmation of NUTS0/1/2 regions with missing data. The complete.cases() function is used to identify NUTS regions with missing data. These are listed.

Task 4: exploring general patterns

Analysis of the series suggested that an simple linear or exponential trend model might be insufficient to capture the overall trend pattern. Eventually it was decided that a quadratic term would be added to the model. If the empirical trend was more or less linear, then the coefficient on the quadratic term would be close to zero. Four plots are shown below for Austria, France, Netherlands, and Slovenia:

 The non-missing data points  A line or lines connecting the non-missing data points  A line to show linear trend  A line to shown quadratic trend

Whilst the general pattern is modelled well by the linear term, the fit is improved by the quadratic term -very noticeably in the case of Slovenia.

Task 5: extraction of the data for a single country

Much of the development work took place using the data series for NUTS regions of Austria as an example. The code under Task 5 shows how to extract data for a single country for further analysis.

It also shows how to create a backlink in the spatial hierarchy, so that the 'parent' region for each NUTS region can be identified.

In the normal course of events, this code section need not be used, although it is helpful to have it for testing and debugging purposes. The central task of the exercise is to estimate the missing data in each series using Markov Chain Monte Carlo methods. The main function which organises the data into input for JAGS, ImputeMissingData(), is shown and commented in Appendix 3.

All rows with missing in Data.estim can be estimated with the exception of any row with fewer than 3 observations. The estimation takes place in a loop, whose start/end locations are controlled by the variables startrow and endrow. In the code these are set to 1 and the number of rows in Data.estim. This task is massively time consuming, and if there is doubt that the computer on which the process is run would stay up, then the estimation could be subdivided.

Once the missing data in a NUTS region has been estimated and the row written to the output matrix, NUTSData.completed, it is not referenced again until Task 6 has completed.

The final step in the Task is to write the intermediate results to a file. The estimation of all the missing data for 1990-2001 for all NUTS0/1/2/3 regions took some 60 hours on a 2.8GHz Intel Core i7-260M processor, so some precautions are needed to ensure that the task does not have be repeated too many times. Should there be a system failure when the last few estimations are to be completed would be extremely unfortunate, so writing out the intermediate results every 100 or so iterations would be sensible.

The JAGS code appears to be robust -only one series caused a failure, and that was one in which all values were missing.

Task 6A: Scalability assessment

Task 6a can be omitted -it is present only to allow an assessment of the scalbiluty of the process, using data from the Netherlands as an example. The plot from this Task appears on page 36.

Task 7: Spatial Coherence Adjustment

One of the most challenging parts of the work has been to develop an algorithm which permits adjustment of lower level NUTS estimations to constraining values at the higher NUTS levels. There are two subtasks.

Task 7a is a manual fix for Portugal. PT is missing years 1992 and 1995. PT1 is missing the same years. However, the NUTS2 regions in PT1 are present. The manual fix is to sum the PT1* regions to PT1, and then PT1+PT2+PT3 to PT. This could be automated, but analysis of other series would be needed to determine whether it is a more widespread problem. The code for the manual fix is present, and therefore is reproducible 14 . Task 7b includes the coherence algorithm. This is presented as a function ConstrainTotals2() which takes the missing data pattern data frame, the data frame of unadjusted estimates, and then range of data columns to be adjusted. The output is a spatially coherent data frame of actual data and estimates.

The algorithm is a top down algorithm. The indexing of the rows by their NUTS code means that it is possible to identify the parent region (the NUTS chode is one character shorter). NUTS1 regions are first constrained to the NUTS0 values -with care being taken when only a subset of these has been estimated. The hierarchical relationship between the NUTS levels, and the existence of the 'parent' vector means that this can be coded in a loop.

Once the NUTS1 regions have been constrained, the NUTS2 region estimates can be constrained to the NUTS1 totals. Finally the NUTS3 region estimates can be constrained to the NUTS2 totals.

The resulting data frame can be output to a file if required.

Other functions

CheckCountry(): this uses the function CheckConstraint() -lists the children for each parent node in the tree CheckTree(): traverses the tree in order CheckMissingPattern(): examines the missing data patterns for each parent node.

In the final section are some plots of random numbers drawn in samples of different sizes for different distributions (normal, gamma, beta, multivariate normal), together with random normal for different precisions and a noninformative prior to show the influence of increasing the sample size on the estimates of the mean. Appendix 2: Main analysis and imputation R functions 

################################################################################ ####################################################################### ###### V5 # # ESPON
####################################################################### ######### ####################################################################### ######### ### ###
####################################################################### ########## ### TASK 1:
Read the data, identify the EUROSTAT/NSA data and split data # ## and source indices into separate worksheets

####################################################################### ##########
Dataset <-read.xls(paste(dsn,"\\M4D_poptot1990-2011_20120522.xls",sep=""), sheet=1,header=FALSE) Indicator <-read.xls(paste(dsn,"\\M4D_poptot1990-2011_20120522.xls",sep=""), sheet=2,header=FALSE) Source <-read.xls(paste(dsn,"\\M4D_poptot1990-2011_20120522.xls",sep=""), sheet=3,header=FALSE) Data <-read.xls(paste(dsn,"\\M4D_poptot1990-2011_20120522.xls",sep=""), sheet=4,header=FALSE) ### ### Parse the 'Source' worksheet for the provider index codes and names ### len3 <-dim(Source) [1] sourceLabels <-which(Source[,1] == "Label") sourceProvider <-which(Source[,1] == "Provider") sourceIndex <data.frame(Source[sourceLabels,2],Source [sourceProvider,3]) colnames(sourceIndex) <-c("Label","Provider") sourceIndex

############################################# sourcesOK <-sourceIndex[c(1:32),]
# These are the rows for which data is from [1] # number of rows dataCols <-seq [START_REF]col="red") par(mfrow=c(1,1)) ##################[END_REF]47,2) # columns with data c(1,2,4,dataCols)] # data Data.source <- Data[4:len2,c(1,2,4,dataCols+1)] # source information colnames(Data.data) <c("UnitCode","Level","Name",paste("p",1990:2011,sep="")) colnames(Data.source) <c("UnitCode","Level","Name",paste ("s",1990:2011, levels(as.factor(substr(rownames(Data.estim),1,2))) # "AT" "BE" "BG" "CH" "CY" "CZ" "DE" "DK" "EE" "ES" "FI" "FR" "GR" "HR" "HU" # "IE" "IS" "IT" "LI" "LT" "LU" "LV" "MK" "MT" "NL" "NO" "PL" "PT" "RO" "SE" # "SI" "SK" "TR" "UK" PlotOrder <-dim(CountryData) [1]:1 heatmap(as.matrix (CountryData[PlotOrder,4:25]),Colv=NA,Rowv=NA,main=tit le,na.rm=T, xlab="Year",ylab="NUTS Region",col=rev(brewer.pal(11,"Spectral")),bg="grey") } # "IE" "IS" "IT" "LI" "LT" "LU" "LV" "MK" "MT" "NL" "NO" "PL" "PT" "RO" "SE" # "SI" "SK" "TR" "UK" ### ### Area code/name information as in TASK 2: ### CountryCode <-levels(as.factor(substr(rownames(Data.estim),1,2))) CountryName <-Data.estim [match(rownames(Data.estim) 

# EUROSTAT + Nation al Statistical Agencies ############################################# ### #
####################################################################### ########## # TASK 2: Create a series of missing data heatmaps for the report ####################################################################### ##########
} } } ####################################################################### ########################## ### Task 4: Example plots to explore general patterns in the data ####################################################################### ##########################
CountryCode <-levels(as.factor(substr(rownames(Data.estim),1,2))) year <-1:22 yearsq <-year^2 

.estim <-Austria ####################################################################### ############ #### TASK 6: MCMC estimation of NUTS levels 3 series ####################################################################### ############ #
# ####################################################################### ########### ### ### Load the function definition ### source("ImputeMissingData.R") ### ### Copy start data ### NUTSData.completed <-Data.estim nrow <-dim(Data.estim)[1]
# number of regions NUTS <-rownames(Data.estim) # NUTS codes NUTSlevel <-nchar(NUTS)-2 # NUTS lebels total.time <-0 startrow <-1 # start at 1 ... endrow <-nrow # ... and finish at nrow for (i in (complete.cases(Data.estim[i,4:25])) { # data complete? cat(NUTS [i],"is complete\n") # ... yes: ignore } else { cat(NUTS [i],"is undergoing imputation\n") # ... no: imputation needed Z <-as.numeric(Data.estim [i,4:25 [i],"is NUTS level",NUTSlevel [i],"\n") } } cat("Completed. Total time required was ",total.time," seconds\n") ### ### Write results to a file -this step takes 60 hours! # ## write.csv(NUTSData.completed,"NUTSData_completedN3.csv") # store the results for later (1990:2011,AT21MCMCout[i,],col="darkgrey",type="l",xlab="Year",ylab =NA, ylim=c(mindata,maxdata), main=paste(NUTS3zone,Names [i]),lty=2) lines (1990:2011,AT21adjusted[NUTS3zone,],col="red",lty=1) lines (1990:2011,Data.estim[NUTS3zone,4:25],col="darkgrey") points (1990:2011,Data.estim[NUTS3zone,4:25] for (i in c(100,500,1000,5000,10000,50000,100000,500000,1000000)) { hist(rnorm(i,0,1),breaks=100,xlim=c(-4,4),col="grey",border=NA,main=paste("N=",i,sep=""),xlab=NA,ylab=NA) } par(mfrow=c(1,1)) ### Random gamma par(mfrow=c(3,3)) for (i in c(100,500,1000,5000,10000,50000,100000,500000,1000000)) { hist(rgamma (i,50),breaks=100,xlim=c(20,80),col="grey",border=NA,main=pa ste("N=",i,sep=""),xlab=NA,ylab=NA) for (j in 1:N) { tdmat [i,j] <-s2err*rho^abs(i-j) }} for (i in 1:length(seen)) { for (j in 1:length(seen)) { tdmat22 [i,j] <-tdmat[seen [i],seen [j]] }} itdmat22 <-inverse(tdmat22)

startrow:endrow) { #if(NUTSlevel[i] < 3 & substr(NUTS[i],1,2) != "UK") { if(substr(NUTS[i],1,2) != "UK") { # UK separately if
######################### End of MCMC estimation ############################################# ####################################################################### ####################### ####################################################################### ############ ###
####################################################################### ############ # Estimation

  idth = 0.001753 since we have few initial views as to their values -these are known as noninformative priors.

  Data are present onlyfor 1990, 2000, 2008-2011 for all NUTS regions, including NUTS0. The strategy here will be to estimate all the missing data using the MCMC technique. Then, we apply the hierarchical constraint working down the tree from NUTS0 to NUTS1, NUTS1 to NUTS2 and finally NUTS2 to NUTS3. NUTS0, NUTS1 and NUTS2 regions with missing data are listed below: Missing data for PT Portugal Missing data for TR Turkey Missing data for UK United Kingdom **************** NUTS1 Missing ****************************************** Missing data for FR9 Départements d'outre-mer (FR)

  Autónoma dos Açores (PT) 20 0 0 0 0 2 0 0 PT3 PT3 NUTS1 Região Autónoma da Madeira (PT) 20 0

Donoho, 1995 ,

 1995 WaveLab and Reproducible Research, Dept. of Statistics, Stanford University, Tech. Rep. 474 

  Identify a working folder -all data/software in in this folder #

  CountryCode <-levels(as.factor(substr(rownames(Data.estim),1,2))) # NUTS codes CountryName <-Data.estim[match(rownames(Data.estim),CountryCode),3] # Names CountryName <-CountryName[!is.na(CountryName)Heatmap construction function -many defaults are turned off ### drawHeatmap <-function(country,title="Population") { CountryData <-Data.estim[substr(rownames(Data.estim),1,2) == country,]

  TASK 6A: Timings for MCMC estimation ### Use Netherlands as an example to get scalbility graphc ### *** Only for report illustrations ***

Ny

  **********************************************************\n") cat("* Cross-Sectional Time Series Constraint for NUTS Level",Level,"*\n") cat("***********************************************************\n") Levelnodes <-nodes[which(NUTSlevel == Level)] NL <-length(Levelnodes) for (i in 1:NL) { children <-nodes[parent == Levelnodes[i]] # NUTS1 children of the root cat("NUTS",(Level+1), "children of", Levelnodes[i], "are", children,"\n") Nc <-length(children) # Number of children for (year in dataCols){ # loop over the years any.missing <-which(is.na(NAPattern[children,year])) # which children have NA if (length(any.missing) == 0) { # ... none missing#cat("** NUTS",(Level+1),"data for",Levelnodes[i],"children are present in",Years[year],"\n") nodes <-rownames(Data.estim) NUTSlevel <-nchar(nodes) -2 parents <-substr(nodes,1,(NUTSlevel+1)) AT21children <-nodes[which(parents == "AT21")] Names <-as.character(Data.estim[AT21children,3]) AT21MCMCout <-as.matrix(Austria.final[AT21children,4(3,1)) for (i in 1:length(AT21children)) { NUTS3zone <-AT21children[i] mindata <-min(AT21MCMCout[i,],AT21adjusted[NUTS3zone,]) * 0.95 maxdata <-max(AT21MCMCout[i,],AT21adjusted[NUTS3zone,]) * 1.05 plot

  ,pch=16,col="darkgrey") } par(mfrow=c(1,1))####################################################################### ########## ### MONTE CARLO VARIABILITY ##################################################### ####################################################################

  made avilable under the GNU GENERAL PUBLIC LICENSE, Version 3 # Text of the License is at http://www.gnu.org/licenses/gpl.txt# ################################################################################ ################################################################################ # #Fit estimate missing values in a time series using MCMC with a Load the correct JAGS code -different cdoe is required when there is ### only one NA.

  of time series with missing data [tfile1: several NA values] made avilable under the GNU GENERAL PUBLIC LICENSE, Version 3 # Text of the License is at http://www.gnu.org/licenses/gpl.txt ################################################################################# #############################################################################

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Table 1

 1 

		: extracr from metadata in M4Dpoptot1990-2011_20120522.xls
	ID Label Provider
	1	1 Eurostat
	2	1a Eurostat
	3	1*a Eurostat, NewCronos database
	4	1*b Eurostat, NewCronos database
	5	2a ESPON M4D
	6	3a Turkstat
	7	4a Croatian Bureau of Statistics
	8	4b Croatian Bureau of Statistics
	9	4c Croatian Bureau of Statistics
	10	6a GUS (Central Statistical Office of Poland)
	11	10 Statistics Norway
	12	11 Statistics Sweden
	13	12 Statistische Ämter des Bundes und der Länder
	14	13 Statistics Denmark
	15	14 Statistics Portugal
	16	15 Statistics Netherlands
	17	16 Latvijas Statistika
	18	17 Statistics Lithuania
	19	18 Fürstentum Liechtenstein
	20	20 Statistics Iceland
	21	21 Instituto Nacional de Estadistica
	22	22 Czech Statistical Office
	23	23 Office Fédéral de la Statistique Suisse
	24	24 Statistics Estonia
	25	25 Statistics Finland
	26	26 INSEE (Institut National de la Statistique et des Etudes Economiques)
	27	27 Hungarian Central Statistics Office
	28	29a Statistics Belgium -Bestat
	29	29b Statistics Belgium
	30	31 Republic of Macedonia, Statistical

estim[substr(rownames(Data.estim),1,2)=="PT",]

  

		UnitCode Level	Name	p1990	p1991	p1992	p1993	p1994	p1995	p1996
	PT	PT NUTS0	Portugal 9970441 9912140	NA	NA	NA	NA
	PT1	PT1 NUTS1	Continente	NA	NA	NA	NA	NA	NA
	PT2	PT2 NUTS1 Região Autónoma dos Açores (PT)	NA	NA 239336 239271 239207 238807
	PT3	PT3 NUTS1 Região Autónoma da Madeira (PT)	NA	NA 253999 253059 252120 250165
	PT11	PT11 NUTS2	Norte	NA	NA 3511771 3516484 3527789 3541805
	PT15	PT15 NUTS2	Algarve	NA	NA 341075 343336 345970 349658
	PT16	PT16 NUTS2	Centro (PT)	NA	NA 2272111 2270518 2271336 2276261
	PT17	PT17 NUTS2	Lisboa	NA	NA 2574265 2581419 2585705 2593283
	PT18	PT18 NUTS2	Alentejo	NA	NA 772760 770509 768468 767593
	PT20	PT20 NUTS2 Região Autónoma dos Açores (PT)	NA	NA 239336 239271 239207 238807
	PT30	PT30 NUTS2 Região Autónoma da Madeira (PT)	NA	NA 253999 253059 252120 250165
	PT111	PT111 NUTS3	Minho-Lima	NA	NA 252188 251518 250382 249541
	PT112	PT112 NUTS3	Cávado	NA	NA 358355 360519 363498 366785

> Data.

  Initial burn-in -these results are discarded. Default is 250000 iterations ### update(m, n.iter=burnin.iters) 

	if (length(missing) == 1) {
	tfile = "tfile2.JAGS"	# estimator for data with a single NA
	} else {	
	tfile = "tfile1.JAGS"	# estimator for data with multiple NAs
	}		
	###		
	### Initialisation
	###		
	###	present: indices of the non-missing data
	###	y:	time series -the regressor
	###	N:	number of terms in the series (both missing and present)
	###	ys:	present data
	###	ym:	missing data
	###		
	present <-setdiff(gyear,missing)	# indices of non-missing data
	y <-pop/yscale		# scale the y if necessary
	N <-length(y)		# length of the series
	ys <-y[present]	# present data values
	ym <-y[missing]	# missing data
	###		
	### Initialise the JAGS input
	###	popdata: list which is used to pass data to JAGS
	###	N:	length of the time series
	###	ys:	non-missing data values
	###	seen:	indices of the non-missing data
	###	missing: indices of the missing data
	###	year:	linear regressand
	###	yearsq:	quadratic regressand
	###		
	popdata <-list(N=N, ys=ys, seen=present, missing=missing, year=gyear,
	yearsq=gyear2)	
	###		
	### Fit an OLS model to provide some plausible starting values for the
	coefficients	
	###		
	xx <-coef(mdl <-lm(y~gyear+gyear2))
	###		
	### Load the model
	###	m:	rjags object containign the model
	###	file:	JAGS code for the MCMC model
	###	data:	list of data and regressands for the model
	###	inits:	initial values for the parameters
	###	.RNG.name: random number generator to be used
	###	.RNG.seed: random number generator seed (for reproducibility)
	###	n.chains: number of Markov chains to use
	###		
	if (chains == 1) {
	m <-jags.model(file=tfile,
		data=popdata,
		inits=list(b0=xx[1],b1=xx[2],b2=xx[3],
		.RNG.name='base::Mersenne-Twister',.RNG.seed=290162),
		n.chains=1)
	} else {	
	m <-jags.model(file=tfile,
		data=popdata,
		inits=list(b0=xx[1],b1=xx[2],b2=xx[3]),
		n.chains=chains)
	}		
	###		
	###		
			This is an R issue
	###		

Chatfield, C, 1989, The Analysis of Time Series, 4 th edn, London: Chapman and Hall, p1

Shumway RH and Stoffer DS, 2010, Times Series Analysis and its Applications,

rd edn, New York: Springer

Commission Regulation 11/2008 specifies the required time series starting years for NUTS levels in 17 statistical domains. The domain Demography has a start year for 1990 for both NUTS2 and NUTS3.

Hyndman R, 2014, Fitting models to short time series, URL:rob.hyndman.com/hindsight/short-time-series

http://epp.eurostat.ec.europa.eu/portal/page/portal/nuts_nomenclature/introduction

http://pic.dhe.ibm.com/infocenter/spssstat/v21r0m0/index.jsp?topic=%2Fcom.ibm.spss. statistics.help%2Fidh_rmvx.htm

Enders, CK, 2010, Applied Missing Data Analysis, New York: Guilford Press 

Rubin, DB, 1976, Inference and Missing Data, Biometrika, 63(3), 581-592 

Knuth DE, 1973, Fundamental Algorithms, The Art of Computer Programming, Volume 1, Reading MA: Addison-Wesley, p305

Perl can be downloaded from http://www.activestate.com/activeperl/downloads

JAGS can be installed from http://sourceforge.net/projects/mcmc-jags/files/

The data as supplied by the RIATE team contains original data as well as RIATE's own estimations of the missing data

Reproducibility is science is the ability of an enture study to be reproduced by either the researcher themselves, or by an independent third party. See alsoBuckheit JB and 

Missing data for TR5 Bati Anadolu Missing data for TR6 Akdeniz Missing data for TR7 Orta Anadolu Missing data for TR8 Bati Karadeniz Missing data for TR9 Dogu Karadeniz Missing data for TRA Kuzeydogu Anadolu Missing data for TRB Ortadogu Anadolu Missing data for TRC Güneydogu Anadolu Missing data for UKC North East (UK) Missing data for UKD North West (UK) Missing data for UKE Yorkshire and The Humber Missing data for UKF East Midlands (UK) Missing data for UKG West Midlands (UK) Missing data for UKH East of England Missing data for UKI London Missing data for UKJ South East (UK) Missing data for UKK South West (UK) Missing data for UKL Wales Missing data for UKM Scotland Missing data for UKN Northern Ireland (UK) **************** NUTS2 Missing ****************************************** Missing data for CZ01 Praha Missing data for CZ02 Strední Cechy Missing data for CZ03 Jihozápad Missing data for CZ04 Severozápad Missing data for CZ05 Severovýchod Missing data for CZ06 Jihovýchod Missing data for CZ07 Strední Morava Missing data for CZ08 Moravskoslezsko Missing data for DE41 Brandenburg -Nordost Missing data for DE42 Brandenburg -Südwest Missing data for DED1 Chemnitz Missing data for DED2 Dresden Missing data for DED3 Leipzig Missing data for DK01 Hovedstaden Missing data for DK02 Sjaelland Missing data for DK03 Syddanmark Missing data for DK04 Midtjylland Missing data for DK05 Nordjylland Missing data for HR01 Sjeverozapadna Hrvatska Missing data for HR02 Sredisnja i Istocna (Panonska) Hrvatska Missing data for HR03 Jadranska Hrvatska Missing data for IE01 Border, Midland and Western Missing data for IE02 Southern and Eastern Missing data for PL11 Lódzkie Missing data for PL12 Mazowieckie Missing data for PL21 Malopolskie Missing data for PL22 Slaskie Missing data for PL31 Lubelskie Missing data for PL32 Podkarpackie Missing data for PL33 Swietokrzyskie Missing data for PL34 Podlaskie Missing data for PL41 Wielkopolskie Missing data for PL42 Zachodniopomorskie Missing data for PL43 Lubuskie Missing data for PL51 Dolnoslaskie Missing data for PL52 Opolskie Missing data for PL61 Kujawsko-Pomorskie Missing data for PL62 Warminsko-Mazurskie Missing data for PL63 Pomorskie Missing data for PT11 Norte Missing data for PT15 Algarve Missing data for PT16 Centro (PT) Missing data for PT17 Lisboa Missing data for PT18 Alentejo Missing data for PT20 Região Autónoma dos Açores (PT) Missing data for PT30 Região Autónoma da Madeira (PT) Missing data for SK01 Bratislavský kraj Missing data for SK02 Západné Slovensko Missing data for SK03 Stredné Slovensko Missing data for SK04 Východné Slovensko Missing data for TR10 Istanbul Missing data for TR21 Tekirdag Missing data for TR22 Balikesir Missing data for TR31 Izmir Missing data for TR32 Aydin Missing data for TR33 Manisa Missing data for TR41 Bursa Missing data for TR42 Kocaeli Missing data for TR51 Ankara Missing data for TR52 Konya Missing data for TR61 Antalya Missing data for TR62 Adana Missing data for TR63 Hatay Missing data for TR71 Kirikkale Missing data for TR72 Kayseri Missing data for TR81 Zonguldak Missing data for TR82 Kastamonu Missing data for TR83 Samsun Missing data for TR90 Trabzon Missing data for TRA1 Erzurum Missing data for TRA2 Agri Missing data for TRB1 Malatya Missing data for TRB2 Van Missing data for TRC1 Gaziantep Missing data for TRC2 Sanliurfa Missing data for TRC3 Mardin Missing data for UKC1 Tees Valley and Durham Missing data for UKC2 Northumberland and Tyne and Wear Missing data for UKD1 Cumbria Missing data for UKD2 Cheshire Missing data for UKD3 Greater Manchester Missing data for UKD4 Lancashire Missing data for UKD5 Merseyside Missing data for UKE1 East Yorkshire and Northern Lincolnshire Missing data for UKE2 North Yorkshire Missing data for UKE3 South Yorkshire Missing data for UKE4 West Yorkshire Missing data for UKF1 Derbyshire and Nottinghamshire Missing data for UKF2 Leicestershire, Rutland and Northamptonshire Missing data for UKF3 Lincolnshire Missing data for UKG1 Herefordshire, Worcestershire and Warwickshire Missing data for UKG2 Shropshire and Staffordshire Missing data for UKG3 West Midlands Missing data for UKH1 East Anglia Missing data for UKH2 Bedfordshire and Hertfordshire Missing data for UKH3 Essex Missing data for UKI1 Inner London Missing data for UKI2 Outer London Missing data for UKJ1 Berkshire, Buckinghamshire and Oxfordshire Missing data for UKJ2 Surrey, East and West Sussex Missing data for UKJ3 Hampshire and Isle of Wight Missing data for UKJ4 Kent Missing data for UKK1 Gloucestershire, Wiltshire and Bristol/Bath area Missing data for UKK2 Dorset and Somerset Missing data for UKK3 Cornwall and Isles of Scilly

Austria Unadjusted Populations p1990 p1991 p1992 p1993 p1994 p1995 p1996 p1997 p1998 p1999 p2000 p2001 p2002 p2003 p2004 p2005 p2006 p2007 p2008 p2009 p2010 p2011

case 3 are examples of emabrassingly estimatable situations, the child or parent node data can be computed directly from the available data. Cases 4 and 5 require estimation of the child series using MCMC, and then application of the cross-sectional constraint. Cases 6, 7 and 8 are more challenging, and require estimation of the higher order data in order to provide the cross-sectional constraints.

The patterns can either be visualised using a heatmap -these are shown in Appendix 7. We can also use the tree traversal algorithm and a pattern analyser to check the patterns at each node. A sutiable tree traversal function is shown below. As each node is visited, the pattern of cases over the time periods is computed, and the stored in a data frame.

CheckMissingPattern <-function(Country,Data,dataCols,verbose=FALSE) { CountryData <-Data[substr(rownames(Data),1,2) == Country,] IDInfo <-CountryData[,1:3] Nc <-dim(IDInfo) [1] Results <-data.frame(IDInfo[,1:3],matrix(0,Nc,8)) rownames(Results) <-rownames(CountryData) nodes <-rownames(CountryData) parent <-substr(rownames(CountryData),1,nchar(rownames(CountryData))-1) parent [1] <-"" Nd <-length(dataCols)

# ## visit 

This requires a function to carry out the analysis of the missing data patterns associated with each node: [children[missingChild],year] # adjusted MCMC estimates cat("** NUTS",(Level+1),"data for",Levelnodes [i],"children constrained in",Years[year],"\n") } else { #cat("** WARNING: missing data for",Levelnodes [i],"Constraint not possible in",Years[year],"\n") #> levels(as.factor(substr(rownames(Data.estim),1,2))) # "AT" "BE" "BG" "CH" "CY" "CZ" "DE" "DK" "EE" "ES" "FI" "FR" "GR" "HR" "HU" # "IE" "IS" "IT" "LI" "LT" "LU" "LV" "MK" "MT" "NL" "NO" "PL" "PT" "RO" "SE" # "SI" "SK" "TR" "UK" CountryList <-levels(as.factor(substr(rownames(Data.estim),1,2))) Nc <-length(CountryList) for (i in 1:Nc) { CheckMissingPattern(CountryList [i],Data.estim, 4:25) }

Appendix 5: JAGS code for MCMC (single NA) 

~ dnorm(0.0, 0.000001) b1

~ dnorm(0.0, 0.000001) b2

~ dnorm(0.0, 0.000001) s2err ~ dgamma(1,50) #rho ~ dbeta(0.5, 0.5) rho ~ dbeta(10,10) [i,j] <-s2err*rho^abs(i-j) } } for (i in 1:length(seen)) { for (j in 1:length(seen)) { tdmat22 [i,j] <-tdmat[seen [i],seen [j]] }} itdmat22 <-inverse(tdmat22) tdmat11 <-tdmat [missing,missing] itdmat11 <-1.0/tdmat11 for (j in 1:length(seen)) { tdmat12 [j] <-tdmat[missing,seen [j]] } for (i in 1:length(seen)) { tdmat21 [i] <-tdmat[seen [i],missing] } for (i in 1:length(seen)) { mu2 [i] <-mu[seen [i]] } for (i in 1:length(seen)) { for (j in 1:length(seen Note: the listing for the NUTS2 constraint of their contained NUTS3 regions is somewhat lengthy, and most lines have been omitted.