N

N

Data Quality Check: Methods & Procedures
Martin Charlton, Paul Harris, Alberto Caimo, Conor Cahalane

» To cite this version:

Martin Charlton, Paul Harris, Alberto Caimo, Conor Cahalane. Data Quality Check: Methods &
Procedures. [Research Report] ESPON. 2014. hal-03609712

HAL Id: hal-03609712
https://hal.science/hal-03609712
Submitted on 15 Mar 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Copyright


https://hal.science/hal-03609712
https://hal.archives-ouvertes.fr

T EcHNICAL ES PHN
REPORT June 2014

Data Quality Check:
Methods & Procedures

CONTENT

The outcome of this report is a targeted
review of existing outlier-detection tools in
the field of statistics, data mining and
spatial analysis, and an examination how
they can assist in the detection of
errors/outliers in the ESPON Database for
improved quality control.

This methodological review has a clear
focus on spatial analysis with respect to
outlier-detection; and is complemented by
worked examples on an ESPON-type data
set, where chosen techniques are
demonstrated. Worked examples are coded
using open-source software so that the
applied techniques are easily transferable.

ESPON M4D -
MULTI DIMENSIONAL DATABASE DESIGN & DEVELOPMENT

EUROPEAN UNION
Part-financed by the European Regional Development Fund 62 pages
INVESTING IN YOUR FUTURE




AUTHORS

Martin Charlton
Paul Harris
Alberto Caimo

Conor Cahalane

National Centre for Geocomputation
National University of Ireland, Maynooth
Maynooth

Co Kildare

IRELAND

Email: martin.charlton@nuim.ie



TABLE OF CONTENT

Section

NGONN N
w

N
Nou b

WN =

UuPhwWwNR

oNOOU P WNR

ENONOANUTNUTNUINUTUTARRARRRWWWWNNN
N =

Appendices

NouhwWNH

Title

Introduction

Exceptional values: types and identification
Logical input errors

Aspatial statistical outliers: identification in univariate to
multivariate data sets

Spatial statistical outliers: identification in univariate data
sets

The use of statistical models and residual data in outlier
identification

The identification of spatial clusters

Summary: MAUP, temporal data and data imputation
Further reading

Data check control file

Introduction

Control file organisation

In practice

Data check system

General order of operation

Reading Excel spreadsheets

Pre-processing data

Reading geometry data from shapefiles
Implementation in the data check

Available data checks

Univariate summaries

Univariate checks

Bivariate checks

Multivariate checks

Spatial checks

Missing values

Visualisations: Plots

Visualisations: Maps

Data checks in practice

Reflections on the data check process

Helping the suppliers: the report

Installation

Further developments

References

ESatDOR data check control file
SeGI data check control file
SEMIGRA sex ratio data check
SEMIGRA labour market data check
EU LUPA data check
Data_Check_Main_Template.R
Data_Check_Functions.R

Page

(6] NNNBRF

N

30
33
35
36
37
38
39



1 INTRODUCTION

The ESPON Database should be as free from errors as possible. It follows from
this that detecting errors is an important activity in both data entry and data
checking. This technical report is to examine how mathematical, statistical and
spatial analysis tools can be applied to the ESPON Database in order to find
‘logical input errors’ and ‘statistical outliers’. In both cases, ‘exceptional values’
can arise but it is not always clear if such values relate to input errors or true
values that are statistically-outlying. In this respect, reliably determining the
nature of an exceptional value is important, especially as input errors should be
treated differently to statistical outliers. For example, input errors are usually
corrected or removed, whilst suspected outliers are usually flagged for further
scrutiny.

The outcome of this report is a targeted review of existing outlier-detection tools
in the field of statistics, data mining and spatial analysis, and an examination
how they can assist in the detection of errors/outliers in the ESPON Database for
improved quality control. This methodological review has a clear focus on
spatial analysis with respect to outlier-detection; and is complemented by
worked examples on an ESPON-type data set, where chosen techniques are
demonstrated. Worked examples are coded using open-source software so that
the applied techniques are easily transferable. The list of techniques that are
applied should not be considered as exhaustive, but form a cross-section of
useful techniques which are appropriate for ESPON Database.

A related aim of this report is to examine the effects of the Modifiable Areal Unit
Problem (MAUP) with respect to error/outlier identification. This follows previous
research by NCG for the ESPON 2006 project on this topic (ESPON 2006).

We describe the software that has been developed in the R! language, its
operation, and how it was used in practice. Appendices contain the R code in its
entirety.

! Other researchers have proposed R as well: http://www.ilr.uni-
bonn.de/agpo/rsrch/capri-rd/docs/d2.3.5.pdf



2 EXCEPTIONAL VALUES: TYPES AND IDENTIFICATION

2.1 Logical input errors

Logical input errors can arise for a number of reasons. For example, the wrong
NUTS? code could be specified; incorrect data values could be input; data could
be repeated exactly but assigned to different variables; data could be displaced
within or between columns; data could be swapped within or between columns.
In general, the identification of an input error will follow some logical,
mathematical approach. For example, if a land use class could only take a
positive integer value from 1 to 9 say, then an input error of say, -2, 4.5 or 10
would be easily identified.

An input error may also be identified statistically. For example, if the number 27
is inadvertently entered as 72 for a region’s unemployment rate, the value 72
may lie in the extreme tail of this variable’s distribution and as such, is
statistically-outlying. A difficulty here would be to distinguish between an input
error of 72 and a true value of 72.

In this respect, when dealing with errors/outliers, most input errors can be
either be corrected or removed, whilst most outliers should be flagged as: (i)
suspected outliers and (ii) potential (undetected) input errors. Flagged
observations would then require further scrutiny, which should ascertain whether
the observation should be: (a) replaced; (b) removed; or if specifically an
outlier, (c) retained or possibly down-weighted in some way (so as to provide
some robust model fit or statistic of the data).

2.2 Aspatial statistical outliers: identification in univariate to
multivariate data sets

A simple, graphical tool for the detection of outliers in univariate data sets is the
boxplot (e.g. Frigge et al. 1989). Central to the creation of the boxplot is the
inter-quartile range (Q3-Q1) around the median value Q2. Commonly, at the
upper end of the distribution, the inner fence is defined as the value given by
Q2+1.5(Q3-Q1) and the outer fence as the value given by Q2+3(Q3-Q1); and
there are corresponding values for the Ilower end of the distribution.
Observations whose values lie between the inner and outer fences are usually
referred to as outside and those whose values lie beyond the outer fence are
usually referred to as far out. In either case, such observations can be flagged
as outlying, however most attention should be placed on observations that lie
beyond the outer fence. In this report, we not only demonstrate the use of the
standard boxplot but also an adjusted boxplot for skewed distributions (Hubert
and Vandervieren 2008). For bivariate data sets, a simple extension of the
boxplot, the bagplot (Rousseeuw et al. 1999) can be constructed.

To detect outliers in multivariate data sets, we first demonstrate a technique
where outliers are observations that have a large squared Mahalanobis Distance

2 NUTS stands for “nomenclature of territorial units for statistics”.



(MD?), where the MD itself is estimated in a robust manner (Filzmoser et al.
2005). MDs are used as they take into account the covariance matrix from
which the shape and size of the multivariate data set can be quantified. In this
outlier detection technique, robust MD? values are related to some pre-
determined (upper) quantile of a chi-square distribution (e.g. the 97.5%
percentile), where Jarge robust MD? values lie above this pre-determined
threshold. Furthermore, to address subjectivity in choosing the threshold, the
technique automatically adjusts the pre-determined threshold (downwards or
upwards) via simulation reflecting specific properties of the sample data. The
technique (called here RMD2-AQ-outlier) is applied incorporating useful graphical
displays of suspected outliers.

We also demonstrate two further multivariate techniques that each use principal
component analysis (PCA) to reduce the dimensions of the multivariate data set,
where in the resultant transformed space, outliers may be more readily
observable. Of the many PCA-based techniques for outlier detection that have
been proposed (e.g. see Rousseeuw et al. 2006; Daszykowski et al. 2007;
Filzmoser et al. 2008), we demonstrate: (a) the ‘'sign’ approach of Locantore et
al. (1999) (call this technique, PCA-outlier-1) and (b) the ‘PCOut’ approach of
Filzmoser et al. (2008) (call this technique, PCA-outlier-2). Both techniques are
computationally fast and thus suited to large, high dimensional data sets (see
the comparisons given in Filzmoser et al. 2008).

2.3 Spatial statistical outliers: identification in univariate data sets
Commonly outlier detection techniques ignore any spatial element to the data.
Data not observed as an outlier when an aspatial technique is used, may
nevertheless be a spatial outlier. Therefore it is important to consider spatial
aspects if false negatives (i.e. outliers undetected by an aspatial technique) are
to be avoided. In this respect, we demonstrate a technique of Hawkins (1980)
to detect spatial outliers in univariate data sets®. This technique has much in
common with the more recent techniques of Lui et al (2001); Kou et al. (2005).

For this technique, all observations z(xi) are suspected a priori as spatial

outliers, where z(x;) is a spatial outlier if

(N (z(x,)-m, ¥ )/((N +1)§|2)2 Xaita

(1)

3 We only present a technique to identify spatial outliers in a univariate sense.
Extensions to bivariate and multivariate spatial data sets are not considered here.
However our current research in this area concerns the development of geographically
weighted PCA techniques with respect to outlier identification (see Charlton et al. 2010),
which should allow the identification of multivariate spatial outliers in the ESPON

database.



Here, i=1,...,n; X is spatial location; N is the number of neighbouring values of

2(x,); m, is the local mean; § is the average variance for equivalently sized
neighbourhoods across the sample area (i.e. the average local variance) and
x2., is a critical value of the chi-squared distribution for 1 degree of freedom.

As there is no objective function for cross-validation, then neighbourhood
definitions (for the local mean and variances) are chosen subjectively for this
test statistic. In this report, the local mean and variances are found using a
geographically weighted approach (see sections 2.4 and 2.5), with 95%, 99%
and 99.9% critical levels chosen as appropriate cut-offs.

2.4 The use of statistical models and residual data in outlier
identification

In a statistical analysis, it is common to identify outliers via large (positive or
negative) prediction errors (or residuals) from some predictive model fit.
Observations that are poorly predicted produce large residuals when compared
with the actual data, and are therefore deemed as outlying. The key drawback
to this approach is the need to specify a model in the first place, where different
models may produce different outlying observations. However if several
prediction models are applied, then it is reasonable to expect that the most
influential outlying observations should be repeatedly identified.

In this respect, we first identify outliers (in a univariate sense) simply using the
key component of expression 1, where a spatial outlier relates to a large
(absolute) value of the error z(xi)—ml. Here our prediction model is simply the

one chosen to find the local mean m,, which in this case is some simple spatial

predictor using geographical weights (which we shall call the local mean
predictor, LM). The widely-used inverse distance weighting model would be one
example of such an LM model.

Furthermore, we also identify outliers (via residual data) using univariate and
multivariate regressions in both aspatial and spatial forms. In particular we
apply: (a) standard multiple linear regression (MLR) models, (b) attribute-space
local regression (LR) models (see Loader 2004) and (c) geographic-space local
regression models (Fotheringham et al. 2002) (i.e. geographically weighted
regression, GWR). Here LR accounts for nonstationarity and nonlinearity in
attribute-space, whilst GWR accounts for nonstationary and nonlinearity in
geographic-space. Both LR and GWR are nonparametric in design. The
conventional MLR model assumes stationarity and linearity in both attribute- and
geographic-space; and is parametric in design. Consequently, each of the three
regression forms will identify outliers (or possibly groups of outliers, see section
2.5) according to their particular specification (or set of modelling assumptions).
The investigation of residual data plays a central role in the formulation of a
robust regression model, where the influence of outlying data on the regression
fit is reduced (e.g. see Faraway 2004, p98-106; Cruz Ortiz et al. 2006). MLR,
LR (see Loader 2004) and GWR (Fotheringham et al. 2002, p73-82; Harris et al.
2010) all have robust forms. Commonly, a robust regression will identify
outliers as observations with large standardised (or studentised) residuals via a
leave-one-out approach. However, in this report we only identify outliers
simply, via the raw residuals and without the benefit of a /leave-one-out fit.



2.5 The identification of spatial clusters

A group of observations identified as outliers may actually be spatially clustered
with a substantive reason for their ‘unusualness’ (i.e. false positives are to be
avoided as well). In this respect, it is worthwhile applying techniques that
identify local (or regional) changes in the spatial process according to some key
moment or relationship”.

Furthermore, seemingly significant clusters can be sometimes be attributable to
only a few (influential and outlying) observations; so although the local
techniques described below are not specifically designed to identify spatial
outliers, they sometimes do so. Indeed, a corresponding robust form of the
given local technique would out of necessity identify spatial outliers in order to
reduce their influence.

Thus in the first instance, local summary univariate and bivariate statistics are
calculated and investigated. In particular, we assess changes in the mean,
standard deviation and correlation across space, where these (spatial) moments
are all found in a geographically weighted form (Fotheringham et al. 2002)°. For
the multivariate case, GWR can be applied, which complements a local
correlation analysis when investigating relationship-change across space.

From a spatial autocorrelation viewpoint, a local version of Moran’s I (Anselin
1995) is used. Positive spatial autocorrelation exists when neighbouring spatial
units tend to have similar values of a variable; whilst negative spatial
autocorrelation exists when they do not. Local Moran’s I is only used to
investigate univariate data, but the statistic could be adapted to investigate
cross-autocorrelation in bivariate and multivariate data sets.

2.6 Summary: MAUP, temporal outliers and data imputation

We have presented a typology of techniques where variables are analysed singly
or in combination; and aspatially or spatially. Underlying all of these techniques
is the spatial structure of the reporting units, where results can be influenced not
only by the level of spatial aggregation used but also by the spatial configuration
of the reporting units (i.e. a MAUP; e.g. see Wong 1996). In this report we
demonstrate the consequences of the MAUP for outlier identification via a
worked example, where outlier-detection techniques are applied at different
NUTS levels (NUTS level 3 through to NUTS level 0).

4 Brunsdon and Charlton (2010) assess the effectiveness of multiple hypothesis testing
for detecting clusters of geographical anomalies. These tests would complement the
techniques demonstrated from this section of the report.

> Robust forms of geographically weighted summary statistics (GWSS) can be found in

Brunsdon et al. (2002) and in Harris and Brunsdon (2010).



We have not addressed the identification of temporal (or by extension, spatio-
temporal) outliers. This is not an oversight, as ESPON time series data is not
expected to be of a sufficient length for an outlier detection technique to be
reliably applied. Instead it should suffice that the aspatial/spatial detection
methods demonstrated here can be repeated at different time intervals. The
consequences of the reporting units changing over time (i.e. another MAUP) are
addressed elsewhere in ESPON database project.

As already discussed, once an input error has been identified the observation
can either be corrected or removed (i.e. replaced with the missing value
notation, NA®). On the other hand, suspected outliers (which may be an input
error) can (after some additional scrutiny) be: (a) replaced; (b) removed (i.e.
replaced by NA); or if indeed an outlier, (c) retained or possibly down-weighted
in some way. This entails that some form of imputation or prediction of missing
valued data will be required, and here the chosen regression models of section
2.4 may be of value.

2.7 Further reading

This report provides a brief overview to subject of error or outlier identification
with respect to the task of identifying outliers in the ESPON Database. There is
an extensive literature on outlier detection, where the following reading list may
be useful.

e An evaluation of aspatial techniques to detect input errors and true
outliers (here known as data editing), together with imputation
techniques, for large scale survey data can be found in Charlton (2004).
This and related articles arose from the EUREDIT project’. Related
articles include: an outlier identification technique for multivariate data by
Béguin and Hulliger (2004); a robust regression technique for data edits
by Chambers et al. (2004); and a classification and regression tree
technique for data edits by Petrakos et al. (2004).

e An aspatial Bayesian technique that both edits and imputes data in a
multivariate context can be found in Ghosh-Dastidar and Schafer (2003).

e Reviews of aspatial outlier identification techniques from univariate to
multivariate data sets can be found in Reimann et al. (2005); Rousseeuw
et al. (2006); Daszykowski et al. (2007); Morgenthaler (2007).

e Further aspatial outlier identification techniques for multivariate data sets
can found in Hoo et al. (2002); Jackson and Chen (2004), where the
former article also imputes data.

e Imputation (aspatial) techniques can be found in Plaia and Bondi (2006);
Vanden Branden and Verboven (2009), where the former article focuses
on time series data.

® NA is the missing data indicator used in the R statistical computing package (see
section 4).

’ See http://www.cs.york.ac.uk/euredit/. The project website was still active as of
1/12/09.



http://www.cs.york.ac.uk/euredit/

e Alternative spatial outlier identification techniques can be found in
D’Alimonte and Cornford (2007); Ainsworth and Dean (2008); Meiklit et
al. (2009).



3 DATA CHECK CONTROL FILE

3.1 Introduction

The process is initiated by completing the data check control file. The function of
the control file is to supply appropriate values to a set of control variables which
are used to guide the data check process. This is described below, and several
example control files are presented in Appendices 1 to 6.

The information in the control file should be entered using a text editor, and
then copied/pasted into the R Console window. The file is divided into 6
sections, and all sections must be completed.

SHEHEHEHEHEHEHE SRR R R
HHEHEHEHEHEEEEE R R HEHEHE

#H### t33333
Fr T M4D Data Quality Check #4444
#H### t 33333

FHEHEEHE R R R R R
R

TR A0 8 00 00 00 00 08 08 A8 00 08 08 08 00 08 00 0 00 8 00 0 00 0 0 0 0 0
##### Information for the dataset under test: USER supplied HH###
TR 0 8 00 00 08 00 00 00 00 00 00 00 00 00 00 00 00 0 0 0 A 0 A A A A A A

### Section 1

DataFolder <- "~Dropbox\\2013 03_21 EsaTDOR Data_check\\"

DatasetName <- "2013-01-16-15-22-57_EsaTDOR_ESATDOR Economic_Use_Composite
v2_syntaxCheckedMC.x1ls"

### Section 2
NUTSLevel <- 2 # NUTS Region level
NUTSDate <- 2006 # NUTS Region date

### Section 3

DataColumns <- seq(4, 38, 2) # Starts col 4, in pairs 2 + 2*8 vars
DataTypes <- c("N", "N", rep("R",16)) # T=text N=nominal R=ratio
MV_Columns <- c(F, F, rep(T, 16)) # All multivariate testable

### Section 4

Cc1 <- ¢c(1, 2, 3, 4, 5) # Indicator 1
Cc2 <- c¢c(1l, 2, 3, 4, 5) # Indicator 2
TestCodes <- list(Cl, C2, rep(0,16)) # Codes for nominal data

### Section 5
DataColRange <- seq(4,length(DataColumns)+4) # Data columns in DataFrame
MissingValues <- rep(-999, length(DataColumns)) # Missing value codes

### Section 6
DrawPlots <- TRUE # Draw boxplots and maps
DrawMaps <- TRUE # Draw the maps

### section 7
source ("C:\\M4D\\Data Check Main Template.R",echo=TRUE) # Invoke data check

3.2 Control file organisation

The control file is organised into seven logical sections which supply initial values
to a minimum of 12 variables and data structures (lists, vectors). The names
and content of these are described in detail below.




3.2.1: Section 1: Dataset Identification

DataSetFolder: a string which contains the full pathname of the folder in which
the Excel spreadsheet is located. This string must be terminated with the
folder separator. This can either be '/' or "\\'.

DatasetName: a string which contains the name of the dataset, including its
filetype. In the current version of the software, only .xls spreadsheets can
be handled.

3.2.2: Section 2: Spatial binding information

NUTSLevel: a single value to denote the NUTS level for the data. This may be
0, 1, 2, 3, or 'X'. The 'X' is used when combined NUTS2/3 data are
present.

NUTSDate: the year for which the NUTS units are required, The current
implementation supports 2003, 2006 or 2010.

In some datasets data was available for several NUTS levels, with complete
coverage at each level. If this is the case, the dataset should be split into
separate files, one level only.

3.2.3: Section 3: Data Location and Type

DataColumns: indexing for the columns that contain data for the data check in
the worksheet Data. Columns occur in pairs, the first contains the data for
each indicator, the second contains an index to the source of the data in
the Source worksheet. The R function seq() can be used. In the example
above seq(4, 38, 2) generates the vector of indices: 4 6 8 10 12 14 16
18 20 22 24 26 28 30 32 34 36 38

DataTypes: a vector of data type indicators. This must be the same length as
the vector of DataColumns. The allowable types are 'R': ratios/counts, 'N':
categorical numeric values, 'T': text. This information is used to guide the
type of missing values analysis that takes place.

MV_Columns: a vector of logical values indicating which columns can be
subjected to testing for multivariate outliers. It should be the same length
as the DataColumns and DataTypes vectors. Allowable values are T and F.

3.2.4: Section 4: Coding for nominal data types

Cn: a vector of allowable code values for variables of DataType 'N'. These
values are specified in the Indicator worksheet.

TestCodes: a list of vectors of allowable code values or 0 if the corresponding
variable is ratio or text. The list should have as many members as there
are elements in DataColumns.

3.2.5: Section 5: Dataset size and Missing Values

DataColRange: index vector for the data columns in the data frame to be used
for the data check. The column ranges normally starts a 4 (the first three
columns contain the NUTS code, the NUTS name, and the NUTS level. In
the example given, the index vector contains the values: 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20 21 22, and is the same length as
DataColumns. The R function seq(start.col,
length(DataColumns)+start.col) can be used.



MissingValues: Some data suppliers include missing value codes. These are
recoded internally to NA. In the example given -999 was used as a
missing value code for each variable. The R function rep(value,N) can be
used to create a vector of N missing values - N should be the length of
the DataColumns vector.

3.2.6: Section 6: Graphics

DrawPlots: some of the data check functions produce graphic output. These
graphics can be omitted by specifying FALSE or F for this control variable.

DrawMaps: some of the data check functions produce map output. These
graphics can be omitted by specifying FALSE or F for this control variable

3.2.7: Section 7: Invocation
The final line in the control file invokes the data check process for the specified
file. Output is in graphical Windows and to the R Console.

source ("C:\\M4D\\Data_Check Main Template.R",echo=TRUE)

For debugging purposes the argument echo=TRUE can be used.

3.3 In practice

In spite of the existence of documentation with detailed instructions from the
Lead Partner on the ways to organise data for the upload, there were many
variations which we encountered in practice. This prevented the use of some of
the more advanced checks, and auxiliary software was used to compute Moran's
I for some of the data check reports®.

8 http://geodacenter.asu.edu/ - GeoDa has some useful and robust functions for dealing
with the computation of Moran's I, both global and local versions

10



4 DATA CHECK SYSTEM

4.1: General Order of Operation: Data_Check_Main_Template.R

Once the control file has been completed and its contents executed in the R
Console (this can either be done by cut/paste from the Text Editor window to the
R Console, or by the menu option of File/Source R Code..., then the code in the
file C:\M4D\Data_Check_Main_Template.R will be executed. This accomplished

a number of high level tasks:

N =

Polygons Data Frame

NoukWw

worksheet

@

spatial checking)

9. Univariate variable summaries

Initialisation: create global folder and dataset names
Read the appropriate NUTS boundaries (by level and date) into a Spatial

Read the worksheets in the Excel spreadsheet into separate data frames
Check for unique variable names

** Undertake an analysis of missing data

Check for invalid NUTS codes

Check for regions in the NUTS data which are omitted from the Data

Create a Spatial Polygons Data Frame with complete cases only (for

a. Frequency tabulation for nominal data
b. Five number summaries for ratio data

10.Bivariate variable summaries

a. Crosstabulation for nominal data

11.Plot variables

a. Univariate histograms for ratio data
b. Univariate boxplots for ratio data
c. Univariate barplots for nominal data

d. Univariate maps

e. Bivariate bagplots
12.%* Univariate Outlier check
13.** Spatial Outlier check
14.** Multivariate Outlier check
15.0utlier report

Function

Action

LoadLibraries

Load the require R packages for the
operation of the data check

PrintBanner

Printer a header on the output

M4D_Folders

Return a single object containing the
various folder pathnames

loadPolyShapefile

Read the NUTS geometries into a Spatial
Polygons Data Frame (SPDF)

GetNUTSCodes Read the current NUTS codes from index
file
GetData Return an object containing the four

worksheets (Dataset, Indicator, Source,
Data) from the Excel spreadsheet

Dataset.Info

Print summary details of the dataset

Indicator.Info

Printer summary metadata on each

11




indicator

Data.Unigue.Name.Check Check for duplicate indicator names

UnpackDataWorksheet Extract and reshape the data for the
quality check

Reshaped.Data.Unique.Name.Check | Check for duplicate names in the reshaped
data

Update.Missing.Value.Codes Convert missing data codes from values in
Indicator worksheet to NA

Missing.Value.Analysis Summary information on missing data in
the indicator data

MergeNUTSNames Add in region names from the NUTS code
index

Print.Invalid.NUTS.Codes Print any invalid NUTS codes found in the
data

Omitted Create a list of omitted NUTS regions

Print.Omitted Print regions in the shapefile not in the
Data

SubsetSPDF Remove omitted regions from the SPDF

MissingRecords Find the NAs in the Data

CleanSPDF Remove records with incomplete data

summary.Check.variables Summaries for SPDF variables

summary.Check.univariate Summaries for Data variables

Summary.Check.bivariate Summary bivariate checks

UniveriateExplore Univariate outlier analysis

SpatialExplore Spatial outlier analysis

MultivariateExplore Multivariate outlier analysis

4.2 Reading ESPON Database Excel spreadsheets into R data
frames

There are several different ways of reading a Microsoft Excel spreadsheet into an
R data frame. Tow commonly used libraries are RODBC and gdata. There are
other libraries, but our experience using ESPON data is that these two are
preferable®.

RODBC is very flexible. It will read Access databases as well as Exel
spreadsheets, but there are some known problems®® . Because the driver uses
the first few lines of each column to determine the data type for the output data
frame, it will often select 'Numeric", even if there are non-numeric entries. If a
column is declared as Text, any numeric entries will be set to NA. At the time of
writing there is no convenient workaround for this.

An alternative is provided by the gdata library. This requires that Perl has been
installed, and that the path to the Perl executable is in the PATH environment
variable on Windows systems®!,

° http://www.r-bloggers.com/read-excel-files-from-r/

10 See http://cran.r-project.org/web/packages/RODBC/vignettes/RODBC.pdf section 7
11 ActiveState Perl is easily installed from http://www.perl.org/get.html. See also
http://www.activestate.com/activeperl/downloads

12




An example using the gdata library, running on a Windows XP system, follows.

First, load the library routines. This can be done with either the library() or
require() functions. The require() function is a little more flexible in that, if the
library has already been loaded, it will not be reloaded.

require (gdata)

It will be convenient to assign the name of the file to a variable, in this case,
ExcelFile. Note that the name of the file should contain its full pathname unless
the working directory has been set {using setwd()} to the folder that contains
the file.

ExcelFile <- "SEMIGRA LabourMarket meta_ syntaxChecked.xls"

Two useful functions sheetCount() and sheetNames() can be used in an initial
check that the XLS file has the required structure. There should be 4 named
worksheets in the spreadsheet:

Dataset
Indicator
Source
Data

. in the order of the above list. sheetCount() can be used to check whether
there are four worksheets, and sheetNames() that they are correctly named.

sheetCount (ExcelFile)
sheetNames (ExcelFile)

Assuming that the four sheets are present, and correctly named, their order can
be checked with the match() function as below. If the vector ExcelOrder does
not contain {1 2 3 4} but some other such as {4 3 NA 2} then the sheet is
incomplete, or one of the names are mis-spelled.

ExcelOrder <- match (c("Dataset", "Indicator", "Source", "Data"),
sheetNames (ExcelFile))

Finally the sheets can be read in using read.xls(). The sheet= argument supplies
the sheet number for the corresponding worksheet, so ExcelOrder from the
match() example above is useful.

A second issue concerns the naming of the columns. As with CSV files, the R
functions tend to assume that 'legal' variable names are present in the first line
of the file. We use the term 'legal' to indicate that they are according to the R
variable naming conventions. The variable in the ESPON Database files are a
composite of the string in the first row, and the start/end dates in rows 2 and 3.
If the start and end dates are the same date, then the cells in rows two and
three of the column are merged.

13




The existence of the merged cells can make the output from these input
functions unpredictable, and all cells should be unmerged prior to analysis.

Example input calls are below.

Excel .Dataset <- read.xls (ExcelFile, sheet=ExcelOrder[l], header=FALSE)
Excel.Indicator <- read.xls(ExcelFile, sheet=ExcelOrder[2], header=FALSE)
Excel.Source <- read.xls (ExcelFile, sheet=ExcelOrder[3], header=FALSE)
Excel.Data <- read.xls (ExcelFile, sheet=ExcelOrder[4], header=FALSE)

The first few lines of each worksheet as read into R are below:

> head (Excel.Dataset,5)

v1i V2 V3 V4
1 Dataset information NA
2 Name Population Structure NA
3 Project SEMIGRA NA
4 Upload date 2012-01-22 NA
5 Metadata date 2011-07-04 NA

Notice that there is an extra column in the spreadsheet, named V4 by read.xlIs().
It should be checked for content, since a data entry error might have moved one
row across by one column.

> head (Excel.Indicator)

V1 v2
1 Indicator Identification
2 Code Name
3 Typology_Gendergap Typology of gender differences on the labour market
4 Core False
5 NAT Type TS
6 Theme economyFinanceAndTrade
V3 V4 V5 V6
1 NA NA NA
2 Abstract NA NA NA
3 Typology of gender differences in economic activity in regional perspective NA NA NA
4 NA NA NA
5 NA NA NA
6 NA NA NA

There are an extra three columns present in this worksheet - again, they should
be checked for content.

> head (Excel.Source)

vl1 v2 V3 V4
1 Source Reference NA
2 Label 1 NA
3 Date 2012-07-04 NA
4 Copyright © Leibniz-Institut fir Landerkunde NA
5 Provider Name Leibniz-Institut fiir Landerkunde NA
6 URI www.ifl-leipzig.de NA

The head() and summary() functions are useful to obtaining a quick first look at
the data. It will be noted that the NUTS codes for the data are in lowercase. The
column names appear in row three of the data, with the exception of the data
columns, where the name is qualified by start and end data as described above.
The source columns identify the lineage of the data, the labels in row three are
not unique.

14




> head (Excel.Data)
vi v2 v3 v4
1l see ch.3.Cluster 5 of the Specifications
2
3 Unit code Name Object type Version
4 atll Burgenland (AT) NUTS2 2006
5 atl2 Niederdsterreich NUTS2 2006
6 atl3 Wien NUTS2 2006
V5 V6 v7 v8 Vo v1o0
1 Typology_Gendergap Typology_ IndustryStructure GenderGap_15-24
2 2009 2009 2008
3 source source source
4 Cluster 1 1 Cluster 1 1 --19.15 1
5 Cluster 1 1 Cluster 1 1 --15.89 1
6 Cluster 2 1 Cluster 2 1 --3.92 1
Vil V12 V13 V14 V15 V16
1 GenderGap_25-34 GenderGap_35-44 WF_Agriculture
2 2009 2009 2009
3 source source source
4 --8.12 1 --11.95 1 6.74 1
5 --13.72 1 --9.43 1 7.26 1
6 --14.07 1 --9.50 1 0.38 1
V17 v1s v1i9o V20 v21 V22 va23
1 WF_IndustryConstruction WF_TTA WF_PublicServices WF_OtherServices
2 2009 2009 2009 2009
3 source source source
4 25.09 1 27.83 1 23.46 1 16.88
5 24.02 1 26.57 1 23.54 1 18.60
6 16.01 1 26.48 1 24.76 1 32.39
v24
1
2
3 source
4 1
5 1
6 1

4.3 Pre-processing the data for checking
The data frame can be rationalised to remove the columns which are not to be
checked, and then to add suitable row and column names.

# [1]
Data.Check <- Excel.Data[4:nrow(Excel Data),c(l,2,seq(3,23,2)]

# [2]

varBase <- Excel.Data[l, seq(3,23,2)])

varStDt <- Excel.Data[2, seq(3,23,2)])

varEnDt <- Excel.Data[3, seq(3,23,2)])

varName <- paste(varBase,varStDt,varEnDt, sep="")

varName <- gsub("-","_",6varName)
varName <- gsub(" ","_",varName)
# [3]

rownames (Data.Check) <- toupper (Data.Check[,1])
colnames (Data.Check) <- c("Unit_code", "Name", varName)

The actions in the preceding box result in the data frame which is suitable for
further processing.

Action [1] extracts the subset of the data frame for processing — rows 4 to the
end, and columns 1, 2, 3 and every second column thereafter.

15




Action [2] extracts the indicator names from the first row of the spreadsheet,
the start dates from the second row, and the end dates from the third row, and
concatenates them into a single string. Any characters which are not allowable in
a R variable name are replaced by underscores.

Action [3] assigns row and column names. The row names can be used to index
the data frame, and the column names index the individual;, columns. The row
names that we used in the data check are the NUTS codes, which are converted
to uppercase. The column names are created from the variable names from
|Action [2].

4.4 Reading geometry data from shapefiles

The spatial extensions to R allow for the input, processing, and output of
shapefiles. The ESRI shapefile!?> has emerged as a de facto standard for the
exchange of spatial data. The shapefile, in spite of its nhame consists of at least
three separate files, with the extensions .shp, .shx, and .dbf, and a common
prefix name.. ESRI refer to the .shp file as the "Main File" - this contains the
geometry data. The .shx file is known as the Index File, and is used to index the
individual object records in the Main File. The .dbf file is a table of attribute data
and has the following characteristics:

e There is one record per shape feature (object)
e The record is order the same as the record order in the Main File

There can be other files, notable a file of projection information (.prj). For the
NUTS geometry data used in the Database project, the following projection
definition is used:

PROJCS[" ETRS_l 98 9_LAEA" ,

GEOGCS["GCS_ETRS_1989",

DATUM["D_ETRS_1989",

SPHEROID["GRS_1980",6378137.0,298.257222101]],

PRIMEM|["Greenwich",0.0],

UNIT["Degree",0.0174532925199433]1],
PROJECTION["Lambert Azimuthal Equal Area"],
PARAMETER|["False_ Easting",4321000.0],
PARAMETER["False Northing",3210000.0],
PARAMETER["Central Meridian",10.0],
PARAMETER [ "Latitude_Of_Origin" ,52.0],
UNIT["Meter",1.0]]

The underlying projection is a Lambert Azimuthal Equal Area projection, with an
origin at 52N, 10W (near the town of Sehlem in Germany). The projection units
are meters, and the false eastin and northing parameters ensure that all
coordinate measurements are positive. The datum for the projection is based on

12 http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
16




the GRS 80 (Geodetic Reference System) spheroid®® used in the European
Terrestrial Reference System 1980,

Several functions exists to read ESRI shapefiles, among them are
readShapePoly() from the maptools library, and readOGR() from the rgdal
library. There are advantages and drawbacks to using either function. The
readShapePoly() function will return an error if it is used to read a non-polygon
shapefile; it will not read the projection file, so the Coordinate Reference System
string as to be attached by the user in the R code. By contract readOGR() will
read any shapefile without checking to see what the type is, it will read and
store the projection information if this is present in the shapefile.

4.5 Implementation in the data check

The geometry information is located in a folder whose name is assigned to a
global variable in the R code. 1In a typical Windows application this is
c:\M4D\NUTS_ETRS_1989 LAEA. There is no reason why this location may not be a
networked drive, or the URL to cloud storage. The individual shapefiles are
named using a common convention

NUTSn_yyyy.shp

... where n is the NUTS level (0, 1, 2, 3, X) and yyyy refers to the year (2003,
2006, 2010). Other shapefiles can be added to the repository. In this
implementation NUTS level X is used to refer to the combined NUTS 2/3
geometries, in order to keep the NUTS level code to a single character.

To read NUTS3_2006.shp using either the maptools or rgdal functions, the
following is appropriate:

require (maptools)

SPDF.1 <- readShapePoly ("C:\\M4D\\NUTS_ETRS_1989 LAEA\\NUTS3_2006.shp")
proj4string (SPDF.1) <- "+proj=laea +lat 0=52 +lon_0=10 +x_0=4321000
+y_0=3210000 +ellps=GRS80 +units=m +no_defs"

require (rgdal)
SPDF.2 <- readOGR("C:\\M4D\\NUTS ETRS_1989 LAEA", "NUTS3 2006")

A Spatial Polygons Data Frame (SPDF) is a single object which contains, inter
alia, the geometry and attribute information. The objects inside the SPDF object
are known as slots.

> slotNames (SPDF.2)
[1] "data" "polygons" "plotOrder" "bbox" "proj4string"

The attribute data is located in the data object, the geometry in the polygons
object. The bbox object contains the coordinates of the bounding box:

13 Geodetic Reference System 1980, Bulletin Géodésique, (54)3, 1980. Republished (with
corrections) in Moritz, H., 2000, Geodetic Reference System 1980, J. Geod., 74(1), 128-
162

1 http://etrs89.ensg.ign.fr/

17




> bbox (SPDF.2)

min max
x -2823914 10026125
y -3076145 5415982

The attribute data is fairly minimal, but does contain the NUTS codes and NUTS

levels:

> head (SPDF.2@data)

OBJECTID_1 OBJECTID NUTS_ID STAT_LEVL AREA LEN Shape Leng Shape_ Le 1 Shape_Area

0 463 463 Is001 3 0 0 4.814391
1 464 464 FI133 3 0 0 11.247582
2 465 465 FI1Al 3 0 0 9.442749
3 466 466 NO062 3 0 0 49.584899
4 467 467 NOO073 3 0 0 113.311666
5 468 468 NO072 3 0 0 86.592704

299120.
783542.
638978.
3074302.
6023597.
4839567.

0

7
5
0
7
6

1047327456
21584072176
5456649618
22296592101
48565287828
25820053059

The variable NUTS_ID contains the NUTS code, and the variable STAT_LEVL

contains the NUTS level.

To merge the data from the imported Database spreadsheet, the following can

be used:

SPDF.Order <- match (SPDF.2$NUTS_ID,rownames (Data.Check))

SPDF.2a <- SPDF.2

SPDF.2a@data <- data.frame (cbind (SPDF.2a@data, Data.Check[SPDF.Order,]))

Several of the spatial functions require the removal of the regions which have
missing data (coded as NA). If the variable of interest is Test, then creating a
subset of the SPDF with only the non-missing data can be achieved with:

SPDF.3a <- SPDF.2a['is.na (SPDF.2aS$Test),]

18




5 AVAILABLE DATA CHECKS

The actuality of the data checks proved to be more complex than was ever
envisaged in Phase I of the Database project. The control file drives the check
process, and the DataTypes vector, together with the TestCodes list provide
the information as to which method will be used at each stage of the analysis.

5.1 Univariate summaries

The initial assessment of the data begins with a series of univariate summaries.
These provide an initial 'quick-look', to answer questions such as (i) do the
percentages fall between 0 and 100 (ii) are the counts positive (iii) are there any
missing values (iv) are there any obviously anomalous values (v) do the
categories in the frequency tables for the nominal data match the values in the
metadata (vi) are the distributions noticeably skew [long right tail, so the mean
differs from the median] (vii) are the original values positive?

Ratio

Compute 6-number summary (extremes, quartiles, median, mean)
Nominal

Frequency table of values, and list of values found
Ordinal

Compute 6-number summary (extremes, quartiles, median, mean)
Count

Compute 6-number summary (extremes, quartiles, median, mean)

This initial assessment can be augmented with visualisations of the data - in
practice boxplots and histograms have proved to be most useful. The great
variation in physical size of the NUTS regions means that identifying anomalous
values is not always possible visually.

5.2 Univariate Checks

The checking begins by taking each variable in turn. The values in the
DataTypes variable (assigned in the Control File) direct the nature of the check.
For ratio data, the system checks for the existence of boxplot outliers - these
are anomalous in terms of the definition of the boxplot. An outlier in boxplot
terms is one whose value is more than 1.5 times the interquartile range. The
NUTS codes and names are listed in the output together with the anomalous
values.

Ordinal and count data are checked to see whether their values belong to the set
of positive integers. The values are also checked to see whether they have any
inadvertent fractional parts where they are not stored exactly as an integer in
the Excel spreadsheet. The upper value of an ordinal variable should not be
greater than the number of observations. Any regions which are anomalous are
listed.

19



Nominal data require reference to the TestCodes lists in the Control File.
TestCodes is a list of either 0 for non-categorical variables or a vector of
allowable values (extracted from the metadata in the Indicator worksheet'®)

Ratio
Check for boxplot outliers
Nominal
Check codes in the Data against codes supplied in the control file
Ordinal
Check that data values are positive integers and in range
Count

Check that data values are positive integers

Count data gives rise to some challenges. The variation in the underlying
support for the data means that count data are not standardised - each value
has not arisen on an equal footing, so we cannot treat the values as comparable.

5.3 Bivariate Checks

For the ratio variables we can compute a correlation matrix. This might seem
unnecessary - it's a useful diagnostic tool to determine whether any variables
have been entered twice (the correlation will be 1) or whether, in choosing
variables, two have been selected which are essentially measurements of the
same underlying characteristic.

The bagplot is a two-dimensional extension of the boxplot. The output is a plot
showing both the non-outlying and outlying values. The IDs of the outlying
values are also listed in the output object, and can be identified for printing.
What we observe as an outlier here is a combination of values that is unusual,
not necessary from values which are themselves unusual when taken one at a
time.

Ratio
Compute correlation coefficients and p-values
Bagplot Outliers

The correlation matrix can be augmented by a scatterplot matrix - although
once the number of variables exceeds about 15, the individual plots themselves
become almost too small to see on the computer screen.

5.4 Multivariate Checks

If there are sufficient variables of ratio type in the dataset, then a trawl for
multivariate outliers becomes possible. In the work carried out prior to 2011 the
dataset used was a time series of GDP values at NUTS2/3. An ad hoc method
was developed in the form of a circulating regression: the values for time period

15 In future versions of the software, consideration should be given to extracting these
data from the metadata directly

20



t would be regressing on the values for the other n-1 time periods in a multiple
regression, and the residuals checked for unusual high or low values. With n
time periods, there would be n regressions, and n sets of residuals. A region
which was anomalous on a majority of these might be flagged for checking.
There are a number of issues of multi-collinearity and multiple testing which
would indicate that it would identify too many false positives.

In practice none of the data from the suppliers allowed the possibility of using
the circulating regression technique.

Given sufficient data, we can transform the original variables, say n of them,
into n principal components. The component scores can then be examined for
univariate, and bivariate outliers using the methods outlined above. We restrict
the search to components whose eigenvalues are greater than 1 to minimise the
possibility of identifying false positives.

A second technique is the computation of Mahalanobis distances to some
multivariate centroid. The Mahalanobis distance is a generalisation of the
Euclidean distance which takes into account the correlation structure in the data.
The mean vector can be used as the position of the multivariate centroid. The
output is a vector of distances, which can then be treated as a single variable,
and examined for outliers as above.

Circulating regression
Circulating Robust regression
Principal Component outliers
Mahalanobis outliers

These checks are useful, not that they identify anomalous individual values, but
that they identify potentially anomalous combinations of values on the candidate
variables. This does pre-suppose that the candidate set has some thematic
coherence.

5.5 Spatial Checks

The original version of the software, developed on GDP time series for NUTS2/3
regions included a version of a test named after Hawkins, which would identify
spatial outliers. A spatial outlier is one that is unusual when compared with the
values in its neighbours. It was surprising to discover that the test is not
mentioned in Professor Hawkins monograph on outlier detection®®. An
alternative is provided by the Local Moran statistic, which will identify values
which are either locally high or low in comparison with their neighbours.

Local Moran Outliers
Hawkins' test

The Hawkins test requires further development.

18 Hawkins, DM, 1980, Identification of Outliers, London: Chapman and Hall
21



5.6 Missing values

Any regions with missing values on one or more variables are listed for further
checking. We also check to whether data is missing on all variables. A heatmap
can be a useful tool in giving an overall 'quick-look' as to the global pattern ob
missing data. The missing data pattern can sometimes give some clues as to
the process that generated the missing data'’. Large quantities of missing data
would give rise to a request for confirmation that the data are in fact missing
and not omitted by oversight.

5.7 Plots

Two modes of visualisation are useful additional tools. For the univariate ratio
data columns boxplots provide a helpful visual summary of the presence or
otherwise of anomalous values in the data. The barplot when used with the table
function again provides a useful visual summary of the categories in a nominal
variable (with the table function to provide the frequency information).

Univariate
Ratio
Boxplot
Nominal
Barplot
Bivariate
Scatterplot matrix
Bagplots for selected pairs of variables

Treemaps might be useful ways of summarising the pattern of values, visually,
in a crosstabulation of two or more categorical variables - they either help to
identify an unusual combination of categories or allow a check on the presence
or otherwise of the valid values which represent each category.

5.8 Maps

The data values for many of the datasets refer to individual NUTS regions.
Mapping the values, either as choropleth maps for ratio data, and area class
maps for categorical data, provides a quick visual summary of the patterns.

Ratio

Choropleth maps (10 categories)
Nominal

Plot of data categories

One of the issues with mapping the data is the variation in the physical size of
the NUTS regions. If the more distant overseas regions are included, this
problem is magnified. In future assessment, consideration might be given to the
use of a population cartogram as the basis — areas with larger populations are
more prominent than areas with smaller populations. An alternative would be to
create a cartogram where the areas are also approximately the same size.

17 Enders, CK, 2010, Applied Missing Data Analysis, New York: Guilford Press
22



Software for creating cartograms exists both as an extension to ArcGIS'® and
through the ScapeToad website'®. The reshaped set of zones then allows each
data value to visualised on an equal footing.

Both the visual display described in 5.7 and 5.8 are essentially ephemeral
displays, they are of less use in presenting the results of the analysis in the
output report for the data supplier. However, as diagnostic tools they are useful
is helping to identify some of the initial characteristics of the data set.

18 http://arcscripts.esri.com/details.asp?dbid=15638 and
https://uknow.drew.edu/confluence/display/DREWGIS/ArcMap+-+Cartograms+Tutorial
19 http://scapetoad.choros.ch/

23



6 DATA CHECKS IN PRACTICE

6.1 Reflections on the data check process

In practice we found that the data supplied by the projects was very different
from that which we had envisaged. A "one-size-fits-all" system that we had
developed for the ESPON 2013 Database project required radical overhaul and
re-organisation. The "exceptions to the exceptions" that we encountered as
enumerated below.

6.1.1 Missing data

There was inconsistency in the presentation of missing data. Sometimes a
numeric code was used, such as -999, other times we encountered alphameric
codes which as "n/r".

For some studies, data was not present for all NUTS regions. Some studies
omitted these regions entirely, others coded every variable as missing.

6.2.2 Non-integer counts

In a number of cases projects supply count data - these should be positive
integers, yet we occasionally encountered fractional values where rounding had
either been omitted or forgotten. Excel will display a rounded value to a number
stored with a fractional part.

6.2.3 Duplicated data

We checked to see whether any rows appeared to be duplicated. In one case
every NUTS2 region in Denmark was included twice in the data. Again, with the
user of Excel, this is easy to overlook.

6.2.4 Internal inconsistencies

In one case a series of indicators were supplied, together with an additional
indicator which was their sum. The summations were checked - for one
example, the difference was 7.2 percentage points for a value of 24.2%. Either
the summation column was correct, in which case individual indicator values
were incorrect, or the summation was faulty.

6.2.5 Phantom worksheets

The spreadsheets are supposed to contain four separate worksheets: Dataset,
Indicator, Source and Data. In one case we discovered an extra hidden
worksheet, named SPSS, which could not be seen in when the spreadsheet was
opened in Excel, but was clearly visible to the R software.

6.2.6 Multivariate checks

In several cases there was insufficient data to allow a multivariate check, of the
data was so disparate as to make this meaningless. Additionally the existing of
missing data meant that addinfg additional variables into the multivariate set
would have result in a series depletion of the number of regions with sufficiently
complete data.

24



6.2.7 Faulty computation

Notwithstanding the prior semantic and syntaxic checks carried out on the
metadata we identified one example were the computation of the indicator was
faulty. In another case a commonly used demographic indicator was inverted.

6.2.8 Errors in the metadata

We are very aware that many working under the ESPON programme do not have
English as a first language. There were occasional errors in the metadata to
which we drew attention. Occasional uncommon English uses appeared in the
metadata, and we requested clarification.

6.2.9 Mixed NUTS2/3 data

One project included regions at NUTS 2 for some countries, and NUTS3 for
others. We created a new geometry file, and a new geometry code, "X" for these
data.

6.2 Helping the suppliers: the report

Rather than a bland printout/listing from the data check software, we decided to
arrange our reports in logical sections, with some initial identification from the
metadata, a logical organisation of the anomalies that we had found, and a final
section with some recommendations for checking and, if necessary, altering the
data that was submitted.

25



M4D Data Quality Check

Detail

Dataset: 2013-02-04-18-08-10_SEMIGRA_SEMIGRA_LasbourhMarket_meta_syntaxChecked xls
Check date: 2013/04/08

Checked lby: AC/MC

NUTS lewel 2:

NUTS date 2006:

General Observations

Dataset name: Population Jtructure
Proj=ct: SEMIGRR
Ebstract: Contains typologies on the labour market

participation of women and the industry structure on the HUIS 2 level for all ED-
r EEFTA- and Candidate Countzies for 200B/G

Unigue Bescurce Identifier SEMIGRR LabourMarket

Imdicator Hame Data Typ= Dats Valwmes
Typology Gendergap Hominal
Typology Industrydtructure Hominal
GendexFap 15-24 Ratio
GenderGap 2534 Ratio
GenderGap 3544 Ratio
WE_Agriculture Ratio
WE_Industrylonstruction Ratio
WE_TTA Batio
WE_FublicServices Ratio
WE_COtherdervices Batic

The data are presented at NUTS2 2006 level. There are two typologies, three age-specific measures of the
gender gap and five measure of employment by economic sector.

The formula and description of the gender gap seems to be inconsistent in the metadata:

Description: Standardised ratio of the "gap"” between male and female employment rates by age
Formula: (Female labour force participation rate / male labour force participation rate) / Female labour force
participation rate * 100

MNumerator name: Difference in female and male employment rates [ female employment rate

If Fis the female labour force participation rate and M is the corresponding male rate, then:

Formula: (F / M)/F * 100 which reduces to 1/M.
Mumerator: implies: (F— M)/F which reduces to 1 —M/F.

The data have both positive and negative values, so the formula would appear to be in error. The numerator
description would yield negative values when M > F, 0 when M = F, and positive when M <F.

*** Please check the metadata.

1

Example report section

We noted in one case that many of the indicators had presented apparently
anomalous values in the right tail of the distribution. This is not unknown in
socio-economic data. We requested, nevertheless, that the supplier checked the
values.

26



7

INSTALLATION

The implementation of the data check assumes that the code and any associated
shapefiles and lookup tables will be stored in the folder C:\M4D. A batch file
(LoadDataCheckCodes.bat) is used to copy the code and data files from the
software development folder to C:\M4D. Within the software development folder
are the following files and folders:

Data_Check_Main_template.R

high level data check functions

DataCheckFunctions.R low level data check functions
TERCO_Data_Check.R example control file
SpatialData\NUTS_Info folder of NUTS lookup tables
SpatialData\NUTS_ETRS_1989_LAEA folder of shapefiles

The batch file creates the M4D folder if it is not present, and copies the files.

QECHO OFF

CLS

Echo
Echo
Echo
Echo
Echo
echo

Kkhkkkkkkkhhkhkhkhhhhkkkkkkhkrkkkkkkkkkrkkkhk*x
khkkkhkkkhkkkhkhkhkkhkhkkkhkhkkkhkhkhkkhkhkkkhkhkhkkhkhkkkhkhkkkhkxkxk
*** Copying M4D Data Check Functions ***

*** == Destination folder c:\M4D == **%*
hhkkhkkhkhkkhkkkhkhkkhkhkkhkhkhkkhkhkkhkkhkhkkhkhkkhkhkkhkhkkhkkkk

khkkkhkkkhkhkkkhkhkhkkhkhkkkhkhkkkhkhkkkhkhkkkhkhkhkkhkhkkkhkkkkkxkk

IF EXIST C:\M4D GOTO M4DPRESENT

@ECHO *** C:\M4D folder does not exist. Creating new version...
MKDIR C:\M4D

QECHO *** C:\M4D created

:MADPRESENT
@ECHO *** C:\M4D folder already exists
QECHO *** Copying R files...

COPY
COPY
COPY

Data Check Main template.R C:\M4D
DataCheckFunctions.R C:\M4D
TERCO_Data Check.R C:\M4D\Example Control file.R

QECHO *** Copying NUTS lookup tables...

XCOPY Spatial Data\NUTS_Info C:\M4D\NUTS_Info /E /I /Q /R /Y

QECHO *** Copying NUTS shapefiles

XCOPY Spatial_Data\NUTS_ETRS_l989_LAEA C:\M4D\NUTS_ETRS_1989_LAEA /E /I /Q /R /Y

ECHO
ECHO
ECHO
ECHO
ECHO

PAUSE

ECHO

hhkkkkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkkhkkhkkhkhkhkhkhkkhkkkkkkkkkkk
hkhkkkhkkkhkhkkkhkhkhkkhkhkhkkhkhkhkkhkhkkkhkhkhkhkhkhkkhkhkhkkhkhkkkhkhkkkhkhkkkhkkkk
*** MAD Data Check Function Copy Completed ***
hkhkkkhkkkhkhkkkhkhkhkkhkhkhkkhkhkhkkhkhkkkhkhkkkhkhkhkkhkhkhkkhkhkkkhkhkkkhkhkkkhkkkk
khkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkkkkkkkkkkkk

ON

27




8 FURTHER DEVELOPMENTS

This technical report provides an introduction to the detection of logical input
errors and statistical outliers (i.e. exceptional values) for ESPON Database
datasets. Some important aspatial and spatial techniques have been introduced
and demonstrated within the R statistical computing environment.

The field of robust statistics and outlier detection is extremely large and diverse,
and as such can not be comprehensively reviewed within the terms of reference
of this report. However, outlier detection techniques applicable (or designed for)
spatial data sets are not as developed as those for aspatial applications.

Robust versions of geographically weighted summary statistics (GWSS),
geographically weighted regression (GWR) and geographically weighted principal
component analysis (GWPCA) are of interest, as they allow the detection of
outliers in both univariate and multivariate spatial data sets, without being
influenced by the non-normal nature of the data.

Further developments in the detection methodology might include a selection of
the robust geographically weighted techniques that we are currently working on.
An improved version of Hawkins’ spatial outlier test is also under development,
as is a robust version of the local Moran’s I statistic (with respect to outlier
identification).

28



REFERENCES

Ainsworth LM, Dean CB (2008) Detection of local and global outliers in mapping
studies. Environmetrics 19, 21-37.

Anselin L. (1995) Local indicators of spatial association. Geographical Analysis
27,93 -115.

Béguin C, Hulliger B (2004) Multivariate outlier detection in incomplete survey
data: the epidemic algorithm and transformed rank correlations. Journal of the
Royal Statistical Society, Series A 167(2), 275-294.

Brunsdon C, Fotheringham AS, Charlton ME (2002) Geographically weighted
summary statistics - a framework for localised exploratory data analysis.
Computers, Environment and Urban Systems 26, 501-524.

Brunsdon C, Charlton ME (2010) An assessment of the effectiveness of multiple
hypothesis testing for geographical anomaly detection. Submitted to
Environment and Planning B

Chambers R, Hentges A, Zhao X (2004) Robust automatic methods for outlier
and error detection. Journal of the Royal Statistical Society, Series A 167(2),
323-339.

Charlton ME, Brunsdon C, Demsar U, Harris P, Fotheringham AS (2010) Principal
component analysis: from global to local. In preparation.

Charlton S (2004) Evaluating automatic edit and imputation methods, and the
EUREDIT Project. Journal of the Royal Statistical Society, Series A 167(2), 199-
207.

Cruz Ortiz M, Sarabia LA, Herrero A (2006) Robust regression techniques: A
useful alternative for the detection of outlier data in chemical analysis. Talanta
70, 499-512.

D’Alimonte D, Cornford D (2007) Outlier detection with partial information:
application to emergency mapping. Stochastic Environmental Research and Risk
Assessment 22, 613-620.

Daszykowski M, Kaczmarek K, Vander Heyden Y, Walczak B (2007) Robust
statistics in data analysis - a review Basic concepts. Chemometrics and
Intelligent Laboratory Systems 85, 203-219.

ESPON (2006) 3.4.3 The modifiable areas unit problem - Final Report
http://www.espon.eu/mmp/online/website/content/projects/261/431/file 4970/

Faraway J (2004) Linear models with R. Chapman & Hall/CRC, Boca Raton/FL

Filzmoser P, Garrett R, Reimann C (2005) Multivariate outlier detection in
exploration geochemistry. Computers & Geosciences 31, 579-587.

Filzmoser P, Maronna R, Werner M (2008) Outlier identification in high
dimensions. Computational Statistics and Data Analysis 52, 1694-1711.

Fotheringham AS, Brunsdon C, Charlton ME (2002) Geographically Weighted
Regression - the analysis of spatially varying relationships. Wiley, Chichester.

Frigge M, Hoaglin DC, Iglewicz B (1989) Some implementations of the Boxplot.
The American Statistician 43, 50-54.

Ghosh-Dastidar B, Schafer JL (2003) Multiple edit/multiple imputation for
multivariate continuous data. Journal of the American Statistical Association

29


http://www.espon.eu/mmp/online/website/content/projects/261/431/file_4970/

98(464), 807-817.

Harris P, Brunsdon C (2010) Exploring spatial variation and spatial relationships
in a freshwater acidification critical load data set for Great Britain using
geographically weighted summary statistics. Computers & Geosciences 36, 54-
70.

Harris P, Fotheringham AS, Juggins S (2010) Robust Geographically Weighed
Regression: A Technique for Quantifying Spatial Relationships Between
Freshwater Acidification Critical Loads and Catchment Attributes. To appear in
the Annals of the Association of American Geographers.

Hawkins RM (1980) Identification of Outliers. Chapman & Hall, London.

Hoo KA, Tvarlapati KJ, Piovoso MJ], Hajare R (2002) A method of robust
multivariate outlier replacement. Computers and Chemical Engineering 26, 17-
39.

Hubert M, Vandervieren E (2008) An adjusted boxplot for skewed distributions.
Computational Statistics and Data Analysis 52, 5186-5201.

Ihaka R, Gentleman R (1996) R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics 5, 299-314.

Jackson DA, Chen Y (2004) Robust principal component analysis and outlier
detection with ecological data. Environmetrics 15, 129-139.

Kou Y, Lu C-T, Chen D (2006) Spatial Weighted Outlier Detection. In
proceedings of the 2006 SIAM International Conference on Data Mining No. 614
2006.

Liu H, Jezek K, O’Kelly M (2001) Detecting outliers in irregularly distributed
spatial data sets by locally adaptive and robust statistical analysis and GIS.
International Journal of Geographical Information Science 15(8), 721-741

Loader C (2004) Smoothing: Local Regression Techniques. In Gentle ], Hardle
W, Mori Y (eds) Handbook of Computational Statistics. Springer-Verlag,
Heidelberg.

Locantore N, Marron J, Simpson D, Tripoli N, Zhang J, Cohen K (1999) Robust principal
components for functional data. Test 8, 1-73.

Meklit T, Van Meirvenne M, Verstraete S, Bonroy J, Tack F (2009) Combining
marginal and spatial outliers identification to optimize the mapping of the
regional geochemical baseline concentration of soil heavy metals. Geoderma
148, 413-420.

Morgenthaler S (2007) A survey of robust statistics. Statistical Methods &
Applications 15, 271-293.

Petrakos G, Conversano C, Farmakis G, Mola F, Siciliano R, Stavropoulos P
(2004) New ways of specifying data edits. Journal of the Royal Statistical
Society, Series A 167(2), 249-274.

Plaia A, Bondi A (2006) Single imputation method of missing values in
environmental pollution data sets. Atmospheric Environment 40, 7316-7330.

Reimann C, Filzmoser P, Garrett R (2005) Background and threshold: critical
comparison of methods of determination. Science of the Total Environment 346,
1-16.

30



Rousseeuw PJ], Ruts I, Tukey JW (1999) The Bagplot: A Bivariate Boxplot. The
American Statistician 53, 382-387.

Rousseeuw PJ], Debruyne M, Engelen S, Hubert M (2006) Robust and outlier
detection in chemometrics. Critical Reviews in Analytical Chemistry 36, 221-242.

Vanden Branden K, Verboven S (2009) Robust data imputation. Computational
Biology and Chemistry 33, 7-13.

Wong D (1996) Aggregation effects in geo-referenced data. In Arlinghaus SL
(ed) Practical Handbook of Spatial Statistics. CRC Press, Boca Raton, FL.

31


http://links.jstor.org/sici?sici=0003-1305%28199911%2953%3A4%3C382%3ATBABB%3E2.0.CO%3B2-K

APPENDIX 1
ESaTDOR Data Check Control File (21/3/2013)

RS S RS RS RS RS
SRR R R R R

HH### #H###
Hi### M4D Data Quality Check #it###
HH### #H###

SRR R R R R
FHHEHEEHH SRS RS RS R R

EEd s aEE ISR LIRSS B SIS SRR LIS EEE LIS SIS SIS E LT L
##### Information for the dataset under test: USER supplied #H###

SRR R

DataFolder <- "~Dropbox\\2013_03_21 EsaTDOR Data_check\\"

DatasetName <- "2013-01-16-15-22-57_EsaTDOR_ESATDOR Economic_Use_Composite
v2_syntaxCheckedMC.x1ls"

NUTSLevel <- 2 # NUTS Region level

NUTSDate <- 2006 # NUTS Region date

DataColumns <- seq(4, 38, 2) # Starts col 4, in pairs 2 + 2*8 vars
DataTypes <- c("N", "N", rep("R",16)) # T=text N=nominal R=ratio
MV_Columns <- c(F, F, rep(T, 16)) # All multivariate testable

Cc1 <- ¢c(1, 2, 3, 4, 5) # Indicator 1

c2 <- c(1, 2, 3, 4, 5) # Indicator 2

TestCodes <- list(Cl, C2, rep(0,16)) # Codes for nominal data

DataColRange <- seq(4,length(DataColumns)+4) # Data columns in DataFrame
MissingValues <- rep(-999, length(DataColumns)) # Missing value codes

DrawPlots <- TRUE # Draw boxplots and maps

DrawMaps <- TRUE # Draw the maps

SR R R

# #
# Data check begins here #
# Latest data check functions: to copy these double click on #
# ~Dropbox\0OESPON_M4D\Database Quality Check\Live\LoadDataCheckCodes.bat #
# #

FHEF R R R R R R R R R R R

source ("C:\\M4D\\Data Check Main Template.R",echo=TRUE) # Invoke data check

SR SR AR R

# #
# Bespoke tests #
# #

R R

TestData <- DQCmData['is.na(DQCmData$E09SHIPBUI20012009), ]
with data

dim (TestData)

colnames (TestData)

# get the rows

# [1] "UnitCode" "Level" "Year"

# [4] "marine_compo_eco_120012009" "marine_ compo_eco_220012009" "E09TOT20092009"

# [7] "EO9SHIPBUI20012009" "EO9TRADSEC20012009" "EO9TRANSP20012009"
#[10] "EO9TOURISM20012009" "EO9FISHERI20012009" "EO90THER20012009"

#[13] "E090ILGAS20012009"
"P_09SHIPBUI20012009"

#[16] "P_09TRADSEC20012009"
"P_09TOURISM20012009"

#[19] "P_09FISHERI20012009"
"P_090ILGAS20012009"

"P_09TOT20092009"
"P_09TRANSP20012009"

"P_090THER20012009"

32




not.integer <- which (TestData$E09TOT20092009 %% 1 > 0) # non integer counts
TestData[not.integer,c(1,6)] # list them
not.integer <- which (TestData$E09TOT20092009 %% 1 > 0)

TestData[not.integer, 1]

#
# TestData[,14] is the sum of the cols 15:21 - check the summation
#

px <- TestData[,15] +TestData[,16] + TestData[,17] +TestData[,18] +TestDatal[,19]
+TestData[,20] +TestData[,21]
pt <- rowSums (TestData[,15:21])

x <- TestData$P_09T0T20092009 - pt # compare wtih actual sum
big <- which(abs(x) > .1) # which are the big ones
cbind (TestData[big,c(1,14)], pt[big], x[big]) # list the table

mvdata <- TestData[,15:21]
pcs <- princomp (mvdata,cor=T, scores=T)

# > pcs$sdev?2 / sum(pcs$sdev”2)

# Comp.1 Comp. 2 Comp.3 Comp. 4 Comp.5 Comp. 6 Comp.7
# 0.24929559 0.19683055 0.15896476 0.12046032 0.10538623 0.08982176 0.07924078
# .25 .45 .61 .73 .83 .91 .99
pcs$loadings

> pcs$loadings

## Loadings:

## Comp.l Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
## P_O09SHIPBUI20012009 -0.663 -0.134 0.494 0.528
## P 09TRADSEC20012009 0.577 -0.429 0.378 0.576

## P:OQTRANSP20012009 0.390 -0.182 -0.569 -0.201 0.338 -0.564 0.136
## P_O09TOURISM20012009 -0.288 0.172 -0.663 -0.447 -0.199 0.402 -0.218
## P_O9FISHERI20012009 -0.203 -0.370 -0.437 0.765 -0.205

## P_090THER20012009 0.603 -0.180 -0.767
## P_090ILGAS20012009 -0.136 -0.597 0.175 -0.383 -0.587 -0.312

pcs.scores <- pcs$scores
boxplot (pcs. scores) # hmmm - some outliers

#
# Bagplot to look at the first couple of components - accounts for about
# 45% of the variance

#

bagplot (pcs$scores[,1] ,pcs$scores[,2]) # compare the first two
#

# print the results of the mutlivariate analysis

#

# Names can be got from http://http://nuts.geovocab.org/id/NO04.html

k <- which(pcs$scores[,1] > 3 | pcs$scores[,2] < -2.5) # outliers
as.data.frame (cbind(as.character (TestData[k,1]) ,pcs$scores[k,1:2]))

# NUTS Comp.1 Comp.2 Name
# 165 IS00 -2.62080242231774 -2.7997695388609 sland

# 172 ITD3 4.08584331110513 0.3810196487946 Veneto
# 173 ITD4 4.40887180192335 -0.2562404548776 Friuli-Venezia Giulia
# 174 ITDS5 4.38184283329398 0.1497851513156 Emilia-Romagna
# 208 NOO4 0.45951451096980 -6.8260406244667 Agder og Rogaland
# 209 NOO5 0.92418754519894 -5.0458479442180 Vestlandet
# 238 RO22 0.76849593144108 -3.2802554172067 Sud-Est
# 245 SE21 3.41048199666645 0.4252567502375 Smland med arna

# 318 UKM6 -3.37228171738626 -5.7277554506111 Highlands and Islands

33




MVNutsCode <- TestDatal[k,1]

MVNutsCode

which (NUTSCodes[,1] %in% MVNutsCode)
NUTSCodes [which (NUTSCodes[,1] %in% MVNutsCode), ]

# Code Name Level
#1123 ITD3 Veneto 2
#1131 ITD4 Friuli-Venezia Giulia 2
#1136 ITD5 Emilia-Romagna 2
#1488 RO22 Sud-Est 2
#1533 SE21 Smland med arna 2

#1763 UKM6 Highlands and Islands 2

SRR R

# #
# End of data check template #
# #

iidiiiiididididididididisididididiaiaiaiaiidididididdddsdidddiiiiiiiiiiiisd

34




APPENDIX 2
SeGI Data Check Control File (22/3/2013)

RS S RS RS RS RS
R R R R R R

HH### #H###
Hi### M4D Data Quality Check #it###
HH### #H###

RS R R R R R R
FHHEHEEHH SRS RS RS R R

EEd s aEE ISR LIRSS B SIS SRR LIS EEE LIS SIS SIS E LT L
##### Information for the dataset under test: USER supplied H####
AR A 0 8 8 08 08 08 08 08 08 08 8 8 08 8 98 8 98 8 98 08 8 8 08 8 0 0 0 A 0 A A A A

DataFolder <- "~Dropbox\\OOESPON M4D (1)\\2013_03_22 SEGI_Data_ Check\\"

DatasetName <- "2012-11-05-14-03-19_SeGi_I-
6ESPONindicatorsSeGI_syntaxCheckedMC.xls"

NUTSLevel <- 2 # NUTS Region level
NUTSDate <- 2006 # NUTS Region date
DataColumns <- seq(4, 104, 2) # Starts col 4, in pairs
DataTypes <- rep("R",length(DataColumns)) # All ratios

MV_Columns <- rep(T, length(DataColumns)) # All multivariate testable
#Cl <- c(1, 2, 3, 4, 5) # Indicator 1

#C2 <- c(1, 2, 3, 4, 5) # Indicator 1

TestCodes <- list(rep(0, length(DataColumns))) # Codes for nominal data
DataColRange <- seq(4,length(DataColumns)+4) # Data columns in DataFrame
MissingValues <- rep("n/a", length(DataColumns)) # Missing value codes
DrawMaps <- FALSE

DrawPlots <- FALSE

FHHHHEHEHEH RS AR R

# #
# Data check begins here #
# Latest data check functions: to copy these double click on #
# ~Dropbox\00ESPON_M4D\Database QWuality Check\Live\LoadDataCheckCodes.bat #
# #

R EE LB B LB LSRR LSS ER LB LEEE ISR L LS B LIS EEE LS EESIESE LT L EE LT
source ("C:\\M4D\\Data Check Main Template.R",echo=TRUE) # Invoke data check

FHEH R R R R R R R R

# #
# End of data check template #
# #

FHAF R R R R R R R

library (VIM)
matrixplot(as.data.frame (DQCmData[,4:54]) ,main="Missing Values Analysis")

X <- function (i) {junk <-
is.na(DQCmData[,i]) ;as.data. frame (cbind(as.character (DQCmData[junk,1]) ,DQCmDatal[jun
k,i1))}

v <- colnames (DQCmData)

kk <- 55; x(kk) ;v[kk]

alldata <- c(15, 27, 28, 32, 33, 34, 41, 42, 43, 44)

somedata <- c¢(6, 7, 9, 10, 11, 12, 13, 14, 16, 20, 21, 23, 24, 25, 29, 30, 31, 50,
51, 52)

mostdata <- sort(c(alldata,somedata))

pc.data <- DQCmDatal,alldata]

35




pcs <- princomp (pc.data,cor=T, scores=T)

pcs$sdev”*2/sum(pcs$sdev”r2)

# Comp.1 Comp. 2 Comp .3 Comp. 4 Comp.5 Comp. 6
Comp. 8 Comp. 9 Comp.10

#0.24647463 0.16778182 0.13843203 0.11163209 0.09727827 0.06804657 0.06035619
0.04353280 0.03872245 0.02774315

Comp. 7

bagplot (pcs$scores[,1] ,pcs$scores|[,2])

36




APPENDIX 3
SEMIGRA Sex Ratio Data Check (26/3/2013)

RS S RS RS RS RS
SRR R R R R

HH### #H###
Hi### M4D Data Quality Check #it###
HH### #H###

SRR R R R R
FHHEHEEHH SRS RS RS R R

EEd s aEE RSB E LI EEEEELEEEEE SIS BRI EEEELILSEEEE LIS EEE LIS EEEE LT L
##### Information for the dataset under test: USER supplied #H###
AR A 0 8 8 08 08 08 08 08 08 08 8 8 08 8 98 8 98 8 98 08 8 8 08 8 0 0 0 A 0 A A A A

DataFolder <- "~Dropbox\\2013 03_26 SEMIGRA Data Check\\

DatasetName <- "2013-02-04-16-13-
19 SEMIGRA_ SEMIGRA SexRatio_meta_ syntaxChecked.xls"

NUTSLevel <- 3 # NUTS Region level

NUTSDate <- 2006 # NUTS Region date
DataColumns <- seq(5, 12, 2) # Starts col 4, in pairs
DataTypes <- c¢("R", "R", "R", "C") # All ratios

MV_Columns <- ¢(T, T, T, F) # All multivariate testable

C1l <- c("Cluster 1","Cluster 2","Cluster 3","Cluster 4" ,"Cluster
5","Cluster 6") # Indicator 4

TestCodes <- list( 0, 0, 0, Cl) # Codes for nominal data

DataColRange <- seq(5,length(DataColumns)+4) # Data columns in DataFrame
MissingValues <- rep(NA, length(DataColumns)) # Missing value codes

S SRR

# #
# Data check begins here #
# Latest data check functions: to copy these double click on #
# ~Dropbox\0OESPON_M4D\Database QWuality Check\Live\LoadDataCheckCodes.bat #
# #

HEHHHHHHHHFH SRS RS H AR BB EAH SR B H SR H B A H AR BB AR H SR B H RSB H R H AR H GRS H SRS SR H S H S
source ("C:\\M4D\\Data Check Main Template.R",echo=TRUE) # Invoke data check

X <- DQCmData[1:1487,]

#> colnames (X)

#[1] "UnitCode" "Level" "Year" "SR_20-24" "SR_25-29" "SR_30-
34" "SR_Type2008"

X$SR_Type <- factor (X$SR _Type2008)
summary (X)
boxplot (X[,4]~X$SR_Type)

boxplot (X[,5]~X$SR_Type)
boxplot (X[, 6]~X$SR_Type)

R

# #
# End of data check template #
# #

i E s s e e e s e e e e e e

37




APPENDIX 4
SEMIGRA Labour Market Data Check (26/3/2013)

RS S RS RS RS RS
SRR R R R R

HH### #H###
Hi### M4D Data Quality Check #it###
HH### #H###

SRR R R R R
FHHEHEEHH SRS RS RS R R

EEd s aEE RSB E LI EEEEELEEEEE SIS BRI EEEELILSEEEE LIS EEE LIS EEEE LT L
##### Information for the dataset under test: USER supplied #H###
AR A 0 8 8 08 08 08 08 08 08 08 8 8 08 8 98 8 98 8 98 08 8 8 08 8 0 0 0 A 0 A A A A

DataFolder <- "~Dropbox\\2013_03_26 SEMIGRA Data_Check\\"

DatasetName <- "2013-02-04-18-08-
10_SEMIGRA_ SEMIGRA LabourMarket meta_syntaxChecked.xls"

NUTSLevel <- 2 # NUTS Region level

NUTSDate <- 2006 # NUTS Region date
DataColumns <- seq(5, 24, 2) # Starts col 4, in pairs
DataTypes <- c("T", "T", rep("R",8)) # All ratios

MV_Columns <- rep(F, ¥, T, T, T, T, T, T, T, T) # All multivariate
testable

C1l <- c¢("Cluster 1","Cluster 2","Cluster 3","Cluster 4", "Cluster
5","Cluster 6","Underemployment",6 "Extreme values",b"Not analysed") # Indicator 1
c2 <- c("Cluster 1","Cluster 2" ,"Cluster 3","Cluster 4", "Agriculture
dominant", "Industry dominant", "Service sector dominant","Public sector

dominant","Financial sector dominant","Not analysed") # Indicator 1

TestCodes <- list(Cc1, c2, 0, 0, O, O, O, 0, 0, 0) # Codes for nominal data
DataColRange <- seq(4,length(DataColumns)+4) # Data columns in DataFrame
MissingValues <- rep(NA, length(DataColumns)) # Missing value codes
DrawPlots <- TRUE

DrawMaps <- TRUE

SR SRR

# #
# Data check begins here #
# Latest data check functions: to copy these double click on #
# ~Dropbox\00ESPON_M4D\Database Quality Check\Live\LoadDataCheckCodes.bat #
# #

R BB LB BRI LSS BRI LEEE LS EEIESEIES SRS EE I EEE LT EE LT
source ("C:\\M4D\\Data Check Main Template.R",echo=TRUE) # Invoke data check

FHAH R R R R R R R R R R

# #
# End of data check template #
# #

R

Typology Gendergap
Typology IndustryStructure
GenderGap_15-24
GenderGap_25-34
GenderGap_35-44
WF_Agriculture
WF_IndustryConstruction
WF_TTA

WF_PublicServices
WF_OtherServices

38




APPENDIX 5
EU LUPA Data Check

HHEHEHEHEHEHEHEEHEHEH SRR HEHEHEHEHEHEH
HHEHEHEHEHEHEEEEEEH R EEHEHEHEHEHEHEHEHEHE

#H### E33333
YT M4D Data Quality Check #4444
#H### $H###

FHHEHEEHHEHEHH SRS RS RS RS R
SRR R R S R

AR 0 A8 8 08 08 8 8 08 08 08 08 08 08 8 8 08 08 08 08 08 8 08 08 8 48 08 8 8 8 08 08 08 8 8 8 8 08 8 0 S S S S A A
##### Information for the dataset under test: USER supplied #H###
AR A 8 8 08 8 08 08 8 08 08 08 8 08 08 8 8 8 98 8 98 08 98 8 0 8 00 8 0 A 0 A 0 A A A

DataFolder <- "~ Dropbox\\2014_01 08 EU_LUPA LandUse DataCheck\\"

DatasetName <- "2014-01-08-19-55-38_EU LUPA_eu-
lupa_land change_ syntaxChecked v2_syntaxChecked.xls"

NUTSLevel <- "X" # NUTS Region level (X =
NUTS2/3

NUTSDate <- 2006 # NUTS Region date
DataColumns <- c(4,6,8) # Starts col 4, in pairs
DataTypes <- c(rep("R",3)) # All ratios

MV_Columns <- ¢(T, T, F) # All multivariate testable
TestCodes <- 1list(0, 0, 0) # Codes for nominal data

DataColRange <- seq(4,length(DataColumns)+4) # Data columns in DataFrame
MissingValues <- rep(NA, length(DataColumns)) # Missing value codes

SRR EHEHEHEHEHEHEHEHE
# #

# Data check begins here #
# Latest data check functions: to copy these double click on #
# ~Dropbox\0OESPON_M4D\Database Quality Check\Live\LoadDataCheckCodes.bat #
# #

HUHHHHHHHHFHAHH RS H AR BB AAH G RFH SR BB AR H AR BB A H SR BB S H GRS H GRS G H SR B H S SH S S
source ("C:\\M4D\\Data Check Main Template.R",echo=TRUE) # Invoke data check

SRR

# #
# End of data check template #
# #

FHAF R R R R R R R R R R R R R

39




APPENDIX 6

Data Check Main Template [called from Control File]

RS S RS RS RS RS
R R R R R R

#H##H #H##4
#it# M4D Data Quality Check Template #H#44
####H #H#H44

SRR R R R R R
FHHEHEEHH SRS RS RS R R

EEd s aEE ISR LIRSS B SIS SRR LIS EEE LIS SIS SIS E LT L
##### Load the data check functions package, and the R library

SRR R

DataCheckFunctions <- "C:\\M4D\\DataCheckFunctions.R"
source (DataCheckFunctions) source the Library code
can add ,echo=TRUE
Load the R packages

fancy title banner

LoadLibraries ()
PrintBanner ()

HH 3= I

HEHHHHHHHHHHHHHHHEHEHHHEEEEEHEFEHEHEHEHE R H R R RS R ERHRHHHHHHHHHHHHEHHHH S
##### set up the data and file paths
TR 0 08 08 0 00 00 08 00 08 08 08 00 08 00 00 00 00 00 00 00 0 00 0 0 0 0 A 0 0

folders <- M4D_Folders("C:\\M4D") # Object with filepaths
M4DFolder <- folders$M4DFolder # Path to M4D folder
ShapefileFolder <- folders$ShapefileFolder # Path to NUTS shapefiles
LookupTableFolder <- folders$LookupTableFolder # Path to NUTS lookups
FullDatasetName <- paste(DataFolder,DatasetName,sep="") # Path to data file

R R R R R R R R
##### Load the NUTS boundaries for this level and year

##### Load the NUTS Lookup tables for this level and year

EEd I a SRR LI SR SIS EEEELISSEEEEIILISTEELILSSEE LIS EE LT

if (NUTSLevel >= 0)
{
cat ("##HHHHEHHEHEHEHHEHE RS R R R )
cat ("# Loading geometry and lookups #\n")
cat ("##HHHHEHHEHEHEHEEHE SRR R R )
SPDFObject <- loadPolyShapefile (ShapefileFolder,NUTSLevel, NUTSDate)

SPDF <- SPDFObject$SPDF # SpatialPolygonsDataFrame
NUTSlist <- SPDFObject$NUTSlist # NUTS region codes in SPDF
Nregions <- SPDFObject$Nregions # Number of regions in SPDF

NUTSCodes <- GetNUTSCodes (LookupTableFolder,2006,2) # From change datasets
Countries <- read.csv(paste (LookupTableFolder, "Countries.csv",6sep="\\"))

} else {
cat ("####HH R R R R R R R \n )
cat("# Data are not for NUTS units #\n")

cat ("##HHHHEHHEHEHEHEEHE RS R R )
}

R R R

##### Load the Dataset for checking #
##### Extract the constituent Worksheets #
##### Reformat the Data worksheet #
##### Add in the region names for the NUTS lookup tables #
AR A 8 8 8 A8 8 B8 8 08 8 08 8 8 8 8 8 08 8 08 8 08 8 08 8 8 8 8 8 98 8 8 8 8 8 8 8 08 8 08 8 8 8 S 8 08 A 0 S A A A A A A
DatasetObject <- GetData (FullDatasetName) # Load the dataset

Dataset <- DatasetObject$Dataset # Extract Dataset worksheet
Indicator <- DatasetObject$Indicator # Extract Indicator w/sheet

40




Source <- DatasetObject$Source # Extract Source worksheet
Data <- DatasetObject$Data # Extract Data worksheet
Dataset.Info (Dataset) # print data details
Indicator.Info(Indicator) # print summary metadata
Data.Unique.Name.Check (Data) # Check Duplicate Names
DQC.out <- UnpackDataWorksheet (Data,DataColumns) # Reshape for analysis
DQCrData <- DQC.out$DQC # Reshaped data
DQCVnames <- DQC.out$Vnames # Variables

DQCMVnames <- DQCVnames [MV_Columns] # Multivariate columns
Reshaped.Data.Unique.Name.Check (DQCVnames) # check duplicate names
DQCmData <- Update.Missing.Value.Codes (DQCrData,MissingValues) # conv to NA
Missing.Value.Analysis (DQCmData) # check incomplete cases

################################################################################
##### Data are not for any NUTS units
################################################################################

DQCData <- MergeNUTSNames (DQCmData,NUTSCodes) # Add in names from MUTS
lookup

nv <- length (DQCVnames) # number of variables
invalidNUTScodes <- which(is.na(DQCData[, 3+nv+1])) # NUTS codes not in lookup

#Check.Invalid.NUTS.Codes (DQCData, invalidNUTScodes,Countries)
Print.Invalid.NUTS.Codes (DQCData,invalidNUTScodes,Countries) # list the crap

################################################################################
##### Determine NTS regions in the SPDF are *not* in the data

##### Print a list of the omitted regions #
##### Subset the SPDF appropriately
################################################################################

OmittedRegions <- Omitted (NUTSlist,DQCDatal[,1]) # Which regions are missing

PrintOmitted (NUTSCodes,OmittedRegions) # Print the regions in the
# shapefile which are not

SPDF.DQC <- SubsetSPDF (SPDF,OmittedRegions) # in the test dataset

SR R AR R

##### Determine NUTS regions in the DQC data that have missing data #
##### Print the records #
##### Create a 'clean' subset for the spatial and multivariate tests #

SR AR R

cat ("\n\nMissing Data (records with NA check\n")
MissingDataRecords <- MissingRecords (DQCData,DataColRange) # Find NAs in data
if (length(MissingDataRecords) > 0) {
cat("\n*** Records with missing data\n")
DQCData[MissingDataRecords,c(1l,DataColRange,12)] # Print names
} else {
cat ("\n*** There are NO records with missing data\n")

}

if (length(MissingDataRecords) > 0) {

DQCData.nomissing <- DQCData[-MissingDataRecords, ] # Remove missing
} else

DQCData.nomissing <- DQCData
SPDF.nomissing <- CleanSPDF (SPDF,DQCData.nomissing) # Clean SPDF

R R

##### Exploratory analysis first #
##### Nominal: frequency tabulation and histogram #
#it## valid category check #
##### Ordinal: summary statistics #
##### Ratio: summary statistics #
#H##H #
##### Then... check plots next - barplots for nominal, boxplots for ratio #

41




#### Finally... map everything that is mappable. #
EEd s aEE ISR LIRSS B SIS SRR LIS EEE LIS SIS SIS E LT L

summary.Check.variables (SPDF.nomissing,DQCVnames,DataTypes, TestCodes)
#summary.Check.univariate (DQCData,DQCVnames, DataTypes, TestCodes)
summary.Check.bivariate (SPDF.nomissing,DQCMVnames)

if (DrawPlots) plot.Check.variables (SPDF.nomissing,DQCVnames , DataTypes)

SRR R

##### Outlier check #
H##### (1) Univeriate tests #
#h## (ii) Spatial Univeriate tests #
H##### (iii) Multivariate tests #
####H (iv) Outlier summary #
$HH# S H R RS R S R S R R R R R R R

UV.Outliers <- UnivariateExplore (SPDF.nomissing,DQCData,

DQCVnames ,DataTypes, TestCodes)
#Sp.Outliers <- SpatialExplore (SPDF.nomissing,DQCMVnames)
MV.Outliers <- MultivariateExplore (SPDF.nomissing,DQCMVnames)

# Outlier.Report(UV.Outliers,Sp.Outliers,MV.Outliers)

HEHHHHHHHHHHHHHEHEHRHHHHEEHEHEFEFHFRHHFHHEHEEEFHEEHEHEEEEEEE S
#### Completion - print suitable statistics #
#H## R R R R R R

print.Completion.Banner ()

################################################################################
#i### Completion - end of run

################################################################################

42




APPENDIX 7

Data_Check_Functions.R

FHEHHEHE SRS RS RS RS
R R R

#it## #it##
#### MAD Data Check Functions #i##
#it## #it##
#### Authors: Paul Harris ####
#4## Martin Charlton #4##
H#### Alberto Caimo ####
#it## #it##
#### Version NCG.2012.11.28a ####
#### #i##
#### Contact: Martin Charlton #i##
#### National Centre for Geocomputation ####
#4## National University of Ireland Maynooth #4##
#### Maynooth, County Kildare, IRELAND ##4##
#i## #i##
#### email: martin.charlton@nuim.ie ####
#i## #H##

SR R R
SRR R R R

#H## R R R R R R R
# Housekeeping #
#H## R R R R R R R R
#

# Return folder paths for various users

#
M4D Folders <- function(folder) {
#Dropbox <- switch (user,

# martin.office = "C:\\Documents and Settings\\mcharlton.NUIM\\My
Documents\\My Dropbox",
# martin. fujitsu = "C:\\Documents and Settings\\mcharlton\\My

Documents\\Dropbox",
# martin.laptop
# alberto.laptop

"C:\\Users\\mcharlton\\Dropbox",
"C:\\Users\\acaimo\\Dropbox"

# )
# M4DFolder <- paste(Dropbox,"\\OOESPON M4D",sep="")
# ShapefileFolder <-

paste (M4DFolder, "\\Spatial Data\\NUTS_ETRS_ 1989 LAEA", sep="")
# LookupTableFolder <- paste(M4DFolder,"\\Spatial Data\\NUTS_Info",6sep="")

M4DFolder <- folder
ShapefileFolder <- paste (M4DFolder, "\\NUTS_ETRS_ 1989 LAEA",sep="")
LookupTableFolder <- paste(M4DFolder,"\\NUTS_Info",6sep="")

return (list (M4DFolder=M4DFolder,
ShapefileFolder=ShapefileFolder,
LookupTableFolder=LookupTableFolder))
}

#

# Banner for the output

#

PrintBanner <- function() {
cat ("4 +\n")
cat ("4 +\n")
cat ("### ###\n")
cat ("### M4AD: Data Quality Check ###\n")
cat ("#i## ##H#\n")
cat ("### National Centre for Geocomputation ###\n")
cat ("### National University of Ireland Maynooth ###\n")
cat ("### Maynooth, Co Kildare, Ireland ###\n")

43




cat ("### ###\n")
cat ("4 +\n")
cat ("4 +\n")
cat("Run on: ",date(),"\n\n")

}

#

# Banner for end of run

#

print.Completion.Banner <- function() {
cat ("4 +\n")
cat ("### M4AD: Data Quality Check ###\n")
cat ("### Completed at: ", date()," ###\n")
cat ("4 +\n")

}
########################################################################
# General purpose and setup routines

########################################################################
#

# LoadLibraries ()

#

# Load the required libraries

#

LoadLibraries <- function() {
library (RODBC) # to import data from excel
library (MASS) # this has parallel coordinates plots, rlm
library (maptools) # spatial data handling libraries
library (spdep) # localmoran in here
library (forecast) # auto.arima stuff in here
library (spgwr) # gw.cov in here
library (DMwR) # Talgo's outlier.ranking routines
library (RColorBrewer) # Cindy Brewer's palettes
library (aplpack) # this has bagplots

}

#

# Country level color palette

#

LoadEUColorPalette <- function() {

#

# Color palette

#

c( 24,214,236,558, 32,
553, 59,504, 54, 41,
620,151,412,146,143,
385,611,654,494, 51,
258,614,124,434,615,

29,594, 31,462,450,
120,122,609, 88)

}
#
# Reminder of the Brewer Color Palettes which are available
#
P

lotBrewerPalettes <- function() {
display.brewer.all (n=NULL, type="all", select=NULL, exact.n=TRUE)

Re-insert the omitted items back in the right order
weeded.list is the logical vector without the omits
omits is the vector of omitted indices

HH H 3

rebuild.list <- function(weeded.list, omits) {
n <- length(weeded.list) + length(omits)
final.list <- rep(NA,1,n)
k<-0
final.list[omits] <- FALSE
for (1 in 1:n){
if (is.na(final.list[i])) {

44




k<-k +1
final.list[i] <- weeded.list[k]
}
}

final.list
}
#
# pause():
# Pause an interactive script
#
pause <- function () {

if (interactive())
readline ("Hit <enter> to continue...")
invisible()
}
#######################################################################
# Dataset manipulation and setup routines

#######################################################################

#

# GetData()

# Function to read an M4D Excel Spreadsheet

# Arguments:

# Excel.Spreadsheet: path to an Excel (.xls) spreadsheet

#

# Requires: library (RODBC)

#

GetData <- function (Excel.Spreadsheet) {
id <- odbcConnectExcel (Excel.Spreadsheet) # file handle
Dataset <- sqlFetch(id, "Dataset") # Read the Dataset description
Indicator <- sqglFetch(id,"Indicator") # Read the metadata
Source <- sqglFetch(id, "Source") # Read sources
Data <- sqglFetch(id,"Data") # Read the Data worksheet
close (id)

return (list (Dataset=Dataset,Indicator=Indicator, Source=Source,Data=Data))

}
#
# GetNUTSCodes (year)

# Function to read the NUTS codes for a given
# Arguments:

# Year: year required

#

#

#

G

Requires: library (RODBC)

etNUTSCodes <- function (filepath,year,NUTSLevel) {
filename <- paste(filepath, "\\NUTS ",year," Codes.xls",6 sep="")

id <- odbcConnectExcel(filenamg) # file handle
Lookup <- sqglFetch(id, "Lookup") # Read the NUTS codes and names
close (id)
#
# Now copy NUTS codes code NUTSLevel (Level in Col 7, Name in Col 10,
# Code in Col 1)
# Lookup[which (Lookup[,7] == NUTSLevel),c(1,2,7)]
colnames (Lookup) [10] <- "Name"
Lookup [which (Lookup[,7] == NUTSLevel),c(1,10,7)]

MergeNUTSNames - add in the names to the data frame - names come from the
GetNUTSCodes lookup tables (Excel spreadsheets)

HH 3

MergeNUTSNames <- function (DQCData,NUTSCodes) {
data. frame (DQCData, NUTSCodes[match (DQCData[,"UnitCode"], NUTSCodes[,"Code"]),1)

Create a variable name from the indicator name
and date information in the spreadsheet

NA and null are omitted to keep the variable
name short

S T G

45




# is.crap : auxiliary function to test for NA, NULL

# or blank fields

# Probably should have a more polite name

#

is.crap <- function(x) {is.na(x) | is.null(x) | x == "" | x =" "}

#

create.variable.name <- function(a,b,c){
if (is.crap(b) & is.crap(c)) a # both missing
else if (is.crap(b)) paste(a,c,sep="") # first date missing
else if (is.crap(c)) paste(a,b,sep="") # second date missing
else paste(a,b,c,sep="") # neither missing

}
#
# UnpackDataWorksheet
#
U

npackDataWorksheet <- function (DataWorksheet,DataColumns) {

N.Data <- dim(DataWorksheet) [1] # Worksheet length
NV <- length (DataColumns) # Number of variables to extract
cnames <- rep("",NV) # Array for column names

dnames <- colnames (DataWorksheet)
Data.for.checking <- as.data.frame(Data[3:N.Data,c(1l:3,DataColumns)])
for (i in 1:NV){

VarCol <- DataColumns[i]

# cnames [i] <-
paste (dnames[VarCol] ,DataWorksheet[1l,VarCol] ,DataWorksheet[2,VarCol] ,h sep=".")
cnames[i] <-

create.variable.name (dnames[VarCol] ,DataWorksheet[1l,VarCol] ,DataWorksheet[2,VarCol]
)
}
colnames (Data. for.checking) <- c("UnitCode","Level",6 "Year",6 cnames)
return (list (DQC=Data. for.checking,Vnames=cnames))
}
#
# Omitted Regions
#
Omitted <- function (NUTSRegions,CheckDataRegions) {
setdiff (NUTSRegions,CheckDataRegions)
}
PrintOmitted <- function (NUTSCodes,OmittedRegions) {
cat ("\n\nMISSING REGIONS in the Data for Checking\n")
if (length(OmittedRegions) > 0) {
cat ("Regions in the NUTS list not in the data for checking\n")
print (NUTSCodes [which (NUTSCodes[,1] %in% OmittedRegions),])
cat ("\nRegions in the Shapefile not in the data for checking\n")
print (OmittedRegions)
} else {
cat("\n*** There are no omitted regions\n\n")

}

}
HHHHHAHHH B AR HH AR HHH B HH B H RS RS
# Missing Data handlers #
HUHHHAHHH B HARHHH AR AR HHH B HH B H S R
#
# MissingRecords
#
MissingRecords <- function (DQCData,DataColRange) {
N <- dim(DQCData) [1]
MissingData <- which(is.na(DQCData[,DataColRange]))
MissingData[MissingData <= N]

}

#

# Function ValidCodes ()

#

# Arguments:

# X: vector of nominal data to be checked
#

ValidCodelist: list of allowable codes for x

ValidCodes <- function(x,ValidCodelist) {

46




X %$in% ValidCodelist

}

#

# Function Data.Unique.Name.Check (Data)

# Check for unique column names in spreadsheet as it comes in

#

# Arguments:

# Data: worksheet Data from spreasheet

#

Data.Unique.Name.Check <- function(Data) {
cat("\n\n")
cat ("4 +\n")
cat("### Check for duplicated column names in original spreadsheet ###\n")
cat ("4 +\n")

Column.Names <- colnames (Data)
Duplicate.List <- which(duplicated(Column.Names))
if (length(Duplicate.List) > 0) {
cat ("***The following names are duplicated in the column header\n")
Column.Names [Duplicate.List]
cat("\n\n")
} else {
cat ("***There are no duplicated column names\n\n")

}

}

#

# Function Data.Unique.Name.Check (Data)

# Check for unique column names in spreadsheet as it comes in

#

# Arguments:

# Data: worksheet Data from spreasheet

#

Reshaped.Data.Unique.Name.Check <- function (NameList) ({
cat("\n\n")
cat ("4 +\n")
cat ("## Check for duplicated column names in worksheet for checking ##\n")
cat ("4 +\n")

Duplicate.List <- which(duplicated (NameList))
if (length(Duplicate.List) > 0) {
cat ("***The following column names are duplicated...\n")
NameList[Duplicate.List]
cat("\n\n")
} else {
cat ("***There are no duplicated column names\n\n")
}
}
R R R R R
# Missing Value Handlers #
R R R R R
#
Update.Missing.Value.Codes

Update the supplied missing value codes for each column as NA

#
#
#
#
# Arguments:
# DQCData: data frame for update
# MissingValues: vector missing value codes
#
Update.Missing.Value.Codes <- function (DQCData,MissingValues) {
nv <- length (MissingValues)
DQCTest <- DQCData
if (nv > 0) {
for (i in 1l:nv) {
DQCTest [which (DQCTest[,i+3] == MissingValues[i]) ,i+3] <- NA
}

}
DQCTest

47




#
# Missing.Value.Analysis

#
Missing.Value.Analysis <- function (DQCTest) ({
nr <- dim(DQCTest) [1] # number of rows
nv <- dim(DQCTest) [2] # number of columns
vn <- colnames (DQCTest) # column headers
cat("\n\n")
cat ("4 +\n")
cat("### Missing Value analysis ###\n")
cat ("4 +\n")

cat("\n***Missing value counts and percentages\n")
for (i in 4:nv) {

nm <- which(is.na (DQCTest[,1i])) # find Missing
km <- length (nm) # number missing
kpct <- round (100 * (km / nr),2) # percent missing
cat (paste ("Indicator ",vn[i],": ",km," (",kpct,"%)\n",sep=""))
}
complete <- which(complete.cases (DQCTest[,4:nv])) # complete cases
nc <- length(complete) # number of complete cases
cat ("\nTotal observations: ",nr,", of which ",nc," have ALL data present\n")

incomplete <- which(!complete.cases (DQCTest[,4:nv]))
nt <- nv - 3
all.missing <- rep(nr,FALSE)
if (length(incomplete) > 0) {
cat("\n*** Zones with missing observations\n")
cat(" \nll)
for (i in 1l:nr) {
s <- rowSums (is.na (DQCTest[i,4:nv]))
if (s > 0){
cntry <- which(Countries[,1]==substr (DQCTest[i,1],1,2))
if (length(cntry) > 0) {
cdata <- Countries[as.integer (cntry) ,b2:3]
} else {
cdata <- c("Unknown code",'"Unknown")

}

country.name <- unlist(cdata[l])
country.status <- unlist(cdata[2])
# print(cdata)

cat (paste (DQCTest[i,1],", (",s,") ",
country.name,": ",
country.status," \n",sep=""))

}

Print.Completely.Missing.Cases <- function(D,incomplete) {
cat ("\n\n*** Completely Missing Cases ***\n")
if (length (incomplete) > 0) {
cat("\n*** All indicators missing for:\n")
D[incomplete, "UnitCode"]
} else {
cat("\n*** No cases with all indicators missing ***\n")

}

LRI EE BRI ESE LSS SRS EEE BRI EEE SR EEIESE I EEE LB LS L L E
# Shapefile handling service routines #
RS EE BRI ESE LA SRS EEE LB E B EEE LSS EEIESE IS EEE LS L L E
#
# Load shapefile
#
loadPolyShapefile <- function(filepath,NUTSlevel, year) {
filename <- paste(filepath,"\\NUTS" 6 NUTSlevel," ",6year,".shp",sep="")
# print(filename)

48



SPDF <- readShapePoly (filename,

proj4string=CRS ("+proj=laea +lat 0=52 +lon_0=10 +x_0=4321000 +y_0=3210000
+ellps=GRS80 +units=m +no_defs "))

NUTSlist <- sort(SPDF@data$NUTS_ID)

Nregions <- length (NUTSlist)

return (list (SPDF=SPDF,NUTS1ist=NUTSlist,Nregions=Nregions))

}

#

# Update.SPDF.COlumns

# Adjust DQCData column positions to allow for SPDF
# items after merge of DQCData and SPDFQ@data
#

#Update.SPDF.Columns <- function (DQCCols, year) {
# switch (year,

# 1996 = Offset <- O,

# 2003 = Offset <- 8,

# 2006 = Offset <- 9,

# 2010 = Offset <- 6)

# DQCCols + Offset

#}

#

# Subset the Shapefile on the region name

#

SubsetSPDF <- function (SPDF,OmittedRegions) {

valid.regions <- ! SPDF@data$NUTS_ID %$in% OmittedRegions
SPDF[valid.regions,]

}
#
# Clean SPDF for spatial and multivariate tests
#
(¢

leanSPDF <- function (SPDF,DQCData.nomissing) {
Records.nomissing <- dim(DQCData.nomissing) [1]
SPDF2 <- SPDF
if (Records.nomissing > 0) {
CleanRegions <- SPDF@data$NUTS_ID %in% DQCData.nomissing[,1]
SPDF2 <- SPDF[CleanRegions,]
SPDF2@data <- MergeDataWithSPDF (SPDF2,DQCData.nomissing,"UnitCode")

}
return (SPDF2)

}
#
# Create neighbour list from the subsetted data
#
]

PDF.listw <- function (SPDF) {
nb2listw (poly2nb (SPDF)) # Create neighbour list from nb-ed polygons

}

#

# Match the data frame from UnpackDataWorksheet with the SPDF from
# loadPolyShapefile
# See
# http://stackoverflow.com/questions/3650636/how-to-attach-a-simple-data-frame-to-
a-spatialpolygondataframe-in-r
# x must be a data frame

#
MergeDataWithSPDF <- function (SPDF,x,Code) {
SPDF@data <- data.frame (SPDF@data, x[match(SPDF@data[,"NUTS_ID"], x[,Code]),

1)

}

#

LRSI SRS SIS ELIEEEE IS SIS EE T L

# Metadata service routines #

R

Dataset.Info <- function (Dataset) {
Dataset.name <- as.character (Dataset[1,2])

Project <- as.character (Dataset[2,2])
Abstract <- as.character (Dataset[5,2])
URI <- as.character (Dataset[7,2])

49




cat ("4 :\nu)

cat ("### Dataset identification ###\n")
cat ("4 \n")
cat("Dataset name: " ,Dataset.name, "\n")

cat ("Project: " Project,"\n")

cat ("Abstract: " ,Abstract,"\n")

cat("Unique Resource Identifier ",URI,"\n")

cat ( H\nll )

}

Indicator.Info <- function (Indicator) {

vnames <- Indicator[which(Indicator[,1l]=="Code")+1,1]

datatypes <- Indicator[which(Indicator[,1]=="Data type"), 3]

values <- as.character(Indicator[which(Indicator[,1]=="Unit of
measure") ,3])

start.dates <- as.numeric (Indicator[which (Indicator[,1]=="Temporal
Extent")+1,2])

finish.dates <- as.numeric (Indicator[which (Indicator[,1]=="Temporal

Extent")+1,3])
z <- cbind(as.character (vnames) ,h as.character (datatypes) ,h as.character (values))

z <- rbind(c("Indicator Name",6 "Data Type", "Data Values"), z)

cat ("4 :\nll)
cat ("### Summary information from the metadata ###\n")
cat ("4 :\nll)
write.table (format(z,justify="1left") ,h row.names=F, col.names=F,6 quote=F)
cat("\n")

}
#######################################################################

# Outlier check service routines
#######################################################################
#
# Function PositiveInteger
#
PositiveInteger <- function (x) {

x == floor(x) & x >= 0

}

#

# Function BoxplotTest

#

BoxplotTest <- function (x) {

bp <- boxplot.stats(x,coef=1.5)
x >= bp$stats[l] & x <= bpS$stats[5]

}
#
# HawkinsTest
#
# Requires: library (spgwr)
#
HawkinsTest <- function (x,coords) {
x.spdf <- x
coordinates (x.spdf) <- coords # create data frame
bw <- 0.1 # local bandwidth (10% of data)
chiS5pct <- 3.84146 # test distributed as chi square
with 1df
gwss <- gw.cov(x.spdf, data=x, adapt=bw) # locally weighted summary
statistics
local.mean <- gwss$SDF$mean.V1 # locally weighted mean
local.variance <- gwss$SDF$sd.V1+2 # locally weighted variance
local.N <- bw * length (x) # local sample size
local.alv <- mean(local.variance) # average local variance
Hawkins <- (local.N*(x - local.mean)”2)/((local.N+1l)*local.alv) # test
statistic
Hawkins > chi5pct # significant test result

}
#

50




# Local Moran test

# Anselin, L. 1995. Local indicators of spatial association, Geographical Analysis,
27, 93-115

# Getis, A. and Ord, J. K. 1996 Local spatial statistics: an overview. In P.
Longley and M. Batty (eds)

# Spatial analysis: modelling in a GIS environment (Cambridge: Geoinformation
International), 261-277.

#

# SPDF must 'clean' - no missing data

#

Local.Moran.Outliers <- function (SPDF,MVCols,p.threshold=0.05) {
# First generate the neighbour lists, and the weights matrix
# Allow for zero neighboured objects

print (MVCols)

neighbour.list <- poly2nb (SPDF) # build neighbour list
spatial.weights.matrix <- nb2listw(neighbour.list,zero.policy=TRUE)
#

N <- dim(SPDFQ@data) [1] # number of observations
M <- length (MVCols) # number of variables
evidence <- array(FALSE,c(N,M+1))

deviates <- array(0,c(N,5)) # weight of evidence

rownames (evidence) <- seq(1l,N)
colnames (evidence) <- seq(l,M+1)

k<-0

for (i in MVCols) { # test each variable in turn
deviates <- as.matrix(localmoran (SPDF@data[,i],spatial.weights.matrix))
k<-k +1

rownames (deviates) <- seq(1l,N)
# str(deviates)
# str (evidence)
evidence[,k] <- deviates[,"Pr(z > 0)"] > p.threshold # Pr(Z > 0)
}
evidence[,M+1] <- rowSums (evidence[,1:M]) / M # weight of evidence
return (evidence)
}
LRSS RS SIS EE SIS EE T

#i# #i#
### Multivariate Methods ###
#i# #it#

SRR R R
#
# RunningRegression (x)
# Regress each column of x on the others and compute the
# proportion of standardised residuals greater
# than a user supplied threshold
#
CirculatingRegression <- function (x,thresh=3) {
N <- dim(x) [1]
M <- dim(x) [2]
resid.tests <- matrix (0,N,6M)
for (i in 1:M) {
response <- x[,i]
predictors <- as.matrix(x[,-i])
ml <- lm(response~predictors)
resid.tests[,i] <- abs(rstandard(ml)) > thresh
}

rowSums (resid.tests) / M

}
#
# Robust version: use Boxplot Test
#
(o]

irculatingRobustRegression <- function (x,thresh=3) {
N <- dim(x) [1]
M <- dim(x) [2]
resid.tests <- matrix (0,N,6M)
for (i in 1:M) {
response <- x[,i]
predictors <- as.matrix(x[,-i])

o1




rlm.res <- rlm(response~predictors) $resid
resid.tests[,i] <- BoxplotTest(rlm.res)

}

rowSums (resid.tests) / M

}
#
# Component scores - summarise a large body of variables
# Areas with score > thresh on component 1 are potential
# outliers

#

t

est_PCA <- function(x,thresh=3) {
princomp (x,cor=T,scores=T) $scores[,1l] <= thresh

}
#

# Mahalonobis distances

#

Mahalanobis.Distances <- function (x) {
mahalanobis (x,colMeans (x) ,cov(x))

Mahalanobis plot

HH = -

Mahalanobis.Plot <- function(MD2,bw=0.5,title) {
plot(density (MD2,bw=bw) ,main=title); rug(MD2)

}
#
# Mahalanobis.Outliers
#
M

ahalanobis.Outliers <- function (x,threshold) {
Mahalanobis.Distances (x) < threshold

}

#

# Torgo's routines

# http://www.liaad.up.pt/~ltorgo/DataMiningWithR/

#

Torgo.Probabilities <- function (x) {
inter.object.distances <- daisy(x)
outliers.ranking(inter.object.distances) $prob.outliers

}
#
# Torgo Outliers
#
T

orgo.Outliers <- function(x,threshold=0.8) {
Torgo.Probabilities (x) <= threshold

}
#
# Bagplot Test for two variables
#
b

agplot.test <- function(vl,v2) {

N <- length(vl)

bagplot.test.result <- rep (TRUE,N)

z <- compute.bagplot(vl,v2)

out <- z$pxy.outlier

Nout <- dim(out) [1] Any outliers?

if (Nout >= 1) { Yes: which are they?
outliers <- which((vl %in% out[,1]) & (v2 %in% out[,2]))
bagplot.test.result[outliers] <- FALSE # Update the output

length of data vectors
Initialise output
compute bagplot
extract the outliers

HH = H W

}

bagplot. test.result # return the result vector
Bagplot.Analysis

}

#

#

#

# Computes the bagplot statistics for every pairing of the variables

# in a matrix and returns a outlier score (1=0K, <1 possibly an outlier)
#
B

agplot.Analysis <- function (x) {

52




N <- dim(x) [1] # Observations

M <- dim(x) [2] # variables

K <- (M*2 -M)/2 # pairings

out <- matrix(0,N,K) # result matrix

k <-0 # counter for 'out'

for (i in 1:M) {
for (j in 1:i) {
if (i 1= ) |

k<-k +1
bpt <- bagplot.test(x[,i],x[,j]) # test variable pair
out[,k] <- bpt # update result
}
}
}
rowSums (out) / K # compute the score

}

FHEHHEHHEHEHH RS R R R
R

#i# #i#
### Main checking routines [high level routines ###
#i# #i#

R R
R R RS R R R R

HHHHHHHH RS
# UnivariateExplore (SPDF.DQC,DQCData,DataColRange,DataTypes, TestCodes)
LRSS ARSI LRSS LIS LSS LT
UnivariateExplore <- function (SPDF,DQCData,DQCVnames,DataTypes, TestCodes) {

cat ("4 +\n")
cat("### Univariate Exception tests ###\n")
cat ("4 +\n")

for (ColIndex in 1:length (DQCVnames)) {
switch (DataTypes[ColIndex],
R = rdc <- RatioCheck (DQCData,DQCVnames[ColIndex]),
N = ndc
NominalCheck (DQCData,DQCVnames [ColIndex] ,unlist (TestCodes[ColIndex])),
o odc <- OrdinalCheck (DQCData,DQCVnames[ColIndex]),
C cdc <- CountCheck (DQCData,DQCVnames[ColIndex])
)

}

}
FHEF R R R R R R R R R R R R R R
# SpatialExplore (SPDF.nomissing,DQCData.nomissing,DataColRange,Datatypes)

A A 0 A 0 A A8 A A8 A8 A8 A8 8 A A A A A A A A A A A A A A S S
SpatialExplore <- function (SPDF,DataColRange, threshold=0.05) {

cat ("4 +\n")
cat("| Spatial exception tests I\n")
cat ("4 +\n")

#

# Local Moran tests in here; we'll think about Hawkins' test

#
LMoevidence <- Local.Moran.Outliers (SPDF,DataColRange, threshold)
N <- dim(LMoevidence) [1] # number of observations
LastCol <- dim(LMoevidence) [2] # weight column...
M <- LastCol -1 # max will be M
lmo <- LMoevidence[,LastCol] # get weight of evidence
Evidence <- cbind(LMoevidence) # store for later use

out <- as.character (SPDF@data[,"UnitCode"])

testcol <- lmo # weights
badlist <- testcol > 0.5
#badlist <- badlist[-which(is.na(badlist))] # remnove islands

if (sum(badlist,na.rm=T) < N) {
cat ("### Potential spatial exceptions ###\n")
print.Bad.Spatial.Scores (SPDF,badlist, testcol) # print them
}

as.data. frame (cbind (out,Evidence))

53




# to return to NUTS code sort order
xx <- as.data.frame(Sp.Outliers[order (Sp.Outliers|[,1]),])

}

LRSI ARSI LSS LSS LLEEEE S L
# MultivariateExplore (SPDF.nomissing,DQCData.nomissing,MV_Cols)
LRSI RIS I LSS EEEL IS EEEE L L
MultivariateExplore <- function (SPDF,MVCols) {

cat("+ +\n")
cat ("### Multivariate Exception tests ###\n")
cat ("4 +\n")

Circulating regression residuals
PCA with boxplots on first component
Mahalanobis distances - try with thresh 20 at first

3 =

N <- length (SPDFQRdatal[,1])

ntests <- 5

CiR.evidence <- 1 - CirculatingRegression (SPDF@data[,MVCols])

RbR.evidence <- CirculatingRobustRegression (SPDF@data[,MVCols])

PCA.evidence <- test_ PCA(SPDF@data[,MVCols])

Mah.evidence <- Mahalanobis.Outliers (SPDF@data[,MVCols],20)

Biv.evidence <- Bagplot.Analysis (SPDF@data[,MVCols])

Evidence <-
cbind (CiR.evidence,RbR.evidence,PCA.evidence,Mah.evidence,Biv.evidence)

out <- as.character (SPDF@data[,"UnitCode"])
testcol <- rowSums (Evidence) # total the scores
badlist <- testcol >= ntests / 1.5 # any less than 5
if (sum(badlist) < N) {
cat("### Potential multivariate exceptions ###\n")
print.Bad.Spatial.Scores (SPDF,badlist, testcol) # print them
}

as.data. frame (cbind(out,Evidence))

}

FHEH R R R R R R R R R R
### Main checking routines [high level routines ###
FHEH R R R R R R R R R
#
# Function NominalCheck (x)
#
# [tests]
# (a) Consistency check - does the codelist agree
#
NominalCheck <- function(x,ColIndex,Codelist) {
cat ("Nominal data check for Indicator: ",ColIndex,"\n")

cat("Valid codes: ",CodeList,"\n")

cat ("\nFrequency Tabulation\n")

print (table(x[,ColIndex])) # Frequency tabulation
vce <- ValidCodes (x[,ColIndex],6 CodeList) # Valid code check
n.invalid <- length(which (ve==0)) # List any invalid codes

if (n.invalid > 0){
#NUTSCode <- as.character (DQCData[which (vc==F) ,1])
#BadCode <- DQCData[which (vc==F) ,ColIndex]
#cat ("Regions with invalid codes\n")
#print (cbind (NUTSCode,BadCode) )
cat ("\nAnomalous data values found...\n")
print.Bad.Data.Values (DQCData,vc,ColIndex)

return (vc) # Return vector of T/F

54



#
# Function OrdinalCheck (x)
#
OrdinalCheck <- function (x,ColIndex) {
cat ("Ordinal Data Check for Indicator: ",ColIndex,"\n")
IsPositiveInteger <- PositivelInteger (x[,ColIndex])
n.invalid <- length(which (IsPositiveInteger==0)) # List any invalid codes
if (n.invalid > 0){
#NUTSCode <- as.character (DQCData[which (IsPositiveInteger==F) , 1])
#BadCode <- DQCData[which (IsPositiveInteger==F) ,h ColIndex]
#cat ("Regions with invalid ranks\n")
#print (cbind (NUTSCode,BadCode) )
cat("\nNon postive-integer data values found...\n")
print.Bad.Data.Values (DQCData,IsPositiveInteger,ColIndex)

return (IsPositivelInteger)

}

#
# Function CountCheck (x)

#
CountCheck <- function (x,ColIndex) {
cat ("Count Data Check for Indicator: ",ColIndex,"\n")
IsPositiveInteger <- Positivelnteger (x[,ColIndex])
n.invalid <- length(which (IsPositiveInteger==0)) # List any invalid codes
if (n.invalid > 0){
#NUTSCode <- as.character (DQCData[which (IsPositiveInteger==F) ,1])
#BadCode <- DQCData[which (IsPositiveInteger==F) ,h ColIndex]
#cat ("Regions with non-positive integer data\n")
#print (cbind (NUTSCode,BadCode) )
cat ("\nNon postive-integer data values found...\n")
print.Bad.Data.Values (DQCData,IsPositiveInteger,ColIndex)

return (IsPositivelnteger)

}

#
# Function RatioCheck (x)

#
RatioCheck <- function (x,ColIndex) {
cat ("Ratio Data Check for Indicator: ",ColIndex,"\n")
StatOutlier <- BoxplotTest(x[,ColIndex])
n.invalid <- length(which (StatOutlier==0)) # List potential outliers
if (n.invalid > 0){
#NUTSCode <- as.character (DQCData[which (StatOutlier==F) ,h1])
#BadCode <- DQCData[which(StatOutlier==F) ,ColIndex]
cat("\nRegions with unusual boxplot data\n")
#print (cbind (NUTSCode,BadCode) )
print.Bad.Data.Values (DQCData,StatOutlier,ColIndex)

SRR R
R R

#HH## #H##
##### Summary functions for the ESPON Data Quality Check t33331
#H### #H###

HUHHHAHHH B HARHHHEHAR R HH AR H AR HH AR H RS H RS S SR
LRSI ISR SRS LSS LSS ES LIS SIS EEEE L L
summary.Check.variables <- function (SPDF,DQCVnames, DataTypes, TestCodes) {

cat ("4 +\n")
cat ("### Exporatory data summaries ###\n")
cat ("4 +\n")

for (i in 1l:1length(DQCVnames)) {

55



cat ("Variable: " ,DQCVnames[i],"\n")
cat("Data Type: ", DataTypes[i],"\n")
switch (DataTypes[i],

R = {ss <- summary (SPDFQ@data[,DQCVnames[i]]) # summary for ratio

data
print(ss)
},
N = {tt <- table(as.factor (SPDF@data[,DQCVnames[i]]))
print(tt)
cat("Categories found are: ",
levels (as.factor (SPDF@data[,DQCVnames([i]])),"\n")
},
summary (SPDF@data[,DQCVnames[i]])
summary (SPDF@data[,DQCVnames[i]])

’

}
cat ("\nCompleted\n\n")
cor.prob (X)
correlation matrix of X with correlations in the lower triangle

and signficance probabilities in the upper triangle

Due to Bill Venables, r-help@stat.math.ethz.ch,
04 Jan 2000 15:05:39

HH 3 3 3 3 3 3

cor.prob <- function (X, dfr = nrow(X) - 2) {
R <- cor (X)
above <- row(R) < col(R)
r2 <- R[above]”*2
Fstat <- r2 * dfr / (1 - r2)
R[above] <- 1 - pf(Fstat, 1, dfr)
R

}

RS IR BB LB ARSI BRI EEE LSS EEIESEIER SRS LSBT EE LT
### Bivariate summaries for ratio variables ####
R EE LB B LEE BRI EE BRI LEEE ISR EEIESEIES SRS EE LB EEE L]

summary.Check.bivariate <- function (SPDF,MVnames) {

cat ("4 +\n")
cat ("### Bivariate data summaries ###\n")
cat ("4 +\n")

cat("\nBivariate correlations and p-values\n")
cat("Correlations in the lower triangle and p-values in the upper\n")
print (cor.prob (SPDFQRdata[ ,MVnames]))

}

SRR
R R

##### #H###
##### Plotting functions for the ESPON Data Quality Check H####
##### #H###

SRR
R R
#

Check plots for nominal and ratio data using spplot

needs the RColorBrewer library

#
#
#
# For boxplots, barcharts and maps, plot 4 per display window
# Pairwise plot uses single window only
#
plot.Check.variables <- function (SPDF,varlist,vartypes) {

#

# Start with boxplots for the ratio variables: requires RColorBrewer

#




X11()
par (mfrow=c(2,2))

for (plotvar in varlist[which(vartypes == "R")]) { # ratio variables only
boxplot (SPDFQRdata[,plotvar] ,main=plotvar) # boxplots
pause ()

}

par (mfrow=c(1,1))

#

# Next, barcharts for the nominal variables

#

X11()

par (mfrow=c(2,2))

for (plotvar in varlist[which(vartypes == "N")]){ # nominal variables only
barplot (table (SPDF@data[,plotvar]) ,main=plotvar,xlab="Code") #

barcharts

pause ()

}
par (mfrow=c(1,1))
#
# Pairwise plot of the ratio variables
X11()
pairs (SPDF@data[,varlist[which(vartypes == "R")]], main="Pairwise Plots")
pause ()
#
# Plot check plots of the ratio variables
#
X11()
for (i in l:length(varlist)) {
if (vartypes[i] %in% c("N","R")) { # ratio/nominal variables
plotvar <- varlist[i] # get the name
datatype <- vartypes[i] # get the type
p.obj <- plot.SPDF.data (SPDF,plotvar,datatype) # create the object
switch.val <- i %% 4
if (i == length(varlist) || switch.val == 0) {AddToPlot <- FALSE} else
{AddToPlot <- TRUE}
switch (switch.val+l,
print(p.obj,position=c (0.5,
print(p.obj,position=c (0.0,
print(p.obj,position=c (0.5,
print(p.obj,position=c (0.0,
)
if (!'AddToPlot) {pause()}
} # end if
} # end for
par (mfrow=c(1,1))

#

0.5) ,more=AddToPlot),
1.0) ,more=AddToPlot),
1.0) ,more=AddToPlot),
0.5) ,more=AddToPlot)

~
~

~
~

O O oo
o ur Ul O
oORroRr

~

U O Ul o
~

~

Plot a variable from the SPDF data frame into a trellis plot object
Nominal data - coerce the data to a factor
Ratio data plot against 10 classes with a general purpose colour ramp
from RColorBrewer

HH 3

plot.SPDF.data <- function (SPDF,plotvar, type) {
print (paste (plotvar, type))
switch (type,

R =
spplot (SPDF,plotvar,main=as.character (plotvar) ,col.regions=brewer.pal(l1l, "Spectral"
) ,cuts=10),

N = {SPDF2 <- SPDF

SPDF2Q@data[,plotvar] <- as.factor (SPDF2@data[,plotvar])
labeltext <- as.numeric(levels (SPDF2@data[,plotvar]))
nlabels <- length(labeltext)

labelat <- seq(l,nlabels)

spplot (SPDF2,plotvar,main=plotvar,col.regions=brewer.pal (nlabels, "Setl") ,h cuts=nlabe
1s-1)

57




}
FHEHHHEEHHEHEHEHEESHEEEHEE R R R

#### #H##
#i### Reporting routines ####
#### #H#4

EESEEE IR B AL LA EE ARSI LIS LB LS R LTS
#
# print.Bad.Spatial.Values()

# SPDF - spatial polygons data frame

# badlist: anomalous entries are FALSE
# testcol: column which has been tested
#

print.Bad.Spatial.Values <- function (SPDF,badlist, testcol) {
Values <- SPDF@data['badlist,testcol]
NUTSCode <- as.character (SPDF@data['badlist,"UnitCode"])
NUTSName <- as.character (SPDF@data['badlist,"Name"])
outtable <- cbind (NUTSCode,Values,NUTSName)
outtable <- rbind(c("NUTSCode", "Value","NUTS Region Name") ,outtable)
write.table (format (outtable, justify="1left") ,h row.names=F, col.names=F,6 quote=F)

print.Bad.Spatial.Scores ()
SPDF - spatial polygons data frame
badlist: anomalous entries are FALSE
testcol: column which has been tested

HH 3

print.Bad.Spatial.Scores <- function (SPDF,badlist, testcol) {
Values <- testcol[!badlist]
NUTSCode <- as.character (SPDF@data['badlist,"UnitCode"])
NUTSName <- as.character (SPDF@data['!'badlist,"Name"])
outtable <- cbind (NUTSCode,Values,NUTSName)
outtable <- rbind(c("NUTSCode", "Value","NUTS Region Name") ,outtable)
write.table (format (outtable, justify="1left") ,h row.names=F, col.names=F, quote=F)

print.Bad.Data.Values ()
X: data.frame
badlist: anomalous entries are FALSE
testcol: column which has been tested

HH= 3= M 3

print.Bad.Data.Values <- function (X,badlist, testcol) {
Values <- X['badlist, testcol]
NUTSCode <- as.character (X['!'badlist,"UnitCode"])
NUTSName <- as.character (X[!'badlist,"Name"])
outtable <- cbind (NUTSCode,Values,NUTSName)
outtable <- rbind(c("NUTSCode", "Value","NUTS Region Name") ,outtable)
write.table (format (outtable, justify="1left") ,h row.names=F, col.names=F, quote=F)

#
#
#
Print.Invalid.NUTS.Codes <- function(DQCData,invalidNUTScodes,Countries) {
n.inv <- length(invalidNUTScodes)
if (n.inv > 0) {
InvalidStuff <- DQCData[invalidNUTScodes,c(1,2,3,nv+4,nv+5,nv+6) ]
InvalidStuff[,4] <- "No NUTS lookup code"
InvalidStuff[,5] <- "Unknown NUTS country"
InvalidStuff[,6] <- "Unknown"
}
cat("\n\nRegions with Unknown NUTS codes for this level and date\n")

cat ( " \n")
if (n.inv == 0) {
cat("\n*** All NUTS codes in these data appear to be wvalid\n\n")
} else {

58




xc <- substr(InvalidStuff[,1],1,2)
for (i in 1l:n.inv) {
xp <- which(Countries[,1] == xc[i])
if (length (xp) > 0)
paste (Countries[xp,2] ,Countries[xp, 3] ,sep=", ")
}
}
print (InvalidStuff[,c(1,2,3,5)])
}

InvalidStuff[i, 5]

<_

59




