
HAL Id: hal-03609629
https://hal.science/hal-03609629v2

Submitted on 15 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semi-Dual Unbalanced Quadratic Optimal Transport:
Fast Statistical Rates and Convergent Algorithm

Adrien Vacher, François-Xavier Vialard

To cite this version:
Adrien Vacher, François-Xavier Vialard. Semi-Dual Unbalanced Quadratic Optimal Transport: Fast
Statistical Rates and Convergent Algorithm. ICML, Mar 2023, Hawaii, USA, United States. �hal-
03609629v2�

https://hal.science/hal-03609629v2
https://hal.archives-ouvertes.fr


Stability of Semi-Dual Unbalanced Optimal
Transport: fast statistical rates and convergent

algorithm.

Adrien Vacher
LIGM, Univ. Gustave Eiffel, CNRS

INRIA
adrien.vacher@u-pem.fr

François-Xavier Vialard
LIGM, Univ. Gustave Eiffel, CNRS

INRIA
francois-xavier.vialard@u-pem.fr

June 15, 2022

Abstract

In this paper, we derive stability results for the semi-dual formu-
lation of unbalanced optimal transport. From a statistical point of
view, the gain of stability with respect to the balanced case allows to
employ localization arguments while only assuming strong convexity
of potentials and recover superparametric rates. Then we derive a
provably convergent theoretical algorithm to minimize the semi-dual:
if the potentials are constrained to be strongly convex, both the values
and minimizers converge at a 1/k rate. Under an additional smoothness
assumption, the convergence is exponential in the balanced case. Finally
we instantiate a tractable version of our theoretical algorithm in the
case of strongly convex, possibly smooth potentials. We benchmark the
method in the balanced case on a 2D experiment and in the unbalanced
case on a medium dimension synthetic experiment.

1 Introduction

In its original formulation, OT is a tool to compare probability distributions:
it seeks a map that optimally transports one distribution µ to an other
distribution ν with respect to some fixed cost c and it returns the associated
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transport cost. This problem was later relaxed into a linear program by
Kantorovitch and its primal formulation consists into seeking a coupling
instead of a map with minimal cost and whose marginals are constrained
to be µ and ν. Quite recently, OT was extended to arbitrary positive
measures (Chizat, 2017), with possibly different masses, thus the name
Unbalanced Optimal Transport (UOT). On the primal problem, the hard
marginal constraints are relaxed by soft entropic penalties.

Currently, the methods to estimate UOT potentials mostly rely on the
dual formulation of the problem (Chizat, 2017; Séjourné et al., 2019). Yet,
just as in the balanced case, the raw dual formulations suffers two major
drawback: the discretisation of the infinite cost constraint strongly bias the
estimators, especially when the dimension is large (Vacher et al., 2021) and
the lack of strong convexity of the objective leads to algorithms that require
many iterations (Léger, 2021; Pham et al., 2020). One way to circumvent this
issue is to pre-optimize on one potential in the dual formulation to get rid of
the cost constraint and obtain the so-called semi-dual formulation of optimal
transport. From a statistical point of view, this new formulation can benefit
from the underlying regularity of the problem leading to superparametric
rates under smoothness hypothesis (Hütter and Rigollet, 2021). Numerically
speaking, it was shown empirically to produce very sharp transport maps on
grids with algorithms converging in just a few iterations (Jacobs and Léger,
2020). The key element behind these successes is the fact that the semi-dual
formulation gains in convexity with respect to the previous linear objective of
OT ; around the optimum, its controls the L2 distance between the gradient
of the potential and the gradient of the optimal solution.

In this article, we propose to continue this line of study and derive a
semi-dual formulation for UOT. Unlike previous works (Hütter and Rigollet,
2021; Manole et al., 2021), we derive stability bounds that hold globally and
not simply around the optimum. First, we observe that in the unbalanced
case, there is a gain of convexity with respect to the balanced case that allows
us to derive fast statistical rates and use in particular localization arguments
(van de Geer, 2002) even when no smoothness is assumed (more details on
the localization technique are given in Sec. 3). As a corollary, we obtain the
first statistical rates for the problem for UOT potentials estimation. Then
we derive an algorithm to solve theoretically our semi-dual formulation. To
this end, we design a variable metric gradient scheme that we believe has an
interest in itself as it generalizes concepts of relatively smooth and relatively
strongly convex optimization (Lu et al., 2018; Bauschke et al., 2017). As
a result, we obtain a O(1/k) convergence when the potentials are assumed
to be strongly convex and exponential convergence in the balanced case for
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smooth strongly convex potentials; crucially, we relied on the global nature of
our estimates to obtain those rates. Finally, we instantiate a tractable version
of our algorithm that we benchmark in the balanced case on a stochastic 2D
shape matching experiment and on a medium dimension experiment in the
unbalanced case that aims to recover potentials from samples. The results
are competitive with the Sinkhorn model and its generalization in UOT.

Assumptions and notations In what follows, µ and ν are two positive
Radon supported on X,Y subsets of Rd included in some centered ball BR.
For a probability measure β, we shall denote for p ∈ [1,+∞], ‖g‖Lp(β) =

(
∫
x |g(x)|p dβ(x))

1
p . We shall denote by q the quadratic function q(x) =

‖x‖2/2 and for any Gateaux differentiable function h, we shall denote ∆h

the Bregman divergence associated to h, defined as ∆h(x, y) = h(x) −
h(y) − dh(y)(x − y). Finally, for any convex function f we shall denote
by ∇f a subgradient of f , by f∗ the conjugate (or Legendre transform)
f∗(y) = supx x

>y − f(x) and we call f an M -smooth function whenever the
gradient of f is M -lipschitz.

2 Semi-dual Unbalanced Optimal Transport

2.1 Semi-dual formulation

Unbalanced optimal transport is a relaxation of the hard marginal constraints
of optimal transport with so called Csizár divergences Dφ associated to some
entropy function φ defined as follows.

Definition 1 (Csizár divergences). An entropy function φ : R+ 7→ R+∪{+∞}
is a convex lower semicontinuous function such that φ(1) = 0. Its recession
constant is φ′∞ = lim∞

φ(r)
r . Let µ, ν be nonnegative Radon measures on

a convex domain Ω in Rd. The Csiszàr divergence associated with φ is
Dφ(µ, ν) =

∫
Ω φ
(

dµ(x)
dν(x)

)
dν(x) +φ

′
∞
∫

Ω dµ⊥ where µ⊥ is the orthogonal part
of the Lebesgue decomposition of µ with respect to ν.

Its primal formulation reads UOT(µ, ν) = infπ∈M+(X×Y )Dφ(π0, µ) +
Dφ(π1, ν) +

∫
X×Y c(x, y) dγ(x, y) where c is the ground cost. Note that

standard OT is recovered for the entropy function φ(x) = ι{1}(x) the convex
indicator function of {1} and that the Gaussian-Hellinger metric is recovered
for φ(t) = t log(t)− t+ 1 and a quadratic cost. We shall assume throughout
the paper that c(x, y) = q(x − y) and for this cost, we derive a semi-dual
formulation of the problem.
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Proposition 1. The demi-dual formulation reads

UOT(µ, ν) = − inf
z∈Cb(X)

Jµ,ν(z) + ιCVX(z)

, with Jµ,ν(z) = 〈φ∗(z− q), µ〉+ 〈φ∗(z∗− q), µ〉 and CVX is the set of convex
functions.

The proof is left in Appendix and is a direct application of optimality
conditions. When confusion is possible we shall denote Jµ,ν by J . The next
proposition shows that J is convex and differentiable on a subset of convex
functions.

Proposition 2. The functional J is convex. Furthermore, if g is such that
g∗ is differentiable over the support of ν and φ is differentiable, its differential
reads DJ(g) = µ(φ∗)

′
(g − q)−∇g∗(ν)(φ∗)

′
(g∗ − q) .

The proof is left in Appendix. In particular, if g is convex, DJ(g) can be
computed pointwise via convex programming. This observation is the key to
derive tractable algorithms as shown in Sec. 5.

2.2 Stability estimates

We study in this paragraph upper and lower bounds on the Bregman
divergence associated to the semi-dual ∆J that we shall refer to as sta-
bility estimates. While previous works mainly focus on stability around
the optimum (Manole et al., 2021; Hütter and Rigollet, 2021), that is
∆J(f, g0) = J(f)− J(g0)− 〈DJ(g0), f − g0〉 = J(f)− J(g0) with g = g0 the
ground truth balanced transport potential, we focus on global stability: for
any (f, g), we derive upper and lower bounds of ∆J(f, g) in the unbalanced
case. As we shall demonstrate in Sec. 4, the global nature of our estimates is
a crucial point to derive provably convergent algorithms.

Proposition 3. Let (f, g) be two convex functions bounded by KR over BR
and such that (f∗, g∗) are bounded by K∗R over BR and g∗ is differentiable
over the support of ν. If f is λ-strongly convex and φ∗ is twice differentiable
then, denoting K = max(KR,K

∗
R), the Bregman divergence ∆J(f, g) =

J(f)− J(g)−DJ(g)(f − g) is bounded as

λ

2
‖∇f∗ −∇g∗‖2L2(ν̃g) +

IK
2
Hµ,ν(f, g)2 ≤ ∆J(f, g)

≤ 1

2λ
‖∇f −∇g‖2

L2(π̃(g)g)
+
SK
2
Hµ,ν(f, g)2, (1)
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where π(g) = ∇g∗(ν), β̃g = (φ∗)
′
(g − q)β, Iζ = inf

|z|≤ζ+R2

2

(φ∗)
′′
(z), Sζ =

sup
|z|≤ζ+R2

2

(φ∗)
′′
(z) and Hµ,ν(f, g)2 = ‖f−g‖2L2(µ) +‖f∗−g∗‖2L2(ν). Conversely,

if f is M -smooth, then ∆J(f, g) is bounded as

1

2M
‖∇f −∇g‖2

L2(π̃(g)g)
+
IK
2
Hµ,ν(f, g)2 ≤ ∆J(f, g)

≤ M

2
‖∇f∗ −∇g∗‖2L2(ν̃g) +

SK
2
Hµ,ν(f, g)2 .

The proof is left in Appendix. It consists into making a second order Taylor
expansion of the conjugate of the entropy φ∗ and to remark that the resulting
expansion allows us to write ∆J(f, g) either as ∆f (∇f∗,∇g∗) integrated
over the measure (φ∗)

′
(g − q)ν or either as ∆f∗(∇f,∇g) integrated over the

measure (φ∗)
′
(g∗−q)∇g∗(ν). Interestingly, when φ∗ is locally strongly convex,

as it is the case in the Gaussian-Hellinger metric, we gain in stability with
respect to the balanced case on two levels. First, as shown in the left hand
side of (1), ∆J does not only control ∇f∗ −∇g∗ but it also controls f∗ − g∗,
which is coherent with the fact that in the balanced case, the potentials are
no longer defined up to a constant. Second, it not only controls the difference
of the conjugates f∗ − g∗ but also the difference of the potentials themselves
f − g.

In the following corollary, we derive an upper-bound on ∆J(f, g) that
only depends on f − g and no longer on the difference of the conjugates
f∗ − g∗. Indeed, as we show in Sec. 4, we need to remove the dependency in
the conjugate to derive provably convergent algorithms.

Corollary 1. Under the same assumptions as in Prop. 3, if f is λ-strongly
convex and if there exists R∗ such that ∇f∗(BR),∇g∗(BR) ⊂ BR∗ with f being
L-lipschitz on BR∗ then, denoting H̃µ,ν(f, g) = ‖f−g‖2L2(µ)+‖f−g‖

2
L2(∇g∗(ν)),

∆J(f, g) is upper-bounded as

∆J(f, g) ≤ 1

2λ
‖∇f −∇g‖2L2(π̃(g)g) +

3SK
2

[
R2 + L2

λ2
‖∇f −∇g‖2L2(∇g∗(ν))

+ H̃µ,ν(f, g)

]
.

The proof is left in Appendix and is based on the following remark: when
we apply Proposition 3 in the balanced case with φ∗ = id, we get under strong
convexity the upper bound ‖∇f∗ −∇g∗‖2L2(ν) ≤

1
λ2
‖∇f −∇g‖2∇g∗(ν). We do
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not know if a similar lower bound on ∆J depending only on the difference
f − g still holds. As shown Sec. 4, such a lower-bound would be sufficient to
derive an exponentially convergent algorithm.

3 Statistical rates

In this section, we restrict ourselves to the case where µ, ν are measures that
we can only access in a stochastic setting through their (possibly weighted)
n-independent samples denoted by µ̂, ν̂. In this setting, a natural way to
estimate UOT map is to solve the empirical semi-dual over some space C.

Definition 2 (Stochastic Semi-Dual Unbalanced OT). Let C be a set of
real-valued function, we define ÛOTC = − infz∈C Ĵ(z), where Ĵ = Jµ̂,ν̂ .
Conversely, we define an empirical potential ẑC = arg minz∈C Ĵ(z). When no
confusion is possible, we shall simply denote it ẑ.

If the true unbalanced potential z0 belongs to C, we can prove that the
empirical potential ẑ converges toward z0 with respect the pseudo distance
dλφ(z, z0)2 = λ

2‖∇z
∗ −∇z∗0‖2

L2(π̃(z0)z0
)

+ IK
2 H

2
µ,ν(z, z0) where π̃(z0)z0 , IK and

H2
µ,ν(z, z0) are defined in Proposition 3. Under suitable assumptions detailed

below, the Legendre transform is Lipschitz and as in standard regression
problems, the convergence rate is given by the growth rate of the metric
entropy of the search space C; the lower, the faster. Furthermore, if IK > 0, dλφ
not only controls z∗−z∗0 but also z−z0. This enables us to apply a localization
argument without the C2 smoothness assumption used in previous works.
Informally, the localization argument is a bootstrap reasoning working as
follows: denoting τ = dλφ(ẑ, z0), the upper-bound (1) combined with standard
statistical learning results gives dλφ(ẑ, z0)2 ≤ τ1−α/2/

√
n where α is the growth

rate of the metric entropy of C (Yukich, 1986). In particular, it constrains
τ as τ2 ≤ n

− 1
1+α/2 ; hence, when α < 2, we recover a superparametric rate

strictly faster than 1/
√
n.

For the sake of simplicity, we chose to make an unbiased analysis, that
is we make the assumption that z0 ∈ C, even though unbiased statistical
estimators are known to be suboptimal. Yet similar results hold with a bias
measured in terms of dλφ pseudo-distance.

Assumption 1. (i) The measures µ, ν have support included in BR, where
Br is the euclidean ball of Rd centered in 0 and of radius r. (ii) The measures
µ, ν have densities with respect to the Lebesgue measure on BR. (iii) There
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exists z̃0 ∈ C such that z̃0 coincides with z0 on supp(µ) and with z̃∗0 coincides
with z∗0 on supp(ν). (iv) The functions in C are uniformly bounded by b(r)
over Br, uniformly lower bounded by l and are λ-strongly convex. (v) The
conjugate of the entropy ϕ∗ is strongly convex on every compact.

The goal of Assumption (ii) is to ensure the existence of the unbalanced
transport map between µ, ν. The goal of Assumption (iii) is to ensure
the absence of bias in the model. We believe that under a finer analysis,
Assumption (i) could be replaced with sub-gaussian measures. Assumption
(iv) ensures that the Legendre transform is Lipschitz for the supremum.

Proposition 4. Under Assumptions (i)-(iv), if the unbalanced optimal trans-
port potential z0 between µ and ν belongs to C, then we have for all δ ≤ M ′

L

E[dλφ(ẑC , z0)2] . δ +
1√
n

∫ b′
P

δ
4

√
n(C,L∞(BR′), Pu)du , (2)

where n(C, ‖ · ‖, u) is the logarithm of the covering number, also called the
metric entropy, of C with respect to the ‖ · ‖ (semi)-norm at scale u, b′ =
(b, R, λ, l, ϕ), R′ = (b, R, λ, l), P = (b, R, λ, l, ϕ) and . hides a factor 64. If
we further assume (v) and that there exists (Pµ, Pν) and α < 2 such that for
every u ∈ R≥0, n(C,L2(µ), u) ≤ Pµu

−α and n(C,L2(ν), u) ≤ Pνu
−α then

∀n ≥ 1,
E[dλφ(ẑ, z0)2] . n

− 1
1+α/2 , (3)

where . hides constants that do not depend on n.

Note that Proposition 4 does not require the functions in C to be smooth.
An interesting example is the case of Input Convex Neural Networks (Amos
et al., 2017). To go further, an analysis including a bias term is necessary
as z0 may not be represented by an ICNN. We postpone this interesting
question for future work and derive instead upper-bounds for the problem
estimating smooth UOT potentials where we leverage the recent results of
Gallouët et al. (2021).

Corollary 2. Assume that µ and ν have compact and convex support with
densities (ρ1, ρ2) bounded away from zero and infinity and assume that ϕ is
strictly convex with infinite slope at 0. If (ρ1, ρ2) are k-times continuously
differentiable with k ∈ N? then, denoting z0 an optimal unbalanced OT
potential and αk,d = k+2

d , there exists C such that the empirical potential ẑC
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verifies

E[dλφ(ẑC , z0)2] . n−αk,d if αk,d ≤ 1/2,E[dλφ(ẑC , z0)2]

. n
− 1

1+α−1
k,d

/2 if αk,d > 1/2 . (4)

Figure 1: Comparison of our rates against
the rates of Hütter and Rigollet (2021): on
the left for d = 12 and on the right for
d = 100.

Hence, we obtain a rate of
n−

k+2
d when k + 2 < d/2 and

n
− 1

1+ d
2(k+2) when k + 2 > d/2;

note that we continuously tran-
sition from one rate to another
when k + 2 = d/2 where we re-
cover the parametric rate 1/

√
n.

We conjecture that the minimax
rates derived in Hütter and Rigol-
let (2021) still hold in the unbalanced setting and we compare them to our
upper-bounds. If densities are k-times differentiable, the minimax rate is
n
− k+1
k+d/2 . As shown in Fig. 1, this rate is faster for any k, d > 0 yet when we

transition in the highly smooth regime k + 2 > d/2, our rate closely matches
it. This discrepancy is due to the fact that we have no bias in our model i.e.
we assumed z0 ∈ C. In Hütter and Rigollet (2021), the authors fixed C to
be a finite wavelet basis that does not necessarily contain z0. In particular,
they improve the bias variance trade-off as they benefit from the localization
argument for any k.

4 Provably convergent minimization algorithm

In this section, we provide a theoretical algorithm to estimate unbalanced
transport potentials and solve for arbitrary positive measures µ, ν minf∈C Jµ,ν(f)
where C is a convex set of functions. Had we been in a finite dimensional
setting, we could have directly applied gradient based methods to solve
this problem with updates of the form fk+1 = fk − αDJ(fk). However
in our infinite dimensional setting, the gradient DJ(fk) is a measure, not
a function. In a Banach setting such as ours, the Frank-Wolfe algorithm
provides implicit updates of the form of a convex combination of linear ora-
cles arg minf∈C〈f,DJ(fk)〉. This scheme provably converges (Dunn, 1980)
yet it may converge slowly in practice. One way to improve convergence
in practice is to recall the variational formulation of gradient descent and
generate updates as fk+1 = arg minf∈C〈f,DJ(fk)〉+ α‖f − fk‖2 where ‖ · ‖
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is a well-chosen fixed norm. This update method was used in Jacobs and
Léger (2020) to optimize the semi-dual in the balanced case on a fixed grid
µ with the norm L2(µ) leading to updates of the form fk+1 = L−1

µ DJ(fk)
where L−1

µ is the inverse Laplacian operator over µ. More broadly, updates
generated as fk+1 = arg minf∈C〈f,DJ(fk)〉+ α∆h(f, fk), where h is some
fixed convex function, were shown to converge at a O(1/k) rate under the
relative smoothness assumption ∆J(f, g) ≤ 1

α∆h(f, g) (Bauschke et al., 2017;
Lu et al., 2018). Unfortunately, we cannot benefit from these guarantees
in our setting as our upper bound on ∆J(f, fk) depends on the varying
pseudo-norm L2(∇f∗k (ν)).

Hence, we study in this section the guarantees we can obtain on updates
of the form fk+1 = arg minf∈C〈f,DJ(fk)〉+ α‖f − fk‖2fk where ‖ · ‖fk is a
pseudo-norm depending on the current iterate fk. Our guarantees hold in a
quite general setting and may have an interest on its own, in particular in
the context of infinite-dimensional optimization.

4.1 The strongly convex case: sublinear rates

0.4 0.2 0.0 0.2 0.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Ground Truth
Bregman potential (2 steps)
FW potential (10 steps)

Figure 2: Potential gen-
erated by Frank-Wolfe
with 10 steps (in green)
vs generated by our algo-
rithm with 2 steps (in or-
ange) vs ground truth (in
blue).

If all the functions in the set C are λ-strongly
convex functions, recall that Sec. 2 provides a
global quadratic upper bound of J : J(f) ≤ J(g0) +
〈f − g0, DJ(g0)〉 + 1

2λA
g0(f − g0) for any fixed g0.

Hence it is natural to minimize at each step this
global upper-bound proxy and compute iterates as
fk+1 = arg minf∈C 〈f−fk, DJ(fk)〉+ 1

2λA
fk(f−fk).

Yet we draw the attention on the fact that this par-
ticular scheme has not been studied so far and does
not fit standard convex optimization settings: it is
not a Newton scheme as the quadratic form Afk(·)
is not associated to the hessian of J nor it is sim-
ilar to a Bregman scheme as the quadratic form
depends on the current iterate fk. Had we been in
a finite dimensional setting, we could have used the
equivalence of norms to reduce to a Bregman setting.
However in the context of functional optimization, we cannot make such
a reduction. Still, since our proxy is sharper than a linear approximation,
we can expect this minimization scheme to perform at least as well as the
Frank-Wolfe algorithm which provably converges at a O(1/k) rate. This
observation is the key to prove our next result which holds in any Banach
space and for any 2-homogeneous second-order upper-bound.
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Proposition 5. Let E be a banach space, let F be a real-valued convex
function with Gateaux derivative dF satisfying for all (x, y) ∈ E, ∆F (x, y) ≤
β
2A

y(x− y) where for all y ∈ E, Ay(·) is a 2-homogeneous form over E and
where β is a strictly positive constant and let C ⊂ E be a closed convex subset
of E. Assuming that sup(x,y)∈C2 Ay(x − y) ≤ K, that a minimizer x̄ ∈ C
exists and that the iterates x0 ∈ C, (xk) generated as

xk+1 ∈ arg min
x∈C

dF (xk)(x− xk) +
β

2
Axk(x− xk) , (5)

exist, we have F (xk)− F (x̄) ≤ 2βK
k+1 .

The proof is left in Appendix. As a Corollary, we show in Appendix
that when we apply the scheme (5) to the semi dual with Ag and β the
upper-bounding quantities of Corollary 1, we generate updates fk such that
J(fk)− J(f̄) = O(1/k) where f̄ is the optimum.

Figure 3: Convergence of
log(‖∇fk − ∇f̄‖2L2(µ)) in the
strongly convex case (in blue) vs
the smooth and strongly convex
case (in orange).

With our stability results, we obtain not
only the convergence of the values but also of
the minimizers themselves with respect to dλφ.
Indeed, we could have achieved the same rate
with a Frank-Wolfe algorithm, which only
requires to solve a linear problem instead
of a non-linear one. However, numerically,
it has two drawbacks: at every step k, the
current potential fk is a barycenter of the k
previous linear oracles, making the fenchel-
transform f∗k harder and harder to compute.
Furthermore, Fig. 2 shows that in practice
Frank-Wofle requires much more iterations for convergence than our algorithm.

4.2 Smooth and strongly convex case: exponential rates for
balanced optimal transport

In the M -smooth, λ-strongly convex case, we can bound from above and
below the Bregman divergence of the semi-dual in the balanced case as

1
2MA

g0(f − g0) ≤ ∆J(f, g0) ≤ 1
2λA

g0(f − g0). As in relatively smooth and
strongly-convex optimization (Lu et al., 2018; Gutman and Pena, 2019), we
can expect to obtain an exponential convergence when minimizing at each step
the upper-bound 〈DJ(fk), f −fk〉+ 1

2λA
fk(f −fk). However, the dependency

in the current point of the quadratic form Afk(·) prevents us from applying
Lu et al. (2018); Gutman and Pena (2019). To recover exponential rates,
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we rely on a proximal-PL (Karimi et al., 2016) analysis for the convergence
which alleviates the dependency problem.

Proposition 6. Let E be a Banach space, let F be a real-valued convex
function with Gateaux derivative dF and let C ⊂ E be a closed convex
subset of E. If there exists α, β > 0 and Ay(·) a 2-homogeneous form
such that for all (x, y) ∈ E, α

2A
y(x − y) ≤ ∆F (x, y) ≤ β

2A
y(x − y). If a

minimzer x̄ ∈ C and the iterates x0 ∈ C, (xk) generated by 5 exist, we have

F (xk)− F (x̄) ≤
(

1− α
β

)k
[F (x0)− F (x̄)].

The proof is left in Appendix. As a corollary, we show in Appendix that
under M -smoothness and λ-strong convexity, taking β = 1

λ and Ag(h) ≡

‖∇h‖2L2(∇g∗(ν)), we obtain iterates verifying J(fk)−J(f̄) ≤
(

1− λ
M

)k
[F (x0)−

F (x̄)]. Fig.3 shows that when we explicitly constrain our potentials to be
smooth, we observe an exponential convergence up to the numerical precision.
On the other hand we observe that when the potentials are not explicitly
constrained to be smooth, there is a first phase where the convergence is
exponential and then the convergence slows down to a sublinear rate. More
details on the practical instantiation of the algorithm are provided in the
next section.

Figure 4: Convergence of
log(‖∇fk − ∇f̄‖2L2(µ)) in the
balanced case (in blue) vs the
unbalanced case (in orange).

There remains a gap in the unbalanced
case where, because we did not manage to
remove the dependency in the conjugates
in the lower bound of ∆J(f, g), we cannot
claim an exponential convergence of the al-
gorithm even under smoothness condition.
In fact, Fig. 4 empirically suggests that the
convergence does occur at a linear rate yet
significantly slower than in balanced case
for which only several steps are necessary
to reach numerical precision. This might be
due to the poor conditioning of the semi-
dual in the unbalanced case which involves

a ratio of the form sup(φ∗)′′

inf(φ∗)′′ that can be very large, in the KL case for instance
where φ∗(t) = et − 1. This opens the question of whether we can find a
semi-dual formulation of unbalanced that is more suited to a specific choice of
the entropy φ. For instance, in the KL case, the dual problem can be reformu-
lated as supf,g≤1〈f, µ〉+〈g, ν〉+ι((1−f(x))(1−g(y)) ≥ e−‖x−y‖2), see Chizat
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(2017) for more details. Defining the transformation f̃(y) = 1 + supx
e−‖x−y‖

2

1−f(x) ,
we can get a new semi-dual formulation supf≤1〈f, µ〉+ 〈f̃ , µ〉 that gets rid of
the entropy in the objective. We believe such a formulation possesses better
conditioning and can be tractable for a well-chosen class of potentials. We
postpone this direction for future works.

5 Numerical Experiments

In this section, we show how to instantiate and implement the algorithm (5)
when C is the set of function g+ λq with g is convex and L-lipschitz or when
C is the set of λ-strongly convex, M -smooth functions. Then we benchmark
this model in the balanced case in a 2D stochastic shape-matching experiment
against the SSNB model Paty et al. (2020) and the Sinkhorn model Cuturi
(2013) and in the unbalanced case for a problem of potential estimation in
dimension 6 against Sinkhorn.

5.1 The model

We place ourselves in the setting where µ̂, ν̂ are n-samples discrete empirical
measures (xi), (yi) with weights (ωµ, ων). Recall that for f∗ differentiable on
ν̂, the gradient of the semi-dual reads DJ(f) = µ̂−∇f∗(ν̂). In particular,
when f is convex, ∇f∗(ν̂) = (zi) can be computed pointwise and the infinite
dimensional problem (5) can be cast as a finite interpolation problem with

quadratic objective inf
ξµ,ξν ,ζν

(ξµ)>ωµ− (ξν)>ων + β
2

[
(ζν−y)Ων̃(ζν−y) + (ξµ−

fk(µ̂))Ωµ(ξµ − fk(µ̂)) + (ξν − fk(ν̂))Ων(ξν − fk(ν̂))

]
where Ων̃ is a diagonal

matrix of size nd with diagonal given by φ∗(f∗k (yi)− q(yi))ωνi (each entry is
repeated d-times), Ωµ,Ων are diagonal matrices of size n with diagonal given
by ωµ, ων respectively, under the constraint that there exists f ∈ C such that
for all i,

f(xi) = ξµi , f(zi) = ξνi ,∇f(zi) = ζνi . (6)

When Cλ,L = {g+λq | g convex, L− lipschitz}, the constraint (6) admits a fi-
nite reformulation of O(n2) linear (sparse) constraints and that the minimizers
can be extrapolated in closed form.

Proposition 7 ((Taylor et al., 2017)). For C = Cλ,L, the constraint 6
admits the following finite reformulation: for all 1 ≤ i, j ≤ 2n, i 6= j ξ̃i ≥
ξ̃j+(z̃i− z̃j)>ζ̃j+λ(q(z̃i)−q(z̃j)+(z̃i− z̃j)>z̃i), ‖ζ̃j‖∞ ≤ L where ξ̃ = [ξµ, ξν ],
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ζ̃ = [ζµ, ζν ] and z̃ = [x, z] and the potential fk+1 can be extended on every
point x ∈ Rd as fk+1(x) = maxi ξ̃

k
i − λq(z̃ki ) + (x− z̃ki )>(ζ̃ki − λz̃ki ) + λq(x).

Furthemore, its conjugate gradient can be computed pointwise ∇f∗k+1(y) as the
program inft,x t− x>y under the constraint t ≥ ξ̃ki − λq(z̃ki ) + (x− z̃ki )>(ζ̃ki −
λz̃ki ) + λq(x), ∀ 1 ≤ i ≤ 2n.

As shown in Nemirovski (2004, Section 10.1), the cost to solve the resulting
finite reformulation of (5) is O(n3). We show in Appendix that if the ground
truth UOT potential z0 is λ-strongly convex and L-lipschitz on BR, then
denoting ẑλ,L = infz∈Cλ,L Ĵ(z), we have E[dλφ(ẑλ,L, z0)] . n−

2
d . We state

in Appendix similar results for C = Cλ,M the set of λ-strongly convex,
M -smooth functions.

5.2 Other models

Sinkhorn The well-known Sinkhorn model (Cuturi, 2013) can be ex-
tended to the unbalanced case and its primal objective reads Sφε (µ, ν) =
infπ≥0〈π,C〉+Dφ(π1|µ) +Dφ(π2|ν) + εKL(π|µ⊗ ν) where C is the ground
cost (see Chizat (2017)). We use Séjourné et al. (2019, Proposition 7) to
extend the discrete Sinkhorn potentials to the whole domain Rd.

SSNB The Smooth Strongly convex Nearest Brenier model Paty et al.
(2020) was only defined for balanced optimal transport and is formulated as

arg min
f∈Cλ,M

W 2
2 (∇f(µ), ν)

where Cλ,M is the space of λ-strongly convex, M -smooth functions and W 2
2

is the squared Wasserstein distance. Indeed, there is a strong connection
between this model and ours as the search spaces of the potentials is the
same. However the objective differs and crucially, while the semi-dual is
convex, the function f 7→ W 2

2 (∇f(µ), ν) is not. The authors propose a
sequence of two stages optimization to solve the problem yet no convergence
guarantees are provided and as we shall see in the first experiment, their
method performs less well than ours, probably because the algorithm is stuck
in a local minimum.

5.3 2D shape matching
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Figure 5: 2D experi-
ment: Ellipse (in blue)
and Saxophone (in or-
ange).

In this experiment the models are trained on µ̂t
(that we shall refer to as the ellipse) and ν̂t (that
we shall refer to as the saxophone) with 700 points
each. The distributions are represented on Fig. 5
1, as we can observe, since the ellipse is convex, we
expect the pushforward from the saxophone to be
smooth and conversely, we expect the pushforward
from the ellipse to be strongly convex. On the other
hand, we expect the pushforward from the ellipse to
be discontinuous on its center to match the upper
and lower parts of the saxophone respectively.

We train the models on (µ̂t, ν̂t) and we recover
potentials f̂ . Then we sample 2000 points from the ellipse µ̂test and we
visualize on Fig. 6 the pushforwards ∇f̂(µ̂test). We observe that for a
large value of ε, the potential given by Sinkhorn is too smooth and cannot
sufficiently deform the ellipsoid to obtain the curved shape of the saxophone.
For the SSNB model, the shape of the pushforward roughly corresponds
to the saxophone however the top of quite fuzzy. The shape is sharper for
the semi-dual model and holes start to appear ; we emphasize that for the
semi-dual and SSNB models, the same search space was used yet we suspect
that because of the non-convexity of its objective, the SSNB was stuck in a
suboptimal local minimum ; indeed, when we computed W 2

2 (∇f̂sd(µ̂t), ν̂t) we
obtained a smaller value than W 2

2 (∇f̂SSNB(µ̂t), ν̂t). Finally, when ε is small
enough, the Sinkhorn model recovers a very sharp pushforward. We believe
that the discrepancy between the performance of our model and Sinkhorn
can be explained by the O(1/k) convergence rate of the semi-dual for the
non-smooth case. In particular, when we computed Jµ̂t,ν̂t(f̂ε+λq) with λ > 0,
we managed to slightly decrease the value of the semi-dual, thus proving that
the optimal potential was not recovered yet. In future works, we hope to
derive more efficient algorithms when smoothness is not assumed.

5.4 Medium dimension synthetic experiment

In this paragraph, we study the ability of models to recover the ground
truth unbalanced transport potential z0 between µ and ν (i.e. the solution
of infz Jµ,ν(z)) from sampled measures (µ̂, ν̂). However, even if µ and ν are
available in closed forms, z0 generally isn’t. In the following proposition, we
derive a Brenier-like result that will allow us to easily generate ground truths.

1This data was borrowed from Feydy et al. (2017).
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Figure 6: Pushforwards ∇f̂(µ̂test). From top left to bottom right: Sinkhorn
(ε = 0.1), SSNB (λ = 0.2, M = +∞), Semi-dual OT (λ = 0.2, L = 1),
Sinkhorn (ε = 0.0001).

Proposition 8. Let µ be a probability measure, z0 be a convex function and φ
an entropy function such that φ∗ is strictly convex. If we take µ̃ = µ/(φ∗)

′
(z0−

q) and ν̃ = ∇z0(µ)/(φ∗)
′
(z∗0 − q), then z0 is solution of infz Jµ̃,ν̃(z).

The proof is left in Appendix. In our setting we take µ ∼ U([−0.5, 0.5]6), z0(x) =
|x| + q(x) and Dφ = ρKL. We chose ρ = 5 to avoid extreme values of
(φ∗)

′
(t) = et/ρ. Because of the low scalibilty of our model, we sampled only

n = 400 from µ̃ and n = 400 from ν̃. We trained an unbalanced Sinkhorn
model ẑε for several values of ε and an unbalanced semi-dual model ẑλ for
several values of λ ; the parameters L and R were set as 1.1‖̂̃µ‖∞ and 1.1‖̂̃µ‖2
respectively and S was set to 0.5. Fig. 7 plots the error ‖ẑ − z0‖2L2(µ̃) com-
puted on 5000 samples of µ̃; the training and computation of the error were
repeated 20 independent times and the vertical bars represent the confidence
interval. It shows that for λ = 0.2, 0.5, 1.0, the semi-dual model consistently
outperforms Sinkhorn for any value of ε. Indeed as we could expect, the value
λ = 2.0 performs the least well as it generates 2-strongly convex solutions
while z0 is only 1-strongly convex. Conversely, the value of ε needs to be
sufficiently small to recover the discontinuity of |x| and reduce the bias of
the model yet not too small in order to mitigate the variance that behaves
poorly as the dimension grows.
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6 Conclusion
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Figure 7: 6D experiment: On the left,
‖ẑλ − z0‖2L2(µ̃) (our model) and on the
right, ‖ẑε − z0‖2L2(µ̃) (Sinkhorn).

In this article, we derived a semi-
dual formulation of unbalanced op-
timal transport and provided stabil-
ity bounds for its associated Breg-
man divergence, generalizing the re-
sults known in the balanced case.
This new objective provides a natu-
ral and well-behaved estimator of un-
balanced transport potentials, lead-
ing to superparametric rates of esti-
mation even when the search space is
not assumed to contain smooth func-
tions. From an optimization point of
view, our global stability results allowed to derive O(1/k) and exponential
rates for our new variable metric gradient scheme, that we believe has an
interest of its own. There remains a theoretical gap in the unbalanced case
where we did not manage to prove the exponential convergence observed
in practice. Finally, we instantiated a tractable, proof-of-concept version of
our algorithm that is competitive with the well-known Sinkhorn algorithm
yet it poorly scales in O(n3). For future works, we shall focus on two direc-
tions: first the design of a search space C with better scaling and alternative
semi-dual formulations with improved stability bounds and conditioning to
hopefully attain faster theoretical and practical convergence.
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A Additional results

A.1 Section 4

In this paragraph, we prove that the generic algorithms of Sec. 4 do apply in
the unbalanced case for well chosen forms A·(·).

Corollary 3. Let C be a closed convex set of λ-strongly convex functions,
L(r)-lipschitz over Br and such that for all f ∈ C, |f(0)| ≤ b. The minimum
f̄ = arg minf∈C J(f) exists. Furthermore, for the choice of form

Ag(h) =
1

λ
‖∇h‖L2(π(g)) + 3SK

[
R2 + L(R∗)2

λ2
‖∇h‖2L2(∇g∗(ν)) + H̃g

µ,ν(h)

]
,

where R∗ = R
λ+2

√
b
λ , K = max(b+LR,R∗(R+b+L)), Sζ = sup|t|≤ζ+q(R)(φ

∗)′′(t),

π(g) = ∇g∗(ν)(φ∗)′(g∗ − q)(ν) and H̃g
µ,ν(h) = ‖h‖2L2(µ) + ‖h‖2L2(∇g∗(ν)), the

iterates xk+1 = arg minf∈C〈DJ(fk), f − fx〉+ 1
2A

fk(f − fk) are well defined
and they verify

J(fk)− J(f̄) ≤

4

λIL(R∗) + 3SK

[
mνL(R∗)(R2 + L(R∗)2 + 1) +mµ(b+ L(R)) +mνb

]
λ2

,

(7)

where I =
∫

(φ∗)′(K + q(y)) and mµ,mν are the total masses of µ, ν respec-
tively.

Proof. First, we show that J is lower-bounded on C so that inff∈C J(f) is
indeed well-defined. Recalling J(f) = 〈φ∗(f − q), µ〉 + 〈φ∗(f∗ − q), ν〉, we
need to prove in particular that for f ∈ C, f∗ is bounded on BR. For f in
C, denoting x∗ = arg minx f(x), we have using the strong convexity that
f(x∗) ≥ λ

2‖x
∗‖2 − f(0) ≥ −b since we assumed |f(0)| ≤ b. Furthermore,

using the lipschitz property, we have ‖f‖L∞(Br) ≤ b+ L(r)r. Hence we can
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apply Lemma 1 that yields for f ∈ C

‖∇f∗‖L∞(BR) ≤ R∗ :=
R

λ
+ 4

√
b

λ
‖f∗‖L∞(BR) ≤ RR∗ + b+R∗L(R∗) .

(8)

In particular, denoting K = max(b + L(R), b + R∗(R + L(R∗))) we have
J(f) ≥ (mµ + mν) inf |t|≤K+q(R) φ

∗(t) with (mµ,mν) the total masses of
µ, ν respectively. Now we show the existence of a minimum. Since all
functions of C are L(R)-lipschitz continuous over BR and that for all f, x ∈
C ×BR, |f(x)| ≤ b+L(R), we can apply the Arzela-Ascoli theorem ensuring
that C is relatively compact in the set of continuous functions on BR for
the supremum topology. In particular, we can extract a minimizing suite
from inff∈C J(f) that converges toward f̄ ∈ C as C is assumed to be
closed. Conversely, since the function x ∈ C 7→ dF (xk)(x) is lower bounded
by mµ inf |t|≤K+q(R)(φ

∗)′(t)−mν sup|t|≤K+q(R)(φ
∗)′(t), the iterates (xk) are

indeed well-defined using Arzela-Ascoli.
Now, applying Corollary 1, we have indeed for all (f, g) ∈ C

∆J(f, g) ≤ 1

λ
‖∇f −∇g‖2L2(π(g))

+ 3SK

[
R2 + L(R∗)2

λ2
‖∇f −∇g‖2L2(∇g∗(ν)) + H̃g

µ,ν(f − g)

]
, (9)

where π(g) = ∇g∗(ν)(φ∗)′(g∗−q) and H̃g
µ,ν(h) = ‖h‖2L2(µ)+‖h‖2L2(∇g∗(ν)). All

that remains to prove is the boundedness of Ag(h) now. Since ∇g∗(ν) ⊂ BR∗
we have ‖∇f − ∇g‖2L2(π(g)) ≤ 2L(R∗)

∫
(φ∗)′(K + q(y)) dν(y) (recall that

(φ∗)′ is a non-decreasing function). And conversely, ‖∇f −∇g‖2L2(∇g∗(ν)) ≤
2mνL(R∗). Finally, H̃g

µ,ν(f − g) ≤ 2mµ(b+ L(R)) + 2mν(b+ L(R∗)). Using
Proposition 5, we do recover

J(fk)− J̄ ≤

4

λIL(R∗) + 3SK

[
(R2 + L(R∗)2 + 1)mνL(R∗) +mµ(b+ L(R)) + bmν

]
λ2

,

(10)

where I =
∫

(φ∗)′(K + q(y)).

Corollary 4. Let C be a set of λ-strongly convex, M -smooth function that
are L(r) lipschitz over Br and such that for all f ∈ C, |f(0)| ≤ b. Using
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the form Ag(h) = ‖h‖∇g∗(ν) and β = 1
λ , we have in the balanced case that

f̄ = arg minf∈C J(f) as well as the iterates fk are well-defined and that
J(fk)J(f̄) ≤ (1− λ

M )k(J(f0)− J(f̄)).

Proof. As in the previous proof, the minimum and the the iterates are well-
defined thanks to the Arzela-Ascoli theorem. The convergence rate follows
the stability results in the smooth, strongly convex unbalanced case

1

2M
‖∇f −∇g‖L2(∇g∗(ν)) ≤ ∆J(f, g) ≤ 1

2λ
‖∇f −∇g‖L2(∇g∗(ν)) . (11)

A.2 Section 5

We derive a sample complexity result for Cλ,L,b = {λq + g|g convex, L −
lipschitz , |g(0)| ≤ b}.

Corollary 5. If z0 the ground truth UOT potential belongs to C, then under
Assumptions 1 (i)-(v),

E[dλφ(ẑCλ,L,b , z0)2] . n−1/(1+d/4) if d < 4
E[dλφ(ẑCλ,L,b , z0)2] . log(n)√

n
if d = 4

E[dλφ(ẑCλ,L,b , z0)2] . n−2/d if d > 4 .

(12)

Proof. We simply apply the bound on the metric entropy of uniformly Lips-
chitz convex functions in Bronshtein (1976) with respect to the supremum
norm

n(Cλ,L,b, L
∞(BR′), u) . u−d/2 , (13)

which implies the following growth rates with respect to to the L2 norms
n(Cλ,L,b, L

2(µ), u) . u−d/2 as well as n(Cλ,L,b, L
2(ν), u) . u−d/2. If d < 4,

we can apply the second part of Proposition 4 and recover

E[dλφ(ẑCλ,L,b , z0)2] . n−1/(1+d/4) . (14)

If d = 4, applying the first part of Proposition 4 with δ = 1/
√
n yields

E[dλφ(ẑCλ,L,b , z0)2] .
log(n)√

n
.

Finally, if d > 4, we pick δ = n−2/d and we recover

E[dλφ(ẑCλ,L,b , z0)2] . n−2/d . (15)
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Next, we state how the interpolability constraints (6) can be reformulated
as a convex finite problem using again Taylor et al. (2017).

Proposition 9 ((Taylor et al., 2017)). For C = Cλ,M the set of λ-strongly
convex, M -smooth functions, the constraint 6 admits the following finite refor-

mulation: for all 1 ≤ i, j ≤ 2n, i 6= j ξ̃i ≥ ξ̃j+(z̃i−z̃j)>ζ̃j+ 1
2(1−λ/M)

(
1
M ‖ζ̃j−

ζ̃i‖2 + λ‖z̃i − z̃j‖2 − 2 λ
M (ζ̃j − ζ̃i)>(z̃j − z̃i)

)
, where ξ̃ = [ξµ, ξν ], ζ̃ = [ζµ, ζν ]

and z̃ = [x, z].
The potential fk+1 can be extended on every point x ∈ Rd as fk+1(x) =

(maxi hi)
∗(x) + λq(x). where hi(y) = ξ̃

′
i + (ζ̃

′
i)
>(y − z̃′i) + 1

2(M−λ)‖y − z̃
′
i‖2

with ξ̃
′
i = z̃>i ζ̃i − ξ̃i − λ

2‖z̃i‖
2, ζ̃ ′i = z̃i and z̃

′
i = ζ̃i − λz̃i. Furthemore,

its conjugate gradient can be computed pointwise ∇f∗k+1(y) as the program
∇f∗k+1(y) = infx maxi hi(x) + 1

λq(y − x) .

B Proofs of Sec. 2

B.1 Proof of Proposition 1

The dual formulation of UOT reads

UOT(µ, ν) = sup
z0,z1
〈−φ∗(−z0), µ〉+ 〈−φ∗(−z1), ν〉

s.t. z0(x) + z1(y) ≤ q(x− y) ,
(16)

Defining z̃i = q − zi, we rewrite the problem as

UOT(µ, ν) = sup
z̃0,z̃1

〈−φ∗(z̃0 − q), µ〉+ 〈−φ∗(z̃1 − q), ν〉

s.t. z̃0(x) + z̃1(y) ≥ x>y .
(17)

Recalling that φ∗ is non-decreasing (Séjourné et al., 2019, Proposition 2), we
can replace at the optimum z̃1 by z̃∗0 the Legendre of z̃0. Hence we obtain
the semi-dual reformulation

UOT(µ, ν) = sup
z̃0

〈−φ∗(z̃0 − q), µ〉+ 〈−φ∗(z̃∗0 − q), ν〉 (18)

Conversely, we can replace z̃0 by its double Legendre transform z̃∗∗0 which
is convex. Hence, we can enforce the convexity constraint at the optimum
and obtain
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UOT(µ, ν) = sup
z̃0

〈−φ∗(z̃0 − q), µ〉+ 〈−φ∗(z̃∗0 − q), ν〉+ ιCVX(z0) . (19)

B.2 Proof of Proposition 2

The Legendre transform z 7→ z∗ is itself pointwise convex. Indeed (tz0 +
(1 − t)z1)∗(y) = supx x

>y − tz0(y) − (1 − t)z1(y) = supx t(x
>y − z0(x)) +

(1− t)(x>y − z1(x)) ≤ tz∗0(y) + (1− t)z∗1(y). Using again the fact that φ∗ is
non-decreasing, we have

J(tz0 +(1−t)z1) = 〈φ∗(tz0 +(1−t)z1−q), µ〉+〈φ∗((tz0 +(1−t)z1)∗−q), ν〉
≤ 〈φ∗(t(z0− q) + (1− t)(z1− q)), µ〉+ 〈φ∗(t(z∗0 − q) + (1− t)(z∗1 − q)), ν〉 .

Using the convexity of φ∗, we recover

J(tz0 + (1− t)z1) ≤ tJ(z0) + (1− t)J(z1) . (20)

The formula for the first derivative comes from the differentiation of the
Legendre transform w.r.t. to z, the envelope theorem gives the result. Indeed,
one has z∗(p) = supx p

>x − z(x). Assuming that f is strongly convex, it
defines a unique supremum ∇z∗(p) and the envelope theorem gives

δz∗

δz
= −(δz)(∇z∗(p)) . (21)

Now, one has, φ being differentiable,

DJ(z)(δz) = 〈φ∗(z)δz, µ〉+ 〈−φ∗(z∗)(δz)(∇z∗(p)), ν〉
= 〈δz, φ∗(z)µ− [∇z∗]](φ∗(z∗)ν)〉 . (22)

Note that the measures φ∗(z∗)ν and φ∗(z)µ are well defined since φ∗(z) and
φ∗(z∗) are continuous functions and ν, µ Radon measures.

B.3 Proof of Proposition 3

Let us start by computing the Bregman divergence ∆J(f, g). Since we
assumed g∗ differentiable over the support of ν, we have DJ(g) = (φ∗)′(g −
q)µ− (φ∗)′(g∗ − q)∇g∗(ν). Hence, we can write

∆J(f, g) = J(f)− J(g)− 〈DJ(g), f − g〉
= 〈φ∗(f − q), µ〉+ 〈φ∗(f∗ − q), ν〉 − 〈φ∗(g − q), µ〉+ 〈φ∗(g∗ − q), ν〉
− 〈f − g, (φ∗)′(g − q)µ− (φ∗)′(g∗ − q)∇g∗(ν)〉

= 〈φ∗(f − q)− φ∗(g − q), µ〉+ 〈φ∗(f∗ − q)− φ∗(g∗ − q), ν〉
− 〈f − g, (φ∗)′(g − q)µ− (φ∗)′(g∗ − q)∇g∗(ν)〉 .
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Recall that µ, ν have their support included in some (centered) ball BR
and that (f, g) (resp. (f∗, g∗)) are bounded by KR (resp. K∗R) on BR.
Denoting K = max(KR,K

∗
R), the Taylor-Lagrange theorem applied to φ∗ at

order 2 gives the upper-bounds{
φ∗(f − q)− φ∗(g − q) ≤ (φ∗)′(g − q)(f − g) + SK

2 (f − g)2

φ∗(f∗ − q)− φ∗(g∗ − q) ≤ (φ∗)′(g∗ − q)(f∗ − g∗) + SK
2 (f∗ − g∗)2 ,

where SK = sup|t|≤K+q(R)(φ
∗)′′(t), and the lower bounds{

φ∗(f − q)− φ∗(g − q) ≥ (φ∗)′(g − q)(f − g) + IK
2 (f − g)2

φ∗(f∗ − q)− φ∗(g∗ − q) ≥ (φ∗)′(g∗ − q)(f∗ − g∗) + IK
2 (f∗ − g∗)2 ,

where IK = inf |t|≤K+q(R)(φ
∗)′′(t). We inject these bounds in ∆J and with

the cancellation of the linear term (φ∗)′(g − q)(f − g), we obtain as a lower
bound on ∆J

IK
2
Hµ,ν(f, g)2+〈(φ∗)′(g∗−q)(f∗−g∗), ν〉+〈f−g, (φ∗)′(g∗−q)∇g∗(ν)〉 , (LB)

and the upper-bound

SK
2
Hµ,ν(f, g)2 + 〈(φ∗)′(g∗ − q)(f∗ − g∗), ν〉+ 〈f − g, (φ∗)′(g∗ − q)∇g∗(ν)〉 ,

(UB)
where we denoted Hµ,ν(f, g)2 = ‖f − g‖2L2(µ) + ‖f∗ − g∗‖2L2(ν).

We now focus on the term 〈(φ∗)′(g∗ − q)(f∗ − g∗), ν〉+ 〈f − g, (φ∗)′(g∗ −
q)∇g∗(ν)〉. We can re-write it as 〈f∗ ◦ ∇g − g∗ ◦ ∇g + (f − g), (φ∗)′(g∗ −
q)∇g∗(ν)〉 and we denote the pointwise integrand Γf,g(x) = f∗(∇g(x)) −
g∗(∇g(x)) + (f(x) − g(x)). Now recall that the Legendre identity gives
g∗(∇g(x)) = ∇g(x)>x− g(x) and f(x) = x>∇f(x)− f∗(∇f(x)), hence we
have

Γf,g(x) = f∗(∇g(x))−∇g(x)>x+ g(x) + x>∇f(x)− f∗(∇f(x))− g(x)

= f∗(∇g(x))−∇g(x)>x+ x>∇f(x)− f∗(∇f(x))

= f∗(∇g(x))− f∗(∇f(x))− x>(∇g(x)−∇f(x)) .

Finally, recalling x = ∇f∗(∇f(x)), we can re-write Γf,g(x) as a Bregman
divergence

Γf,g(x) = ∆f∗(∇g(x),∇f(x)) . (23)

Conversely, the term 〈(φ∗)′(g∗− q)(f∗− g∗), ν〉+ 〈f − g, (φ∗)′(g∗− q)∇g∗(ν)〉
can be re-written as 〈f∗ − g∗ + f ◦ ∇g∗ − g ◦ ∇g∗, (φ∗)′(g∗ − q)ν〉. We
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observe that the integrand can be written Γf∗,g∗(y) = ∆f (∇g∗(y),∇f∗(y)).
Hence when f is λ-strongly convex Γf,g(x) ≤ 1

2λ‖∇g(x) − ∇f(x)‖2 and
Γf∗,g∗(y) ≥ λ

2‖∇g
∗(y)−∇f∗(y)‖2 which yields the following bound on ∆J

λ

2
‖∇f∗ −∇g∗‖2L2(ν̃g) +

IK
2
Hµ,ν(f, g)2 ≤ ∆J(f, g)

≤ 1

2λ
‖∇f −∇g‖2L2(π̃(g)g) +

SK
2
Hµ,ν(f, g)2 ,

where π(g) = ∇g∗(ν), β̃g = (φ∗)
′
(g − q)β. Conversely, when f is M -smooth

1

2M
‖∇f −∇g‖2L2(π̃(g)g) +

IK
2
Hµ,ν(f, g)2 ≤ ∆J(f, g)

≤ M

2
‖∇f∗ −∇g∗‖2L2(ν̃g) +

SK
2
Hµ,ν(f, g)2 .

B.4 Proof of Corollary 1

We derive an upper-bound of ‖f∗ − g∗‖2L2(ν) that solely depends on the
difference f − g. We start to re-write this quantity as ‖f∗ ◦ ∇g − g∗ ◦
∇g‖2L2(∇g∗(ν)) and use the legendre identities g∗(∇g(x)) = ∇g(x)>x− g(x)

and f∗(y) = y>∇f∗(y) − f(∇f∗(y)). Let us denote again the integrand
Γ(x) = [∇g(x)>∇f∗(∇g(x)) − f(∇f∗(∇g(x))) −∇g(x)>x + g(x)]2 and re-
write Γ as

Γ(x) = [∇g(x)>∇f∗(∇g(x))− f(∇f∗(∇g(x)))−∇g(x)>x+ g(x)]2

= [∇g(x)>(∇f∗(∇g(x))− x) + g(x)− f(x) + f(x)− f(∇f∗(∇g(x)))]2

≤ 3[(∇g(x)>(∇f∗(∇g(x))− x))2 + (g(x)− f(x))2 + (f(x)− f(∇f∗(∇g(x))))2]

The integration middle term readily gives ‖f − g‖2L2(∇g∗(ν)). Using Cauchy-
Schwartz and the fact that measures are supported over BR, the integration
of the first term can be upper-bounded as∫

(∇g(x)>(∇f∗(∇g(x))− x))2( d∇g∗(ν))(x) =

∫
(y>(∇f∗(y)−∇g∗(y)))2 dν(y)

≤ R2‖∇f∗ −∇g∗‖2L2(ν) .

The previous results give in the balanced case ‖∇f∗ −∇g∗‖2L2(ν) ≤
1
λ2
‖∇f −

∇g‖2L2(∇g∗(ν) which yields the upper bound on the first term∫
(∇g(x)>(∇f∗(∇g(x))− x))2( d∇g∗(ν))(x) ≤ R2

λ2
‖∇f −∇g‖2L2(∇g∗(ν)) .

(24)
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Using the fact that ∇f∗(BR),∇g∗(BR) ⊂ BR∗ and that f is L lipschitz over
BR∗ , we can bound the integration of the third term of Γ(x) as∫

(f(x)− f(∇f∗(∇g(x))))2( d∇g∗(ν))(x) =

∫
(f(∇g∗(y))− f(∇f∗(y)))2 dν(y)

(25)

≤ L2‖∇g∗ −∇f∗‖2L2(ν) (26)

≤ L2

λ2
‖∇f −∇g‖2L2(∇g∗(ν)) .

(27)

C Proofs of Section 3

C.1 Proof of Proposition 4

To prove Proposition 4 we need to ensure that the Legendre transform is
Lipschitz with respect to the supremum on a certain ball. The following
lemma explicitly gives the ball to consider.

Lemma 1. For all z that are λ-strongly convex and such that z ≥ l, ‖z‖L∞Br ≤

b(r), we have ‖∇z∗‖L∞Br ≤ G(r) := r
λ +

√
2(b(0)−l)

λ and ‖z∗‖L∞Br ≤ b′(r) :=

rG(r) + b(G(r)).

Proof. For z ∈ C, we have that z∗ is 1
λ -smooth. In particular, for x ∈ Br

‖∇z∗(x)‖ = ‖∇z∗(x)−∇z∗(0) +∇z∗(0)‖ (28)
≤ ‖∇z∗(x)−∇z∗(0)‖+ ‖∇z∗(0)‖ (29)

≤ r

λ
+ ‖∇z∗(0)‖ . (30)

Now recall that ∇z∗(0) = arg minx∈Rd z(x). Since z is λ-strongly convex, we
have the following inequality

z(0) ≥ z(x∗) +
λ

2
‖x∗‖2 , (31)

where x∗ = arg minx∈Rd z(x). Using that z(0) ≤ b(0) and −z ≤ −l, we
recover

‖x∗‖ ≤
√

2(b(0)− l)
λ

. (32)

The bound on ‖z∗‖L∞Br follows the definition of the Fenchel-Legendre trans-
form

z∗(x) = x>∇z∗(x)− z(∇z∗(x)) . (33)
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Using the previous estimates, we can now prove that the Legendre trans-
form is Lipschitz.

Lemma 2. Let z1, z2 be λ-strongly convex functions such that z1, z2 are
lower-bounded by l and bounded by b(r) on Br. We have ‖z∗1 − z∗2‖L∞BR ≤

‖z1 − z2‖L∞BG(R)
, where G(r) := r

λ +

√
2(b(0)−l)

λ as in Lemma 1.

Proof. Let x ∈ BR. By definition of the Fenchel transform, we have for all
y ∈ Rd

z∗1(x) ≥ x>y − z1(y) , (34)

with equality when y = ∇z∗1(x). Hence, we have for all y

z∗1(x)− z∗2(x) ≥ x>y − z1(y) + z2(∇z∗2(x))− x>∇z∗2(x) . (35)

In particular, for y = ∇z∗2(x), we obtain

z∗1(x)− z∗2(x) ≥ z2(∇z∗2(x))− z1(∇z∗2(x)) , (36)

and applying Lemma 1 yields z∗1(x)− z∗2(x) ≥ −‖z1 − z2‖L∞BG(R)
. Conversely,

flipping the role of z1, z2, we obtain

z∗2(x)− z∗1(x) ≥ z1(∇z∗1(x))− z2(∇z∗1(x)) , (37)

which yields |z∗1(x)− z∗2(x)| ≤ ‖z1 − z2‖L∞
BG(R)

.

We have now all the ingredients to the first part of Proposition 4.

Proof. We start by applying the strong convexity inequality of the semi-dual
and the optimality conditions

dλφ(ẑ, z0)2 ≤ J(ẑ)− J(z0) (38)

= J(ẑ)− Ĵ(ẑ) + Ĵ(ẑ)− Ĵ(z0) + Ĵ(z0)− J(z0) . (39)

Using Assumption (iii), the term Ĵ(ẑ)− Ĵ(z0) is negative hence we have

dλφ(ẑ, z0)2 ≤ J(ẑ)− Ĵ(ẑ) + Ĵ(z0)− J(z0) (40)

≤ sup
z∈C
〈φ∗(z − q), µ− µ̂〉 (41)

+ sup
z∈C∗
〈φ∗(z − q), ν − ν̂〉 (42)

+ Ĵ(z0)− J(z0) , (43)

where we denoted C∗ = {z∗, z ∈ C}.
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Bound on term (41) Denoting C0 = {φ∗(g−q), g ∈ C}, we apply Luxburg
and Bousquet (2004, Theorem 16) to bound our empirical process

W := sup
z∈C
〈φ∗(z − q), µ− µ̂〉 ,

and we obtain for all δ > 0

E[W ] ≤ 2δ +
4
√

2√
n

∫ ∞
δ
4

√
n(C0, L2(µ̂), u) du . (44)

Noting that ‖g‖L2(µ̂) ≤ ‖g‖L∞(µ) almost surely, we recover the upper bound

E[W ] ≤ 2δ +
4
√

2√
n

∫ ∞
δ
4

√
n(C0, L∞(µ), u) du . (45)

Since the functions in C are uniformly bounded by b(R) on BR and that µ is
supported on BR, we have ∀(g1, g2) ∈ C2,

‖φ∗(g1 − q)− φ∗(g2 − q)‖L∞(µ) ≤ L1
φ∗‖g1 − g2‖L∞(µ) , (46)

where L1
φ∗ is defined as

L1
φ∗ := sup

x∈[−M1,M1]
|∂φ∗(x)| , (47)

and M1 = 2b(R) + R2. In particular, we get the new upper-bound for all
δ
4 ≤

2b(R)
L1
φ∗

E[W ] ≤ 2δ +
4
√

2√
n

∫ 2b(R)

L1
φ∗

δ
4

√
n(C,L∞(µ), L1

φ∗u) du

≤ 2δ +
4
√

2√
n

∫ 2b(R)

L1
φ∗

δ
4

√
n(C,L∞BR , L

1
φ∗u) du .

Bound on term (42) Lemma 1 ensures that the functions in C∗ are
uniformly bounded on every ball Br by some constant b′(r). In particular,
we can proceed as in the last paragraph and obtain

E[W ∗] ≤ 2δ +
4
√

2√
n

∫ 2b′(R)

L2
φ∗

δ
4

√
n(C∗, L∞BR , L

2
φ∗u) du ,
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where W ∗ := supz∈C∗〈z, ν − ν̂〉 and L2
φ∗ is defined as

L2
φ∗ := sup

x∈[−M2,M2]
|∂φ∗(x)| , (48)

with M2 = 2b′(R) +R2. Using Lemma 2 that states

‖z∗1 − z∗2‖L∞BR ≤ ‖z1 − z2‖L∞BG(R)
, (49)

for some constant G(R), we can control the covering number of C∗ with
respect to the L∞BR and we have the upper-bound for δ

4 ≤
2b′(R)
L2
φ∗

E[W ∗] ≤ 2δ +
4
√

2√
n

∫ 2b′(R)

L2
φ∗

δ
4

√
n(C,L∞BG(R)

, L2
φ∗u) du .

Final upper bound Since the term (43) is zero in average, we obtain our
final bound

dλφ(ẑ, z0)2 ≤ 4δ +
8
√

2√
n

∫ M′
L

δ
4

√
n(C,L∞BR′

, Lu)du ,

where M ′ = 2 max(b(R), b′(R)) and L = max(L1
φ∗ , L

2
φ∗)

We now prove the second part of Proposition 4. For this we need to
control the localized empirical process

W (τ) := sup
z∈C∩B◦(z0,τ)

〈φ∗(z − q)− φ∗(z0 − q), µ− µ̂〉 , (50)

and
W ∗(τ) := sup

z∈C∩B◦(z0,τ)
〈φ∗(z∗ − q)− φ∗(z∗0 − q), ν − ν̂〉 , (51)

where B◦(z0, τ) is the ball centered on z0 of radius τ with respect to the dλφ
pseudo-norm.

Lemma 3. Under Assumptions (iv)-(v), if we assume that there exists
(Pµ, Pν) and α < 2 such that for every u ∈ R≥0, n(C,L2(µ), u) ≤ Pµu−α and
n(C,L2(ν), u) ≤ Pνu−α, it holds with probability at least 1− e−t

W (τ) ≤ 8
√

2Pµ

(1−α
2

)
√
n(L1

φ∗ )α
(Kτ)1−α/2 +Kτ

√
2t
n +

2b(R)L1
φ∗

n

W ∗(τ) ≤ 8
√

2Pν

(1−α
2

)
√
n(L2

φ∗ )α
(K ′τ)1−α/2 +K ′τ

√
2t
n +

2b′(R)L2
φ∗

n ,
(52)
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where L1
φ∗ , L

2
φ∗ are defined in Equations (47) and (48) respectively and mea-

sure local lipschitz behaviors of ϕ∗, b(R) is defined in Assumption (iv) and is
a uniform bound over BR of the potentials in C, b′(R) is defined in Lemma
1 and is a uniform bound over BR of the conjugate of the potentials in C,
and K = K(R,M,φ∗), K ′ = K ′(R, b, φ∗, λ, l) are such that for (f, g) ∈ C,
‖f − g‖L2(µ) ≤ Kdλφ(f, g) and ‖f∗ − g∗‖L2(ν) ≤ K ′dλφ(f, g).

Proof. The proof relies on the Lipschitz behavior of the Legendre transform
that preserves the metric entropy of C and on the Bousquet concentration
inequality. We start by analyzing the term W (τ).

Term W (τ) Let us denote C0 = {φ∗(z− q)−φ∗(z0− q), z ∈ C ∩B◦(z0, τ)}.
For g ∈ C0 of the form g = φ∗(z− q)− φ∗(z0− q) with z ∈ C ∩B◦(z0, τ), we
have the pointwise bound for all x ∈ BR,

|g(x)| ≤ L1
φ∗ |z(x)− z0(x)| , (53)

where L1
φ∗ := supx∈[−M1,M1] |∂φ∗(x)| withM1 = 2b(R)+R2 as in the previous

proof. This implies ‖g‖L2(µ) ≤ L1
φ∗‖z − z0‖L2(µ). Since we assumed φ∗

strongly convex on every compact, there exists K = K(R,M, φ∗) > 0 such
that ‖z − z0‖L2(µ) ≤ KdλH◦(z, z0) and in particular, all g ∈ C0 verifies
‖g‖L2(µ) ≤ Kτ . Hence, applying Luxburg and Bousquet (2004, Theorem 16),
we obtain for all δ4 ≤ Kτ

E[W (τ)] ≤ 2δ +
4
√

2√
n

∫ Kτ

δ
4

√
n(C0, L2(µ), u) du . (54)

Again, taking (g1, g2) ∈ C2
0 of the form g1 = φ∗(z1 − q) − φ∗(z0 − q) and

g2 = φ∗(z2 − q)− φ∗(z0 − q) with (z1, z2) ∈ (C ∩B◦(z0, τ))2, we have

‖g1 − g2‖L2(µ) ≤ L1
φ∗‖z1 − z2‖L2(µ) , (55)

and in particular, we recover the upper-bound

E[W (τ)] ≤ 2δ +
4
√

2√
n

∫ Kτ

δ
4

√
n(C,L2(µ), L1

φ∗u) du. (56)

Now, we assumed that for all u ∈ R+ we had the upper-bound, n(C,L2(µ), u) ≤
Pµu

−α with α < 2, we obtain taking δ = 0 our final upper bound

E[W (τ)] ≤
4
√

2Pµ

(1− α
2 )
√
n(L1

φ∗)
α

(Kτ)1−α/2 . (57)
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There remains to bound the process W (τ) with high probability. We use for
this the Bousquet concentration inequality.

Lemma 4 (Bousquet, see Theorem 26 in Hütter and Rigollet (2021)). Let
F be a class of functions such that for every f ∈ F , ‖f‖2L2(µ) ≤ σ2 and
‖f‖L∞(µ) ≤M , then for all t > 0, we have with probability at least 1− e−t

sup
f∈F

√
n|〈f, µ− µ̂〉| ≤ 2E[sup

f∈F

√
n|〈f, µ− µ̂〉|] + σ

√
2t+

M√
n
t . (58)

Applying this result to W (τ) yields that with probability at least 1− e−t,

W (τ) ≤
8
√

2Pµ

(1− α
2 )
√
n(L1

φ∗)
α

(Kτ)1−α/2 +Kτ

√
2t

n
+

2tb(R)L1
φ∗

n
, (59)

where we used the pointwise upper-bound (53) and where b(R) is the constant
such that ∀z ∈ C, ‖z‖L∞BR ≤ b(R).

Term W ∗(τ) We can apply the same reasoning as previously. Indeed, as
shown in Lemma 1, there exists a constant b′(R) such that for all z ∈ C,
‖z∗‖L∞BR ≤ b′(R). In particular, since the potentials z∗ are bounded, we
can also leverage the local strong convexity of φ∗ that yields a constant
K ′ = K ′(R,M, φ∗, λ, l) > 0 such that for every z ∈ C, ‖(z − z0)∗‖L2(ν) ≤
K ′dλH◦(z, z0). Hence we recover that with probability at least 1− e−t,

W ∗(τ) ≤ 8
√

2Pν

(1− α
2 )
√
n(L2

φ∗)
α

(K ′τ)1−α/2 +K ′τ

√
2t

n
+

2tb′(R)L2
φ∗

n
. (60)

We can now prove the second part of Proposition 4.

Proof. For τ > 0, define s = τ
τ+dλ

H◦ (ẑ,z0)
and ẑs = (1 − s)z0 + sẑ. By local

strong convexity of J , we have

dλH◦(ẑs, z0)2 ≤ J(ẑs)− J(z0) . (61)

Let us decompose the right hand side as J(ẑs)− Ĵ(ẑs)− (J(z0)− Ĵ(z0)) +
Ĵ(ẑs) − Ĵ(z0). By convexity of Ĵ , the last term can be upper-bounded by
sĴ(ẑ) + (1 − s)Ĵ(z0) − Ĵ(z0) = s(Ĵ(ẑ) − Ĵ(z0)). Since ẑ is the minimizer
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of the empirical semi-dual, we have in particular that s(Ĵ(ẑ) − Ĵ(z0)) ≤ 0
which gives

dλH◦(ẑs, z0)2 ≤ J(ẑs)− Ĵ(ẑs)− (J(z0)− Ĵ(z0))

= 〈φ∗(ẑs − q)− φ∗(z0 − q), µ− µ̂〉+ 〈φ∗(ẑ∗s − q)− φ∗(z∗0 − q), ν − ν̂〉 .

Now, since dλH◦(ẑs, z0) =
τdλ
H◦ (ẑ,z0)

τ+dλ
H◦ (ẑ,z0)

≤ τ , we recover in the end dλH◦(ẑs, z0)2 ≤
W (τ) +W ∗(τ).

Let us now consider A = {τ, dλH◦(ẑ, z0) ≥ τ}. We wish to recover an
upper-bound on A. Remark that A = {τ, dλH◦(ẑs, z0) ≥ τ

2}. In particular,
every τ ∈ A verifies with probability at least 1− e−t

τ2

4
≤ κτ

1−α/2
√
n

+ (K +K ′)τ

√
2t

n
+
tκ′

n
, (62)

where κ and κ′ are given in Lemma 3 defined asκ = 8
√

2
(1−α

2
)

[√
PµK1−α/2

(L1
ϕ∗ )

α
2

+
√
Pν(K′)1−α/2

(L2
ϕ∗ )

α
2

]
κ′ = 2(M(R)L1

ϕ∗ +M ′(R)L2
ϕ∗) .

(63)

. Let An = {τ ∈ A, τ ≥ 1√
n
}. For τ ∈ An, we have

τ2

4
≤ κτ

1−α/2
√
n

+ (K +K ′)τ

√
2t

n
+
tκ′τ√
n
. (64)

Assuming that t ≥ 1, we have two cases

Case 1 If τ ≤ 1, we have

τ2

4
≤ tητ1−α/2

√
n

, (65)

where η = (κ+ κ′ +
√

2(K +K ′)) and we recover τ ≤ (4ηt)
1

1+α/2

n
1

2+α
.

Case 2 If τ ≥ 1, we have τ2

4 ≤
tητ√
n
i.e. τ ≤ 4tη√

n
.

In any case, for t ≥ 1, we have with probability at least 1− e−t

sup(A) ≤ (4η′t)
1

1+α/2 + (4η′t)

n
1

2+α

, (66)
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where we defined η′ = max(η, 1). Now, by definition of A, we have for all
ε > 0, dλH◦(ẑ, z0) ≤ sup(A) + ε. Taking ε→ 0 gives that with probability at
least 1− e−t, for t ≥ 1

dλH◦(ẑ, z0) ≤ (4η′t)
1

1+α/2 + (4η′t)

n
1

2+α

(67)

≤ 8η′t

n
1

2+α

. (68)

And in particular, dλH◦(ẑ, z0)2 ≤ 64(η′)2t2

n
1

1+α/2

with probability at least 1− e−t for

t ≥ 1. We denote X the random variable dλH◦(ẑ, z0)2. Since X is nonnegative
almost surely, we can apply Fubini’s formula

E[X] =

∫ ∞
0

P (X > u) du . (69)

Let us make the change of variable u = 64(η′)2t2

n
1

1+α/2

,

E[X] =
128(η′)2

n
1

1+α/2

(∫ 1

0
tP (X >

64(η′)2t2

n
1

1+α/2

) dt+

∫ ∞
1

tP (X >
64(η′)2t2

n
1

1+α/2

) dt

)
.

The integrand in the first term is upper-bounded by 1 and the integrand on
the second term is upper bounded by te−t. Hence we obtain

E[dλH◦(ẑ, z0)2] ≤ 128(η′)2

n
1

1+α/2

(1 +

∫ ∞
1

te−tdt)

=
128(1 + 2e−1)(η′)2

n
1

1+α/2

.

C.2 Proof of Corollary 2

Proof. Using the Corollary 9 of Gallouët et al. (2021), we can ensure that
z0, z

∗
0 are (k + 2)-times continuously differentiable over the support of µ and

ν respectively. Recalling that for all x ∈ supp(ν)

∇2z0(x) = [∇2z∗0(∇z0(x))]−1 , (70)

and using the fact that ∇z0 is a diffeomorphism between the support µ and
ν, we recover that z0 is λ-strongly convex over supp(µ) where we defined

1

λ
:= sup

y∈supp(ν)
‖∇2z∗0(y)‖ . (71)
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Now, recall that in order to apply our previous result, we need to globally
bound the strong-convexity constant as well as controlling the sup norm
over every ball. To achieve this, we can extend these potentials to the whole
domain. Proposition 1.5 in Azagra and Mudarra (2019) provides a (k + 2)-
times continuously differentiable convex extension g̃0 of z0 − λq on the whole
domain Rd. Defining z̃0 = g̃0 + λq, we have that z̃0 coincides with z0 on
supp(µ). Using again the diffeomorphism property of ∇z0 between supp(µ)
and supp(ν), we have that z̃∗0 coincides with z∗0 on supp(ν). Now let us define

C = {z | ‖z‖L∞Br ≤ ‖z̃0‖L∞Br , ‖∇
k+2z‖L∞Br ≤ ‖∇

k+2z̃0‖L∞Br , z ≥ l, z is λ-strongly convex} ,

where l is the minimum of z̃0. The set C indeed meets Assumption (iv) and
Assumption (iii) hence we can apply Prop. 4 which yields

E[dλφ(ẑC , z0)2] . δ +
1√
n

∫ M′
L

δ
4

√
n(C,L∞BR′

, Lu)du . (72)

Finally, using van der Vaart and Wellner (1996, Theorem 2.7), we have
n(C,L∞BR′

, Lu) . u−
d
k+2 . If k+2

d < 1/2, take δ = n−
k+2
d . For this choice of δ,

1√
n

∫ M′
L

δ
4

√
n(C,L∞BR′

, Lu)du .
1√
n

(n−
k+2
d )

1− d
2(k+2) (73)

.
1√
n
n−

2(k+2)−d
2d (74)

= n−
k+2
d . (75)

If k+2
d = 1/2, take δ = 1√

n
. For this choice of δ, the integral is of order log(n)

which yields the upper-bound

E[dλφ(ẑC , z0)2] .
log(n)√

n
. (76)

Finally, if k+2
d > 1/2, we apply the second part of Propostion 4 and we

recover the rate
E[dλφ(ẑC , z0)2] . n−1/(1+d/2(k+2)) . (77)

34



D Proofs of Section 4

D.1 Proof of Proposition 5

We simply adapt the proof of Bubeck (2015, Theorem 3.8).

Proof. Recall that F verifies

F (xk+1)− F (xk) ≤ dF (xk)(xk+1 − xk) +
β

2
Axk(xk+1 − xk) . (78)

Denoting yk = arg minC dF (xk)(y − xk), we have by definition of xk+1 and
by convexity of C,

dF (xk)(xk+1 − xk) +
β

2
Axk(xk+1 − xk) ≤ dF (xk)(skyk + (1− sk)xk − xk)

+
β

2
Axk(skyk + (1− sk)xk − xk)

= skdF (xk)(yk − xk) + s2
k

β

2
Axk(yk − xk) ,

where sk ∈ [0, 1] is a parameter that shall be defined later. Then, by definition
of yk, dF (xk)(yk−xk) ≤ dF (xk)(x̄−xk) hence we recover using the convexity
of F

F (xk+1)− F (xk) ≤ sk(F (x̄)− F (xk)) + s2
k

β

2
K . (79)

Denoting δk = F (x̄)− F (xk) we get eventually

δk+1 ≤ (1− sk)δk + s2
kK

β

2
. (80)

Taking sk = 2/(k + 1) yields δk = 2βK
k+1 (see the proof of Bubeck (2015,

Theorem 3.8) for more details).

D.2 Proof of Proposition 6

We simply adapt the proof of Karimi et al. (2016, Theorem 5). To this end,
we propose to generalize the notion of being proximal PL with respect to
a (convex) set C and an operator A·(·) such that for any y ∈ C, Ay(·) is
a 2-homogeneous form. A Gateaux-differentiable function F is said to be
proximal PL with respect to C,A if there exists some constants α, β > 0
such that for all x ∈ C

1

2
DC,A(x, β) ≥ α(F (x)− F̄ ) , (81)
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where F̄ = minx∈C F (x) and where DC,A(x, β) is defined as

DC,A(x, β) = −2β inf
y∈C

dF (x)(y − x) +
β

2
Ax(y − x) . (82)

Using these notions, we show the following exponential convergence result.

Lemma 5. If F verifies ∆F (x, y) ≤ β
2A

y(y − x) for all (x, y) ∈ C and is
such that

1

2
DC,A(x, β) ≥ α(F (x)− F̄ ) , (83)

then the scheme (provided that the iterates are well-defined)

xk+1 = arg min
y∈C

dF (xk)(y − xk) +
β

2
Axk(y − xk) , (84)

yields iterates that verify F (xk)− F̄ ≤ (1− α/β)k(F (x0)− F̄ ).

Proof. By relative smoothness and definition of the iterates

F (xk+1) ≤ F (xk) + dF (xk)(xk+1 − xk) +
β

2
Axk(xk+1 − xk) (85)

≤ F (xk)−
1

2β
DC,A(x, β) (86)

≤ F (xk)−
α

β
(F (xk)− F̄ ) . (87)

Rearanging the terms yields the desired result.

Now we want to apply the previous result to our function F that ver-
ifies α

2A
y(x − y) ≤ ∆F (x, y) ≤ β

2A
y(x − y). The lower bound ensures

1
2DC,A(x, α) ≥ α(F (x)− F̄ ). Indeed

∆F (y, x) ≥ α

2
Ax(y − x) (88)

⇐⇒ F (y)− F (x) ≥ dF (x)(y − x) +
α

2
Ax(y − x) (89)

=⇒ F (y)− F (x) ≥ inf
y∈C

dF (x)(y − x) +
α

2
Ax(y − x) (90)

⇐⇒ 2α(F (x)− F (y)) ≤ DC,A(x, α) (91)

⇐⇒ 1

2
DC,A(x, α) ≥ α(F (x)− F (y)) (92)

=⇒ 1

2
DC,A(x, α) ≥ α(F (x)− F̄ ) . (93)

We conclude with a monotonicity lemma to recover eventually 1
2DC,A(x, β) ≥

α(F (x)− F̄ ).
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Lemma 6. For a convex set C and a 2-homogeneous form Ay(·), if 0 ≤ α ≤ β
then for all x ∈ C, DC,A(x, α) ≤ DC,A(x, β).

Proof. We have by definition that for all x, y ∈ C, −2β(dF (x)(y − x) +
β
2A

x(y − x)) ≤ DC,A(x, β). By convexity of C, we have in particular for all
x, y ∈ C,

− 2β(dF (x)((1− α

β
)x+

α

β
y − x) +

β

2
Ax((1− α

β
)x+

α

β
y − x)) ≤ DC,A(x, β)

(94)

⇐⇒ − 2β(
α

β
dF (x)(y − x) +

α2

2β
Ax(y − x)) ≤ DC,A(x, β) (95)

⇐⇒ − 2α(dF (x)(y − x) +
α

2
Ax(y − x)) ≤ DC,A(x, β) . (96)

In particular, taking the supremum of the l.h.s., we do recover DC,A(x, β) ≥
DC,A(x, α).

We draw the attention on the fact that while Lemma 5 holds for any
C,A, the convexity of C and the 2-homogeneity of A are crucial to derive
the monotonic behavior of DC,A(x, ·).
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