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Abstract

Building machine learning models using EEG recorded outside of the laboratory setting
requires methods robust to noisy data and randomly missing channels. This need is particularly
great when working with sparse EEG montages (1-6 channels), often encountered in consumer-
grade or mobile EEG devices. Neither classical machine learning models nor deep neural
networks trained end-to-end on EEG are typically designed or tested for robustness to
corruption, and especially to randomly missing channels. While some studies have proposed
strategies for using data with missing channels, these approaches are not practical when sparse
montages are used and computing power is limited (e.g., wearables, cell phones). To tackle
this problem, we propose dynamic spatial filtering (DSF), a multi-head attention module that
can be plugged in before the first layer of a neural network to handle missing EEG channels
by learning to focus on good channels and to ignore bad ones. We tested DSF on public EEG
data encompassing ∼4,000 recordings with simulated channel corruption and on a private
dataset of ∼100 at-home recordings of mobile EEG with natural corruption. Our proposed
approach achieves the same performance as baseline models when no noise is applied, but
outperforms baselines by as much as 29.4% accuracy when significant channel corruption is
present. Moreover, DSF outputs are interpretable, making it possible to monitor the effective
channel importance in real-time. This approach has the potential to enable the analysis of
EEG in challenging settings where channel corruption hampers the reading of brain signals.

Keywords Electroencephalography, mobile EEG, deep learning, machine learning, noise robust-
ness

1 Introduction

Electroencephalography (EEG) enables investigations into brain function and health in an
economical manner and for a wide array of purposes, including sleep monitoring, pathology
screening, neurofeedback, brain-computer interfacing and anaesthesia monitoring [1, 2, 3, 4, 5, 6].
Thanks to recent advances in mobile EEG technology, these applications can now be more easily
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translated from the lab and clinic to contexts such as at-home or ambulatory assessments. This
carries the potential of democratizing EEG applications and revolutionizing the study of brain
health in real-world settings. However, in these new settings, the number of electrodes available
is often limited and signal quality is much harder to control. Moreover, with the increasing
availability of these devices, the amount of data generated now exceeds the capacity of human
experts (e.g., neurologists, sleep technicians, etc.) to analyze and manually annotate every single
recording, as is traditionally done in research and clinical settings. Novel methods facilitating
clinical and research applications in real-world settings, especially with sparse EEG montages,
are therefore needed.

The use of machine learning for automating EEG analysis has been the subject of much
research in recent decades [7, 8]. However, state-of-the-art EEG prediction pipelines are generally
benchmarked on datasets recorded in well-controlled conditions that are relatively clean when
compared to data from mobile EEG. As a result, it is unclear how models designed for laboratory
data will cope with signals encountered in real-world contexts. This is especially critical for mobile
EEG recordings that may contain a varying number of usable channels as well as overall noisier
signals, in contrast to most research- and clinical-grade recordings. In addition, the difference
in number of channels between research and mobile settings also means that interpolating bad
channels offline (as is commonly done in recordings with dense electrode montages) is likely to
fail on mobile EEG devices given their limited spatial information. It is an additional challenge
that the quality of EEG data is not static but can vary significantly within a given recording.
This suggests that predictive models should handle noise dynamically. Ideally, not only should
machine learning pipelines produce predictions that are robust to (changing) sources of noise in
EEG, but they should also do so in a way that is interpretable. For instance, if noise is easily
identifiable, corrective action can be quickly taken by experimenters or users during a recording.

It is important to consider that not all sources of noise affect EEG recordings in the same
way [9]. Physiological artifacts are large electrical signals that are generated by current sources
outside the brain such as heart activity, eye or tongue movement, muscle contraction, sweating,
etc. Depending on the EEG electrode montage and the setting of the recording (e.g., eyes
open or closed), these artifacts can be more or less disruptive to measuring the brain activity
of interest. Movement artifacts, on the other hand, are caused by the relative displacement of
EEG electrodes with respect to the scalp, and can introduce noise of varying spectral content
in the affected electrodes during movement. If an electrode cannot properly connect with the
skin (e.g., after a movement artifact or because it was not correctly set up initially), its reading
will likely contain little or no physiological information and instead pick up instrumentation and
environmental noise. These are commonly referred to as “bad” or “missing” channels in the
literature. In the context of this work, we refer to them as “corrupted channels” to explicitly
include the case where a signal corruption mechanism (e.g., active noise sources in uncontrolled
environments) must be accounted for by predictive models. While channel corruption affects EEG
recordings in all contexts, it is more likely in real-world mobile EEG recordings than in controlled
laboratory settings where trained experimenters can monitor and remedy bad electrodes during
the recording. Therefore, special care must be given to the problem of channel corruption in
sparse mobile EEG settings.

In this paper, we propose and benchmark an attention mechanism module designed to handle
corrupted channel data, based on the concept of “scaling attention” [10, 11]. This module can be
inserted before the first layer of any convolutional neural network architecture in which activations
have a spatial dimension [12, 13, 14], and then be trained end-to-end for the prediction task at
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hand.
The rest of the paper is structured as follows. Section 2 presents an overview of the EEG

noise handling literature, then describes the attention module and denoising procedure proposed
in this study. The neural architectures, baseline methods and data used in our experiments are
introduced in Section 3. Next, Section 4 reports the results of our experiments on sleep and
pathology EEG datasets. Lastly, we examine related work and discuss the results in Section 5.

2 Methods

2.1 State-of-the-art approaches to noise-robust EEG processing

Existing strategies for dealing with noisy data can be divided into three categories (Table 1):
(1) ignoring or rejecting noisy segments, (2) implicit denoising, i.e., methods that allow models to
work despite noise, and (3) explicit denoising, i.e., methods that rely on a separate preprocessing
step to handle noise or missing channels before prediction. We now discuss existing methods
employing these strategies in more detail.

The simplest way to deal with noise in EEG is to assume that it is negligible or to simply
discard bad segments [8]. For instance, a manually selected amplitude or variance threshold
[15, 16, 17] or a classifier trained to recognize artifacts [2] can be used to identify segments to be
ignored. This approach, though commonplace, is ill-suited to mobile EEG settings where noise
cannot be assumed to be negligible, but also to online applications where model predictions need
to be continuously available. Moreover, this approach is likely to discard windows due to a small
fraction of bad electrodes, potentially losing usable information from other channels.

Implicit denoising approaches can be used to design noise-robust processing pipelines that
do not contain a specific noise handling step. First, implicit denoising approaches can use
representations of EEG data that are robust to missing channels. For instance, multichannel
EEG can be transformed into topographical maps (“topomaps”) that are less sensitive to the
absence of a few channels. This representation is then typically fed into a standard convolutional
neural network (ConvNet) architecture. While this approach can gracefully handle missing
channels in dense montages (e.g., 16 to 64 channels in [18, 19, 20]), it is likely to perform
poorly on sparse montages (e.g., 4 channels) as spatial interpolation might fail if channels
are missing. Moreover, this approach requires computationally demanding preprocessing and
feature extraction steps, undesirable in online and low-computational resources contexts. In the
traditional machine learning setting, Sabbagh et al. [21] showed that representing input windows
as covariance matrices and using Riemannian geometry-aware models did not require common
noise correction steps to reach high performance on a brain age prediction task. However, the
robustness of this approach has not been evaluated on sparse montages. Also, its integration
into neural network architectures is not straightforward with geometry-aware deep learning
remaining an active field of research [22]. Signal processing techniques can also be used to
promote invariance to certain types of noise. For instance, the Lomb-Scargle periodogram can be
used to extract spectral representations that are robust to missing samples [23, 24]. However,
this approach fails when channels are completely missing. Finally, implicit denoising can be
achieved with traditional machine learning models that are inherently robust to noise. For
instance, random forests trained on handcrafted EEG features were shown to be notably more
robust to low SNR inputs than univariate models on a state-of-consciousness prediction task
[25]. Although promising, this approach is limited by its feature engineering step, as features
(1) rely heavily on domain knowledge, (2) might not be optimal to the task, and (3) require an
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additional processing step which can be prohibitive in limited resource contexts.
Multiple studies have explicitly handled noise by correcting corrupted signals or predicting

missing or additional channels from available ones. Spatial projection approaches aim at projecting
the input signals to a noise-free subspace before projecting the signals back into channel-space,
e.g., using independent component analysis (ICA) [26, 27, 28] or principal components analysis
(PCA) [29, 30]. While approaches such as ICA are powerful tools to mitigate artifact and
noise components in a semi-automated way, their efficacy can diminish when only few channels
are available. For instance, in addition to introducing an additional preprocessing step, these
approaches are likely to discard important discriminative information during preprocessing
because they are decoupled from the prediction task. Also, the fact that preprocessing is done
independently from the supervised learning task, or the statistical testing procedure, actually
makes the selection of preprocessing parameters (e.g., number of good components) challenging.
Motivated by the challenge of parameter selection, fully automated denoising pipelines have been
proposed. FASTER [31] and PREP [32] both combine artifact correction, noise removal and
bad channel interpolation into a single automated pipeline. Autoreject [33] is another recently
developed pipeline that uses cross-validation to automatically select amplitude thresholds to use
for rejecting windows or flagging bad channels. These approaches are well-suited to offline analyses
where the morphology of the signals is of interest, however they are typically computationally
demanding and are also decoupled from the statistical modeling. Additionally, it is unclear
how interpolation can be applied when using bipolar montages (i.e., that do not share a single
reference), as is often the case in e.g., polysomnography [34] and epilepsy monitoring [35].

Finally, generic machine learning models have been proposed to recover bad channels. For
instance, generative adversarial networks (GANs) have been trained to recover dense EEG
montages from a few electrodes [36, 37]. Other similar methods have been proposed, e.g., long
short-term memory (LSTM) neural networks [38], autoencoders [39], or tensor decomposition
and compressed sensing [40, 41]. However, these methods postulate that the identity of bad
channels is known ahead of time, which is a non-trivial assumption in practice.

In contrast to the existing literature on channel corruption handling in EEG, we introduce
an interpretable end-to-end denoising approach that can learn implicitly to work with corrupted
sparse EEG data, and that does not require additional preprocessing steps.

2.2 Dynamic spatial filtering: Second-order attention for learning on noisy
EEG signals

The key goal behind dynamic spatial filtering (DSF) is to help neural networks focus on the most
important channels, at each time instant, given a specific machine learning task on EEG. To do
so, we introduce a spatial attention mechanism that dynamically reweights channels according to
their predictive power. This idea is inspired by recent developments in attention mechanisms,
most specifically the “scaling attention” approach proposed in computer vision [10, 11]. Notably,
DSF leverages second-order information, i.e., spatial covariance, to capture dependencies between
EEG channels. In this section, we detail the learning problem under study, the proposed attention
architecture and a data augmentation transform designed to help train noise-robust models.

Notation We denote by JqK the set {1, . . . , q}. The index t refers to time indices in the
multivariate time series S ∈ RC×M , where M is the number of time samples and C is the number
of EEG channels. S is further divided into non-overlapping windows X ∈ RC×T where T is the
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Table 1: Existing methods for dealing with noisy EEG data.

Approach Examples Notes

Ignore or
reject noise

No denoising [12, 13, 42, 43, 44, 45, 46, 47, 48] Might not work in real-life applica-
tions (out of the lab/clinic)

Removing bad
epochs

[15, 2, 16, 17] Doesn’t allow online predictions;
Might discard useful information

Implicit
denoising

Robust input repre-
sentations

Covariance matrices in Rieman-
nian tangent space [21]

Might not work if too few channels
available

Topomaps [18, 19, 20] Expensive preprocessing step; Might
not work if too few channels available

Robust signal pro-
cessing techniques

Lomb-Scargle periodogram [23,
24]

Only useful for missing samples, not
missing channels

Robust machine
learning classifiers

Handcrafted features and ran-
dom forest [25]

Requires feature engineering step

Explicit
denoising

Spatial projection-
based approaches

Signal Space Separation (SSS)
for MEG [49]

Might not work if too few channels
available; Additional preprocessing
step; Preprocessing might discard im-
portant information for learning task

ICA-based denoising [26, 27, 28]

Automated correc-
tion

Autoreject [33], FASTER [31],
PREP [32]

Expensive preprocessing step

Model-based inter-
polation/ reconstruc-
tion

Deep learning-based superreso-
lution (GAN, LSTM, AE, etc.)
[50, 51, 36, 37, 39]

Separate training step; Additional in-
ference step to reconstruct at test
time; Requires separate procedure to
detect corrupted channels

Tensor decomposition, com-
pressed sensing [41, 40]

Interpretable
denoising

Channel
corruption-
invariant archi-
tecture

Dynamic Spatial Filtering
(this work)

Trained end-to-end, no ad-
ditional preprocessing, inter-
pretable, works with sparse
montages
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Figure 1: Visual description of the Dynamic Spatial Filtering (DSF) attention module. An input
window X with C spatial channels is processed by a 2-layer MLP to produce a set of C ′ spatial
filters W and biases b that dynamically transform the input X. This allows the subsequent
layers of a neural network to ignore bad channels and focus on the most informative ones.

number of time samples in the window. We denote by y ∈ Y the target used in the learning task.
Typically, Y is JLK for a classification problem with L classes.

We perform experiments in the supervised classification setting. A model fΘ : X → Y with
parameters Θ (e.g., a convolutional neural network) is trained to predict the class y of EEG
windows X. For this, we train fΘ to minimize the loss L, e.g., the categorical cross-entropy loss,
over the example-label pairs (Xi, yi):

f̂Θ = arg min
Θ

EXi,yi∈X×Y [L(fΘ(Xi), yi)] . (1)

In particular, we are interested in the performance of fΘ when random channels are corrupted
and more specifically when channel corruption occurs at test time (i.e., when training data is
mostly clean). Toward this goal, we insert an attention-based module mDSF : RC×T → RC′×T

into fΘ which performs a (fixed) transformation Φ(X) to extract relevant spatial information
from X, followed by a reweighting mechanism for the input signals.

In order to implicitly handle noise in neural network architectures, we design an attention
module where second-order information is extracted from the input and used to predict weights of
a linear transformation of the input EEG channels, that are optimized for the learning task (Fig. 1).
Applying such linear transforms to multivariate EEG signals is commonly referred to as “spatial
filtering”, a technique that has been widely used in the field of EEG [52, 53, 54, 55, 56, 57, 58].
This enables the model to learn to ignore noisy outputs and/or to reweight them, while still
leveraging any remaining spatial information. We now show how this module can be applied to
the raw input X.

We define the dynamic spatial filter (DSF) module mDSF as:

mDSF(X) = WDSF(X)X + bDSF(X) , (2)

where WDSF ∈ RC′×C and bDSF ∈ RC′ are obtained by reshaping the output of a neural
network, e.g., a multilayer perceptron (MLP), hΘDSF

(Φ(X)) ∈ RC′×(C+1) (see Fig. 1). Under
this formulation, each row in WDSF corresponds to a spatial filter that linearly transforms the
input signals into another virtual channel. Here, C ′ can be set to the number of input spatial
channels C or considered a hyperparameter of the attention module1. When C ′ = C, if the

1In which case it can be used to increase the diversity of input channels in models trained on sparse montages
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diagonal of WDSF is 0, WDSF corresponds to a linear interpolation of each channel based on the
C − 1 others, as is commonly done in the classical EEG literature [59] (see Appendix Ffor an
in-depth discussion). Heavily corrupted channels can be ignored by giving them a weight of
0 in WDSF. To facilitate this behavior, we can further apply a soft-thresholding element-wise
nonlinearity to WDSF:

W ′DSF = sign(WDSF) max(|WDSF| − τ, 0) , (3)

where τ is a threshold empirically set to 0.1, |·| is the element-wise absolute value and both the
sign and max operators are applied element-wise.

In our experiments, the spatial information extracted by the transforms Φ(X) was either (1)
the log-variance of each input channel or (2) the flattened upper triangular part of the matrix
logarithm of the covariance matrix of X (see Appendix A)2. When reporting results, we denote
models as DSFd and DSFm when DSF takes the log-variance or the matrix logarithm of the
covariance matrix as input, respectively. We further add the suffix “-st” to indicate the use of
the soft-thresholding nonlinearity, e.g., DSFm-st.

Interestingly, the DSF module can be seen as a multi-head attention mechanism [60] with
real-valued attention weights and where each head is tasked with producing a linear combination
of the input spatial signals.

Finally, we can inspect the attention given by mDSF to each input channel by computing the
“effective channel importance” metric 3 φ ∈ RC where

φj =

√√√√ C′∑
i=1

Wij
2 . (4)

Intuitively, φ measures how much each input channel is used by mDSF to produce the output
virtual channels. A normalized version

φ̂ =
φ

maxiφi
(5)

can also be used to obtain a value between 0 and 1. This straightforward way of inspecting the
functioning of the DSF module facilitates the identification of important or noisy channels.

To further help our models learn to be robust to noise, we design a data augmentation
procedure that randomly corrupts channels. Specifically, channel corruption is simulated by
performing a masked channel-wise convex combination of input channels and Gaussian white
noise Z ∈ RC×T :

X̃ = (1− η) diag(ν)X + η diag(ν)Z + diag(1− ν)X , (6)

(C′ > C) or perform dimensionality reduction to reduce computational complexity (C′ < C).
2In practice, if a channel is “flat-lining” (has only 0s) inside a window and therefore has a variance of 0, its

log-variance is replaced by 0. Similarly, if a covariance matrix eigenvalue is 0 when computing the matrix logarithm
(see Appendix A), its logarithm is replaced by 0.

3“Effective channel importance” measures how useful the actual data of a channel is. It is not to be confused
with the theoretical importance of a channel, i.e., the fact that in theory some channels (given good signal quality)
might be more useful for some tasks than other channels. Therefore, in this work, when we measure or discuss the
“importance” of a channel, we refer to the usefulness of the actual signal collected with that channel with respect
to the task. For instance, a corrupted channel will likely have low “importance”, although the neurophysiological
information available at that location would be useful should the channel not be corrupted. The use of the word
importance in the present context is in line with the literature in statistical machine learning referring to “feature
importance” as quantified for example using “permutation importance” [61].
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where Zi,j ∼ N (0, σ2
n) for i ∈ JT K and j ∈ JCK , η ∈ [0, 1] controls the relative strength of the

noise, and ν ∈ {0, 1}C is a masking vector that controls which channels are corrupted. The
operator diag(x) creates a square matrix filled with zeros whose diagonal is the vector x. Here,
ν is sampled from a multinouilli distribution with parameter p. Each window X is individually
corrupted using random parameters σn ∼ U(20, 50) µV, η ∼ U(0.5, 1), and a fixed p of 0.5.

2.3 Computational considerations

We set the following hyperparameters when training deep neural networks: optimizer, learning
rate schedule, batch size, regularization strength (number of training epochs, weight decay,
dropout) and parameter initialization scheme. In all experiments, we used the AdamW optimizer
[62] with β1 = 0.9, β2 = 0.999, a learning rate of 10−3 and cosine annealing. The parameters of
all neural networks were randomly initialized using uniform He initialization [63]. Dropout [64]
was applied to fΘ’s fully connected layer at a rate of 50% and weight decay was applied to the
trainable parameters of all layers of both fΘ and hΘDSF

. Moreover, during training, the loss was
weighted to optimize balanced accuracy. Some hyperparameters were tuned on a dataset-specific
basis and are described along with the datasets (i.e., weight decay and batch size).

Deep learning and baseline models were trained using a combination of the braindecode
[12], MNE-Python [65], PyTorch [66], pyRiemann [67], mne-features [68] and scikit-learn [69]
packages.4 Finally, deep learning models were trained on 1 or 2 Nvidia Tesla V100 or P4 GPUs
for anywhere from a few minutes to 7 hours, depending on the amount of data, early stopping
and GPU configuration.

3 Experiments

3.1 Downstream tasks

We studied noise robustness through two common EEG classification downstream tasks: sleep
staging and pathology detection. First, sleep staging, a critical step in sleep monitoring, allows
the diagnosis and study of sleep disorders such as apnea and narcolepsy [70]. This 5-class
classification problem consists of predicting which sleep stage (W (wake), N1, N2, N3 (different
levels of sleep) or R (rapid eye movement periods)) an individual is in, in non-overlapping 30-s
windows of overnight recordings. While a large number of machine learning approaches have
been proposed to perform sleep staging [71, 14, 8, 48], the handling of corrupted channels has
not been addressed in a comprehensive manner yet, as channel corruption is less likely to occur
in clinical and laboratory settings than in the real-world settings we consider here5.

Second, the pathology detection task aims at detecting neurological conditions such as epilepsy
and dementia from an individual’s EEG [73, 74]. In a simplified formulation this gives rise to
a binary classification problem where recordings have to be classified as either pathological or
non-pathological. Such recordings are typically carried out in well-controlled settings (e.g., in a
hospital [75]) where sources of noise can be monitored and mitigated in real-time by experts.
To test pathology detection performance in the context of mobile EEG acquisition, we used a
limited set of electrodes, in contrast to previous work [76, 43, 44].

4Code used for data analysis can be found at https://github.com/hubertjb/dynamic-spatial-filtering.
5A recent study reported training a neural network on artificially-corrupted sleep EEG data, with a goal similar

to ours [72]; however, this study only appears as a Supplement with little information on the methods and results.

8

https://github.com/hubertjb/dynamic-spatial-filtering


These two tasks are further described in Section 3.3 when discussing the data used in our
experiments.

3.2 Compared methods

We compared the performance of the proposed DSF and data augmentation method to other
established approaches. In total, we contrasted combinations of three machine learning pipelines
and three different noise-handling strategies.

We consider the following machine learning pipelines: (1) end-to-end deep learning (with and
without the DSF module) from raw signals, (2) filter-bank covariance matrices with Riemannian
tangent space projection and logistic regression [67, 77, 78, 21] (which we refer to as “Riemann”),
and (3) handcrafted features and random forest (RF) [44].

We used ConvNet architectures as fΘ in deep learning pipelines (Appendix B). For pathology
detection, we used the ShallowNet architecture from [12] which parametrizes the frequency-band
common spatial patterns (FBCSP) pipeline [44]. We used it without modifying the architecture,
yielding a total of 13,482 trainable parameters when C = 6. For sleep staging, we used a 3-layer
ConvNet which takes 30-s windows as input [14, 79], with a total of 18,457 trainable parameters
when C = 4 and an input sampling frequency of 100 Hz. Finally, when evaluating DSF, we added
modules mDSF before the input layer of each neural network. The input dimensionality of mDSF

depends on the chosen spatial information extraction transform Φ(X): either C (log-variance) or
C(C + 1)/2 (vectorized covariance matrix). We fixed the hidden layer size of mDSF to C2 units,
while the output layer size depended on the chosen C ′. The DSF modules added between 420
and 2,864 trainable parameters to those of fΘ depending on the configuration.

The Riemann pipeline first applied a filter bank to the input EEG, yielding narrow-band
signals in the 7 bands bounded by (0.1, 1.5, 4, 8, 15, 26, 35, 49) Hz. Next, covariance matrices
were estimated per window and frequency band using the OAS algorithm [80]. The covariance
matrices were then projected into their Riemannian tangent space exploiting the Wasserstein
distance to estimate the mean covariance used as the reference point [81, 82]. The vectorized
covariance matrices with dimensionality of C(C + 1)/2 were finally z-score normalized using the
mean and standard deviation of the training set, and fed to a linear logistic regression classifier.

The handcrafted features baseline, inspired by [44] and [25], relied on 21 different feature
types: mean, standard deviation, root mean square, kurtosis, skewness, quantiles (10, 25, 75 and
90th), peak-to-peak amplitude, frequency log-power bands between (0, 2, 4, 8, 13, 18, 24, 30, 49)
Hz as well as all their possible ratios, spectral entropy, approximate entropy, SVD entropy, Hurst
exponent, Hjorth complexity, Hjorth mobility, line length, wavelet coefficient energy, Higuchi
fractal dimension, number of zero crossings, SVD Fisher information and phase locking value.
This resulted in 63 univariate features per EEG channel, along with

(
C
2

)
bivariate features,

which were concatenated into a single vector of size 63 × C +
(
C
2

)
(e.g., 393 for C = 6). In

the event of non-finite values in the feature representation of a window, we imputed missing
values feature-wise using the mean of the feature computed over the training set. Finally, feature
vectors were fed to a random forest model.

When applying traditional pipelines to pathology detection experiments, we aggregated the
input representations recording-wise as each recording has a single label (i.e., pathological or not).
To do so, we used the geometric mean on covariance matrices and the median on handcrafted
features. Deep learning models, on the other hand, were trained on non-aggregated windows,
but their performance was evaluated recording-wise by averaging the predictions over windows
within each recording. Hyperparameter selection for logistic regression and random forest models
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Table 2: Description of the datasets used in this study.

TUAB [85, 75] PC18 (train) [83, 84] MSD

Recording settings Hospital Sleep clinic At-home
# recordings 2,993 994 98
# unique subjects 2,329 994 67
Sampling frequency (Hz) 250, 256 or 512 200 256
# EEG channels 27 to 36 6 4
Reference Common average M1 or M2 Fpz
Labels Normal, abnormal W, N1, N2, N3, R W, N1, N2, N3, R

is described in Appendix C.
We combined the machine learning approaches described above with the following noise-

handling strategies: (1) no denoising, i.e., models are trained directly on the data without
explicit or implicit denoising, (2) Autoreject [33], an automated correction pipeline, and (3) data
augmentation, which randomly corrupts channels during training.

Autoreject is a denoising pipeline that explicitly handles noisy epochs and channels in a fully
automated manner [33]. First, using a cross-validation procedure, it finds optimal channel-wise
peak-to-peak amplitude thresholds to be used to identify bad channels in each window separately.
If more than κ channels are bad, the epoch is rejected. Otherwise, up to ρ bad channels
are reconstructed using the good channels with spherical spline interpolation. In pathology
detection experiments, we allowed Autoreject to reject bad epochs, as classification was performed
recording-wise. For sleep staging experiments however, we did not reject epochs as one prediction
per epoch was needed, but still used Autoreject to automatically identify and interpolate bad
channels. In both cases, we used default values for all parameters as provided in the Python
implementation6, except for the number of cross-validation folds, which we set to 5.

Finally, data augmentation consists of artificially corrupting channels during training to
promote invariance to missing channels. When training neural networks, the data augmentation
transform was applied on-the-fly to each batch. For feature-based methods, we instead precom-
puted augmented datasets by applying the augmentation multiple times to each window (10
for pathology detection, 5 for sleep staging), and then extracting features from the augmented
windows.

3.3 Data

Approaches were compared on three datasets (Table 2): for pathology detection on the TUH
Abnormal EEG dataset [75] and for sleep staging on both the Physionet Challenge 2018 dataset
[83, 84] and an internal dataset of mobile overnight EEG recordings.

The TUH Abnormal EEG dataset v2.0.0 (TUAB) [85, 75] contains 2,993 recordings of 15
minutes or more from 2,329 different patients who underwent a clinical EEG exam in a hospital
setting. Each recording was labeled as “normal” (1,385 recordings) or “abnormal” (998 recordings)
based on detailed physician reports. Most recordings were sampled at 250 Hz and comprised
between 27 and 36 electrodes. The corpus is already divided into a training and an evaluation
set with 2,130 and 253 recordings each. The mean age across all recordings is 49.3 years (min: 1,
max: 96) and 53.5% of recordings are of female patients. The TUAB data was preprocessed in

6https://github.com/autoreject/autoreject
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the following manner. The first minute of each recording was cropped to remove noisy data that
occurs at the beginning of recordings [44]. Longer files were cropped such that a maximum of 20
minutes was used from each recording. Then, 21 channels common to all recordings were selected
(Fp1, Fp2, F7, F8, F3, Fz, F4, A1, T3, C3, Cz, C4, T4, A2, T5, P3, Pz, P4, T6, O1 and O2).
EEG channels were downsampled to 100 Hz and clipped at ±800µV . Finally, non-overlapping
windows of 6 seconds were extracted, yielding windows of size (600× 21). Deep learning models
were trained on TUAB with a batch size of 256 and weight decay of 0.01.

Physionet Challenge 2018 dataset (PC18) The Physionet Challenge 2018 (PC18) dataset
[83, 84] contains recordings from a total of 1,983 different individuals with (suspected) sleep
apnea whose EEG, EOG, chin EMG, respiration airflow and oxygen saturation were monitored
overnight. Bipolar EEG channels F3-M2, F4-M1, C3-M2, C4-M1, O1-M2 and O2-M1 were
recorded at 200 Hz. Sleep stage annotations were obtained from 7 trained scorers following
the AASM manual [34] (W, N1, N2, N3 and R). We focused our analysis on a subset of 994
recordings for which these annotations are publicly available. In this subset of the data, mean age
is 55 years (min: 18, max: 93) and 33% of participants are female. For PC18, the EEG was first
filtered using a 30 Hz FIR lowpass filter with a Hamming window to reject higher frequencies
that are not critical for sleep staging [14, 86]. The EEG channels were then downsampled by a
factor of two to 100 Hz to reduce the dimensionality of the input data. Finally, non-overlapping
30-second windows (3000× 6) were extracted. Experiments on PC18 used a batch size of 64 and
weight decay of 0.001.

Muse Sleep Dataset (MSD) We lastly tested our approach on real-world mobile EEG data,
in which channel corruption is likely to occur naturally. We used an internal dataset of overnight
sleep recordings collected with the Muse S EEG headband from InteraXon Inc. (Toronto,
Canada). This data was collected in accordance with the privacy policy (July 2020) users must
agree to when using the Muse headband7 and which ensures their informed consent concerning
the use of EEG data for scientific research purposes. The Muse S is a four-channel dry EEG
device (TP9, Fp1, Fp2, TP10, referenced to Fpz), sampled at 256 Hz. The Muse headband has
been previously used for event-related potentials research [87], brain performance assessment [6],
research into brain development [88], sleep staging [89], and stroke diagnosis [90], among others.
A total of 98 partial and complete overnight recordings (mean duration: 6.3 h) from 67 unique
users were selected from InteraXon’s anonymized database of Muse customers, and annotated by
a trained scorer following the AASM manual. Despite the derivations being different from the
common montage used in polysomnography, the typical microstructure necessary to identify sleep
stages, e.g., sleep spindles, k-complexes and slow waves, can be easily seen in all four channels.
Therefore, sleep stage annotations were obtained from actual EEG activity rather than ocular or
muscular artifacts. Mean age across all recordings is 37.9 years (min: 21, max: 74) and 45.9% of
recordings are of female users. Preprocessing of MSD data was the same as for PC18, with the
following differences: (1) channels were downsampled to 128 Hz, (2) missing values (occurring
when Bluetooth packets are lost) were replaced by linear interpolation using surrounding valid
samples, (3) after filtering and downsampling, samples which overlapped with the original missing
values were replaced by zeros, and (4) channels were zero-meaned window-wise. We used a batch
size of 64 and weight decay of 0.01 for MSD experiments.

7https://choosemuse.com/legal/privacy/
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We split the available recordings from TUAB, PC18 and MSD into training, validation and
testing, such that recordings used for testing were not used for training or validation. For TUAB,
we used the provided evaluation set as the test set. The recordings in the development set
were split 80-20% into a training and a validation set. Therefore, we used 2,171, 543 and 276
recordings in the training, validation and testing sets. For PC18, we used a 60-20-20% random
split, meaning there were 595, 199 and 199 recordings in the training, validation and testing sets
respectively. Finally, for MSD, we retained the 17 most corrupted recordings for the test set
(Appendix D) and randomly split the remaining 81 recordings into training and validation sets
(65 and 16 recordings, respectively). This was done to emulate a situation where training data is
mostly clean, and strong channel corruption occurs unexpectedly at test time. We performed
hyperparameter selection on each of the three datasets using a cross-validation strategy on the
combined training and validation sets.

We repeated training on different training-validation splits (two for PC18, three for TUAB
and MSD). Neural networks and random forests were trained three times per split on TUAB and
MSD (two times on PC18) with different parameter initializations. Training ran for at most 40
epochs or until the validation loss stopped decreasing for a period of a least 7 epochs on TUAB
and PC18 (a maximum of 150 epochs with a patience of 30 for MSD, given the smaller size of
the dataset).

Finally, accuracy was used to evaluate model performance for pathology detection experiments,
while balanced accuracy (bal), defined as the average per-class recall, was used for sleep staging
due to important class imbalance (the N2 class is typically much more frequent than other
classes).

3.4 Evaluation under conditions of noise

The impact of noise on downstream performance and on the predicted DSF filters was evaluated
in three steps. First, we artificially corrupted the input EEG windows of TUAB and PC18 by
using a similar process to our data augmentation strategy (Equation 6). We used the same values
for η, σ and p, but used a single mask ν per recording, such that the set of corrupted channels
remained the same across a recording. Before corrupting, we subsampled a few EEG channels to
recreate the sparse montage settings of TUAB (Fp1, Fp2, T3, T4, Fz, Cz) and PC18 (F3-M2,
F4-M1, O1-M2, O2-M1). We then analyzed downstream performance under varying noise level
conditions. Second, we ran experiments on real corrupted data (MSD) by training our models on
the cleanest recordings and evaluating their performance on the noisiest recordings. Finally, we
analyzed the distribution of DSF filter weights predicted by a subset of the trained models.

4 Results

4.1 Performance of existing methods degrades under channel corruption

How do standard EEG classification methods fare against channel corruption? If channels have
a high probability of being corrupted at test time, can noise be compensated for by adding
more channels? To answer these questions, we measured the performance of three baseline
approaches (Riemannian geometry, handcrafted features and a “vanilla” net, i.e., ShallowNet
without attention) trained on a pathology detection task on three different montages as channels
were artificially corrupted. Results are presented in Fig. 2.

12



Figure 2: Impact of channel corruption on pathology detection performance of standard models.
We trained a filter-bank Riemannian geometry pipeline (blue), a random forest on handcrafted
features (orange) and a standard ShallowNet architecture (green) on the TUAB dataset, given
montages of 2 (T3, T4), 6 (Fp1, Fp2, T3, T4, Fz, Cz) or 21 (all available) channels. Performance
was then evaluated on artificially corrupted test data under two scenarios: (A) the η noise
strength parameter was varied given a constant channel corruption probability of 50%, and (B)
the number of corrupted channels was varied given a constant noise strength of 1. Error bars
show the standard deviation over 3 models for handcrafted features and 6 models for neural
networks. While traditional feature-based models fared slightly better than a vanilla neural
network in some cases (bottom right), adding noise predictably degraded the performance of all
three models.
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All three baseline methods performed similarly and suffered considerable performance degra-
dation as stronger noise was added (Fig. 2A) and as more channels were corrupted (Fig. 2B).
First, under progressively noisier conditions, adding more channels did not generally improve
performance. Strikingly, adding channels even hampered the ability of the models to handle
noise. Indeed, the impact of noise was much less significant for 2-channel models than for 6- or
21-channel models. The vanilla net performed slightly better than the other methods in low
noise conditions, however it was less robust to heavy noise when using 21 channels.

Second, when an increasing number of channels was corrupted (Fig. 2B), using denser
montages did improve performance, although by a much smaller factor than what might be
expected. For instance, losing one or two channels with the 21-channel models only yielded a
minor decrease in performance, while models trained on sparser montages lost as much as 30%
accuracy. However, even when as many as 15 channels were still available (i.e., six corrupted
channels), models trained on 21 channels performed worse than 2- or 6-channel models without
any channel corruption, despite having access to much more spatial information on average.
Interestingly, when models were trained on 21 channels, traditional feature-based methods were
more robust to corruption than a vanilla net up to a certain point, however this did not hold for
sparser montages.

These results suggest that standard approaches cannot handle significant channel corruption
at a satisfactory level, even when denser montages are available. Therefore, better tools are
necessary to train noise-robust models.

4.2 Attention and data augmentation mitigates performance loss under chan-
nel corruption

If including additional EEG channels does not by itself resolve performance degradation under
channel corruption, what can be done to improve the robustness of standard EEG classification
methods? We evaluated the performance of our models when combined with three denoising
strategies (Section 3.2) for a fixed 6-channel montage8. Results on pathology detection (TUAB)
are presented in Fig. 3.

Without denoising, all methods showed a steep performance decrease as noise became stronger
(Fig. 3A) or more channels were corrupted (Fig. 3B). Automated noise handling (second column)
reduced differences between methods when noise strength was increased (Fig. 3A), and helped
marginally improve robustness when only one or two channels were corrupted (Fig. 3B). However,
it is only with data augmentation that clear performance improvements could be obtained,
allowing all methods to perform considerably better in the noisiest settings (third column).
Performance of traditional baselines was degraded however in low noise conditions. Neural
networks, in contrast, saw their performance increase the most across noise strengths and
numbers of corrupted channels. Whereas their performance decreased by at least 34.6% when
going from no noise to strongest noise with the other strategies, training neural networks with
data augmentation reduced performance loss to 5.3-10.5% on average. The DSF models improved
performance further still over the vanilla ShallowNet by yielding an improvement of e.g., 1.8-
7.5% across noise strengths. Finally, adding the matrix logarithm and the soft-thresholding
nonlinearity (DSFm-st, in magenta) yielded marginal improvements over DSFd. Under strong
noise corruption (η = 1) our best performing model (DSFm-st + data augmentation) yielded an

8This 6-channel montage (Fp1, Fp2, T3, T4, Fz, Cz) performed similarly to a 21-channel montage in no-
corruption conditions (Fig. 2) while being more representative of the sparse montages likely to be found in mobile
EEG devices.
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Figure 3: Impact of channel corruption on pathology detection performance for models coupled
with (1) no denoising strategy, (2) Autoreject and (3) data augmentation. We compared the
per recording accuracy on the TUAB evaluation set (6-channel montage) as (A) the η noise
strength parameter was varied given a constant channel corruption probability of 50%, and (B)
the number of corrupted channels was varied given a constant noise strength of 1. Error bars
show the standard deviation over 3 models for handcrafted features and 6 models for neural
networks. Using an automated noise handling method (Autoreject; second column) provided
some improvement in noise robustness over using no denoising strategy at all (first column).
Data augmentation benefited all methods, but deep learning approaches and in particular DSF
(third column, in red and magenta) yielded the best performance under channel corruption.
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accuracy improvement of 29.4% over the vanilla net without denoising. Overall, this suggests
that learning end-to-end to both predict and handle channel corruption at the same time is key
to successfully improving robustness.

Next, we repeated this analysis on a sleep staging task using the PC18 dataset (Fig. 4).
As above, not using a denoising strategy led to a steep decrease in performance. Once more,
Autoreject leveled out differences between the different methods and boosted performance under
single-channel corruption, but otherwise did not improve or degrade performance as compared to
training models without denoising. Data augmentation, in contrast, again helped improve the
robustness of all methods. Interestingly, it benefited non-deep learning approaches more than in
pathology detection, yielding for instance a similar performance for both handcrafted features
and the vanilla StagerNet. DSF remained the most robust though with both DSFd and DSFm-st
consistently outperforming all other methods. The performance of these two methods was highly
similar, producing mostly overlapping lines (Fig. 4).

Finally, do these results hold under more intricate, naturally occurring corruption such as
found in at-home settings? To verify this, we trained the same sleep staging models as above
on the cleanest recordings of MSD (4-channel mobile EEG), and evaluated their performance
on the 17 most corrupted recordings of the dataset. Results are presented in Fig. 5. As above,
the Riemann approach did not perform well, while the handcrafted features approach was
more competitive with the vanilla StagerNet without denoising. However, contrary to the
above experiments, noise handling alone did not improve the performance of our models. Data
augmentation was even detrimental to the Riemann and vanilla net models on average (see
Fig. S3). Combined with dynamic spatial filters (DSFd and DSFm-st) though, data augmentation
helped improve performance over other methods. For instance, DSFm-st with data augmentation
yielded a median balanced accuracy of 65.0%, as compared to 58.4% for a vanilla network without
denoising. Performance improvements were as high as 14.2% when looking at individual sessions.
Importantly, all recordings saw an increase in performance, showing the ability of our proposed
approach to improve robustness in noisy settings.

Taken together, our experiments on simulated and natural channel corruption indicate that
a strategy combining an attention mechanism and data augmentation yields higher robustness
than traditional baselines and existing automated noise handling methods.

4.3 Attention weights are interpretable and correlate with signal quality

Our experiments above demonstrated that DSF with data augmentation led to higher classification
performance than “no denoising” and Autoreject baselines on both pathology detection and sleep
staging tasks, under simulated and real-world channel corruption. Given the validated benefit of
using DSF, can we explain the behavior of the module by inspecting its internal functioning?
If so, in addition to improving robustness, DSF could also be used to monitor the effective
importance of each incoming EEG channel, providing an interesting “free” insight into signal
quality. To test this, we analyzed the effective channel importance φi of each EEG channel i to
the spatial filters over the TUAB evaluation set. Results are shown in Fig. 6.

Overall, the attention weights behaved as expected: the more usable (i.e., noise-free) a
channel was, the higher its effective channel importance φi was relative to those of other channels.
For instance, without any additional corruption, the DSF module focused most of its attention on
channels T3 and T4 (Fig. 6A, first column), known to be highly relevant for pathology detection
[43, 44]. However, when channel T3 was replaced with white noise, the DSF module reduced its
attention to T3 and instead further increased its attention on other channels (second column).
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Figure 4: Impact of channel corruption on sleep staging performance for models coupled with (1)
no denoising strategy, (2) Autoreject and (3) data augmentation. We compared the test balanced
accuracy on PC18 (4-channel montage) as (A) the η noise strength parameter was varied given a
constant channel corruption probability of 50%, and (B) the number of corrupted channels was
varied given a constant noise strength of 1. Error bars show the standard deviation over 3 models
for handcrafted features and 4 models for neural networks. Similarly to Fig. 3, automated noise
handling provided a marginal improvement in noise robustness in some cases, data augmentation
yielded a performance boost for all methods, while a combination of data augmentation and DSF
(third column, red and magenta lines which overlap) led to the best performance under channel
corruption.
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Figure 5: Recording-wise sleep staging results on MSD. Test balanced accuracy is presented for
the Riemann, handcrafted features and vanilla net models without a denoising strategy, and for
the vanilla net, DSFd and DSFm-st models with data augmentation (DA). Each point represents
the average performance obtained by models with different random initializations (1, 3 and 9
initializations for Riemann, handcrafted features and deep learning models, respectively) on each
recording from the test set of MSD. Lines represent individual recordings. The best performance
was obtained by combining data augmentation with DSF with logm(cov) and soft-thresholding
(DSFm-st).
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Figure 6: Effective channel importance and spatial filters predicted by the DSF module trained
on pathology detection. We compared three scenarios on the TUAB evaluation set: no added
corruption, only T3 is corrupted and both T3 and T4 are corrupted. (A) The corruption process
was carried out by replacing a channel with white noise (σ ∼ U(20, 50) µV), as illustrated with
a single 6-s example window (first row). (B) The distribution of effective channel importance
values φ is presented using density estimate and box plots. Corrupted channels are significantly
down-weighted in the spatial filtering. (C) A subset of the spatial filters (median across all
windows) are plotted as topomaps for the three scenarios. Corrupting T3 overall reduced the
effective importance attributed to T3 and slightly boosted T4 values, while corrupting both T3
and T4 led to a reduction of φ for both channels, but to an increase for the other channels. This
change was also reflected in the overall topography: dipole-like patterns (indicated by white
arrows) were dynamically modified to focus on clean channels (e.g., Filter 3).
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Similarly, when both T3 and T4 were corrupted the module reduced its attention on both
channels and leveraged the remaining channels instead, i.e., mostly Fp1 and Fp2 (third column).
Interestingly, this change is reflected by the topography of the predicted filters WDSF (Fig. 6B):
for instance, some dipolar filters computing a difference between left and right hemispheres
were dynamically adapted to rely on Fp1 or Fp2 instead of T3 or T4 (e.g., filters 1, 3 and 5).
Intuitively, the network has learned to ignore corrupted data and to focus its attention on the
good EEG channels, and to do so in a way that preserves the meaning of each virtual channel.

To further verify the interpretability of DSF’s attention weights on naturally-corrupted
real-world EEG data, we visualized the normalized effective channel importance metric alongside
a time-frequency representation of the raw EEG in Fig. 7. As expected, the metric dropped to
values close to zero when a channel suffered heavy corruption, e.g. Fp1 throughout the recording
(left column) and TP9 intermittently (right column). These results again illustrate the capacity
of DSF to ignore corrupted data, but also highlight its capacity to dynamically adapt to changing
noise characteristics.

4.4 Deconstructing the DSF module

What might explain the capacity of the DSF module to improve robustness to channel corruption
and provide interpretable attention weights? By comparing DSF to simpler interpolation-based
methods, DSF can be understood as a more complex version of a simple attention-based model
that decides how much each input EEG channel should be replaced by its interpolated version
(details provided in Appendix F). With this connection in mind, we performed an ablation study
to understand the importance of each additional mechanism leading to the formulation of the
DSF module. Fig. 8 shows the performance of the different attention module variations trained
on the pathology detection task with data augmentation, under different noise strengths.

Naive interpolation of each channel based on the C − 1 others (orange) performed similarly
to or worse than the vanilla ShallowNet model (blue) across noise strengths. Introducing a single
attention weight (green) to control how much channels should be mixed with their interpolated
version only improved performance for noise strengths above 0.5. Using one attention weight per
channel (red) further improved performance, this time across all noise strengths. The addition of
dynamic interpolation (magenta), in which both the attention weights and an interpolation matrix
are generated based on the input EEG window, yielded an additional substantial performance
boost. Relaxing the constraints on the interpolation matrix and adding a bias vector to obtain
DSFd (brown) led to very similar performance. Finally, the addition of the soft-thresholding
non-linearity and the use of the matrix logarithm of the covariance matrix (DSFm-st, pink)
further yielded performance improvements.

Together, these results show that combining channel-specific interpolation and dynamic
prediction of interpolation matrices is necessary to outperform simpler attention module formula-
tions. Performance can be further improved by providing the full covariance matrix as input to
the attention module and encouraging the model to produce 0-weights with a nonlinearity.

5 Discussion

We introduced Dynamic Spatial Filtering (DSF), a new method to handle channel corruption
in EEG based on an attention mechanism architecture and a data augmentation transform.
Plugged into a neural network whose input has a spatial dimension (e.g., EEG channels), DSF
predicts spatial filters that allow the model to dynamically focus on important channels and
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Figure 7: Normalized effective channel importance φ̂ predicted by the DSF module on two MSD
sessions with naturally-occurring channel corruption. Each column represents the log-spectrogram
of the four EEG channels of one recording (Welch’s periodogram on 30-s windows, using 2-s
windows with 50% overlap). The red line above each spectrogram is the normalized effective
channel importance φ̂i (see Eq. 5), between 0 and 1, computed using a DSFm-st model trained
on MSD. When a channel is corrupted throughout the recording (left column, second row, as
indicated by broad spectrum high power noise), DSF mostly “ignores” it by predicting small
weights for that channel. This results in φ̂i values close to 0 for Fp1. When the corruption is
intermittent (right column, first row), DSF dynamically adapts its spatial filters to only ignore
important channels when they are corrupted. This is the case for channel TP9 around hours 4,
6, and 7, where φ̂i is again close to 0.
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Figure 8: Performance of different attention module architectures on the TUAB evaluation set
under increasing channel corruption noise strength. Each line represents the average of 6 models
(2 random initializations, 3 random splits). Models that dynamically generate spatial filters, such
as DSF, outperform simpler architectures across noise levels.

ignore corrupted ones. DSF shares links with interpolation-based methods traditionally used
in EEG processing but in contrast does not require separate preprocessing steps that are often
expensive with dense montages or poorly adapted to sparse ones. DSF outperformed feature-
based approaches and automated denoising pipelines under simulated corruption on two large
public datasets and in two different predictive tasks. Similar results were obtained on a smaller
dataset of mobile sparse EEG with strong natural corruption, demonstrating the applicability of
our approach to challenging at-home recording conditions. Finally, the inner functioning of DSF
can easily be inspected using a simple measure of effective channel importance and topographical
maps. Overall, DSF is computationally lightweight, easy to implement, and improves robustness
to channel corruption in sparse EEG settings.

5.1 Handling EEG channel loss with existing denoising strategies

As opposed to the more general problem of “noise handling” (Table 1), we focused our experiments
on the problem of channel corruption in sparse montages. In light of our results, we explain why
existing strategies are not well suited for handling channel corruption, while DSF is.

Our first experiment (Section 4.1) demonstrated that adding more EEG channels does not
necessarily make a classifier more robust to channel loss. In fact, we observed the opposite: a
model trained on two channels can outperform 6- and 21-channel models under heavy channel
corruption (Fig. 2A). This can be explained by two phenomena. First, increasing the number of
channels increases the input dimensionality of classifiers, making them more likely to overfit the
training data. Tuning regularization hyperparameters can help with this, but does not solve the
problem by itself. Second, in vanilla neural networks, the weights of the first spatial convolution
layer, i.e., the spatial filters applied to the input EEG, are fixed. If one of the spatial filter
relies mostly on one specific (theoretically) important input channel, e.g., T3, and this input
channel is corrupted, all successive operations on the resulting virtual channel will carry noise as
well. This highlights the importance of dynamic reweighting: with DSF, we can find alternative
spatial filters when a theoretically important channel is corrupted, and even completely ignore a
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corrupted channel if it contains no useful information.
Since adding channels is not on its own a solution, can traditional EEG denoising techniques

help handle the channel corruption problem? A seemingly simple approach would be to use a fixed
threshold on a relevant descriptor of signal quality (e.g., amplitude, variance or spectral slope)
to identify bad channels window-by-window. While this approach may appear straightforward,
it requires making non-trivial choices: Which descriptor should we use? How should we select
threshold values? How do we handle bad channels once they have been identified? Moreover,
this approach is likely to perform suboptimally as different EEG hardware, channel and reference
positions, preprocessing steps and recording conditions, especially in out-of-the-lab settings, all
have an impact on the power and morphology of the signals. As a result, fixed threshold values
will work well in some cases, but fail to catch actual noise (or be too strict) in others.

Instead, it would make sense to adapt thresholds in a data-driven manner. This is the basis
for Autoreject [33] which selects amplitude thresholds using a cross-validation procedure and
interpolates bad channels using head geometry. In our experiments, automated denoising did
help but only marginally (middle column of Fig. 3 and 4). The relative ineffectiveness of this
approach can be explained by the very low number of available channels in our experiments
(4 or 6) which likely harmed the quality of the interpolation. Our results therefore do not
invalidate the use of interpolation-based methods (whose performance has been demonstrated
multiple times on denser montages and in challenging noise conditions [31, 32, 33]) but only
expose their limitations when working with few channels. Still, there are other reasons why
interpolation-based methods might not be optimal in settings like the ones studied in this paper.
For instance, completely replacing a noisy channel by its interpolated version means that any
remaining usable information in this channel will be discarded and that any noise contained in
the other (non-discarded) channels will end up in the interpolated channel.

Finally, an interesting case to consider is when tasks can be performed accurately with a
single good channel, e.g., sleep staging [91]. In such a case, could a single-channel model perform
as well as a multi-channel model, without the need to worry about the challenges discussed
above? While this may be true if we have access to a reliably good channel, as soon as it is
corrupted (e.g., in real-world mobile EEG settings) it can no longer be used by the model.
An ensemble of single-channel models might be an interesting solution; however this requires
knowing both which channel to focus on and when, which is not trivial and requires additional
logic and processing pipeline components. Moreover, to improve upon such a model by making
use of spatial information [14] the model should be trained on all possible combinations of
good channels, which can quickly become prohibitive. DSF offers a compelling solution to the
challenges encountered with single-channel models thanks to its end-to-end dynamic reweighting
capabilities.

5.2 Impact of the input spatial representation

The representation used by the DSF module constrains the types of patterns that can be leveraged
to produce spatial filters. For instance, using the log-variance of each channel allows detecting
large-amplitude corruption or artifacts, however this makes the DSF model blind to more subtle
kinds of interactions between channels. These interactions can be very informative in certain
cases, e.g., when one channel is corrupted by a noise source which also affects other channels but
to a lesser degree.

Our experiments suggested that models based on log-variance (DSFd) or vectorized covariance
matrices (DSFm-st) were roughly equivalent in simulated noise conditions (Fig. 3-4). This is
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likely because the additive white noise we used was not spatially correlated and therefore no
spatial interactions could be leveraged by the DSF modules to identify noise. On naturally
corrupted data however, using the full spatial information along with soft-thresholding was
critical to outperforming other methods (Fig. 5). This is likely because the noise in at-home
recordings was often correlated spatially and because corrupted channels, often containing mostly
noise (Appendix D), could be completely ignored by DSF.

Related attention block architectures have used average-pooling [10] or a combination of
average- and max-pooling [11] to summarize channels. Intuitively, average pooling should not
yield a useful representation of the input, as EEG channels are often assumed to have zero-
mean, or are explicitly highpass filtered to remove their DC offset. Max-pooling, on the other
hand, does capture amplitude information that overlaps with second-order statistics, however it
does not allow differentiating between large transient artifacts and more temporally consistent
corruption. Experiments on TUAB (not shown) confirmed this: a combination of min- and
max-pooling was less robust to noise than covariance-based models. From this perspective,
vectorized covariance matrices or similar representations (Appendix A) are an ideal choice of
spatial representation. Ultimately, DSF could be fed with any learned representations with a
spatial dimension, e.g., filter-bank representations.

5.3 Impact of the data augmentation transform

Data augmentation was critical to developing invariance to corruption (Section 4.2). For instance,
under simulated corruption, a vanilla neural network trained with our data augmentation
transform gained considerable robustness, even without an attention mechanism. Does this
mean that data augmentation is the key ingredient to DSF? In fact, our results on naturally
corrupted data (Fig. 5) showed that data augmentation without attention negatively impacted
performance and that adding an attention mechanism was necessary to improve performance.
Moreover, traditional pipelines generally did not benefit from data augmentation as much as
neural networks did, and even saw their performance degrade considerably in certain cases,
e.g., in low noise conditions in pathology detection experiments and on the real-world data for
the Riemann models.

Nonetheless, these results highlight the role of data augmentation transforms in developing
robust representations of EEG. Recently, work in self-supervised learning for EEG [79, 92, 93]
has further suggested the importance of well-characterized data augmentation transforms for
representation learning. Importantly though, the motivation behind the use of data augmentation
in our experiments was not primarily to reduce overfitting due to limited sample sizes like
commonly done in deep learning, but rather to evaluate methods under controlled corruption of
experimental data. Ultimately, our additive white noise transform could be combined with channel
masking and shuffling [94] and other potential corruption processes such as those described in
[92, 93].

5.4 Interpreting dynamic spatial filters to measure effective channel impor-
tance

The results in Fig. 6 demonstrated that visualizing the spatial filters produced by the DSF
module can reveal the spatial patterns a model has learned to focus on (Section 4.3).

As observed in our experiments, a higher φ indicates higher effective importance of a channel
for the downstream task. For instance, temporal channels were given a higher importance in the
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pathology detection task, which is consistent with previous work [43, 44]. Similarly, in real-world
data, low φ values were given to a channel whenever it was corrupted (Fig. 7).

However, φ is not a strict measure of signal quality but more of channel usefulness: there
could be different reasons behind the boosting or attenuation of a channel by the DSF module.
Naturally, if a channel is particularly noisy, its contribution might be brought down to zero to
avoid contaminating virtual channels with noise. Conversely though, if the noise source behind a
corrupted channel is also found (but to a lesser degree) in other channels, the corrupted channel
could also be used to regress out noise and recover clean signals [95]. In other words, φ reflects
the importance of a channel conditionally to others.

Finally, using DSF to obtain a measure of channel usefulness actually opens the door to DSF
being used in non-machine learning settings. For instance, once a neural network is trained
with DSF, its effective channel importance values can be reused as an indicator of signal quality
on similar data (e.g., data collected with the same or similar hardware). Such a signal quality
metric can be helpful during data collection, or to know which parts of the recording should be
kept for analysis.

5.5 Practical considerations

When faced with channel corruption in a predictive task, which modelling and denoising strategies
should be preferred? This choice should depend on the number of available channels, as well as
on assumptions about the stationarity of the noise. When using sparse montages, as in this paper,
different solutions can lead to good results. For instance, handcrafted features with random
forests can perform well when spatial information is not critical (e.g., sleep staging, Section 4.2)
or noise is stationary [25], although they require a non-trivial feature engineering step. However,
when less can be assumed about the predictive task, e.g., corruption might be non-stationary
or spatial information is likely important, DSF with data augmentation is an effective way to
make a neural network noise-robust. Although we did not test denoising approaches on dense
montages, we can expect different methods to work well in these settings. For instance, under
stationary noise, Riemmanian geometry-based approaches were shown to be robust to the lack
of preprocessing in MEG data [21]. If, on the other hand, noise is not stationary and the
computational resources allow it, interpolation-based methods might be used to impute missing
channels before applying a predictive model (e.g., [33]). In cases where introducing a separate
preprocessing step is not desirable, DSF with data augmentation might again be a promising
end-to-end solution.9

5.6 Related work

Deep learning and noise robustness for audio data Noise robustness is of particular
interest to the speech recognition community. For example, “noise-aware training” was proposed
to train deep neural networks on noisy one-channel speech signals by providing an estimate of
the noise level as input to the network [96]. Noise-invariant representations of speech signals
were also developed by training a classifier to perform well on the speech recognition task but
badly on signal quality classification [97] or by penalizing the distance between the internal
representations of clean and noisy signals [98, 99]. Methods have also been designed to leverage
the spatial information of multiple audio channels similarly to our proposed DSF approach. Deep

9In this case, the number of parameters of the module can be controlled by e.g., selecting log-variance as the
input representation or reducing dimensionality by using fewer spatial filters than there are input channels.
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beamforming networks were used to dynamically reweight different audio channels to improve
robustness to noise, for instance with filter prediction subnetworks [100, 101, 102]. In a fashion
similar to ours, recent work also used spatial attention to reweight beamformed input speech
signals to decide which filters to focus on [103].

Attention mechanisms for EEG processing Recent efforts in the deep learning and EEG
community have led to various applications of attention mechanisms to end-to-end EEG processing.
First, some studies used attention to improve performance on a specific task by focusing on
different dimensions of an EEG representation. For instance, natural language processing-
inspired attention modules were used in sleep staging architectures to improve processing
of temporal dependencies [47, 104, 46, 48, 105]. Attention was also applied in the spatial
dimension to dynamically combine information from different EEG channels [106, 107] or even
from heterogeneous channel types [104]. In one case, spatial and temporal attention were used
simultaneously in a BCI classification task [108]. Second, attention mechanisms have been
used to enable transfer learning between different datasets with possibly different montages. In
[109], two parallel attention mechanisms allowed a neural network to focus on the channels and
windows that were the most transferable between two datasets. Combined with an adversarial
loss, this approach improved domain adaptation performance on a cross-dataset sleep staging
task. Similarly to DSF, a spatial attention block was used in [105] to recombine input channels
into a fixed number of virtual channels and allow models to be transferred to different montages.
A Transformer-like spatial attention module was also proposed to dynamically re-order input
channels [94]. In contrast to DSF, though, these approaches used attention weights in the [0, 1]
range, breaking the conceptual connection between channel recombination and spatial filtering.

5.7 Limitations

Our experiments on sleep data focused on window-wise decoding, i.e., we did not aggregate
larger temporal context but directly mapped each window to a prediction. However, modeling
these longer-scale temporal dependencies was recently shown to help sleep staging performance
significantly [45, 14, 47, 104, 46, 48, 105]. Despite a slight performance decrease, window-wise
decoding offered a simple but realistic setting to test robustness to channel corruption, while
limiting the number of hyperparameters and the computational cost of the experiments. In
practice, the effect of data corruption by far exceeded the drop in performance caused by using
slightly simpler architectures.

The data augmentation and the noise corruption strategies exploited in this work employ
additive Gaussian white noise. While this approach helped develop noise robust models, spatially
non-correlated additive white noise represents an “adversarial scenario”. Indeed, under strong
white noise, the information in higher frequencies is more likely to be lost than with e.g., pink or
brown noise. Additionally, the absence of spatial noise correlation means that spatial filtering
can less easily leverage multi-channel signals to regress out noise (Section 5.4). Exploring more
varied and realistic types of channel corruption could further help clarify the ability of DSF to
work under different conditions. Despite this, our experiments on naturally corrupted sleep data
showed that additive white noise as a data augmentation does help improve noise robustness.

Finally, we focused our empirical study of channel corruption on two clinical problems that
are prime contenders for mobile EEG applications: pathology screening and sleep monitoring.
Interestingly, these two tasks have been shown to work well even with limited spatial information
(i.e., single-channel sleep staging [91]) or to be highly correlated with simpler spectral power
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representations [43]. Therefore, future work will be required to validate the use of DSF on tasks
where fine-grained spatial patterns might be critical to successful prediction, e.g., brain age
estimation [110]. Other common EEG-based prediction tasks such as seizure detection might
benefit from DSF and will require further validation.

6 Conclusion

We presented Dynamic Spatial Filtering (DSF), an attention mechanism architecture that
improves robustness to channel corruption in EEG prediction tasks. Combined with a data
augmentation transform, DSF outperformed other noise handling procedures under simulated and
real channel corruption on three datasets. Moreover, DSF enables efficient end-to-end handling
of channel corruption, works with few channels, is interpretable and does not require expensive
preprocessing. We hope that our method can be a useful tool to improve the reliability of EEG
processing in challenging non-traditional settings such as user-administered, at-home recordings.
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[69] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al.
Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[70] Christina Jayne Bathgate and Jack D Edinger. Diagnostic criteria and assessment of sleep
disorders. In Handbook of Sleep Disorders in Medical Conditions, pages 3–25. Elsevier,
2019.

[71] Shayan Motamedi-Fakhr, Mohamed Moshrefi-Torbati, Martyn Hill, Catherine M. Hill, and
Paul R. White. Signal processing techniques applied to human sleep EEG signals—a review.
Biomedical Signal Processing and Control, 10:21 – 33, 2014.

[72] S Æ Jónsson, E Gunnlaugsson, E Finssonn, DL Loftsdóttir, GH Ólafsdóttir, H Helgadóttir,
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Appendix A Representation of spatial information in the DSF
module

In this section, we discuss different spatial representations of EEG that can be used as input to a
spatial attention block such as the DSF module. Specifically, we consider the spatial covariance
matrix along with different vectorization schemes.

Given some EEG signals X ∈ RC×T , where T is the number of time samples in X, and which
we assume to be zero-mean, an unbiased estimate of their covariance reads:

Σ(X) =
XX>

T
∈ RC×C . (7)

The zero-mean assumption is justified after some high-pass filtering or simple baseline
correction of the signals. To assess whether one channel is noisy or not, a human expert
annotator will typically rely on the power of a signal and its similarity with the neighboring
channels. This information is encoded in the covariance matrix.

Multiple well-established signal processing techniques rely on some estimate of Σ. For instance,
common spatial patterns (CSP) performs generalized eigenvalue decomposition of covariance
matrices to identify optimal spatial filters for maximizing the difference between two classes
[1]. Riemannian geometry approaches to EEG classification and regression instead leverage the
geometry of the space of symmetric positive definite (SPD) matrices to develop geometry-aware
metrics. They are used to average and compare covariance matrices, which has been shown to
outperform other classical approaches [2, 3]. Artifact handling pipelines such as the Riemannian
potato [4] and Artifact Subspace Reconstruction [5] further rely on covariance matrices to identify
bad epochs or attenuate noise.

The values in a covariance matrix often follow a heavy-tailed distribution. Therefore, knowing
that neural networks are typically easier to train when the distribution of input values is fairly
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†joint senior authors
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concentrated, it is helpful to standardize the covariance values before feeding them to the network.
While scalar non-linear transformations (e.g., logarithms) could help reduce the range of values
and facilitate a neural network’s task, the geometry of SPD matrices actually calls for metrics
that respect the Riemannian structure of the SPD matrices’ manifold [6]. For instance, this
means using the matrix logarithm instead of naively flattening the upper triangle and diagonal
of the matrix [3]. For an SPD matrix S, whose orthogonal eigendecomposition reads S = UΛU>,
where Λ = diag(λ1, ..., λn) contains its eigenvalues, the matrix logarithm log(S) is given by:

log(S) = U diag(log(λ1), ..., log(λn))U> . (8)

The diagonal and upper-triangular part of log(S) can then be flattened into a vector with
C(C + 1)/2 values, which is then typically used with linear models, e.g., support vector machines
(SVM) or logistic regression.

Other options to provide input values in a restricted range exist. For instance, one could
simply use the element-wise logarithm of the diagonal of the covariance matrix, i.e., the log-
variance of the input signals. This is appropriate if pairwise inter-channel covariance information
is deemed not critical down the line. Alternatively, Pearson’s correlation matrix, which can
be seen as the covariance matrix of the z-score normalized signals, could be used. It has the
advantage that its values are already in a well-defined range (-1, 1), yet it is blind to channel
variances. In our experiments, we focused on two spatial representations: the channel-wise
variance obtained from the diagonal of Σ, and the matrix logarithm of Σ. Both helped improve
robustness on the pathology detection and sleep staging tasks.

Appendix B Deep learning architectures

The ConvNets fΘ used in our experiments are described in more detail in Fig. S1. In MSD
experiments, the input sampling rate was of 128 Hz instead of 100 Hz as for PC18. Therefore, we
adapted the temporal convolution and max pooling hyperparameters so that they would cover
approximately the same duration: filter size of 64 samples, padding size of 13 and max pooling
size of 16 (vs. 50, 10 and 13, respectively). This yielded a total of 21,369 parameters.

Appendix C Hyperparameter optimization of baseline models

A grid-search over hyperparameters of the random forest (RF) and logistic regression classifiers
was performed with 3-fold cross-validation on combined training and validation sets. This
search was performed for each reported experimental configuration: for each number of channels
(for experiments in Section 4.1), each denoising strategy (no denoising, Autoreject and data
augmentation) and each dataset (TUAB, PC18 and MSD).

For all RF models, we used 300 trees. This turned out to be a good trade-off between model
performance and computational costs. For each experiment, we selected by cross-validation the
depth of the trees among {13,15,17,19,21,23,25}, the split criterion between Gini and entropy,
and the fraction of selected features used in each tree among ‘sqrt‘ (the square-root of the number
of features is used) , ‘log2’ (the logarithm in base 2 of the number of features is used), and using
all features. For logistic regression models, the regularization parameter C was chosen among
{10−4, 10−3, . . . , 10}. We expanded the search on MSD as performance did not peak in the ranges
considered above by adding the following values to the search space: depth in {1,3,5,7,9,11} and
C in {102, 103, 104, 105}.
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Figure S1: Neural network architectures fΘ used in (1) pathology detection and (2) sleep staging
experiments.

The selected hyperparameter configurations are listed in Tables S1 and S2 for the experi-
ments in Sections 4.1and 4.2, respectively. Once the best hyperparameters for an experimental
configuration were identified, the training and validation sets were combined into a single set on
which the model with the best hyperparameters was finally trained.

Appendix D Analysis of channel corruption in the Muse Sleep
Dataset

The Muse Sleep Dataset (MSD) is a collection of at-home overnight recordings. These recordings
were purposefully selected to evaluate sleep staging algorithms in challenging mobile EEG
conditions and therefore include recordings with highly corrupted channels. Overall, noise is

Table S1: Selected hyperparameters for experiments on number of channels (Section 4.1).

Number of channels
Model Hyperparameter 2 6 21

Random Forest (RF) Number of trees 300 300 300
Tree depth 17 21 19
Criterion entropy Gini entropy
Features all all all

Logistic regression (LR) C 0.1 0.1 0.001
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Table S2: Selected hyperparameters for experiments on denoising strategies (Section 4.2).

Denoising strategy
Dataset Model Hyperparameter No denoising Autoreject Data augmentation

TUAB
RF

Number of trees 300 300 300
Tree depth 21 13 17
Criterion Gini entropy entropy
Features all all all

LR C 0.1 0.1 0.01

PC18
RF

Number of trees 300 300 300
Tree depth 15 15 17
Criterion entropy Gini entropy
Features sqrt sqrt sqrt

LR C 1 1 10

MSD
RF

Number of trees 300 300 300
Tree depth 9 9 11
Criterion entropy entropy entropy
Features all sqrt sqrt

LR C 0.1 0.1 105

stronger and more prevalent in these recordings than in typical sleep datasets collected under
controlled laboratory conditions (e.g., PC18).

To characterize the prevalence of channel corruption in MSD recordings, we inspected the
variance and the slope of the power spectral density (PSD) of each EEG channel across 30-s
windows. Variance is a good measure of signal quality (for instance, the DSFd variant received
log-variance as input in our experiments), while the spectral slope is a global descriptor of the
frequency content of a signal and allows distinguishing between channel corruption (which yields
flatter spectra) and artifacts (often displaying strong low frequencies, e.g., eye movements).
Simple thresholds set empirically on these two markers allowed approximate detection of channel
corruption events. Specifically, we flagged a channel in a window as “corrupted” if its log10-
log10 spectral slope [7] between 0.1 and 30 Hz was above -0.5 (unitless) and its variance was
above 1,000 µV 2. We then computed a recording-wise channel corruption metric by taking the
percentage of bad windows for the most corrupted channel of each recording.

About two-thirds of the recordings had no channel corruption according to this metric, while
the remaining had a value of up to 96.4% (Fig. S2). In those recordings with channel corruption,
half of the corruption events (defined as a continuous block of epochs flagged as corrupted) lasted
for 1.5 minutes or less, suggesting a large portion of the corruption happened intermittently, e.g.
due to the temporary displacement of the electrodes relative to the head. Some corruption events
however lasted much longer, for instance up to 88 minutes in one case. These longer corruption
events are likely due to bad connection between the skin and the electrode or to problems with
the instrumentation.

For our experiments on MSD, we therefore selected the 81 cleanest recordings (i.e., with the
lowest corruption fraction) for training and validation and kept the 17 noisiest recordings for
testing. This procedure allowed testing whether a model trained on relatively clean data could
perform well even when random channel corruption was introduced at inference time.
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Figure S2: Corruption percentage of the most corrupted channel of each of the 98 recordings of
MSD. Each point represents a single recording. The 17 most corrupted recordings (red) were
used as test set in our experiments of Section 4.2.

Appendix E Baseline model performance on real-world data

The performance of the baseline models combined with the different noise handling methodologies
is shown in Fig. S3.

Appendix F From simple interpolation to Dynamic Spatial Fil-
tering

In this section, we establish a conceptual link between DSF and noise handling pipelines such as
Autoreject (Section 2.1) which rely on an interpolation step to reconstruct channels that have
been identified as bad. Specifically, these pipelines use head geometry-informed interpolation
methods (based on the 3D coordinates of EEG electrodes and spline interpolation) to compute
the weights necessary to interpolate each channel using a linear combination of the C − 1 other
channels [8]. From this perspective, a naive method of handling corrupted channels might be
to always replace each input EEG channel by its interpolated version based on the other C − 1
channels. An “interpolation-only” module minterp could be written as:

minterp(X) = WinterpX , (9)

where Winterp is a C × C real-valued matrix with a 0-diagonal1. The limitation of this approach
is that given at least one corrupted channel in the input X, the interpolated version of all
non-corrupted channels will be reconstructed in part from corrupted channels. This means noise
will still be present, however given enough clean channels, its impact might be mitigated.

Improving upon the naive interpolation-only approach, we might add the ability for the model
to decide whether (and to what extent) channels should be replaced by their interpolated version.

1Winterp can be set or initialized using head geometry information [8] or can be learned from the data end-to-end.
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Figure S3: Performance of the different sleep staging models on MSD. As in Fig. 5, we show the
distributions of performance obtained by models with different random initializations (1, 3 and 9
initializations for Riemann, handcrafted features and deep learning models, respectively) on the
test recordings of MSD. Noise handling with Autoreject had no clear impact on the performance
of the handcrafted features, while data augmentation was detrimental to the Riemann model. The
DSFm-st models reached the highest test performance when combined with data augmentation.

For instance, if the channels in a given window are mostly clean, it might be desirable to keep the
initial channels; however, if the window is overall corrupted, it might instead be better to replace
channels with their interpolated version. This leads to a “scalar-attention” module mscalar:

mscalar(X) = αXX + (1− αX)WX , (10)

where αX ∈ [0, 1] is the attention weight predicted by an MLP conditioned on X (e.g., on its
covariance matrix) and W is the same as for the interpolation-only module. While this approach
is more flexible, it still suffers from the same limitation as before: there is a chance interpolated
channels will be reconstructed from noisy channels. Moreover, the fact that the attention weight
is applied globally, i.e., a single weight applies to all C channels, limits the ability of the module
to focus on reconstructing corrupted channels only.

Instead, the “vector attention” module mvector introduces channel-wise attention weights, so
that the interpolation can be independently controlled for each channel:

mvector(X) = diag(αX)X + (I − diag(αX))WX , (11)

where αX ∈ [0, 1]C is again obtained with an MLP and W is as above. Although more flexible,
this version of the attention module still faces the same problem caused by static interpolation
weights.

To solve this issue, we build on the previous approach by both predicting an attention vector
αX as before and dynamically interpolating with a matrix WX ∈ RC×C (with a 0-diagonal)
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predicted by another MLP:

mdynamic(X) = diag(αX)X + (I − diag(αX))WXX . (12)

In practice, a single MLP can output C × C real values, which are then reorganized into
a 0-diagonal interpolation matrix W and a C-length vector whose values are passed through
a sigmoid nonlinearity to obtain the attention weights αX . An interesting property of this
formulation which holds for mvector too is that αX can be directly interpreted as the level to
which each channel is replaced by its interpolated version. However, in contrast to mvector the
interpolation filters can dynamically adapt to focus on the most informative channels.

Finally, we observe that Eq. (12) can be rewritten as a single matrix product:

mdynamic(X) = (diag(αX) + (I − diag(αX))WX)X = ΩXX , (13)

where, denoting the element i, j of matrix WX as Wij ,

ΩX =


α1 (1− α1)W12 . . . (1− α1)W1C

(1− α2)W21 α2 . . . (1− α2)W2C
...

...
. . .

...
(1− αC)WC1 (1− αC)WC2 . . . αC

 . (14)

The matrix ΩX contains C2 free variables, that are all conditioned on X through an MLP.
We can then relax the constraints on ΩX to obtain a simple matrix WDSF where there are no
dependencies between the parameters of a row and the diagonal elements are allowed to be
real-valued. This new unconstrained formulation can be interpreted as a set of spatial filters that
perform linear combinations of the input EEG channels. We can further introduce an additional
bias term to recover the DSF formulation introduced in Section 2.2:

mDSF(X) = WDSF(X)X + bDSF(X) . (15)

This bias term can be interpreted as a dynamic re-referencing of the virtual channels. In contrast
to the interpolation-based formulations, DSF allows controlling the number of “virtual channels”
C ′ to be used in the downstream neural network in a straightforward manner (e.g., enabling the
use of montage-specific DSF heads that could all be plugged into the same fΘ with fixed input
shape). As shown in Section 4.4, DSF also outperformed interpolation-based formulations in our
experiments.
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