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parameters of the stamping process have an influence on springback effects. It is possible to optimize these parameters, but only 
way to achieve this optimization procedure is to use numerical simulation of the stamping process. Nevertheless, the optimization 
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cost, a surrogate model for the optimization process replaces the high fidelity model. Extensive design of numerical experiments 
on the overall design space of the high fidelity model is needed to build this surrogate model. To improve the efficiency of the 
overall optimization process, this paper presents Proper Orthogonal Decomposition (POD) surrogate models using adaptive 
sampling design space. Here the POD surrogate model aims to represent the final displacement field from the initial high-fidelity 
simulation and use the reduced basis and the radial basis functions (RBF) interpolation of the POD coefficient to describe and 
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1. Introduction 

In mechanical systems, the rational use of experimental tests to optimize manufacturing processes is very old. 
Nowadays, highly efficient numerical simulations thanks to their high progress can replace the experiments. However, 
due to significant long computational time, especially for more predictive models, it is difficult to perform a high-
fidelity numerical simulation in optimization process of metal forming which requires simulation for each iteration.  
Surrogate model is necessary to provide an approximation of a selected objective function over the whole design space 
and find an optimal design candidate. However, instead of using the scalar quantities in an optimization process the 
objective [1], this approach proposes a common practice in building surrogate model based on the Proper Orthogonal 
Decomposition (POD) method [2] for the final displacement field. This displacement field is decomposed in a 
combination of restricted modes, which are calculated from the covariance matrix built through snapshots of the Finite 
Element (FE) fields of the high-fidelity model (HFM) simulation. In this work, POD basis is computed based on the 
snapshot method [3] and Radial Basis Function (RBF) networks [4] is built for POD coefficient interpolation over the 
parameter space. Then, the full displacement field is reconstructed by using a several basis vector which is able to 
describe the final shape after springback. 

 

 

Fig. 1: Sampling for optimization in parameter space D. (a) Apriori sampling Ds. (b) Adaptive sampling,  initial parameters,  optimal 
parameters,  optimization trajectory,  sample parameters.  

The aim of this paper is the development of optimization method to control the springback effect after stamping 
operation of automotive body part. This method is based on POD surrogate model to replace the FEM-HFM and to 
reduce the computational cost. Firstly, a surrogate model will be built from evaluating the set of initial Design of 
Experiment (DoE) samples through the HFM simulation. Then, an offline-online approach will be proposed for an 
optimization framework over the design space.  An adaptive HFM sample from an a priori sampling (see Fig. 1a) will 
be added by a greedy algorithm [5] based on the predicted objective function criterion. This procedure will be stopped 
after some iterations as soon as the objective function obtains a desirable value. Finally, an optimization trajectory in 
the parameter space is illustrated in Fig 1b showing an optimal design of the sheet metal forming process.          

2. Surrogate model based on POD-RBF 

2.1. Proper orthogonal decomposition for the parametric problem  

We define firstly the function over the parameter space: 

)(
D:u

 u
Rd


  

which is a HFM simulation defined in the parametric space D. Each displacement vector )(u is a discrete 
representation of the Finite Element (FE) fields and d is the number of the degrees of freedom or number of nodes. 
The d-dimensional vector state solution called snapshots and is denoted by )( ii uu  . Set of snapshot vectors in dR
is obtained from the HFM simulation by },,...,,{ 21

d
N

N RuuuS  where N is number of snapshots ).( dN  The 
POD allows finding a reduced order model (ROM) by projecting the HFM computed solution onto a set of optimal 
orthogonal basis vectors (called POD modes), which consist of a lower-dimensional subspace. To build the ROM, the

Nd  deviation matrix },...,,{ 21 uuuuuuD Nu  is firstly computed where u is the snapshot mean. Next, we 
compute the correlation matrix u

T
uu DDM . , which allows finding the eigenvectors k and the eigenvalues

Nkk ,...,2,1,  . The POD basis vector k  is obtained from these eigenvectors (showed in [6]) and then each POD 
coefficient k is computed by projecting the snapshots on the POD basis vector. They are defined as follows:  
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The eigenvalues k can be indexed in decreasing order N ,...,, 21 . The rank of truncation K (called number of POD 
modes) can also be calculated in order to investigate whether the projection of all the pairs )( uui  on the linear span 

of the eigenvectors leads to projection errors. Thus, the error criterion )(K and the POD reconstruction pod
iu of 

displacement vector of K modes are defined as follows:  
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where ]1,0[ is the energy threshold. Then, the RBF network will be used to interpolate the POD coefficients over 
the full parameter space combined with POD basis to build the surrogate model.  

2.2. POD coefficient interpolation using RBF network. 

The RBF network can be seen as a simple artificial neural network consisting of a single hidden layer of nonlinear 
processing units, an input layer of source nodes which is a set of N points i in a multidimensional space and an output 
linear weights line vector of response 𝑦𝑦 represented as a linear combination of N  radial basis function: 

)()(
1

i

N

i
ihwy  



      (3) 

where ℎ is the radial basis function and  denotes the Euclidean norm. Each RBF is associated to a different center 
and is weighted by a coefficient iw . This function measures the distance i  between a current set of parameters 
and the reference parameter vector i . The weight coefficients 𝑤𝑤𝑖𝑖  are determined by ensuring that the values of the 
interpolation function match exactly the given data A . This is achieved by enforcing Ay )( which produces a linear 
equation WBA . , where T

NaaaA ],...,,[ 21 and NN
ki RbB  )( is the matrix of the interpolation functions which 

contains the vector  𝑏𝑏𝑘𝑘𝑘𝑘 = ℎ(‖𝜃𝜃𝑘𝑘 − 𝜃𝜃𝑖𝑖‖), 𝑖𝑖, 𝑘𝑘 = 1,2, … , 𝑁𝑁 . Finally, T
NwwwW ],...,,[ 21 are then determined by 

solving the linear system ABW .1 . The accuracy of the RBF interpolation depends highly on the choice of the radial 
functions. There are some forms which can be chosen, for example, Gaussian functions, Multiquadric, Inverse 
quadratic, Inverse Multiquadric, etc. In this work, the Multiquadric function is chosen as the radial function for training 
the RBF model. The input is the parameter space and the output are the POD coefficients. Finally, the surrogate model 
based on POD-RBF of order K at any point in the parametric space  is expressed as: 
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where the expansion coefficients )(ˆ ik  are interpolated by the RBF model over full parametric space.  

3. The optimization framework 

3.1. Formulation problem. 

The springback optimization problem can be defined as follow:  

)),((min 


uF
D

      (5) 
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where (.,.)F is the objective function, D is a vector of optimized variables, dRu is a vector of the displacement 
field coming from the output of the HFM simulation. In this case, the objective function can be seen as a mean of the 
magnitude of the displacement field between the final shape and the target shape. The magnitude Ui of the arbitrary 
nodal displacement is defined by: 

nodesiiiiiii NizzyyxxU ,...,2,1,))(())(())(()( 202020      (6) 

where ),,( iii zyx  and ),,( 000
iii zyx are the coordinates of the final shape and the target state at i -th node , nodesN  is the 

number of nodes of the displacement field. Then, the objective function (6) is expressed as follows: 
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and typical surrogate model-based optimization problem therefore becomes: 

)),(ˆ(min 


uF
D

       (8) 

3.2. Online-offline procedure for adaptive approach. 

This procedure requires first a number of HFM samples to build the POD surrogate model ).(ˆ u  Then, the 
)),(ˆ( uF  will be computed over the design space DDs  (see Fig. 1a) based on this surrogate model. The new 

sample is chosen automatically for the HFM simulation from the apriori sampling by a greedy algorithm based on an 
indicator from the minimization (8). With each new HFM sample is evaluated, the POD method adds a new snapshot 
allowing to obtain a new POD basis and new POD coefficients (1). The convergence of the approach is only reached 
when the objective function value (7) is smaller than a magnitude threshold. The whole procedure is detailed in 
Algorithm 1 which is implemented in Matlab with an interface to Abaqus to solve the optimization problem.   

Algorithm 1: POD greedy algorithm for online-offline approach 
Input: Parameter domain θD, threshold η, maximum iteration Imax  
Output: Objective function F(u(θ), θ)  

1. Choose the initial parameters sample θD and compute the HFM u(θ) associated with samples θ 
2. Construct the reduced basis and expansion coefficient k̂  by POD using HFM u(θ) (eq. 1) 
3. Construct the surrogate model from  and k̂  (eq. 4) 
4. Randomly select a set of Ns apriori sampling Ds = {θj, j=1,2,…,Ns} D  
5. for iiter = 1 to Imax do 
6.        for j=1 to Ns do 
7.          Compute the surrogate model solution û (θj) for the parameter θj at iiter  
8.          Compute indicator from the predicted objective function minimization: F ( û ( θj), θj), θj Ds  
9.        end for 
10. Find siter DuF   ),),(ˆ(minarg  (eq. 8) 
11. Compute HFM )( iteru   associated with the sample iter   
12. Compute the objective function )),(( uF  (eq. 7) 
13. if  )),((uF  then 
14.      break 
15. end if 
16. Construct  and k̂ at iiter by POD adds a new snapshot )( iteru  then set iter , )(ˆˆ iterkk      
17. Ds = Ds -{θiter } 
18. end for 
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interpolation function match exactly the given data A . This is achieved by enforcing Ay )( which produces a linear 
equation WBA . , where T

NaaaA ],...,,[ 21 and NN
ki RbB  )( is the matrix of the interpolation functions which 

contains the vector  𝑏𝑏𝑘𝑘𝑘𝑘 = ℎ(‖𝜃𝜃𝑘𝑘 − 𝜃𝜃𝑖𝑖‖), 𝑖𝑖, 𝑘𝑘 = 1,2, … , 𝑁𝑁 . Finally, T
NwwwW ],...,,[ 21 are then determined by 

solving the linear system ABW .1 . The accuracy of the RBF interpolation depends highly on the choice of the radial 
functions. There are some forms which can be chosen, for example, Gaussian functions, Multiquadric, Inverse 
quadratic, Inverse Multiquadric, etc. In this work, the Multiquadric function is chosen as the radial function for training 
the RBF model. The input is the parameter space and the output are the POD coefficients. Finally, the surrogate model 
based on POD-RBF of order K at any point in the parametric space  is expressed as: 


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where the expansion coefficients )(ˆ ik  are interpolated by the RBF model over full parametric space.  

3. The optimization framework 

3.1. Formulation problem. 

The springback optimization problem can be defined as follow:  

)),((min 


uF
D

      (5) 
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where (.,.)F is the objective function, D is a vector of optimized variables, dRu is a vector of the displacement 
field coming from the output of the HFM simulation. In this case, the objective function can be seen as a mean of the 
magnitude of the displacement field between the final shape and the target shape. The magnitude Ui of the arbitrary 
nodal displacement is defined by: 

nodesiiiiiii NizzyyxxU ,...,2,1,))(())(())(()( 202020      (6) 

where ),,( iii zyx  and ),,( 000
iii zyx are the coordinates of the final shape and the target state at i -th node , nodesN  is the 

number of nodes of the displacement field. Then, the objective function (6) is expressed as follows: 
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and typical surrogate model-based optimization problem therefore becomes: 

)),(ˆ(min 


uF
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       (8) 

3.2. Online-offline procedure for adaptive approach. 

This procedure requires first a number of HFM samples to build the POD surrogate model ).(ˆ u  Then, the 
)),(ˆ( uF  will be computed over the design space DDs  (see Fig. 1a) based on this surrogate model. The new 

sample is chosen automatically for the HFM simulation from the apriori sampling by a greedy algorithm based on an 
indicator from the minimization (8). With each new HFM sample is evaluated, the POD method adds a new snapshot 
allowing to obtain a new POD basis and new POD coefficients (1). The convergence of the approach is only reached 
when the objective function value (7) is smaller than a magnitude threshold. The whole procedure is detailed in 
Algorithm 1 which is implemented in Matlab with an interface to Abaqus to solve the optimization problem.   

Algorithm 1: POD greedy algorithm for online-offline approach 
Input: Parameter domain θD, threshold η, maximum iteration Imax  
Output: Objective function F(u(θ), θ)  

1. Choose the initial parameters sample θD and compute the HFM u(θ) associated with samples θ 
2. Construct the reduced basis and expansion coefficient k̂  by POD using HFM u(θ) (eq. 1) 
3. Construct the surrogate model from  and k̂  (eq. 4) 
4. Randomly select a set of Ns apriori sampling Ds = {θj, j=1,2,…,Ns} D  
5. for iiter = 1 to Imax do 
6.        for j=1 to Ns do 
7.          Compute the surrogate model solution û (θj) for the parameter θj at iiter  
8.          Compute indicator from the predicted objective function minimization: F ( û ( θj), θj), θj Ds  
9.        end for 
10. Find siter DuF   ),),(ˆ(minarg  (eq. 8) 
11. Compute HFM )( iteru   associated with the sample iter   
12. Compute the objective function )),(( uF  (eq. 7) 
13. if  )),((uF  then 
14.      break 
15. end if 
16. Construct  and k̂ at iiter by POD adds a new snapshot )( iteru  then set iter , )(ˆˆ iterkk      
17. Ds = Ds -{θiter } 
18. end for 
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4. Application: U shaped draw bending 

The case studied in this paper is a benchmark problem of NUMISHEET 2011 [7] and it is the springback behavior 
of advanced high strength steels like DP780 steel in U-shaped draw bending. The DP780 steel sheet with 1.4 mm 
thickness, 360 mm length, and 30 mm width is used. 

4.1. Numerical model of the draw bending process. 

The main tooling set-up and modelling of the draw bending process is shown in Fig. 2a. In this study, the modelling 
and the numerical simulation are performed using the FEM implemented in ABAQUS-CAE{TM} 6.13-1. The blank is 
modelled with 1935 S4R-shell elements with 7 integration points through thickness. The plastic criteria f is based on 
Hill'48 stress norm Hill and the isotropic hardening R is described by a Swift function: 

0)(),(  pRpf Hill with 142.0)0027.0(793.1278)(  ppR    (9) 

where p is the cumulated plastic strain. Details on material’s constant are provided in the benchmark material data 
sheet [7]. The nominal material properties of the blank are given in Table 1. All tools are assumed to be rigid bodies. 
The applied boundary conditions are demonstrated in Fig. 2a. Contact interaction is modelled by using the penalty 
contact enforcement method, which is a type of surface-to-surface contact and it is applied between the blank surface 
and the tool's surfaces. 

Table 1. Mechanical properties of DP780. 

Young's modulus(GPa) Poisson's ratio Yield strength(MPa) Tensile strength(MPa) Uniform elongation (%) R-value 

198.8 0.3 550 840 13.1 0.781 

 
The process is executed into two different steps. The first step is to simulate the forming operation via dynamic explicit 
solver. The punch moves vertically until 78.1mm of displacement. The simulation of the springback is performed in 
the second step through a static implicit procedure. The final shape of the part is obtained after releasing the tools. 
 

 

Fig. 2: (a) Numerical model of the draw bending process; (b) Design space; (c) Example of U-shape after springback. 

The problem is parameterized by 2 parameters, the blank holder force FBHF and the die radius rd. In Fig. 2b, these 
two parameters is defined in ]9.12,9.2[]4,2[ D )( kNmm . A full factorial design with 9 initial points is used to 
build the database for the surrogate model. The sample locations are determined by a priori sampling Ds using a “Latin 
Centroidal Voronoi Tessellations” (LCVT) [8] with 46 points in Fig. 2b. The other parameters given include the 
friction coefficient µ=0.1 between the tools and blank, the thickness blank t =1.4 mm and the punch radius rp = 5 mm.        
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4.2. Optimization results 

The analyzed displacement field is a bi-dimensional vector field with bi-dimensional vector field, x-direction and 
z-direction. (In the reference frame of Fig. 2c, the displacement field in the y-direction is very weak). The POD 
surrogate model is built from two component of the displacement field. Thus, the objective function is compacted in 
bi-dimension x- and z-. The springback profile is only considered at the center nodes, which is extracted from nodes 
number of the numerical model of the draw bending process. The magnitude threshold was set to η=0.5 mm for the 
convergence of the algorithm. The springback profiles after the U-draw bending is illustrated in Fig. 3a. We notice 
that the springback profile is approximated to the target profile after 6 iterations. The evaluation of the “true” objective 
function (7) and the “predicted” objective function (8) is plotted in Fig. 3b.  The value of the “predicted” objective 
function is lower and close to the value of the “true” objective function and the value of the objective function is 0.41 
mm using 6 HFM queries. When the convergence of the algorithm is achieved, the optimal parameters are 
θ=(rd,FBHK)=(2.1 mm, 5.4 kN). This result shows that the proposed method provides a very efficient optimization to 
reduce the computational cost.         

a)   b)  

Fig. 3: (a) Springback optimization progression; (b) Convergence of objective function.  

5. Conclusion 

In this paper, we have proposed an optimization framework using an adaptive sampling from a set of candidate 
parameters for the springback of the metal forming process. This approach is based on the POD method combined 
with the RBF network to build the surrogate model. The candidate parameters are determined a priori by sampling the 
design parameter using technique LCVT. The results show that the proposed method is very efficient for the 
optimization of the U-draw bending numerical simulation of DP780.  The resulting optimization is able to provide the 
optimal design while reducing the number of high-fidelity model simulation queries over the design space using 
techniques such as uniform sampling, Latin hypercube sampling or Monte Carlo sampling, etc.    

Future work include the development of multilevel optimization algorithms for the metal forming processes and 
extension to the multi-parametric case (e.g. forming condition, tool or blank geometry and also material properties).        
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