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Summary

In this paper, we propose an event-triggered output-feedback controller that guar-

antees the simultaneous stabilization of traffic flow on two connected roads. The

density and velocity traffic dynamics are described with the linearized Aw-Rascle-

Zhang (ARZ) macroscopic traffic partial differential equation (PDE) model, which

results in a coupled hyperbolic system. The control objective is to simultaneously

stabilize the upstream and downstream traffic to a given spatially uniform constant

steady-state that is in the congested regime. To suppress stop-and-go traffic oscil-

lations on the cascaded roads, we consider a ramp metering strategy that regulates

the traffic flow rate entering from the on-ramp to the mainline freeway. The ramp

metering is located at the outlet with only boundary measurements of flow rate and

velocity. Under the event-triggered scheme, the control signal is only updated when

an event triggering condition is satisfied. Compared with the continuous input sig-

nal, the event-triggered boundary output control presents a more realistic setting

to implement by ramp metering on a digital platform. The event-triggered control

design relies on the emulation of the backstepping boundary output feedback and on

a dynamic event-triggered strategy to determine the time instants at which the con-

trol value must be updated. We prove that there is a uniform minimal dwell-time

(independent of initial conditions), thus avoiding the Zeno phenomenon. We guar-

antee the exponential convergence of the closed-loop system under the proposed

event-triggered control. A numerical example illustrates the results.

KEYWORDS:

PDE-based control, backstepping control design, event-triggered control, traffic flow model, ramp meter-
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1 INTRODUCTION

Freeway traffic modeling and management have been intensively investigated due to the increasing demand for traffic mobility

over the past decades. Various traffic control methods have been studied to regulate freeway traffic systems and mitigate traffic

congestion. In particular, stop-and-go traffic is a common phenomenon appearing on congested freeways. In congested traffic,

drivers are forced into the acceleration-and-deceleration cycles. Such oscillations and causes characterize the stop-and-go traffic,

increased consumption of fuel, and unsafe driving conditions.
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Among different models for freeway traffic, macroscopic modeling is particularly suitable to describe the stop-and-go traffic

since the propagation of traffic waves is described in the temporal and spatial domain. The macroscopic models use hyper-

bolic PDEs that govern the evolution of traffic density and velocity dynamics. The most widely-used macroscopic traffic PDE

models include the classical first-order Lighthill-Whitham-Richards (LWR) model1 2 and the state-of-art second-order Aw-

Rascle-Zhang (ARZ) model3 4. The LWR model corresponds to the conservation law of traffic density. Although it can efficiently

predict the formation and propagation of traffic shockwaves on the freeway, it does not succeed in describing the stop-and-go

oscillatory phenomenon5. As this may cause unsafe driving conditions, increased fuel consumption, and delays in travel time,

the second-order Aw-Rascle-Zhang (ARZ) model3 4 seems more suitable since this model manages to describe this stop-and-go

traffic congestion by allowing a velocity PDE added to the LWR model and thus providing a wider variety of dynamics. This

model describes the traffic density and velocity of a freeway segment with two coupled non-linear hyperbolic PDEs. Developed

initially to describe the traffic flow on a single road, this class of models has been extended in6 7 to describe the freeway traffic

on complex road network structures. In this work, we consider a network composed of two cascaded freeway segments (that may

have different intrinsic properties). Thus, we adopt the second-order macroscopic traffic network model in7 for the two cascaded

freeway segments. In particular, we assume that there is a conservation of the mass and drivers’ properties at the junction con-

necting the two roads. This property is not smooth across the junction in6. The well-posedness of a closed-loop system for our

control design is a consequence of the fact that the solution in7 is a weak solution in the sense of the conservative variables of

the ARZ model. All in all, the system under consideration can be expressed as a network of two interconnected hyperbolic PDE

systems coupled through their boundaries. We are interested in developing control strategies to mitigate stop-and-go oscillations.

To regulate freeway traffic and avoid the stop-and-go oscillatory phenomenon, different traffic control strategies have been

developed in the literature. They are mainly implemented on the traffic management infrastructures, that is, ramp metering and

varying speed limits (VSL). Ramp metering controls the traffic lights on a ramp such that the inflow traffic is regulated for the

mainline traffic. The VSL regulates traffic velocity by displaying driving velocities that are time-varying and dependent on real-

time traffic. A complete survey on freeway traffic control can be found in8. Boundary control algorithms have been developed

for traffic control of a single freeway segment in9 10 11 12. However, these control laws are restricted to control problem of traffic

on one freeway segment which necessitates certain road homogeneity. A first research line aimed at the definition of feedback

approaches for speed control of freeway traffic streams. In10, the authors design a control law that depends on measurements

of a portion of the system state and that is integrated in a LWR model. In12 or13, the authors design PI boundary control

of a cascaded freeway network, which is modeled by the linearized homogeneous AR model. The static errors of boundary

conditions are suppressed since the instabilities do not arise from the transport PDEs. The proposed controllers have been tested

against traffic experiment in13 that suggests that the proposed strategy is feasible and effective. The present paper differs in

focusing on the oscillations generated by the in-domain traffic that can only be modeled by the inhomogeneous ARZ model.

Moreover, all the boundaries of the network are actuated in12,13 which is not the case in this work, where we only consider

that one boundary of the network is actuated. In14, the authors have proposed a control algorithm based on time-gap setting of

ACC equipped and connected vehicles in-domain actuation. Optimal control of traffic networks modeled by means of PDEs are

reported in15. Finally, the backstepping approach provides an effective way to design stabilizing controllers for the considered

class of systems. A ramp metering control strategy has for instance been proposed in11 to suppress the stop-and-go traffic

oscillations on the freeway either upstream or downstream of the ramp, based on the theoretical result developed in16,17,18. A

related backstepping-based state-observer has been tested in19 on field data. However, such control design can not stabilize the

two segments simultaneously, and distinct traffic scenarios appearing on the cascaded segments are not addressed by the model.

Ramp metering control of the upstream traffic may cause congestion for downstream traffic and vice versa. This problem has only

been overcome recently since an output-feedback control law (based on boundary measurement) that simultaneously stabilizes

the traffic on two cascaded road segments has been designed in20. The proposed strategy required rewriting the network as

an underactuated fourth-order PDE system and applying recent theoretical developments obtained thanks to the backstepping

approach21.

Nevertheless, the continuous boundary control and estimation strategies developed for the traffic problem need to be imple-

mented into digital platforms. For instance, in ramp metering control strategies, the rate inflow is controlled through traffic

lights modulation that cannot be carried out continuously. Typically, periodic strategies are used to modulate the frequency of

light changes. In VSL strategies, on the other hand, it is not feasible to display continuous time-varying driving speed advi-

sories. It has to be done either periodically or on events. The drawback with periodic implementations is that one may produce

unnecessary updates of the controllers which may cause over utilization of computational/communication resources, actuator
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changes that are more frequent than necessary and unsafe driving conditions. Therefore, for the arising continuous time bound-

ary controllers, the issue of sampling has to be carefully studied. Indeed, if sampling is not addressed properly, the stability

and estimation properties may be lost. Therefore, sampled-data and event-triggered control can offer suitable approaches to be

adopted towards digital realizations.

Few approaches on sampled-data and event-triggered control of parabolic PDEs are considered in22,23 and24,25,26,27,28,29,30.

For abstract distributed parameter systems sampled-data control is investigated in31 and32. For hyperbolic PDEs, sampled-

data control is studied in33 and34 and event-triggered control in35,36,37 and in38,39 for coupled hyperbolic PDE-ODEs. It is

worth saying that the event-triggered strategies in the infinite dimensional setting have been inspired by some of those already

well-established for finite-dimensional systems, see e.g.,40,41,42,43,44,45,46 and the references therein.

Moreover, event-triggered control strategies applied to traffic flow have been proposed namely for freeway discrete-time

models (e.g., those coming from the Cell Transmission Model (CTM) where subdivision of the freeway into cells and the

discretization of the time horizon are typically done). They are suitable for implementation-oriented control design: e.g., using

Model Predictive Control (MPC) combined with event-triggered control to determine the ramp metering actions, as it is proposed

in47 and later in48 for MPC networked scheme which accounts also for event-triggering the state information measured by

sensors. Then, hierarchical event-triggered control schemes for multi-class traffic networks scheme have been designed in49. On

the whole, event-triggered model predictive control clearly shows to be more efficient than solely MPC strategies, especially

when reducing the frequency in solving the optimization problem and hence updating the control laws only when needed. Unlike

these works which rely on the emulation of ramp metering controllers and that build on discrete-time system (finite-dimensional

system), the first event-triggered backstepping-based boundary control strategy has been proposed in50 for varying speed limit

(VSL) to reduce the stop-and-go traffic oscillations. The controlled velocity signal is only updated when an event triggering

condition is satisfied. It builds on the linearized ARZ traffic modeled and the emulation is done for a continuous-time boundary

controller (which is designed under a late-lumped approach, thus without any type of model reduction).

The novelty of this paper consists of the design of an event-triggered output-feedback law that stabilizes the traffic on two

cascaded road segments for which actuation is implemented at the outlet with ramp metering. The associated measurement cor-

responds to the values of the traffic states at the outlet. The contributions of this paper are threefold: 1) From a theoretical point

of view, this paper is the first attempt to design an observer-based event-triggered control law for an underactuated hyperbolic

system; 2) We apply the proposed event-triggered strategy to the challenging problem of traffic networks, thus avoiding use-

less actuation solicitations and making possible real implementation. The proposed event-triggered algorithm is based on the

emulation of the output-feedback law designed in20, to which an event-triggered mechanism (including a dynamic triggering

condition) is added. 3) We show the Zeno phenomenon’s avoidance and the closed-loop system’s exponential convergence (in

the sense of the L2-norm) with the proposed control law. To show the closed-loop convergence and the avoidance of the so-

called Zeno phenomenon (which would made implementation impossible), the proposed strategy combines the backstepping

methodology with a Lyapunov analysis. More precisely, using several backstepping transformations, the closed-loop system is

mapped to simpler target systems that corresponds to cascaded system of conservation laws subject to the action of a disturbance

at its boundary. This disturbance can be viewed as an actuation deviation between the continuous (nominal) controller designed

in20 and the event-triggered one. From this target system, we can perform a Lyapunov analysis to analyze the growth-in-time

of the deviation d(t) and show the avoidance of the Zeno-phenomenon and the closed-loop convergence. Preliminary results

related to this work have been presented in51.

The paper is organized as follows. In Section 2 we present the ARZ PDE model we use to describe the road network we con-

sider in this paper. It consists of two connected road segments with unidirectional traffic flow and different road conditions. Part

of the content of this section is borrowed from20. After folding and rescaling transformations, this PDE system is expressed as

a 2+2 hyperbolic system for which only one equation is actuated at the boundary. In Section 3, we present the nominal output-

feedback law that has been designed in20. We introduce several backstepping transformations that are useful for the analysis.

Finally, we emulate this continuous control law using a discretized event-triggered version: the control value is held constant

between two successive time instants and is updated when some triggering condition is verified. The dynamic triggering condi-

tion is presented in Section 4. We show in Section 5 the avoidance of the Zeno phenomenon and the exponential convergence of

the closed-loop system in the sense of the L2-norm. Some simulation results are presented in Section 6. Finally, we give some

concluding remarks in Section 7.
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Notations

For any (a, b) ∈ ℝ
2, we denote L2([a, b],ℝ) the space of real-valued square-integrable functions defined on [a, b] with the

standard L2-norm, i.e., for any f ∈ L2([a, b],ℝ), ||f ||2
L2([a,b])

∶= ∫ b

a
f (x)2dx. When there is no ambiguity on the integration

domain, the sub-index L2([a, b]) will be omitted. For any function of two variables f (x, t) defined on x ∈ [a, b], t ∈ [0,∞), the

spatial L2-norm is the function ||f ||2
L2([a,b])

defined as ||f ||2
L2([a,b])

(t) ∶= ∫ b

a
f (x, t)2dx.

For any bounded set  of ℝ2, we denote ( ) the set of bounded real functions on  . This set is a Banach space for the

sup-norm. We define the sets 1, 2 as follows:

1 = {(x, �) ∈ [0, L]2, � ≥ x}, 2 = {(x, �) ∈ [0, L]2, � ≤ x}, (1)

and, the set 3 is defined as the unit square [0, L]2: 3 = {(x, �) ∈ [0, L]2}. The set 1 is the upper-part of this square while 2
corresponds to its lower part.

2 PRELIMINARIES AND PROBLEM DESCRIPTION

As in20, we consider a road network that consists of two connected road segments with unidirectional traffic flow and different

road conditions, as shown in Figure 1. The two segments are assumed to have the same length L for simplicity of notation. The

spatial scaling can be easily made for equations that are used to describe traffic states on segments with different lengths. The

first segment (downstream segment) is defined on [0, L] while the second segment (upstream segment) is defined on [−L, 0].

These two segments are connected at the junction through the boundary x = 0. The traffic dynamics are described with the

ARZ PDE model and the junction between the two segments is represented with the boundary conditions of the PDE model.

The adopted ARZ PDE-based traffic network model by7 allows the existence of weak solutions, which we will define later for

the open-loop and closed-loop system. The evolution of traffic density �1(t, x) and velocity v1(t, x) (with (t, x) ∈ [0,∞)× [0, L]

) on the downstream road segment and traffic density �2(t, s) and velocity v2(t, s) ((t, s) ∈ [0,∞) × [−L, 0]) on the upstream

road segment are modeled by the following ARZ model.

)t�i + )x
(
�ivi

)
= 0, (2)

)t
(
�i
(
vi + pi

))
+ )x

(
�ivi

(
vi + pi

))
= −

�i(vi−i(�i))
�i

, (3)

where i ∈ {1, 2} represents downstream and upstream road respectively. The labeling of freeway segments is chosen as the

reverse direction of traffic flow but same as the propagation direction of the control signal, which will be explained later. The

traffic pressure pi
(
�i
)

is defined as an increasing function of the density pi
(
�i
)
= vm�


i
i
∕�


i
m,i

. The coefficient 
i represents the

overall drivers’ property, reflecting their change of driving behavior to the increase of density. The positive constant vm represents

the maximum velocity and the positive constant �m,i is the maximum density defined as the number of vehicles per unit length.

The equilibrium density-velocity relation i (�i) is given by i (�i) = vm − pi
(
�i
)

for both segments, which assumes the same

maximum velocity for the two segments when there are no vehicles on the road �i = 0. We define the following variable

wi = vi + pi
(
�i
)
, (4)

which is interpreted as traffic "friction" or drivers’ property52. This property transports in the traffic flow with vehicle velocity,

representing the heterogeneity of individual driver with respect to the equilibrium density-velocity relation i (�i). The max-

imum velocity vm is assumed to be the same for the two road segments while the maximum density �m,i and coefficient 
i are

allowed to vary. The positive constant �i is the relaxation time that represents the time scale for traffic velocity vi adapting to

the equilibrium density velocity relation i (�i). We denote the traffic flow rate on each road as qi = �ivi. The equilibrium flow

and density relation, also known as the fundamental diagram, is then given by Qi

(
�i
)
= �ii (�i) = �ivm (1 − (

�i∕�m,i
)
i). We

assume that the equilibrium traffic relation is different for the two segments due to the change of road situations and access to

road junction. The illustration is given in Figure 2. The critical density �c splits the free and congested regimes of traffic states.

The critical density is given by �c,i = �m,i∕
(
1 + 
i

)1∕
i such that Q′
i
(�i)

||�i=�c,i = 0. For a section i, the traffic is free when the

density satisfies �i < �c,i. The traffic is defined as the congested one when the density satisfies �i > �c,i. For the free traffic,

oscillations around the steady states will be damped out fast. For the congested traffic, there are two directional waves on road

with one being the velocity oscillation propagating upstream and the other one being the density oscillation propagating down-

stream with the traffic. The congested traffic can become unstable53. We consider the situation that the upstream road segment 2

for s ∈ [−L, 0] has more lanes than the downstream road segment for x ∈ [0, L], in which congested traffic is usually formed up
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FIGURE 1 Traffic flow on an incoming road and an outgoing road connected with a junction. Actuation is implemented at the

outlet with ramp metering.

FIGURE 2 The equilibrium density and velocity relation i(�) on the left, the equilibrium density and flux relation Qi(�) on

the right.

from downstream to upstream. Therefore, the maximum density �m,2 > �m,1. The maximum driving speed vm is assumed to be

the same for the two segments. The maximum flow rate of the upstream road Q2

(
�c
)

is reduced in the downstream to Q1

(
�c
)
,

due to the change of road conditions from segment 2 to segment 1.

2.1 Actuated boundary

For the boundary conditions connecting the two PDE systems, the Rankine-Hugoniot condition is satisfied at the junction such

that the weak solution exists for the network (2)-(3). This condition implies piecewise smooth solutions and corresponds to the

conservation of the mass and of the drivers’ properties defined in (4) at the junction. Thus the flux and drivers’ property are

assumed to be continuous across the boundary conditions at x = 0, that is

�1(t, 0)v1(t, 0) = �2(t, 0)v2(t, 0), (5)

w1(t, 0) = w2(t, 0). (6)

For the open-loop system, we assume a constant inflow q⋆ entering the inlet boundary s = −L and a constant outflow q⋆ at the

outlet boundary for x = L :

q2(t,−L) = q⋆ (7)

q1(t, L) = q⋆ (8)

The control problem we solve consists in stabilizing on events the traffic flow in both the upstream and downstream road

segments with a single actuator. Three possible locations for implementing a ramp metering control input are either at the

inlet x = −L, at the junction x = 0 or at the outlet x = L as in20. However, in this paper we only present the observer-based

event triggered control results for control input acting on the outlet and that is updated according to a suitable event-triggering

condition. Note that the other cases could be solved adjusting the proposed techniques.

Ramp metering control Unom(t) from the outlet x = L: The downstream outflow at x = L is actuated by Unom(t),

q1(t, L) = q⋆ + Unom(t), (9)

where the outflow rate equals the summation of the onramp metering flow and the constant mainline flow. The designed controller

Unom is the flow rate perturbation around a nominal flow rate. We assume that the steady-state flow rate consists of a nominal
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onramp flow rate qr ≥ 0, which is a component of the steady-state flow rate q⋆. Then the actual ramp flow input at an onramp

is given by

qramp(t) = qr + Unom(t) ≥ 0. (10)

In practice, we only need to guarantee that qramp (t) is non-negative so that Unom(t) ≥ −qr. The value of qr depends on the road

configuration and real-time traffic conditions. We assume that there exists qr > 0 such that (10) always holds.

2.2 Congested steady states
(
�⋆
1
, v⋆

1
, �⋆

2
, v⋆

2

)
We are concerned with the congested traffic and assume that the equilibrium of both segments

(
�⋆
1
, v⋆

1

)
,
(
�⋆
2
, v⋆

2

)
are in the

congested regime, which is the only one of theoretical control interest among all four traffic scenarios including free and free,

free and congested, congested and free, congested and congested. If the traffic of both segments is free, there is no need for ramp

metering control. If the upstream segment 2 is in the free regime and the downstream segment 1 is congested, then we only

need to control the congested downstream traffic with Unom(t) as presented in11. The oscillations propagated from the congested

segment to the free regime segment will be damped out soon. The same applies to the scenario of free traffic in downstream

segment 1 and congested traffic in upstream segment 2 . The control objective is to stabilize the traffic flow in the two segments

around the steady states. In practice, the steady states represent the equilibrium state values of the traffic flow when oscillations

are successfully suppressed by our control design.

The steady states
(
�⋆
1
, v⋆

1

)
,
(
�⋆
2
, v⋆

2

)
are considered to be in the congested regime and the boundary conditions (5) and (6)

are satisfied, i.e.,

�⋆
1
v⋆
1
= �⋆

2
v⋆
2
= q⋆, (11)

w⋆
1

= w⋆
2
= vm, (12)

where the steady state velocities satisfy the equilibrium density-velocity relation v⋆
i
= i (�⋆i ), as shown in Figure 2. According

to (4) the constant driver’s property in (12) implies that we have the same maximum velocity vm for the two segments (which

corresponds to our initial assumption):

v⋆
1
+ p⋆

1
= v⋆

2
+ p⋆

2
= vm, (13)

where p⋆
i
= pi

(
�⋆
i

)
. The steady states can be solved from the above nonlinear equations (11),(13) however there are no explicit

solutions. Therefore we show the derivation process for obtaining the steady state values when �⋆
1

and the model parameters

vm, �m,i and 
i are given. The functions i(�) Qi(�) and pi(�) are also known. The steady state flow rate in (11) is obtained as

q⋆ = Q1

(
�⋆
1

)
, and the constant flux Q1

(
�⋆
1

)
= Q2

(
�⋆
2

)
, yields a relation for the steady state densities of the two segments

�⋆
1
�

1
m,1

−(�⋆1 )

1+1

�⋆
2
�

2
m,2

−(�⋆2 )

2+1

=
�

1
m,1

�

2
m,2

. Knowing �⋆
1
, �⋆

2
and q⋆, the steady states velocities are obtained as v⋆

i
= q⋆∕�⋆

i
.

2.3 Linearized ARZ model in Riemann coordinates

We linearize the ARZ based traffic network model
(
�i, vi

)
in (2),(3) with the boundary conditions (5),(6),(7),(8) around the

steady states
(
�⋆
i
, v⋆
i

)
defined in the previous section. In order to simplify the control design, the linearized model is then

rewritten into the Riemann variables to which we apply an invertible spatial transformation

w̄i = exp
(

x

�iv
⋆
i

)(

ip

⋆
i

q⋆

(
�ivi − �

⋆
i
v⋆
i

)
+

1

ri

(
vi − v

⋆
i

))
, (14)

v̄i = vi − v
⋆
i
, (15)

q̄i = �ivi − �
⋆
i
v⋆
i
, (16)

where p⋆
i
= pi

(
�⋆
i

)
and the constant coefficients ri are defined as

ri = −
v⋆
i


ip
⋆
i
−v⋆

i

. (17)

For the congested regime we have �⋆
i
>

�m,i

(1+
i)
1∕
i

so that the characteristic speed 
ip
⋆
i
− v⋆

i
> 0. The velocity variations

v̄1(t, x), v̄2(t, x) transport upstream which means the action of velocity acceleration or deceleration is repeated from the leading

vehicle to the following vehicle. More precisely, since v⋆
i
= vm − p⋆

i
, we obtain 
ip

⋆
i
− v⋆

i
= (1 + 
i)p

⋆
i
− vm. We also have

p⋆
i
= vm − i (�⋆i ) = vm

(
�⋆
i

�m,i

)
vm
>

vm

1+
i
, since �⋆

i
>

�m,i

(1+
i)
1∕
i

. Consequently, we obtain 
ip
⋆
i
− v⋆

i
> 0.
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L−L 0

Unom(t)

v̄2

w̄2

v̄1

w̄1

FIGURE 3 Traffic flow on an incoming road and an outgoing road connected with a junction. Actuation is implemented at the

outlet with ramp metering.

The linearized system with the controlled boundary condition (9) is written as

)tw̄1(t, x) + v
⋆
1
)xw̄1(t, x) = 0, (18)

)tv̄1(t, x) − (
1p
⋆
1
− v⋆

1
))xv̄1(t, x) = c̄1(x)w̄1(t, x), (19)

)tw̄2(t, s) + v
⋆
2
)sw̄2(t, s) = 0, (20)

)tv̄2(t, s) − (
ip
⋆

2
− v⋆

2
))sv̄2(t, s) = c̄2(s)w̄2(t, s), (21)

with boundary conditions,

w̄1(t, 0) = w̄2(t, 0), (22)

v̄1(t, L) = r1 exp
(

−L

�1v
⋆
1

)
w̄1(t, L) +

1−r1
�⋆
1

Unom(t), (23)

w̄2(t,−L) =
1

r2
exp

(
−L

�2v
⋆
2

)
v̄2(t,−L), (24)

v̄2(t, 0) = �
r2

r1
v̄1(t, 0) + (1 − �)r2w̄2(t, 0), (25)

where s ∈ [−L, 0], x ∈ [0, L], and where the spatially varying coefficient c̄1(x), c̄2(s) are defined, respectively, by

c̄1(x) = −
1

�1
exp

(
−

x

�1v
⋆
1

)
, c̄2(s) = −

1

�2
exp

(
s

�2v
⋆
2

)
. (26)

The constant coefficient � (ratio related to the traffic pressure of the segments) is defined by

� =

2p

⋆
2


1p
⋆
1

. (27)

Although the cascade structure of the network given Figure 3 presents some advantages for the design of a stabilizing control

law (see20), it is more convenient for the design of an event-triggered algorithm to have all the states defined on the same spatial

domain. Therefore, to rewrite the states w̄2 and v̄2 as functions defined on [0, L], we consider the folding transformation x̄ = −s.

The variable x̄ belongs to [0, L]. For sake of simplicity, we will omit the bar and abusively denote w̄2(t, x̄) = w̄2(t, x). With this

transformation, the previous system rewrites

)tw̄1(t, x) + v
⋆
1
)xw̄1(t, x) = 0, (28)

)tv̄2(t, x) + (
2p
⋆
2
− v⋆

2
))xv̄2(t, x) = c2(x)w̄2(t, x), (29)

)tv̄1(t, x) − (
1p
⋆
1
− v⋆

1
))xv̄1(t, x) = c1(x)w̄1(t, x), (30)

)tw̄2(t, x) − v
⋆
2
)xw̄2(t, x) = 0, (31)

where x ∈ [0, L], and c1(x) = c̄1(x) and c2(x) = c̄2(−x). The boundary conditions are,

⎛
⎜⎜⎜⎜⎝

w̄1(t, 0)

v̄2(t, 0)

v̄1(t, L)

w̄2(t, L)

⎞
⎟⎟⎟⎟⎠
= G

⎛
⎜⎜⎜⎜⎝

w̄1(t, L)

v̄2(t, L)

v̄1(t, 0)

w̄2(t, 0)

⎞
⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎝

0

0
1−r1
�⋆
1

0

⎞
⎟⎟⎟⎟⎠
Unom(t), (32)
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FIGURE 4 Schematic representation of the interconnected system (28)-(32) after folding transformation. Actuation is

implemented at the outlet with ramp metering.

where

G =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1

0 0 �
r2

r1
(1 − �)r2

r1 exp
(

−L

�1v
⋆
1

)
0 0 0

0
1

r2
exp

(
−L

�2v
⋆
2

)
0 0

⎞
⎟⎟⎟⎟⎟⎠

. (33)

The schematic representation of the interconnected system (28)-(32) is given in Figure 4 . The open-loop system (28)-(32) (for

which Unom ≡ 0) is well-posed in the sense of the L2 norm (weak solutions) by9 Theorem A.4, that is, for any initial conditions

((v̄0)i, (w̄0)i) ∈ (L2([0, L]))2, there is only one L2-solution. It is shown in11 that only marginal linear stability holds for the

open-loop system of one segment. The control operator is admissible (i.e. it verifies the so-called admissibility condition as

stated in54). Consequently, for any Unom ∈ L2([0, T ]), and for any initial conditions ((v̄0)i, (w̄
0)i) ∈ (L2([0, L]))2 there is only

one L2-solution to (28)-(32) . Note that we could obtain more regular solutions (strong solutions) by imposing some additional

regularity conditions on the initial conditions or the coupling terms, and adding compatibility conditions (see9 for instance).

An output-feedback law that exponentially stabilizes (28)-(32) in the sense of the L2-norm has been designed in20. We assume

that the available measurements correspond to the values of q̃i and ṽi at the left side of the outlet x = L. Since we have

w̄1(t, L) = exp
(

L

�1v
⋆
1

)(

1p

⋆
1

q⋆
q̄1(t, L) −

1

r1
v̄1(t, L)

)
, we can consider that the boundary measurement corresponds to

YL(t) = w̄1(t, L). (34)

2.4 Condition for exponential stability of linear hyperbolic systems and assumption to guarantee
delay-robust stabilization

It is worth recalling that a sufficient condition for the exponential stability of 1D hyperbolic systems on a bounded interval was

derived in55 Theorem 2.3 by means of Lyapunov techniques. It is often referred to as a Dissipativity boundary condition 1. We

recall it here for the case of the linear hyperbolic system (28)-(32) in the absence of in-domain coupling and actuation.

Consider the following norm for the matrix G:

1(G) = inf{‖ΔGΔ−1‖; Δ ∈ +
4
},

where ‖ ⋅‖ denotes the usual matrix 2-norm and +
4

denotes the set of diagonal 4×4 real matrices with strictly positive diagonal

entries. If the following inequality holds:

1(G) < 1,

then, the system (28)-(32) (in the absence of in-domain coupling and actuation) is exponentially stable.

Moreover, it has been proved in21 (by in turn relying on58 and59) that the stability of the system (28)-(32) in the absence of in-

domain coupling and actuation is necessary to design delay-robust control laws. Therefore, in the rest of this paper we consider

this assumption.

1See also 56 57, and 9 Section 3 for further details of sufficient conditions for exponential stability and Lyapunov-based techniques for 1D linear hyperbolic systems.
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Assumption 1. The boundary conditions of the system (28)-(32) with G given by (33) are dissipative, i.e., the following

inequality holds:

1(G) < 1. (35)

2.5 Control objective

It happens that the in-domain coupling terms ci(x), i = 1, 2 in (28)-(32) (see Figure 4) are the main source of oscillations

causing the linearized system to become potentially unstable (or damped with oscillations that take long to settle). The control

objective is to suppress the stop-and-go oscillation phenomenon which translates in simultaneously stabilizing the upstream and

downstream traffic to a given spatially uniform constant steady-state. We propose an output-feedback controller located at the

outlet of the downstream traffic with collocated sensing of flow rate and velocity at the outlet. The state feedback and observer

designs are based on the PDE backstepping methodology aiming at compensating the coupling terms of the under-actuated

network of two systems of two hyperbolic PDEs as in (28)-(32). They are adjusted from the one proposed in20. Considering

that the continuous-time boundary control and estimation designs need to be implemented into digital platforms, we develop an

event-triggered boundary control law that stabilizes the system on events. The proposed event-triggered controller is piecewise

constant. The control value is updated based on a dynamic triggering condition only when needed. The application of such

an event-triggered control strategy is the main contribution of this paper and is crucial to reduce the computational effort and

envision a ramp metering control with modulation of the changing frequency of the on-ramp traffic light. In this paper, we

consider that the actuator and sensor are colocated at the boundary x = L. However, the proposed approach can be extended

to the case of in-between measurement/actuation, since the design of the underlying backstepping observers and controllers has

already been proposed in20. Thus, the methodology proposed in Section 3 and Section 4 can be easily adjusted to cover these

cases.

3 OUTPUT-FEEDBACK LAW AND EMULATION

3.1 Output-feedback control law (nominal)

The following output-feedback law Unom(t) (having delay-robustness margins) has been proposed in20 to stabilize the system

(28)-(32):

Unom(t) =
�⋆
1

1−r1

( L

∫
0

(
Kvw

1
(L, �)ŵ1(t, �)d� +K

vv
1
(L, �)v̂1(t, �) +K

w(L, �)ŵ2(t, �) +K
v(L, �)v̂2(t, �)

)
d�

)
, (36)

where the kernelsKvw
1

, Kvv
1

, Kw andKv are bounded (piecewise continuous) functions that are characterized in Appendix A.3.

In addition, ŵi, v̂i are the states of the following observer relying on the available measurement YL(t) = w̄1(t, L) . The observer

equations read as follows:

)tŵ1(t, x) + v
⋆
1
)xŵ1(t, x) = �1(x)(ŵ1(t, L) − w̄1(t, L)), (37)

)tv̂2(t, x) + (
2p
⋆
2
− v⋆

2
))xv̂2(t, x) = c2(x)ŵ2(t, x) + �2(x)(ŵ1(t, L) − w̄1(t, L)), (38)

)tv̂1(t, x) − (
1p
⋆
1
− v⋆

1
))xv̂1(t, x) = c1(x)ŵ1(t, x) + �1(x)(ŵ1(t, L) − w̄1(t, L)), (39)

)tŵ2(t, x) − v
⋆
2
)xŵ2(t, x) = �2(x)(ŵ1(t, L) − w̄1(t, L)), (40)

with boundary conditions,

⎛⎜⎜⎜⎜⎝

ŵ1(t, 0)

v̂2(t, 0)

v̂1(t, L)

ŵ2(t, L)

⎞⎟⎟⎟⎟⎠
= G

⎛⎜⎜⎜⎜⎝

ŵ1(t, L)

v̂2(t, L)

v̂1(t, 0)

ŵ2(t, 0)

⎞⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎝

0

0
1−r1
�⋆
1

0

⎞⎟⎟⎟⎟⎠
Unom(t), (41)

where G is given by (33). The terms �i and �i are the output injection terms that are given as follows:

�1(x) = v⋆
1
N��

1
(x, L), �1(x) = v⋆

1
N

��

1
(x, L), (42)

�2(x) = v⋆
1
N�(x, L), �2(x) = v⋆

1
N�(x, L), (43)

where the kernels N��
1

, N
��

1
, N� and N� are bounded functions which are characterized in Appendix A.1.
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3.2 Emulation of the output-feedback control law

We aim at stabilizing the closed-loop system (28)-(32) on events while updating the continuous-time controllerUnom(t) at certain

sequence of time instants (tk)k∈ℕ, that will be characterized later on. The control value is held constant between two successive

time instants and it is updated when some triggering condition is verified. This procedure is referred to as event-triggering. It

is an efficient way to suitably apply (only when needed) the control value, thus avoiding useless actuation solicitations. To that

end, we need to modify the control law proposed in20. More precisely, the control law Unom(t), that appears in (28)-(32) will be

replaced by Unom(tk) for all t ∈ [tk, tk+1), k ≥ 0. It implies that the boundary conditions (32) and (41), become, respectively

⎛
⎜⎜⎜⎜⎝

w̄1(t, 0)

v̄2(t, 0)

v̄1(t, L)

w̄2(t, L)

⎞
⎟⎟⎟⎟⎠
= G

⎛
⎜⎜⎜⎜⎝

w̄1(t, L)

v̄2(t, L)

v̄1(t, 0)

w̄2(t, 0)

⎞
⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎝

0

0
1−r1
�⋆
1

0

⎞
⎟⎟⎟⎟⎠
Unom(tk), (44)

and
⎛
⎜⎜⎜⎜⎝

ŵ1(t, 0)

v̂2(t, 0)

v̂1(t, L)

ŵ2(t, L)

⎞
⎟⎟⎟⎟⎠
= G

⎛
⎜⎜⎜⎜⎝

ŵ1(t, L)

v̂2(t, L)

v̂1(t, 0)

ŵ2(t, 0)

⎞
⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎝

0

0
1−r1
�⋆
1

0

⎞
⎟⎟⎟⎟⎠
Unom(tk), (45)

for all t ∈ [tk, tk+1), where G is given by (33).

Consequently, we have Unom(tk) = Unom(t) + d(t), where d can be seen as a deviation of actuation. Since we need to assess

the impact of the deviation d(t) to the closed-loop system under the event-triggered implementation, we use some suitable back-

stepping transformations so that we can work on some target systems with desired stability properties (e.g., meeting Assumption

1) and that exhibit the deviation d(t) at the boundary. From the target system, we can then perform an easier Lyapunov stability

analysis while studying the event-triggered mechanism that we propose in the next section.

To that end, we define the error states a as the difference between the real states and their estimations: w̃i = w̄i − ŵi and

ṽi = v̄i − v̂i. The error system rewrites as

)tw̃1(t, x) + v
⋆
1
)xw̃1(t, x) = �1(x)w̃1(t, L), (46)

)tṽ2(t, x) + (
2p
⋆
2
− v⋆

2
))xṽ2(t, x) = c2(x)w̃2(t, x) + �2(x)w̃1(t, L), (47)

)tṽ1(t, x) − (
1p
⋆
1
− v⋆

1
))xṽ1(t, x) = c1(x)w̃1(t, x) + �1(x)w̃1(t, L), (48)

)tw̃2(t, x) − v
⋆
2
)xw̃2(t, x) = �2(x)w̃1(t, L), (49)

with boundary conditions,
⎛
⎜⎜⎜⎜⎝

w̃1(t, 0)

ṽ2(t, 0)

ṽ1(t, L)

w̃2(t, L)

⎞
⎟⎟⎟⎟⎠
= G

⎛
⎜⎜⎜⎜⎝

w̃1(t, L)

ṽ2(t, L)

ṽ1(t, 0)

w̃2(t, 0)

⎞
⎟⎟⎟⎟⎠
, (50)

where G is given by (33). Consider next the following backstepping transformation

⎛
⎜⎜⎜⎜⎝

w̃1(t, x)

ṽ1(t, x)

w̃2(t, x)

ṽ2(t, x)

⎞
⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝


⎛
⎜⎜⎜⎜⎝

�̃1(t, ⋅)

�̃1(t, ⋅)

�̃2(t, ⋅)

�̃2(t, ⋅)

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠
(x), which is

displayed as follows:

⎛
⎜⎜⎜⎜⎝

w̃1(t, x)

ṽ1(t, x)

w̃2(t, x)

ṽ2(t, x)

⎞
⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

�̃1(t, x)

�̃1(t, x)

�̃2(t, x)

�̃2(t, x)

⎞
⎟⎟⎟⎟⎠
−

L

∫
0

⎛
⎜⎜⎜⎜⎝

N��
1
(x, �)1[x,L](�) 0 0 0

N
��

1
(x, �)1[x,L](�) 0 0 0

N�(x, �) 0 N��
2
(x, �)1[0,x](�) 0

N�(x, �) 0 N
��

2
(x, �)1[0,x](�) 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

�̃1(t, �)

�̃1(t, �)

�̃2(t, �)

�̃2(t, �)

⎞
⎟⎟⎟⎟⎠
d�, (51)

where the different kernels are defined by (A1)-(A9) (in Appendix A.1). The transformation (51) is invertible. This can be

seen by noticing first that the part acting on the states �̃1 and �̃1 corresponds to a Volterra transformation (which is always

invertible60). Then, the part acting on the states �̃2 and �̃2 corresponds to a Volterra transformation to which is added an affine
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term that depends on �̃1 and �̃1. This transformation, maps the error system (46)-(50) to the system

)t�̃1(t, x) + v
⋆
1
)x�̃1(t, x) = 0, (52)

)t�̃2(t, x) + (
2p
⋆
2
− v⋆

2
))x�̃2(t, x) = 0, (53)

)t�̃1(t, x) − (
1p
⋆
1
− v⋆

1
))x�̃1(t, x) = 0, (54)

)t�̃2(t, x) − v
⋆
2
)x�̃2(t, x) = 0 (55)

with boundary conditions,
⎛
⎜⎜⎜⎜⎝

�̃1(t, 0)

�̃2(t, 0)

�̃1(t, L)

�̃2(t, L)

⎞
⎟⎟⎟⎟⎠
= G

⎛
⎜⎜⎜⎜⎝

�̃1(t, L)

�̃2(t, L)

�̃1(t, 0)

�̃2(t, 0)

⎞
⎟⎟⎟⎟⎠
, (56)

where G is given by (33).

Remark 1. This target system is exponentially stable due to Assumption 1. It is worth saying that a Lyapunov-based character-

ization related to this assumption will be recalled in the next section since the event-triggered control design mainly relies on

Lyapunov techniques.

In addition, the design of our event-triggered procedure requires the inverse transformation of (51). More precisely, we denote

 the corresponding inverse transformation i.e.,

⎛
⎜⎜⎜⎜⎝

�̃1(t, x)

�̃1(t, x)

�̃2(t, x)

�̃2(t, x)

⎞
⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝


⎛
⎜⎜⎜⎜⎝

w̃1(t, ⋅)

ṽ1(t, ⋅)

w̃2(t, ⋅)

ṽ2(t, ⋅)

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠
(x) and which is displayed as follows:

⎛
⎜⎜⎜⎜⎝

�̃1(t, x)

�̃1(t, x)

�̃2(t, x)

�̃2(t, x)

⎞
⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

w̃1(t, x)

ṽ1(t, x)

w̃2(t, x)

ṽ2(t, x)

⎞
⎟⎟⎟⎟⎠
−

L

∫
0

⎛
⎜⎜⎜⎜⎝

Rww
1

(x, �)1[x,L](�) 0 0 0

Rvw

1
(x, �)1[x,L](�) 0 0 0

Rw(x, �) 0 Rww
2

(x, �)1[0,x](�) 0

Rv(x, �) 0 Rwv
2
(x, �)1[0,x](�) 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

w̃1(t, �)

ṽ1(t, �)

w̃2(t, �)

ṽ2(t, �)

⎞
⎟⎟⎟⎟⎠
d�. (57)

The different kernels of (57) are bounded functions and are characterized in Appendix A.2.

Finally we use the backstepping transformation

⎛
⎜⎜⎜⎜⎝

�̂1(t, x)

�̂1(t, x)

�̂2(t, x)

�̂2(t, x)

⎞
⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

ŵ1(t, ⋅)

v̂1(t, ⋅)

ŵ2(t, ⋅)

v̂2(t, ⋅)

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠
(x) which is displayed as follows:

⎛
⎜⎜⎜⎜⎝

�̂1(t, x)

�̂1(t, x)

�̂2(t, x)

�̂2(t, x)

⎞
⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

ŵ1(t, ⋅)

v̂1(t, ⋅)

ŵ2(t, ⋅)

v̂2(t, ⋅)

⎞
⎟⎟⎟⎟⎠
−

L

∫
0

⎛
⎜⎜⎜⎜⎝

0 0 0 0

Kvw
1

(x, �)1[0,x](�) K
vv
1
(x, �)1[0,x](�) Kw(x, �) Kv(x, �)

0 0 0 0

0 0 Kvw
2

(x, �)1[x,L](�) K
vv
2
(x, �)1[x,L](�)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ŵ1(t, �)

v̂1(t, �)

ŵ2(t, �)

v̂2(t, �)

⎞
⎟⎟⎟⎟⎠
d�. (58)

This transformations maps the observer system (37)-(40),(45) into the following target system with a boundary disturbance term

(the deviation d(t)):

)t�̂1(t, x) + v
⋆
1
)x�̂1(t, x) = p�1(x)�̃1(t, L), (59)

)t�̂2(t, x) + (
2p
⋆
2
− v⋆

2
))x�̂2(t, x) = p�2(x)�̃1(t, L), (60)

)t�̂1(t, x) − (
1p
⋆
1
− v⋆

1
))x�̂1(t, x) = p�1(x)�̃1(t, L), (61)

)t�̂2(t, x) − v
⋆
2
)x�̂2(t, x) = p�2(x)�̃1(t, L), (62)

with boundary conditions,

⎛
⎜⎜⎜⎜⎝

�̂1(t, 0)

�̂2(t, 0)

�̂1(t, L)

�̂2(t, L)

⎞
⎟⎟⎟⎟⎠
= G

⎛
⎜⎜⎜⎜⎝

�̂1(t, L)

�̂2(t, L)

�̂1(t, 0)

�̂2(t, 0)

⎞
⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎝

0

0
1−r1
�⋆
1

0

⎞
⎟⎟⎟⎟⎠
d(t), (63)
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where G is given by (33), and

p�1(x) = −�1(x), (64)

p�1(x) = −�1(x) +

x

∫
0

Kvw
1

(x, �)�1(�) +K
vv
1
(x, �)�1(�)d� +

L

∫
0

Kw(x, �)�2(�) +K
v(x, �)�2(�)d�, (65)

p�2(x) = −�2(x), (66)

p�2(x) = −�2(x) +

L

∫
x

Kvw
2

(x, �)�2(�) +K
vv
2
(x, �)�2(�)d�, (67)

Note that the functions p�1 and p�2 are well-defined since they are solutions of Volterra equations60.

The transformation (58) is invertible and the inverse transformation (which is a key in the design our event-triggered controller)

is given by

⎛
⎜⎜⎜⎜⎝

ŵ1(t, x)

v̂1(t, x)

ŵ2(t, x)

v̂2(t, x)

⎞
⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

�̂1(t, ⋅)

�̂1(t, ⋅)

�̂2(t, ⋅)

�̂2(t, ⋅)

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠
(x) and is displayed as follows:

⎛
⎜⎜⎜⎜⎝

ŵ1(t, x)

v̂1(t, x)

ŵ2(t, x)

v̂2(t, x)

⎞
⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎝

�̂1(t, ⋅)

�̂1(t, ⋅)

�̂2(t, ⋅)

�̂2(t, ⋅)

⎞
⎟⎟⎟⎟⎠
+

L

∫
0

⎛
⎜⎜⎜⎜⎝

0 0 0 0

L
��

1
(x, �)1[0,x](�) L

��

1
(x, �)1[0,x](�) L�(x, �) L�(x, �)

0 0 0 0

0 0 L
��

2
(x, �)1[x,L](�) L

��

2
(x, �)1[x,L](�)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

�̂1(t, �)

�̂1(t, �)

�̂2(t, �)

�̂2(t, �)

⎞
⎟⎟⎟⎟⎠
d�, (68)

The different kernels of the transformation (68) are bounded functions and are characterized in Appendix A.4.

Using the inverse transformation (68), we can now rewrite the nominal control law Unom defined by (36) as a function of the

states �̂i and �̂i

Unom(t) =
�⋆
1

1−r1

( L

∫
0

(
L
��

1
(L, �)�̂1(t, �) + L

��

1
(L, �)�̂1(t, �)

)
d� +

L

∫
0

(
L�(L, �)�̂2(t, �) + L

�(L, �)�̂2(t, �)
)
d�

)
, (69)

and the corresponding emulated version

Unom(tk) =
�⋆
1

1−r1

( L

∫
0

(
L
��

1
(L, �)�̂1(tk, �) + L

��

1
(L, �)�̂1(tk, �)

)
d� +

L

∫
0

(
L�(L, �)�̂2(tk, �) + L

�(L, �)�̂2(tk, �)
)
d�

)
, (70)

for all t ∈ [tk, tk+1). We recall that Unom(tk) = Unom(t) + d(t) where d is given by

d(t) =
�⋆
1

1−r1

( L

∫
0

(
L
��

1
(L, �)(�̂1(tk, �) − �̂1(t, �)) + L

��

1
(L, �)(�̂1(tk, �) − �̂1(t, �))

)
d�

+

L

∫
0

(
L�(L, �)(�̂2(tk, �) − �̂2(t, �)) + L

�(L, �)(�̂2(tk, �) − �̂2(t, �))
)
d�

)
. (71)

As aforementioned, the function d can be viewed as an actuation deviation between the continuous (nominal) controller and

the event-triggered one. Notice that the nominal control, as well as its emulated version are expressed in terms of the kernels of

transformation (68) and the states of the new target system (59)-(67). One of the main advantages of such an expression is that

it can be easier to work with the target system (particularly when considering Lyapunov analysis and input-to-state stability ISS

properties of the system with respect to the deviation d). It also allows an easier study of the growth-in-time of the deviation

of actuation d(t) (which is crucial to prove the avoidance of the so-called Zeno phenomenon). This is of specific interest when

emulating the control law and finding conditions that guarantee the closed-loop stability under any event-triggered strategy. This

methodology has been used in e.g.36,37,50,61.
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Before we proceed with the definition of the observer-based event-triggered control, we need to introduce several parameters

that will be involved in the analysis and design.

Using the kernels of the transformation (68) (which are solutions to (A33)-(A34)) along with (64)-(67), we introduce the

following variables:

��̂1 = 8
(

�⋆
1

1−r1

)2 (
v⋆
1
L
��

1
(L,L) + v⋆

1
exp

(
−L

�1v
⋆
1

)
L
��

1
(L,L)

)2

, (72)

��̂1
= 8

(
�⋆
1

1−r1

)2 (
(
1p

⋆

1
− v⋆

1
)L

��

1
(L, 0) + �

v⋆
2

r1
L�(L, 0)

)2

, (73)

��̂2 = 8
(

�⋆
1

1−r1

)2 (
− v⋆

1
L
��

1
(L, 0) + v⋆

2
L�(L, 0) + (1 − �)v⋆

2
L�(L, 0)

)2

, (74)

��̂2
= 8

(
�⋆
1

1−r1

)2 (
− v⋆

2

1

r2
exp

(
−L

�2v
⋆
2

)
L�(L,L) + (
2p

⋆
2
− v⋆

2
)L�(L,L)

)2

, (75)

��̃1 = 4
(

�⋆
1

1−r1

)2
( L

∫
0

(
L
��

1
(L, �)p�1(�) + L

��

1
(L, �)p�1(�) + L

�(L, �)p�2(�) + L
�(L, �)p�2(�)

)
d�,

)2

(76)

"0 = 2
(

�⋆
1

1−r1

)2

max

{ L

∫
0

(
v⋆
1
)�L

��

1
(L, �)

)2

d�,

L

∫
0

(
(
1p

⋆
1
− v⋆

1
))�L

��

1
(L, �)

)2

d�,

L

∫
0

(
v⋆
2
)�L

�(L, �)
)2
d�,

L

∫
0

(
(
2p

⋆
2
− v⋆

2
))�L

�(L, �)
)2
d�

}
, (77)

"1 = 4
(
(
1p

⋆
1
− v⋆

1
)L

��

1
(L,L)

)2

. (78)

In particular, these variables come into play in the triggering condition and in the study of the Zeno phenomenon. Notice that

they depend only on the traffic parameters and the gains of the boundary controller.

4 OBSERVER-BASED EVENT-TRIGGERED BOUNDARY CONTROL STRATEGY

In this section we study the observer-based event-triggered boundary control strategy proposed in this paper. It encloses an

event-trigger mechanism containing a suitable triggering condition (which determines the time instant at which the controller

needs to be updated) and the output feedback controller (70).

The event-triggering condition is based on the evolution of the square of the actuation deviation (71) and of a dynamic variable

satisfying a suitable ODE. More importantly, the triggering condition relies on a Lyapunov function for the target systems

(52)-(56) and (59)-(63).

4.1 Lyapunov-based characterization towards the definition of the triggering condition

At this stage, it is important to bring back and highlight condition of Assumption 1 and its relation with a Lyapunov-based

characterization. To see this, consider first the target system (52)-(56) for which we can recall the following result:

Proposition 1. If the dissipative condition (35) in Assumption 1 is satisfied, then the system (52)-(56) is exponentially stable.

A rigorous proof can be found in .e.g,56 or in9 Section 3. It is important, however, to recall some important elements: A

Lyapunov function candidate is defined for for all (�̃i(t, ⋅), �̃i(t, ⋅)) ∈ L2((0, L);ℝ4) as follows:

V1 =

L

∫
0

(
�̃1(t, x)

�̃2(t, x)

)⊤

(Λ+)−1+(�x)

(
�̃1(t, x)

�̃2(t, x)

)
dx +

L

∫
0

(
�̃1(t, x)

�̃2(t, x)

)⊤

(Λ−)−1−(�x)

(
�̃1(t, x)

�̃2(t, x)

)
dx, (79)

with

Λ+ = diag
[
v⋆
1
, (
2p

⋆
2
− v⋆

2
)
]
, Λ− = diag

[
(
1p

⋆
1
− v⋆

1
), v⋆

2

]
, (80)
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and

+(�x) = diag
[
%+
1
exp

(
−
�x

v⋆
1

)
, %+

2
exp

(
−

�x


2p
⋆
2
−v⋆

2

)]
, %+

i
> 0,

−(�x) = diag
[
%−
1
exp

(
�x


1p
⋆
1
−v⋆

1

)
, %−

2
exp

(
�x

v⋆
2

)]
, %−

i
> 0.

(81)

Under Assumption 1, it can be proved that one can find %+
i

, %−
i
> 0, � > 0 such that V̇1 is a negative definite function. Indeed, as

long as there exists Δ = diag[Δ0,Δ1] ∈ +
4

such that ‖ΔGΔ−1‖ < 1, one can take +(0) = Δ2
0

and −(0) = Δ2
1

hence finding

%+
i

and %−
i
> 02. The existence of � > 0 sufficiently small follows by continuity arguments.

It is important to point out that, due to the structure of system (52)-(56) where G is given by (33), we can establish the

following more conservative sufficient conditions for exponential stability and we can even explicitly characterize %+
i

, %−
i
> 0.

The underlying conditions are the following:

%−
1
exp

(
�L


1p
⋆
1
−v⋆

1

)(
r1 exp

(
−L

�1v
⋆
1

))2

− %+
1
exp

(
−�L

v⋆
1

)
< 0, (82)

%−
2
exp

(
�L

v⋆
2

)(
1

r2
exp

(
−L

�2v
⋆
2

))2

− %+
2
exp

(
−�L


2p
⋆
2
−v⋆

2

)
< 0, (83)

2(�
r2

r1
)2%+

2
− %−

1
< 0, (84)

2((1 − �)r2)
2%+

2
+ %+

1
− %−

2
< 0. (85)

For � sufficiently small, we can explicitly set %+
i
, %−

i
(among many other possibilities) as follows:

%+
1
= exp

(
�L

v⋆
1

)
, (86)

%+
2
= exp

(
�L


2p
⋆
2
−v⋆

2

)
, (87)

%−
2
=
((1−�)2r22) exp

(
�L


2p
⋆
2
−v⋆

2

)
+exp

(
�L

v⋆
1

)

2
+

r2
2

2
exp

(
−�L

v⋆
2

)
exp

(
2L

�2v
⋆
2

)
, (88)

%−
1
=%−

2

(
1

r1r2

)2

exp
(

2L

�1v
⋆
1

−
2L

�2v
⋆
2

−
�L


1p
⋆
1
−v⋆

1

+
�L

v⋆
2

)
. (89)

In addition, we define similarly a Lyapunov function for the target system (59)-(63).

V2 =

L

∫
0

(
�̂1(t, x)

�̂2(t, x)

)⊤

(Λ+)−1+(�x)

(
�̂1(t, x)

�̂2(t, x)

)
dx +

L

∫
0

(
�̂1(t, x)

�̂2(t, x)

)⊤

(Λ−)−1−(�x)

(
�̂1(t, x)

�̂2(t, x)

)
dx (90)

where, as before, +(�x), −(�x) are given in (81) along with the explicit characterization of %+
i

, %−
i

given in (86)-(88)

and � sufficiently small. In addition, it is worth recalling that there exist $2, $2 (depending on %+
i

, %−
i

and on �) such that

$2‖(�̂i(t, ⋅), �̂i(t, ⋅))‖2L2
≤ V2 ≤ $2‖(�̂i(t, ⋅), �̂i(t, ⋅))‖2L2

, i = 1, 2. Thus, V2 is equivalent to the L2-norm. In particular,$2 can be

derived explicitly as follows:

$2 = min
{

1

v⋆
1

,
1


2p
⋆
2
−v⋆

2

,
%−
1


1p
⋆
1
−v⋆

1

,
%−
2

v⋆
2

}
, (91)

where %−
2

and %−
1

are respectively given by (88) and (89).

Hence, we now can define the Lyapunov function that we are going to use in the triggering condition;

V = V1 + CV2, (92)

where V1, V2 are respectively given by (79) and (90) with C being defined as follows:

C =
�0�

4C0

, (93)

2For more general linear hyperbolic systems, e.g. higher number of states, complex boundary interconnections, or balance laws terms, one can formulate an optimization

problem with LMIs to find +(�x), −(�x) using Semi-Definite programming (SDP) combined with e.g. a line search algorithm; hence verifying the feasibility of the

resulting sufficient conditions for stability; see for instance 57.
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with

C0 =

L

∫
0

(
p�1(x)

p�2(x)

)⊤

(Λ+)−1+(�x)

(
p�1(x)

p�2(x)

)
dx +

L

∫
0

(
p�1 (x)

p�2(x)

)⊤

(Λ−)−1−(�x)

(
p�1(x)

p�2(x)

)
dx, (94)

with some �0 > 0 sufficiently small and where p�1 , p�2 , p�1 , p�2 (output injection terms after transformation) are given in (64)-(67).

4.2 Definition of observer-based event-triggered boundary controller

We are in position to define the observer-based event-triggered boundary controller.

Definition 1 (observer-based event-triggered boundary controller). Let ��̂1 , ��̂2
, ��̂1

, ��̂2 , ��̃1 be the parameters introduced in

(72)-(76) (related to traffic modeling and boundary control gains). Let V (t) the Lyapunov function be defined in (92) with

+(�x), −(�x) be given in (81) along with the explicit characterization of %+
i

, %−
i

given in (86)-(88). Let � > 0, �0 > 0

(sufficiently small), � ∈ (0, 1) and �2 > 0 be design parameters. Define

�1 = 2
�0�

4C0

(
1−r1
�⋆
1

)2

%−
1
exp

(
�L


1p
⋆
1
−v⋆

1

)
, (95)

with C0 given by (94).

The observer-based event-triggered boundary control is defined by considering the following components:

I) (The event-triggering condition) The times of the events tk ≥ 0 with t0 = 0 form a finite or countable set of times which is

determined by the following rules for some k ≥ 0:

a) if {t ∈ ℝ
+|t > tk; �1d2(t) ≥ �

2
�V (t) −

1

�2
m(t)} = ∅ then the set of the times of the events is {t0, ..., tk}.

b) if {t ∈ ℝ
+|t > tk; �1d2(t) ≥ �

2
�V (t) −

1

�2
m(t)} ≠ ∅, then the next event time is given by:

tk+1 = inf
{
t ∈ ℝ

+|t > tk; �1d2(t) ≥ �

2
�V (t) −

1

�2
m(t)

}
, (96)

where the actuation deviation d(t) is given by (71) for all t ∈ [tk, tk+1), and m satisfies the ordinary differential equation,

ṁ(t) = −�(1−�)m(t)+�1d
2(t)−

�

2
�V (t)−2�1�2

(
��̂1 �̂

2
1
(t, L)+��̂2 �̂

2
2
(t, L)+��̂1 �̂

2
1
(t, 0)+��̂2 �̂

2
2
(t, 0)+��̃1 �̃

2
1
(t, L)

)
, (97)

for all t ∈ (tk, tk+1) with m(0) = m0 < 0, and m(t−
k
) = m(tk) = m(t+

k
).

II) (the control action) The output boundary feedback law is defined by

Unom(tk) =
�⋆
1

1−r1

( L

∫
0

(
L
��

1
(L, �)�̂1(tk, �) + L

��

1
(L, �)�̂1(tk, �)

)
d� +

L

∫
0

(
L�(L, �)�̂2(tk, �) + L

�(L, �)�̂2(tk, �)
)
d�

)
, (98)

for all t ∈ [tk, tk+1).

Remark 2. Although the function V (t) (defined in (92) and involved in the triggering condition) depends on �̃i(t, ⋅) and �̃i(t, ⋅)

(which are a priori unknown), this is not a problem as these functions can be expressed as delayed functions of the measurement

YL(t) and of the observer state. Indeed, we have �̃(t, L) = w̃(t, L) = YL(t) − ŵ(t, L), which means that the function �̃(t, L) can

be computed from the measurement. From (52)-(56), we immediately have for all x ∈ [0, L]

�̃1(t, x) = r1 exp
(

−L

�1v
⋆
1

)
�̃1

(
t −

L−x


1p
⋆
1
−v⋆

1

, L

)
, (99)

which means that we can also compute the function �̃1(t, x) from the measurement. Consider now the function �̃2(t, 0). We have

(using the method of characteristics)

�̃2(t, 0) = exp
(

−L

�2v
⋆
2

)
(1 − �)�̃2

(
t −

1

v⋆
2

−
1


2p
⋆
2
−v⋆

2

, 0
)
+

�

r1
exp

(
−L

�2v
⋆
2

)
�̃1

(
t −

1

v⋆
2

−
1


1p
⋆
1
−v⋆

1

, 0
)
. (100)

Applying the method of characteristics on the term �̃2(⋅, 0) that appears on the right side of the above equation, and iterating N0

times the procedure (where N0 is an integer), we obtain

�̃2(t, 0) =
(
exp

(
−L

�2v
⋆
2

)
(1 − �)

)N0

�̃2

(
t −

(
1

v⋆
2

+
1


2p
⋆
2
−v⋆

2

)
N0, 0

)
+ F (�̃1(t, 0)), (101)
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TABLE 1 Traffic and observer-based event-triggered boundary control parameters

Symbol Description Symbol Description Symbol Description

T
ra

ffi
c

p
ar

am
et

er
s �m,i Max. traffic densities

C
o

n
tr

o
l

g
ai

n
p

ar
am

et
er L

��

1
(L, ⋅), L

��

1
(L, ⋅) Kernel control

E
v
en

t-
tr

ig
g
er

in
g

co
n

d
it

io
n �0, �1, Involved in the

vm Maximum traffic velocity L�(L, ⋅), L�(L, ⋅) gains �2 dynamic triggering

p⋆
i

Traffic pressure coefficients condition


i Overall drivers’ behavior to the

increase of density �,� decay rate

�i Relaxation times ��̂1 , ��̂2
, ��̂1

, Related to the growth-in-time related parameters

�⋆
i
, v⋆
i

Congested (density,velocity) steady states ��̂2 , ��̃1 ,"0, "1 of the deviation of actuation

q⋆ Steady state flow and involved in the dynamic %+
i
, %−

i
Lyapunov related

ri Ratio of the characteristic speeds triggering condition C parameters

� Ratio of the traffic pressure

of the segments

L Road segment length

where the function F only depends on delayed values of F (�̃1(t, 0)). Choosing N0 such that
(

1

v⋆
2

+
1


2p
⋆
2
−v⋆

2

)
N0 −

1

v⋆
1

> 0 and

using equation (56), we obtain

�̃2(t, 0) =
(
exp

(
−L

�2v
⋆
2

)
(1 − �)

)N0

�̃1

(
t −

(
1

v⋆
2

+
1


2p
⋆
2
−v⋆

2

)
N0 +

1

v⋆
1

, L

)
+ F (�̃1(t, 0)). (102)

Thus, we can compute the function �̃2(t, 0) using the available measurement. Using the method of the characteristics, it becomes

straightforward to express �̃i(t, x) and �̃i(t, x) as delayed functions of the available measurements. Thus, the proposed event-

triggered strategy is implementable.

Remark 3. We have introduced numerous parameters related to the traffic modeling, control gains, and new design parameters

related to the triggering condition. For the sake of clarity, we distinguish and summarize some of them in Table 1. Among the

parameters, let us point out some important aspects of those involved in the triggering condition. For instance, � and �2 are

instrumental in adjusting the sampling speed. The smaller �, the faster the sampling is. In addition, �2 is a key parameter that

makes the dynamic variable m(t) to come into play. It is worth saying that dynamic triggering conditions have been useful to

reduce the number of execution times relative to static triggering conditions and hence obtaining larger inter-execution times;

see for instance44 in the framework of finite-dimensional systems and30 for infinite-dimensional systems. Here, the smaller �2,

the more influence the dynamic variable has. The larger �2 or even when �2 goes to +∞, one ends up dealing with a static

event-triggering condition. Nevertheless, this limiting case is not studied in this paper since, under a static triggering condition

with boundary control for this class of PDE system, the existence of a minimal dwell-time (and hence the avoidance of the Zeno

phenomenon) may not be easily derived (see36 for further discussion).

We directly have the following lemma.

Lemma 1. Under the definition of the observer-based event triggered boundary control (98) with the dynamic triggering

condition (96), it holds that �1d
2(t) −

�

2
�V (t) +

1

�2
m(t) < 0 and m(t) < 0 for t ∈ [0, T ) where T = limk→∞

(
tk
)
.

Proof. From the definition of the dynamic triggering condition (96)-(97), events are triggered to guarantee �1d
2(t) −

�

2
�V (t) +

1

�2
m(t) < 0, for t ∈ [tk, tk+1). This inequality in conjunction with (97) yields,

ṁ(t) ≤ −
(
�(1 − �) +

1

�2

)
m(t) − 2�1�2

(
��̂1 �̂

2
1
(t, L) + ��̂2 �̂

2
2
(t, L) + ��̂1 �̂

2
1
(t, 0) + ��̂2 �̂

2
2
(t, 0) + ��̃1 �̃

2
1
(t, L)

)
(103)

for t ∈ (tk, tk+1). Due to the continuity of m(t), we can obtain the following estimate:

m(t) ≤ exp
(
−
(
�(1 − �) +

1

�2

)
(t − tk)

)
m(tk) − 2�1�2

t

∫
tk

exp
(
−
(
�(1 − �) +

1

�2

)
(t − s)

)(
��̂1 �̂

2
1
(s, L)

+ ��̂2 �̂
2
2
(s, L) + ��̂1 �̂

2
1
(s, 0) + ��̂2 �̂

2
2
(s, 0) + ��̃1 �̃

2
1
(s, L)

)
ds

(104)
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for t ∈ [tk, tk+1]. Since m(t0) < 0 (from Definition 1), then it holds m(t) < 0 for all t ∈ [0, t1]. Using (104) on [t1, t2], we can

show that m(t) < 0 for all t ∈ [t1, t2]. Applying the same reasoning successively to the future intervals, we can deduce that

m(t) < 0 for all t ∈ [0, T ). This concludes the proof.

The following result is useful to analyze the growth-in-time of the actuation deviation. A suitable characterization is given in

the following lemma which is instrumental to derive the existence of a minimal dwell-time.

Lemma 2. For d(t) given by (71), it holds for all t ∈ (tk, tk+1),

(ḋ(t))2 ≤ "0
1

$2C
V (t) + "1d

2(t) + ��̂1 �̂
2
1
(t, L) + ��̂2 �̂

2
2
(t, L) + ��̂1 �̂

2
1
(t, 0) + ��̂2 �̂

2
2
(t, 0) + ��̃1 �̃

2
1
(t, L), (105)

where ��̂1 , ��̂2
, ��̂1

, ��̂2 , ��̃1 , "0, "1 are given by (72)-(78), and $2 and C are given, respectively, by (91) and (93).

Proof. The proof follows the same lines of36 Lemma 2.

5 MAIN RESULTS

In this section we present our main results: the avoidance of the Zeno phenomenon and the exponential convergence inL2-norm

of the closed-loop system.

5.1 Avoidance of the Zeno phenomenon

We first prove the avoidance of the Zeno phenomenon.

Theorem 1. Under the the event-triggered boundary control (98)-(96) in Definition 1, with parameters satisfying

8
(
1−r1
�⋆
1

)2

%−
1
exp

(
�L


1p
⋆
1
−v⋆

1

)
"0

min
{

1

v⋆
1

,
1


2p
⋆
2
−v⋆

2

,
%−
1


1p
⋆
1
−v⋆

1

,
%−
2

v⋆
2

} <
��

�2
, (106)

there exists a minimal dwell-time �⋆ > 0 between two triggering times, i.e. there exists a constant �⋆ > 0 (independent of the

initial conditions) such that tk+1 − tk ≥ �⋆, for all k ≥ 0.

Remark 4. As we will see, condition (106) is a requirement to be able to derive a minimal dwell-time. Notice that on the left-

hand side of inequality (106) most of the parameters are related to the traffic modeling and kernel control gain whereas on the

right-hand side we have the parameters related to the triggering condition (see Table 1 for convenience). This condition gives

some preliminary suggestions on how to suitable select the parameters involved in the triggering condition according to some

constraints imposed by the traffic problem modeling and the kernel control gain. While � is sufficiently small as discussed in

Subsection 4.1, the resulting term on the left-hand-side may still turn out to be large. For example %−
1

(see (88)-(89)) may turn

out to be large due to some terms such as exp
(

2L

�2v
⋆
2

)
in (88) with the velocity v⋆

2
being very small relative to the length of the

road L, or due to the term
(

1

r1r2

)2

in (89) being large when the traffic is more congested. Besides, "0 (given in (77)) which is a

parameter related to the kernel control gain, may also be large whenever the spatial-variation of the control gain is significant

(e.g., in cases when the stop-and-go oscillation phenomenon is substantial). Consequently, one would have to select � or �2
small enough so that this condition can always be verified. If �2 is selected sufficiently small, the dynamic variable plays a more

important role while triggering.

Proof. We adapt the the methodology employed in36,37 to our observer-based event-triggered controller. From the definition

of the event-triggered mechanism given in Definition 1, events are triggered when the condition �1d
2(t) ≥ �

2
�V (t) −

1

�2
m(t) is

satisfied. Based on this condition, we define the function

 (t) =
�1�2d

2(t) +
1

2
m(t)

−
1

2
m(t) + �2

�

2
�V

, (107)
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which is continuous on [tk, tk+1). Consider now a more conservative event-triggering condition, e.g., �1d
2(t) ≥ −

1

�2
m(t) that

enforces the events to occur faster. Therefore, let us define the function

 ⋆(t) =
�1�2d

2(t) +
1

2
m(t)

−
1

2
m(t)

, (108)

which is continuous on [tk, t
⋆
k+1

) where t⋆
k+1

< tk+1. A lower bound for the inter-execution times is given by the time it takes

for the function  to go from  
(
tk
)

to  
(
t−
k+1

)
= 1, where  

(
tk
)
< 0 which holds since d

(
tk
)
= 0 (m(tk) < 0 by virtue

of Lemma 1). Here t−
k+1

is the left limit at t = tk+1. Such a lower bound can further be lower bounded by the required time for

the function  ⋆ to go from  ⋆
(
tk
)

to  
(
t⋆−
k+1

)
= 1, where t⋆−

k+1
< t−

k+1
. Moreover, by the intermediate value theorem, there

exists a t′
k
> tk such that  

(
t′
k

)
=  ⋆

(
t′
k

)
= 0,  (t) ∈ [0, 1] for t ∈

[
t′
k
, t−
k+1

]
and  ⋆(t) ∈ [0, 1] for t ∈

[
t′
k
, t⋆−
k+1

]
. Notice that

 (t) <  ⋆(t) for all t ∈
[
t′
k
, t⋆−
k+1

]
. It is then sufficient to study the growth-in-time of  ⋆(t) on t ∈

[
t′
k
, t⋆−
k+1

]
. The time derivative

of  ⋆ on
[
t′
k
, t⋆
k+1

)
is given by

̇ ⋆(t) =
2�1�2d(t)ḋ(t) +

1

2
ṁ(t)

−
1

2
m(t)

−
ṁ(t)

m(t)
 ⋆(t). (109)

Using the Young’s inequality,

̇ ⋆(t) ≤�1�2d
2(t) + �1�2ḋ

2(t) +
1

2
ṁ(t)

−
1

2
m(t)

−
ṁ(t)

m(t)
 ⋆(t). (110)

Then, using (97) along with (105) and reorganizing terms, we obtain the following estimate:

̇ ⋆(t) ≤
�1�2d

2(t)
(
1 + "1 +

1

2�2

)

−
1

2
m(t)

+

V (t)

(
�1�2

1

$2

"0 −
�

4
�

)

−
1

2
m(t)

+ �(1 − �) + �(1 − �) ⋆(t) −
�1d

2(t)

m(t)
 ⋆(t)

+

�

2
�V (t)

m(t)
 ⋆(t) + 2�1�2

��̂1 �̂
2
1
(t, L) + ��̂2 �̂

2
2
(t, L) + ��̂1 �̂

2
1
(t, 0)

m(t)
 ⋆(t) + 2�1�2

��̂2 �̂
2
2
(t, 0) + ��̃1 �̃

2
1
(t, L)

m(t)
 ⋆(t).(111)

In light of condition (106), we have that the term �1�2
1

$2

"0−
�

4
� < 0 (notice that the involved parameters "0,$2,�1, are given in

(77), (91) and (95), respectively). In addition, using the definition of  ⋆ in (108) and noticing that the last three terms in (111)

are negative, we obtain the following differential inequality:

̇ ⋆(t) ≤ a0 + a1 
⋆(t) + a2 

⋆2(t), (112)

where

a0 = 1 + "1 +
1

2�2
+ �(1 − �),

a1 = 1 + "1 +
1

2�2
+ �(1 − �),

a2 =
1

2�2
.

The coefficients a0, a1 and a2 are positive scalars (recall that "1 is a parameter related to the control gain as given in (78) whereas

�, �2, � ∈ (0, 1) are design parameters involved in the triggering condition; thus influence the duration of the inter-sampling

time). Hence, by the Comparison principle, it follows that the time needed by  ⋆ to go from  ⋆
(
t′
k

)
= 0 to  

(
t⋆−
k+1

)
= 1 is at

least

�⋆ =

1

∫
0

1

a0 + a1s + a2s
2
ds. (113)

Thus, t⋆
k+1

− t′
k
≥ �⋆. Since tk+1 > t

⋆
k+1

and tk+1− tk ≥ tk+1− t
′
k
, we obtain that tk+1− tk ≥ �⋆. Hence �⋆ is a lower bound of the

inter-execution times. It can be considered as a minimal dwell-time, which is independent on the initial condition of the system.

This concludes the proof.

Remark 5. Since there is a minimal dwell-time (which is uniform and does not depend on initial conditions), no Zeno solution

can appear. This has a very important consequence as it allows to guarantee the existence and uniqueness of the closed-loop

solution. The solution, can be constructed by the step method. We omit the details of well-posedness in this paper, but we refer

to37,57 for further details on the notion of solutions under an hybrid control scheme.
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5.2 Lyapunov-based analysis

To prove the exponential convergence of the closed-loop system with the event-triggered control law (96)- (98), perform a

Lyapunov-based analysis on the target systems (52)-(56) and (59)-(63).

Theorem 2. Let ��̂1 , ��̂2
, ��̂1

, ��̂2 , ��̃1 be the parameters introduced in (72)-(76) (related to traffic modeling and boundary control

gains). Let %+
i

, %−
i

, C be given in (86)-(88) and (93), respectively, and assume � sufficiently small such that conditions (82)-(85)

hold.

Let �0, �2 > 0, � ∈ (0, 1) and �1 (in (95)) be selected in such a way that

i) condition (106) is met, and

ii) the following conditions are fulfilled:

2%−
1
exp

(
�L


1p
⋆
1
−v⋆

1

)(
r1 exp

(
−L

�1v
⋆
1

))2

− %+
1
exp

(
−�L

v⋆
1

)
+ max

{
2

C
�1�2��̂1 ,

�0

2
+ 2�1�2��̃1

}
< 0, (114)

%−
2
exp

(
�L

v⋆
2

)(
1

r2
exp

(
−L

�2v
⋆
2

))2

− %+
2
exp

(
−�L


2p
⋆
2
−v⋆

2

)
+

2

C
�1�2��̂2

< 0, (115)

2
(
(�

r2

r1
)2 +

1

C
�1�2��̂1

)
%+
2
− %−

1
< 0, (116)

2
(
(1 − �)2r2

2
+

1

C
�1�2��̂2

)
%+
2
+ %+

1
− %−

2
< 0. (117)

Then, the closed-loop system (28)-(31),(44) with the observer-based event-triggered boundary control (96)-(98) is exponentially

convergent in the L2-norm.

Remark 6. The sufficient conditions for exponential convergence (114)-(117) essentially rely on the conditions (82)-(85). The

suitable selection of the parameters to meet these conditions greatly affects the event-triggered strategy in terms of sampling

frequency and convergence performance. For example, notice that if the parameters ��̂1 , ��̂2
, ��̂1

, ��̂2 , ��̃1 (see Table 1) related

to the control gains are large (meaning that suppressing the stop-and-go oscillation phenomenon requires high control effort),

then we need either �1 or �2 to be sufficiently small. Hence, one may expect the dynamic variable to have more relevance (see

Remarks 3 and 4) and thus make the event-triggered sampling to be less frequent. Besides, we have stated that � -related to the

decay rate- also has to be small, implying a degradation of the performance convergence. This is one of the main trade-offs that

one may expect under an event-triggered control scheme.

Proof. Consider the following Lyapunov function candidate for the target systems (52)-(56) and (59)-(63) along with (97),

defined for all (�̃i(t, ⋅), �̃i(t, ⋅)) ∈ L2((0, L);ℝ4), (�̂i(t, ⋅), �̂i(t, ⋅)) ∈ L2((0, L);ℝ4), and m ∈ ℝ
− by

W = V − m, (118)

where V is given by (92) and m is the solution to (97). Taking the time derivative of (118) along the respective solutions, we get

Ẇ (t) = −�V (t) + �(1 − �)m(t) − �1d
2(t) +

�

2
�V (t) + 2�1�2

(
��̂1 �̂

2
1
(t, L) + ��̂2 �̂

2
2
(t, L) + ��̂1 �̂

2
1
(t, 0) + ��̂2 �̂

2
2
(t, 0) + ��̃1 �̃

2
1
(t, L)

)

−

(
�̃1(t, L)

�̃2(t, L)

)⊤

+(�L)

(
�̃1(t, L)

�̃2(t, L)

)
+

(
�̃1(t, 0)

�̃2(t, 0)

)⊤

+(0)

(
�̃1(t, 0)

�̃2(t, 0)

)
+

(
�̃1(t, L)

�̃2(t, L)

)⊤

−(�L)

(
�̃1(t, L)

�̃2(t, L)

)

−

(
�̃1(t, 0)

�̃2(t, 0)

)⊤

−(0)

(
�̃1(t, 0)

�̃2(t, 0)

)
− C

(
�̂1(t, L)

�̂2(t, L)

)⊤

+(�L)

(
�̂1(t, L)

�̂2(t, L)

)
+ C

(
�̂1(t, 0)

�̂2(t, 0)

)⊤

+(0)

(
�̂1(t, 0)

�̂2(t, 0)

)

+C

(
�̂1(t, L)

�̂2(t, L)

)⊤

−(�L)

(
�̂1(t, L)

�̂2(t, L)

)
− C

(
�̂1(t, 0)

�̂2(t, 0)

)⊤

−(0)

(
�̂1(t, 0)

�̂2(t, 0)

)

+2C�̃1(t, L)

( L

∫
0

(
�̂1(x)

�̂2(x)

)⊤

(Λ+)−1+(�x)

(
p�1(x)

p�2(x)

)
dx +

L

∫
0

(
�̂1(x)

�̂2(x)

)⊤

(Λ−)−1−(�x)

(
p�1 (x)

p�2(x)

)
dx

)
, (119)

where, +(�x), −(�x) are given in (81) along with the explicit characterization given in (86)-(88) and � sufficiently small.
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Using the Young’s inequality and the boundary conditions (56) and (63) with G given by (33) and which is here rewritten as

G =

(
02×2 G01

G10 02×2

)
,

with

G01 =

(
0 1

�
r2

r1
(1 − �)r2

)
, G10 =

⎛
⎜⎜⎝
r1 exp

(
−L

�1v
⋆
1

)
0

0
1

r2
exp

(
−L

�2v
⋆
2

)
⎞
⎟⎟⎠
,

we obtain from (119) the following estimate:

Ẇ (t) ≤ −�(1 −
�

2
)V (t) +

C

�2
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)
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, (120)

where C and C0 are defined in (93)-(94) and �1 and �2 are any positive parameter that, in particular, can be set as �1 =

r1 exp
(

−L

�1v
⋆
1

)(
�⋆
1

1−r1

)
and �2 =

2

�
. Moreover, since �1 is given by (95), we then obtain the following estimate:
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. (121)

Recall that under Assumption 1, if the more conservative conditions (82)-(85) are satisfied (with � sufficiently small and %+
i

,

%−
i

, i = 1, 2 explicitly characterized in (86)-(89)), it holds that the LMIs appearing in (121), are verified as well, i.e,

G⊤
01
+(0)G01 − −(0) < 0,

G⊤
10
−(�L)G10 − +(�L) < 0.

However, in order to compensate the last terms in (121), we need to rewrite (121) in a more compact form and analyze the

resulting boundary terms. Therefore,
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(
�̂1(t, 0)

�̂2(t, 0)

)
,

(122)

where

0 =

(
�0

2
+ 2�1�2��̃1 0

0 0

)
, (123)

1 =
1

C

(
%−
1
Cr2

1
exp

(
−2L

�1v
⋆
1

+
�L


1p
⋆
1
−v⋆

1

)
+ 2�1�2��̂1 0

0 2�1�2��̂2

)
, (124)
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2 =
1

C

(
2�1�2��̂1 0

0 2�1�2��̂2

)
. (125)

We require the following LMI-like conditions to hold:

G⊤
10
−(�L)G10 − +(�L) +0 < 0, (126)

G⊤
10
−(�L)G10 − +(�L) +1 < 0, (127)

G⊤
01
+(0)G01 − −(0) +2 < 0. (128)

Notice that if (128) holds, then G⊤
01
+(0)G01 −−(0) < 0 immediately holds as well. Now, it should be noticed that conditions

(126)-(128) are verified provided that the (more conservative) conditions (114)-(117) hold. This is true since we can invoke

conditions (82)-(85) (which hold by virtue of Assumption 1 as discussed in Subsection 4.1) and we can select �0 (in turn �1), �

sufficiently small and choose �2 such that (106) is verified. Therefore, from (122) and in light of conditions (114)-(117), we get

Ẇ (t) ≤ −
�

2
(1 − �)W (t) +

�

2
(1 − �)m(t) (129)

By Lemma 1 in conjunction with Theorem 1, we guarantee that m(t) < 0 for all t > 0 (since we can assert now that

limk→∞

(
tk
)
= +∞). Thus we finally obtain

Ẇ (t) ≤ −
�

2
(1 − �)W (t).

By the Comparison principle, and remarking that V ≤ W , we have, for all t ≥ 0,

V (t) ≤ exp
(
−
�

2
(1 − �)t

)
(V (0) − m0). (130)

By recalling also that there exist $, $ (depending on %+
i

, %−
i

and on �) such that $‖(�̃i(t, ⋅), �̃i(t, ⋅), �̂i(t, ⋅), �̂i(t, ⋅))‖2L2
≤ V ≤

$‖(�̃i(t, ⋅), �̃i(t, ⋅), �̂i(t, ⋅), �̂i(t, ⋅))‖2L2
, i = 1, 2, we obtain for all t ≥ 0,

‖(�̃i(t, ⋅), �̃i(t, ⋅))‖2L2 + ‖(�̂i(t, ⋅), �̂i(t, ⋅))‖2L2 ≤ $

$
exp

(
−
�

2
(1 − �)t

)(‖(�̃0
i
, �̃0
i
)‖2
L2 + ‖(�̂0

i
, �̂0
i
)‖2
L2

) 1

$
exp

(
−
�

2
(1 − �)t

)
m0.

Using (51), (68), (58) and (57) and their bounded invertibility, it can be shown that there exist ̄ , ̄, ̄ and ̄ such that the

following norm equivalences hold:

‖(w̃i(t, ⋅), ṽi(t, ⋅))‖2L2 ≤ ̄ ‖(�̃i(t, ⋅), �̃i(t, ⋅))‖2L2 ,

‖(ŵi(t, ⋅), v̂i(t, ⋅))‖2L2 ≤ ̄‖(�̂i(t, ⋅), �̂i(t, ⋅))‖2L2 ,

‖(�̃i(t, ⋅), �̃i(t, ⋅))‖2L2 ≤ ̄‖(w̃i(t, ⋅), ṽi(t, ⋅))‖2L2 ,

‖(�̂i(t, ⋅), �̂i(t, ⋅))‖2L2 ≤ ̄‖(ŵi(t, ⋅), v̂i(t, ⋅))‖2L2 .

Therefore, it holds

min
{

1

̄ ,
1

̄
}(‖(ŵi(t, ⋅), v̂i(t, ⋅))‖2L2 + ‖(w̃i(t, ⋅), ṽi(t, ⋅))‖2L2

) ≤ $

$
exp

(
−
�

2
(1 − �)t

)(̄‖(ŵ0
i
, v̂0
i
)‖2
L2 + ̄‖(w̃0

i
, ṽ0
i
)‖2
L2

)

−
1

$
exp

(
−
�

2
(1 − �)t

)
m0. (131)

Further, it holds that ‖(w̄i(t, ⋅), v̄i(t, ⋅))‖2L2
≤ 2‖(ŵi(t, ⋅), v̂i(t, ⋅))‖2L2

+ 2‖(w̃i(t, ⋅), ṽi(t, ⋅))‖2L2
and ‖(w̃i(t, ⋅), ṽi(t, ⋅))‖2L2

≤
2‖(ŵi(t, ⋅), v̂i(t, ⋅))‖2L2

+ 2‖(w̄i(t, ⋅), v̄i(t, ⋅))‖2L2
; thus we have, on the one hand

1

2
min

{
1

̄ ,
1

̄
}
‖(w̄i(t, ⋅), v̄i(t, ⋅))‖2L2

≤ $

$
exp

(
−
�

2
(1 − �)t

)(̄‖(ŵ0
i
, v̂0
i
)‖2
L2 + 2̄‖(ŵ0

i
, v̂0
i
)‖2
L2 + 2̄‖(w̄0

i
, v̄0
i
)‖2
L2

)
−

1

$
exp

(
−
�

2
(1 − �)t

)
m0,

and on the other hand,

1

2
min

{
1

̄ ,
1

̄
}
‖(ŵi(t, ⋅), v̂i(t, ⋅))‖2L2

≤ $

$
exp

(
−
�

2
(1 − �)t

)(̄‖(ŵ0
i
, v̂0
i
)‖2
L2 + 2̄‖(ŵ0

i
, v̂0
i
)‖2
L2 + 2̄‖(w̄0

i
, v̄0
i
)‖2
L2

)
−

1

$
exp

(
−
�

2
(1 − �)t

)
m0.

Finally, we obtain the following estimate

‖(w̄i(t, ⋅), v̄i(t, ⋅))‖2L2+‖(ŵi(t, ⋅), v̂i(t, ⋅))‖2L2 ≤ 1 exp
(
−
�

2
(1 − �)t

)(
‖(w̄0

i
, v̄0
i
)‖2
L2+‖(ŵ0

i
, v̂0
i
)‖2
L2

)
−2 exp

(
−
�

2
(1 − �)t

)
m0,
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with 1 = 2
$

$

max
{
2̄,2̄+̄}

min

{
1

̄ ,
1

̄
} and 2 = 2

1

$

max
{
2̄,2̄+̄}

min

{
1

̄ ,
1

̄
} . This concludes the proof.

Remark 7. In Theorem 2, we have established the exponential convergence of the closed-loop system to the equilibrium point.

We could have obtained exponential stability if we set m0 = 0. However, if m0 = 0, then m(t) ≤ 0. Then, the function  ⋆(t) in

(108) is not defined when m(t) = 0. Therefore, the existence of a minimal-dwell time may not be proved easily by following the

same arguments as in the proof of Theorem 1. Hence, in this paper we opted to choose m0 strictly negative.

6 NUMERICAL SIMULATIONS

In this section, we validate the event-triggered strategy with numerical simulations. The length of each freeway segment is

chosen to beL = 1 km so the total length of the two connected segments are 2 km. The maximum speed limit is vm = 40 m∕s =

144 km∕h. We consider 6 lanes for the downstream freeway segment 1. Assuming the average vehicle length is 5 m plus the

minimum safety distance of 50% vehicle length, the maximum density of the road is obtained as �m,1 = 800 vehicles∕km. The

upstream segment has less functional lanes thus its maximum density is �m,2 = 700 vehicles∕km. We take 
i = 0.5. The ratio

of the characteristic speeds are r1 = −0.44 , r2 = −0.64. The steady states (�⋆
1
, v⋆

1
) and (�⋆

2
, v⋆

2
) are chosen respectively as

(600 vehicles∕km, 19.4 km∕h) and (488.6 vehicles∕km, 23.8 km∕h), both of which are in the congested regime. The constant

flow rate is q⋆ = �⋆
1
v⋆
1
= �⋆

2
v⋆
2
= 11640 vehicles∕h, same for the two segments. If we consider the segment 1 with 6 lanes, then

the averaged flow rate of each lane is 1940 vehicles∕h∕lane. The equilibrium steady state of the downstream road has higher

density and lower velocity, thus is more congested than the upstream road. The relaxation time is �1 = 90 s and �2 = 60 s.

We use sinusoid initial conditions for flow rate and velocity field which represent the initial stop-and-go oscillations on the

connected freeway. We perform the simulation on a time horizon of 16 min. We apply a two-step Lax-Wendroff numerical

scheme62 is applied.

Event-triggered implementation and closed-loop simulation

The parameters related to the control gains (see Table 1) are, ��̂1 = 1.37, ��̂1
= 23.8, ��̂2 = 18.68, ��̂2

= 1.79, ��̃1 = 19.7 × 102,

"0 = 6.4 × 10−3, "1 = 4.08 × 10−3. Those related to the observer-based event-triggering boundary controller are selected as

�0 = 0.01, �1 = 1.42 × 10−9, �2 = 1.98, � = 0.05, � = 5 × 10−3. Moreover, using the previous parameters in conjunction with

%+
1
= 6.58, %+

2
= 2.71, %−

1
= 98.64, %−

2
= 10.5 obtained using (86)-(89), andC = 41×10−4 in (93), one can verify that conditions

(106) and (114)-(117) hold. Hence, Theorem 2 applies. Moreover, we compute the minimal dwell-time between two triggering

times according to (113), that is �⋆ = 32.4s. We stabilize the system on events under the event-triggered boundary control (98),

(96). Figure 5 shows the numerical solution of flow rate and velocity with the ramp metering event-triggered output control

Unom(tk) which is updated according to the observer-based event-triggered boundary control (96). Figure 6 shows, in blue line,

the time-evolution of the control signal (recall that designed controller Unom is the flow rate perturbation around a nominal flow

rate), where we can observe that the updating is aperiodically, only when needed. We highlight also the case when �2 is very

large so the triggering condition corresponds to the limiting case of a “static " one (see discussion in Remark 3). As expected,

under a static triggering condition one samples faster and obtain shorter inter-execution times than under a dynamic triggering

condition.

7 CONCLUSION

In this paper, we have designed an event-triggered boundary control that guarantees the simultaneous stabilization of the traf-

fic flow on two cascaded roads around given steady states. The nominal output-feedback law is adjusted from20 and has been

designed using the backstepping methodology on the linearized ARZ model. The flow actuation is realized with the ramp

metering at the downstream outlet. The measurements are collocated. The updating of the control signal is done according

to a suitable dynamic triggering condition. We proved that under this strategy, there exists a uniform minimal dwell-time

(independent of initial conditions), thus avoiding the Zeno phenomenon. We also guaranteed the exponential convergence of

the closed-loop system under the proposed event-triggered boundary control. The resulting suitably sampled control law is



ESPITIA ET AL 23

FIGURE 5 Numerical solution of the flow rate and velocity with the ramp metering event-triggered boundary control Unom(tk)

(96)-(98).
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Event-triggered  output control

FIGURE 6 Time-evolution of the event-triggered boundary output control. The updating is aperiodically, according to the

dynamic triggering condition (96), under the cases i) �2 = 1.98 (blue line) and ii) �2 = 109 (red dashed-line) which corresponds

to the limiting case in which one deals with a “ static triggering condition" as discussed in Remark 3.

avoids useless actuation solicitations. Future work includes the design of periodic event-triggered control strategy to moni-

tor the triggering condition periodically, hence, saving computational resources. Moreover, the questions related to quantized

implementations of event-triggered controllers will also be considered. They will lay the foundations for digital realizations of

boundary backstepping-based controllers. In that prospect, the approach proposed in63 may be a relevant path to follow.

How to cite this article: N. Espitia, J. Auriol, H. Yu, and M. Krstic (2021), Traffic flow control on cascaded roads by event-

triggered output feedback, Int J Robust Nonlinear Control, 2021;00:1–6.
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APPENDIX

A PDE-KERNEL EQUATIONS FOR CONTROL AND OBSERVER DESIGN

We recall that the sets 1, 2 are defined as :

1 = {(x, �) ∈ [0, L]2, � ≥ x}, 2 = {(x, �) ∈ [0, L]2, � ≤ x},

and, the set 3 is defined as the unit square [0, L]2: 3 = {(x, �) ∈ [0, L]2}.

A.1 Kernels of backstepping transformation (51)

The kernels N��
1

, N
��

1
are on 1, the kernels N��

2
, N

��

2
are defined on 2, and the kernels N� , N� are defined on 3. The

objective is to map the error system (46)-(50) to the target system (52)-(56) . Differentiating equation (51) with respect to time

and space, and integrating by parts, we obtain the following set of kernel equations:

)xN
��
i
(x, �) + )�N

��
i
(x, �) = 0, (A1)

(
1p
⋆
1
− v⋆

1
))xN

��

1
(x, �) − v⋆

1
)�N

��

1
(x, �) = −c1(x)N

��
1
(x, �), (A2)

(
2p
⋆
2
− v⋆

2
))xN

��

2
(x, �) − v⋆

2
)�N

��

2
(x, �) = c2(x)N

��
2
(x, �), (A3)

v⋆
2
)xN

�(x, �) − v⋆
1
)�N

�(x, �) = 0, (A4)

(
2p
⋆
2
− v⋆

2
))xN

�(x, �) + v⋆
1
)�N

�(x, �) = c2(x)N
�(x, �), (A5)

with the boundary conditions

N��

1
(0, �) = N�(0, �), N

��

1
(x, x) = −

c1(x)


1p
⋆
1

, (A6)

N
��

2
(x, x) = −

c2(x)


2p
⋆
2

, N��
2
(L, �) = exp

(
−L

�2v
⋆
2

)
1

r2
N

��

2
(L, �), (A7)

N� (x, 0) =
v⋆
2

v⋆
1

N
��

2
(x, 0), N�(0, �) = �

r2

r1
N

��

1
(0, �) + (1 − �)r2N

�(0, �), (A8)

N�(x, 0) =
v⋆
2

v⋆
1

N��
2
(x, 0), N�(L, �) = exp

(
−L

�2v
⋆
2

)
1

r2
N�(L, �). (A9)

Equations (A1)-(A9) admit a unique solution , as proved in20. We haveN��
1

∈ (1),N��

1
∈ (1),N��

2
∈ (2),N��

2
∈ (2),

and N� ∈ (3), N� ∈ (3).

A.2 Kernels of backstepping transformation (57)

The kernels R⋅⋅

1
are defined on 1, the kernels kernels R⋅⋅

2
are defined on 2 and the kernels R⋅ are defined on 3. The transfor-

mation (57) is the inverse transformation of (51). The corresponding kernel equations are obtained differentiating equation (51)

with respect to time and space, integrating by parts and injecting into (46)-(50). We obtain

)xR
ww
i

(x, �) + )�R
ww
i

(x, �) = 0, (A10)

(
ip
⋆
i
− v⋆

i
))xR

vw
i
(x, �) − v⋆

i
)�R

vw
i
(x, �) = 0, (A11)

v⋆
2
)xR

w(x, �) − v⋆
1
)�R

w(x, �) = 0, (A12)

(
2p
⋆
2
− v⋆

2
))xR

v(x, �) + v⋆
2
)�R

v(x, �) = 0, (A13)

with the boundary conditions

Rww
1

(0, �) = Rw(0, �), Rvw
1
(x, x) =

c1(x)


1p
⋆
1

(A14)

Rvw
2
(x, x) =

c2(x)


2p
⋆
2

, Rww
2

(L, �) = exp
(

−L

�2v
⋆
2

)
1

r2
Rvw

2
(L, �), (A15)

Rv(x, 0) =
v⋆
2

v⋆
1

Rvw
2
(x, 0), Rv(0, �) = �

r2

r1
Rvw

1
(0, �) + (1 − �)r2R

w(0, �), (A16)

Rw(x, 0) =
v⋆
2

v⋆
1

Rww
2

(x, 0), Rw(L, �) = exp
(

−L

�2v
⋆
2

)
1

r2
Rv(L, �). (A17)
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The well-posedness of equations (A10)-(A17) can be shown adjusting the proof of20. We have Rww
1

∈ (1), Rvw
1

∈ (1),
Rww

2
∈ (2), Rvw

2
∈ (2), and Rw ∈ (3), Rv ∈ (3).

A.3 Kernels of backstepping transformation (58)

The kernelsKvw
1

andKvv
1

are defined on 2, the kernelsKvw
2

andKvv
2

are defined on 1, and the kernelsKw andKv are defined

on 3 (see notation section). The objective is to map the observer system (37)-(41) to the target system (59)-(63). Differentiating

equation (58) with respect to time and space, and integrating by parts, we obtain the following set of kernel equations

(
1p
⋆
1
− v⋆

1
))xK

vw
1

(x, �) − v⋆
1
)�K

vw
1

(x, �) = c1(�)K
vv
1
(x, �), (A18)

(
2p
⋆
2
− v⋆

2
))xK

vw
2

(x, �) − v⋆
2
)�K

vw
2

(x, �) = −c2(�)K
vv
2
(x, �), (A19)

)xK
vv
i
(x, �) + )�K

vv
i
(x, �) = 0, (A20)(


1p
⋆
1
− v⋆

1

)
)xK

v(x, �) −
(

2p

⋆
2
− v⋆

2

)
)�K

v(x, �) = 0, (A21)(

1p

⋆
1
− v⋆

1

)
)xK

w(x, �) + v⋆
2
)�K

w(x, �) = c2(�)K
v(x, �), (A22)

with the boundary conditions

Kvv

1
(x, 0) =

v⋆
2

v⋆
1

�Kv(x, 0), Kvw

1
(x, x) = −

c1(x)


1p
⋆
1

(A23)

Kvw
2

(x, x) = −
c2(x)


2p
⋆
2

, Kvv
2
(x, L) = − exp

(
−L

�2v
⋆
2

)
Kvw

2
(x, L), (A24)

Kw(0, �) =
r1

�r2
Kvw

2
(0, �), Kw(x, 0) = −(1 − �)Kv(x, 0) +

v⋆
1

v⋆
2

Kvw
1

(x, 0), (A25)

Kv(0, �) =
r1

�r2
Kvv

2
(0, �), Kv(x, L) = − exp

(
−L

�2v
⋆
2

)
Kw(x, L). (A26)

It has been shown in20 that the kernels equations (A18)-(A26) admit a unique solution. We have Kvw
1

∈ (2), Kvw
1

∈ (2),
Kvw

2
∈ (1), Kvv

2
∈ (1), and Kw ∈ (3), Kv ∈ (3).

A.4 Kernels of backstepping transformation (68)

The kernelsL⋅⋅

2
are defined on 1, the kernelsL⋅⋅

1
are defined on 2 and the kernelsL⋅ are defined on 3. The transformation (68)

is the inverse transformation of (58). The corresponding kernel equations are obtained differentiating equation (68) with respect

to time and space, integrating by parts and injecting into (37)-(41). We obtain

(
ip
⋆
i
− v⋆

i
))xL

��

i
(x, �) − v⋆

i
)�L

��

i
(x, �) = 0, (A27)

)xL
��

i
(x, �) + )�L

��

i
(x, �) = 0, (A28)(


1p
⋆

1
− v⋆

1

)
)xL

�(x, �) −
(

2p

⋆

2
− v⋆

2

)
)�L

�(x, �) = 0, (A29)(

1p

⋆
1
− v⋆

1

)
)xL

�(x, �) + v⋆
2
)�L

�(x, �) = 0, (A30)

with the boundary conditions

L
��

1
(x, 0) =

v⋆
2

v⋆
1

�L�(x, 0), L
��

1
(x, x) = −

c1(x)


1p
⋆
1

(A31)

L
��

2
(x, x) = −

c2(x)


2p
⋆
2

, L
��

2
(x, L) = − exp

(
−L

�2v
⋆
2

)
L
��

2
(x, L), (A32)

L�(0, �) =
r1

�r2
L
��

2
(0, �), L�(x, 0) = −(1 − �)L�(x, 0) +

v⋆
1

v⋆
2

L
��

1
(x, 0), (A33)

L�(0, �) =
r1

�r2
L
��

2
(0, �), L�(x, L) = − exp

(
−L

�2v
⋆
2

)
L�(x, L). (A34)

The well-posedness of equations (A33)-(A34) can be shown adjusting the proof of20. We have L
��

1
∈ (2), L��1 ∈ (2),

L
��

2
∈ (1), L��2 ∈ (1), and L� ∈ (3), L� ∈ (3).
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