
HAL Id: hal-03609548
https://hal.science/hal-03609548

Submitted on 15 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Query Definability and Its Approximations in
Ontology-based Data Management

Gianluca Cima, Federico Croce, Maurizio Lenzerini

To cite this version:
Gianluca Cima, Federico Croce, Maurizio Lenzerini. Query Definability and Its Approximations in
Ontology-based Data Management. CIKM ’21: The 30th ACM International Conference on Infor-
mation and Knowledge Management, Nov 2021, Queensland, Australia. �10.1145/3459637.3482466�.
�hal-03609548�

https://hal.science/hal-03609548
https://hal.archives-ouvertes.fr

Query Definability and Its Approximations
in Ontology-based Data Management

Gianluca Cima

gianluca.cima@u-bordeaux.fr

CNRS & University of Bordeaux

Bordeaux, France

Federico Croce

croce@diag.uniroma1.it

Sapienza University of Rome

Rome, Italy

Maurizio Lenzerini

lenzerini@diag.uniroma1.it

Sapienza University of Rome

Rome, Italy

ABSTRACT
Given an input dataset (i.e., a set of tuples), query definability in

Ontology-based Data Management (OBDM) amounts to finding a

query over the ontology whose certain answers coincide with the

tuples in the given dataset. We refer to such a query as a character-

ization of the dataset with respect to the OBDM system. Our first

contribution is to propose approximations of perfect characteriza-

tions in terms of recall (complete characterizations) and precision

(sound characterizations). A second contribution is to present a

thorough complexity analysis of three computational problems,

namely verification (check whether a given query is a perfect, or an

approximated characterization of a given dataset), existence (check

whether a perfect, or a best approximated characterization of a

given dataset exists), and computation (compute a perfect, or best

approximated characterization of a given dataset).

CCS CONCEPTS
• Information systems→ Ontologies;Query languages; •Com-
putingmethodologies→Knowledge representation and rea-
soning.

KEYWORDS
Ontology Based Data Management; Semantic Technologies

ACM Reference Format:
Gianluca Cima, Federico Croce, and Maurizio Lenzerini. 2021. Query De-

finability and Its Approximations in Ontology-based Data Management.

In Proceedings of the 30th ACM International Conference on Information

and Knowledge Management (CIKM ’21), November 1–5, 2021, Virtual Event,

QLD, Australia. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

3459637.3482466

1 INTRODUCTION
As first introduced for relational databases [5, 6, 36, 39], query

definability is the reverse engineering task that, given a set of

tuples and a database, aims at finding a query whose answers over

such database are exactly the tuples in the set. In other words, the

goal of this task is to derive an intensional definition (the query)

of an extensionally defined set. Over the years, researchers have

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00

https://doi.org/10.1145/3459637.3482466

found several interesting applications of this problem, spanning

from simplifying query formulation by non-experts, to debugging

facilities for data engineers. Moreover, the query definability has

been studied as a useful tool for data exploration, data analysis,

usability, data security and more [26, 28]. With the rise of Machine

Learning (ML), we argue that this topic could be also beneficial for

providing meaningful reformulations of what is called a training

dataset in any typical supervised ML-based classification task. In

this context, the training set used in a classification task is seen as a

set of tuples in a database schema, and the query derived by solving

the query definability problem results into an intensional definition

of the input training set. In a sense, the expression derived can be

used as an explanation of the intensional properties of the training

set. The idea is that an intensional characterization of the training

set can help understanding the behaviour of a classifier, a very

important task for wide and safe adoption of machine learning and

data mining technologies, especially in dealing with bias.

In this paper, we address the problem of query definability in

the context of Ontology-based Data Management (OBDM), which

is a paradigm for accessing data using a conceptual representation

of the domain of interest expressed as an ontology. OBDM relies

on a three-level architecture, consisting of the schema of the data

layer S (which we assume constituted by a relational schema), the

ontology O, a declarative and explicit representation of the domain

of interest for the organization, and the mappingM between the

two. Consequently, an OBDM specification is formalized as the

triple 𝐽 = ⟨O,S,M⟩ which, together with an S-database 𝐷 , form a

so-called OBDM system Σ = ⟨𝐽 , 𝐷⟩. In this context, we are going to

tackle the problem of query definability by leveraging the notion

of evaluation of a query with respect to an OBDM system, in turn

based on the notion of certain answers to a query over an OBDM

system.

Intuitively, given an OBDM system Σ = ⟨𝐽 , 𝐷⟩ and a 𝐷-dataset

𝜆, our goal is to derive a query expression over O that suitably

characterizes 𝜆 w.r.t. Σ. In other words, we aim at deriving a “good”

definition of 𝜆 using a query expressed over the concepts and roles

of the ontology O of 𝐽 .

Inspired by the works in [22, 29] about query definability in

Description Logics (DLs), we consider the query whose certain

answers with respect to Σ = ⟨𝐽 , 𝐷⟩ is exactly 𝜆 as the perfect

characterization for 𝜆. We note that, since in this paper we tackle

the query definability problem in OBDM, differently from the works

in [22, 29], this work has the added complexity of considering the

mapping layer of the OBDM system, which is, to the best of our

knowledge, novel to this field. This work has also been inspired by

the concept learning tools presented in [7, 20, 34], and by the notion

of query abstraction [13, 14, 16]. We differ from the former because

https://orcid.org/0000-0003-1783-5605
https://orcid.org/0000-0001-6779-4624
https://orcid.org/0000-0003-2875-6187
https://doi.org/10.1145/3459637.3482466
https://doi.org/10.1145/3459637.3482466
https://doi.org/10.1145/3459637.3482466

in that work the goal is to learn a concept expression capturing

a given dataset, whereas our goal is to derive a full-blown query

that, evaluated over the ontology, returns the dataset as answers.

We differ from the latter because, although the goal is stil to derive

a query expression over the ontology, in that work the input is a

query over the data layer, whereas in query definability the input is

a set of tuples. It follows that the two tasks are completely different

and require different technical solutions: in the present workwe aim

at finding a query over the ontology such that the certain answers

of the query w.r.t. the OBDM system are equal to the given specific

dataset, whereas in [13, 14, 16], the goal is to find a query over the

ontology such that the certain answers of the query are equal to

the evaluation of the given query over the database schema, for all

possible databases of the OBDM system. In the framework section

of this paper we will better characterize the relationship between

the two notions of query definability and query abstraction.

Virtually all the above-mentioned works point out that in many

cases a perfect ontological characterization of a given dataset does

not exist. We argue that, in these cases, reasonable and useful on-

tological characterizations can still be provided. In particular, we

propose to resort to suitable approximations of the perfect character-

izations, in terms of recall and precision. To this end, we introduce

the notions of sound and complete characterizations. The former

is a query whose certain answers form a subset of the 𝐷-dataset 𝜆

in input, whereas the certain answers of the latter, form a super-

set of the 𝐷-dataset 𝜆. Obviously, we are interested in computing

the best approximated characterizations, which we call maximally

sound and minimally complete characterizations, respectively. A

maximally sound (resp., minimally complete) characterization is a

sound (resp., complete) characterization such that no other sound

(resp., complete) characterization exists that better approximates

the 𝐷-dataset 𝜆.

This paper provides the following contributions:

• We present a general, formal framework for the various no-

tions of ontological characterizations mentioned above. The

framework includes the definition of three tasks that are

relevant for reasoning about characterizations of a dataset,

namely verification (verify whether a given query is a sound,

complete, or perfect characterizations), computation (com-

pute a characterization of a certain type), and existence

(check whether a characterization of a certain type exists).

• We provide computational complexity results for the three

reasoning tasks mentioned above in a scenario that uses the

most common languages in the OBDM literature, namely

where the ontology language is DL-LiteR , the mapping lan-

guage is GLAV, and the query language to express charac-

terizations is the one of union of conjunctive queries. As for

the two decision problems of verification and existence, we

provide both upper bounds and matching lower bounds. As

for the computation task, we provide algorithms for com-

puting perfect, minimally complete, and maximally sound

characterizations, provided they exist.

The paper is organized as follows. After the preliminaries in

Section 2, Section 3 illustrates the framework, and Sections 4, 5,

and 6 present the results on the three reasoning tasks, i.e., verifi-

cation, computation and existence, respectively. Finally, Section 7

concludes the paper by discussing possible future work.

2 PRELIMINARIES
We recall some notations and languages about relational

databases [1], Description Logics (DLs) [4], and the Ontology-based

Data Management (OBDM) paradigm [24].

Databases, Datasets, and Queries: A relational database schema

(or simply schema) S is a finite set of predicate symbols, each with

a specific arity. Given a schema S, an S-database 𝐷 is a finite set

of facts satisfying all integrity constraints in S whose form is 𝑠 (®𝑐),
where 𝑠 is an 𝑛-ary predicate symbol of S, and ®𝑐 = (𝑐1, . . . , 𝑐𝑛) is
an 𝑛-tuple of constants, each taken from a countable infinite set of

symbols denoted by Const. We denote by dom(𝐷) the finite set of
constants occurring in 𝐷 . Observe that dom(𝐷) ⊆ Const.

Given a schema S and an S-database 𝐷 , a 𝐷-dataset 𝜆 of arity

𝑛 is a finite set of 𝑛-tuples ®𝑐 of constants occurring in 𝐷 , i.e., 𝜆 ⊆
dom(𝐷)𝑛 .

A query 𝑞S over a schema S is an expression in a certain query

language Q using the predicate symbols of S and arguments of

predicates are variables, i.e., we disallow constants to occur in

queries. Each query has an associated arity. The evaluation of a

query 𝑞S of arity 𝑛 over an S-databases 𝐷 is a set of answers 𝑞𝐷S ,
each answer being an 𝑛-tuple of constants occurring in dom(𝐷),
i.e., 𝑞𝐷S ⊆ dom(𝐷)𝑛 . We are particularly interested in conjunctive

queries and unions thereof.

A conjunctive query (CQ) over a schema S is an expression of

the form 𝑞S = {®𝑥 | ∃®𝑦.𝜙 (®𝑥, ®𝑦)} such that (i) ®𝑥 = (𝑥1, . . . , 𝑥𝑛), called
the target list of 𝑞S , is an 𝑛-tuple of distinguished variables, where 𝑛
is the arity 𝑞S (ii) ®𝑦 = (𝑦1, . . . , 𝑦𝑚) is an𝑚-tuple of existential vari-

ables; and (iii) 𝜙 (®𝑥, ®𝑦), called the body of 𝑞S , is a finite conjunction
of atoms of the form 𝑠 (𝑣1, . . . , 𝑣𝑝), where 𝑠 is a 𝑝-ary predicate sym-

bol of S and 𝑣𝑖 is either a distinguished or an existential variable,

i.e., 𝑣𝑖 ∈ ®𝑥 ∪ ®𝑦, for each 𝑖 = [1, 𝑝]. Variables belong to a countable

infinite set of symbols denoted by V , where Const ∩ V = ∅. A
union of conjunctive queries (UCQ) is a finite set of CQs with same

arity, called its disjuncts.

For a conjunction of atoms 𝜙 (®𝑥, ®𝑦), we denote by set (𝜙) the
set of all the atoms occurring in 𝜙 . For a set of atoms C and a

tuple ®𝑐 = (𝑐1, . . . , 𝑐𝑛) of constants, we denote by query(C, ®𝑐) the
CQ {®𝑥 | ∃®𝑦.𝜙 (®𝑥, ®𝑦)}, where (i) 𝜙 (®𝑥, ®𝑦) is the conjunction of all the

atoms occurring in the set of atoms C′, where C′ is obtained from

C by replacing everywhere each constant 𝑐𝑖 occurring in ®𝑐 with
a fresh variable 𝑥𝑐𝑖 and each constant 𝑐 not occurring in ®𝑐 with a

fresh variable 𝑦𝑐 , (ii) ®𝑥 = (𝑥𝑐1 , . . . , 𝑥𝑐𝑛), and (iii) ®𝑦 is the tuple of all

variables occurring in C′ that do not occur in ®𝑥 .
Following the terminology of [35], we say that a query 𝑞S over

a schema S defines a 𝐷-dataset 𝜆 inside an S-database 𝐷 if 𝑞𝐷S = 𝜆,

and say that 𝜆 is Q-definable inside 𝐷 , for a query language Q, if
there exists a query 𝑞S ∈ Q that defines 𝜆 inside 𝐷 .

Given a set of atoms C, we denote by dom(C) the set of all

constants and variables occurring in a set of atoms C. Observe that
dom(C) ⊆ Const ∪ V . Let C1 and C2 be two sets of atoms. We

say that a function ℎ : dom(C1) → dom(C2) is a homomorphism

from C1 to C2 if ℎ(C1) ⊆ ℎ(C2), where ℎ(C1) is the image of C1

under ℎ, i.e., ℎ(C1) = {ℎ(𝛼) | 𝛼 ∈ C1} with ℎ(𝑠 (𝑡1, . . . , 𝑡𝑛)) =

𝑠 (ℎ(𝑡1), . . . , ℎ(𝑡𝑛)) for each atom 𝛼 = 𝑠 (𝑡1, . . . , 𝑡𝑛). For two sets

of atoms C1 and C2 and two tuples of terms ®𝑡1 and ®𝑡2, we write

(C1, ®𝑡1) → (C2, ®𝑡2) if there is a function ℎ from dom(C1) ∪ ®𝑡1 to

dom(C2) ∪ ®𝑡2 such that (i) ℎ is a homomorphism from C1 to C2,
and (ii) ℎ(®𝑡1) = ®𝑡2 (where, for a tuple of terms ®𝑡 = (𝑡1, . . . , 𝑡𝑛),
ℎ(®𝑡) = (ℎ(𝑡1), . . . , ℎ(𝑡𝑛))), (C1, ®𝑡1) ↛ (C2, ®𝑡2) otherwise.

Observe that for an S-database 𝐷 and a CQ 𝑞S = {®𝑥 |
∃®𝑦.𝜙 (®𝑥, ®𝑦)} over S of arity 𝑛, the set of answers 𝑞𝐷S corresponds

to the set of 𝑛-tuples ®𝑐 of constants occurring in 𝐷 for which

(set (𝜙), ®𝑥) → (𝐷, ®𝑐).

Syntax and Semantics of DL-LiteR : DLs are fragments of First-

order logic languages using only unary and binary predicates, called

atomic concepts and atomic roles, respectively. In this paper, a DL

ontology (or simply ontology) O is a TBox (“Terminological Box”)

expressed in a specific DL, that is, a set of assertions stating general

properties of concepts and roles built according to the syntax of

the specific DL, which represents the intensional knowledge of a

modeled domain.

We are interested in DL ontologies expressed in DL-LiteR , the
member of the DL-Lite family [10] that underpins OWL 2 QL, i.e., the
OWL 2 profile especially designed for efficient query answering [27].

A DL-LiteR ontology O is a finite set of assertions of the form:

𝐵1 ⊑ 𝐵2 𝑅1 ⊑ 𝑅2 (concept/role inclusion)

𝐵1 ⊑ ¬𝐵2 𝑅1 ⊑ ¬𝑅2 (concept/role disjointness)

where 𝐵1, 𝐵2 are basic concepts, i.e., expressions of the form 𝐴,

∃𝑃 , or ∃𝑃−, with 𝐴 and 𝑃 an atomic concept and an atomic role,

respectively, and 𝑅1 and 𝑅2 basic roles, i.e., expressions of the form

𝑃 , or 𝑃−.
Given a DL-LiteR ontology O, we denote by 𝑉O the O-violation

query, i.e., the boolean UCQ obtained by including a disjunct of the

form {() | ∃𝑦.𝐴1 (𝑦) ∧𝐴2 (𝑦)} (respectively, {() | ∃𝑦1, 𝑦2.𝐴1 (𝑦1) ∧
𝑅(𝑦1, 𝑦2)}, {() | ∃𝑦1, 𝑦2, 𝑦3.𝑅1 (𝑦1, 𝑦2) ∧ 𝑅2 (𝑦1, 𝑦3)}, and {() |
∃𝑦1, 𝑦2.𝑅1 (𝑦1, 𝑦2) ∧ 𝑅2 (𝑦1, 𝑦2)}) for each disjointness assertion

𝐴1 ⊑ ¬𝐴2 (respectively, 𝐴1 ⊑ ¬∃𝑅 or ∃𝑅 ⊑ ¬𝐴1, ∃𝑅1 ⊑ ¬∃𝑅2,
and 𝑅1 ⊑ ¬𝑅2) occurring in O, where an atom of the form 𝑅(𝑦,𝑦′)
stands for either 𝑃 (𝑦,𝑦′) if 𝑅 denotes an atomic role 𝑃 , or 𝑃 (𝑦′, 𝑦)
if 𝑅 denotes the inverse of an atomic role, i.e., 𝑅 = 𝑃−.

The semantics of DL ontologies is specified through the notion

of interpretation: an interpretation I for an ontology O is a pair

I = ⟨ΔI , ·I⟩, where the interpretation domain ΔI is a non-empty,

possibly infinite set of constants, and the interpretation function ·I
assigns to each atomic concept 𝐴 a set of domain objects 𝐴I ⊆ ΔI ,
and to each atomic role 𝑃 a set of pairs of domain objects 𝑃I ⊆
ΔI×ΔI . For the constructs ofDL-LiteR , the interpretation function
extends to other basic concepts and basic roles as follows: (∃𝑃)I =

{𝑜 | ∃𝑜 ′. (𝑜, 𝑜 ′) ∈ 𝑃I } and (𝑃−)I = {(𝑜, 𝑜 ′) | (𝑜 ′, 𝑜) ∈ 𝑃I }. We

often treat interpretations I for ontologies O as a (possibly infinite)

set of facts over (the predicates in the alphabet of) O.
We say that an interpretation I for an ontology O satisfies O, de-

noted byI |= O, ifI satisfies every assertion inO. For theDL-LiteR
assertions, an interpretation I satisfies a concept inclusion asser-

tion 𝐵1 ⊑ 𝐵2 (respectively, role inclusion assertion 𝑅1 ⊑ 𝑅2) if

𝐵I
1
⊆ 𝐵I

2
(respectively, 𝑅I

1
⊆ 𝑅I

2
), and it satisfies a concept disjoint-

ness assertion 𝐵1 ⊑ ¬𝐵2 (respectively, role disjointness assertion
𝑅1 ⊑ ¬𝑅2) if 𝐵I

1
∩ 𝐵I

2
= ∅ (respectively, 𝑅I

1
∩ 𝑅I

2
= ∅).

Whenever we speak about queries 𝑞O over ontologies O, we
mean queries in a certain language Q using the atomic concepts

and roles in the alphabet of O as predicates. For a UCQ 𝑞O over

a DL-LiteR ontology O, we denote by PerfectRef (O, 𝑞O) the UCQ
computed by executing the algorithm PerfectRef [10] on O and 𝑞O .

Ontology-based Data Management: According to [24, 32], an

Ontology-based Data Management (OBDM) specification is a triple

𝐽 = ⟨O,S,M⟩, where O is a DL ontology, S is a relational database

schema, also called source schema, andM is a mapping, i.e., a finite

set of assertions over the signatureS∪O relating the source schema

S to the ontology O. An OBDM system is a pair Σ = ⟨𝐽 , 𝐷⟩, where
𝐽 = ⟨O,S,M⟩ is an OBDM specification and 𝐷 is an S-database.

The semantics of an OBDM system Σ = ⟨⟨O,S,M⟩, 𝐷⟩ is given
in terms of interpretations I = ⟨ΔI , ·I⟩ for O in which the inter-

pretation function ·I further assigns to each constant 𝑐 ∈ dom(𝐷)
a domain object 𝑐 ∈ ΔI . Specifically, we say that an interpretation

I for O is a model of an OBDM system Σ = ⟨⟨O,S,M⟩, 𝐷⟩ if (i)
I |= O, and (ii) the pair ⟨I, 𝐷⟩ |=M. We say that an OBDM system

Σ is consistent if it has at least one model, inconsistent otherwise.

The set of certain answers of a query 𝑞O over an ontology O
w.r.t. an OBDM system Σ = ⟨𝐽 , 𝐷⟩ with 𝐽 = ⟨O,S,M⟩, denoted by

cert
𝐷
𝑞O ,𝐽

, is the set of tuples of constants (𝑐1, . . . , 𝑐𝑛) occurring in

𝐷 such that (𝑐I
1
, . . . , 𝑐I𝑛) ∈ 𝑞IO for each model I of Σ, where I is

seen as a set of facts over O. If Σ is inconsistent, then the set of

certain answers of any query 𝑞O over O w.r.t. Σ is simply the set

of all possible tuples of constants occurring in 𝐷 whose arity is the

one of the query. We say that two queries 𝑞1 and 𝑞2 are equivalent

w.r.t. an OBDM system Σ = ⟨𝐽 , 𝐷⟩ if cert𝐷
𝑞1,𝐽

= cert
𝐷
𝑞2,𝐽

.

As for the mapping component of an OBDM system, in this pa-

per we are interested in GLAV assertions [18], which are assertions

of the form 𝑞S → 𝑞O , where 𝑞S and 𝑞O are CQs over S and over

O, respectively, with the same target list ®𝑥 = (𝑥1, . . . , 𝑥𝑛). Special
cases of GLAV assertions highly considered in the data integration

literature are GAV and LAV assertions [23]: in a GAV (resp., LAV)

mapping, 𝑞O (resp., 𝑞S) is simply an atom without existential vari-

ables. A GLAV (resp., GAV, LAV, GAV∩LAV) mapping is a finite set

of GLAV (resp., GAV, LAV, both GAV and LAV) assertions.

Given a GLAV mappingM relating S to O, an interpretation

I for O, and an S-database 𝐷 , we have that ⟨I, 𝐷⟩ |= M if

(𝑐1, . . . , 𝑐𝑛) ∈ 𝑞𝐷S implies (𝑐I
1
, . . . , 𝑐I𝑛) ∈ 𝑞IO for each mapping

assertion 𝑞S → 𝑞O occurring inM and for each possible tuple

(𝑐1, . . . , 𝑐𝑛) of constants occurring in 𝐷 .

Let 𝐽 = ⟨O,S,M⟩ be anOBDM specificationwhereO = ∅, i.e.,O
has no assertions, andM is a GLAV mapping. From results of [11,

21], it is well-known that, given a UCQ 𝑞O over O, by splitting

the GLAV mappingM into a GAV mapping followed by a LAV

mapping over an intermediate alphabet, it is always possible to

compute a UCQ over S, denoted by MapRef (M, 𝑞O), such that

MapRef (M, 𝑞O)𝐷 = cert
𝐷
𝑞O ,𝐽

for each S-database 𝐷 .
Let now 𝐽 = ⟨O,S,M⟩ be an OBDM specification where O is a

DL-LiteR ontology andM is a GLAV mapping. For a UCQ 𝑞O over

O, we denote by rew𝑞O ,𝐽 the following UCQ over S: rew𝑞O ,𝐽 :=

MapRef (M, PerfectRef (O, 𝑞O)). By combining the above observa-

tionwith results of [10], we have that (i) cert
𝐷
𝑞O ,𝐽

= rew𝐷
𝑞O ,𝐽

, for each

UCQ 𝑞O over O and for each S-database 𝐷 such that ⟨𝐽 , 𝐷⟩ is con-
sistent, and (ii) ⟨𝐽 , 𝐷⟩ is inconsistent if and only if rew𝐷

𝑉O ,𝐽
= {⟨⟩},

for each S-database 𝐷 . We note that DL-LiteR is insensitive to the

adoption of the unique name assumption for UCQ answering [3].

Canonical Structure: Given an S-database 𝐷 and a GLAV map-

pingM relating a schema S to an ontology O, the chase [9] of 𝐷
with respect toM, denoted byM(𝐷), is the set of atoms computed

as follows: (i) we start withM(𝐷) := ∅; then (ii) for every GLAV

assertion {®𝑥 | ∃®𝑦.𝜙S (®𝑥, ®𝑦)} → {®𝑥 | ∃®𝑧.𝜑O (®𝑥, ®𝑧)} in M and for

every tuple of constants ®𝑐 such that (set (𝜙S), ®𝑥) → (𝐷, ®𝑐), we add
toM(𝐷) the image of the set of atoms set (𝜑O) under ℎ′, that is,
M(𝐷) :=M(𝐷) ∪ ℎ′(𝜑O (®𝑥, ®𝑧)), where ℎ′ extends ℎ by assigning

to each variable 𝑧 occurring in ®𝑧 a different fresh variable ofV still

not present in dom(M(𝐷)). Observe thatM(𝐷) is guaranteed to

be finite and can be always computed in exponential time.

We conclude this section with the following observation used

in the technical development of the next sections. Let Σ =

⟨⟨O,S,M⟩, 𝐷⟩ be an OBDM system where O is a DL-LiteR on-

tology andM is a GLAV mapping. We call the canonical structure

of O with respect toM and 𝐷 , denoted by CM(𝐷)O , the (possibly in-

finite) set of atoms obtained by first computingM(𝐷) as described
before, and then by chasingM(𝐷) with respect to the inclusion

assertions of O as described in [10, Definition 5] but using the al-

phabet V of variables whenever a new element is needed in the

chase. Observe that this latter is a fair deterministic strategy, i.e.,

it is such that if at some point an assertion is applicable, then it

will be eventually applied. By combining results of [19, Proposi-

tion 4.2] with [10, Theorem 29], it is well-known that, for a UCQ

𝑞O = { ®𝑥1 | ∃ ®𝑦1.𝜙1O (®𝑥1, ®𝑦1)} ∪ . . . ∪ { ®𝑥𝑝 | ∃ ®𝑦𝑝 .𝜙𝑝O (®𝑥𝑝 , ®𝑦𝑝)} over O
and a tuple of constants ®𝑐 , if Σ = ⟨𝐽 , 𝐷⟩ is consistent, then we have

®𝑐 ∈ cert
𝐷
𝑞O ,𝐽

if and only if (set (𝜙𝑖O), ®𝑥𝑖) → (C
M(𝐷)
O , ®𝑐) for some

𝑖 ∈ [1, 𝑝].

3 FRAMEWORK
In what follows, Σ = ⟨𝐽 , 𝐷⟩ refers to an OBDM system where

𝐽 = ⟨O,S,M⟩ is an OBDM specification and 𝐷 is an S-database.
Intuitively, given a set 𝜆 of 𝑛-tuples of constants occurring in 𝐷 (i.e.,

𝜆 is a𝐷-dataset of arity 𝑛), we aim at finding a query 𝑞O over O in a

certain query language Q characterizing 𝜆 w.r.t. the OBDM system

Σ. Since the evaluation of queries is based on certain answers, we

are naturally led to the following definition.

Definition 1. 𝑞O ∈ Q is a perfect Σ-characterization of 𝜆 in the

query language Q, if 𝑐𝑒𝑟𝑡𝐷
𝑞O ,𝐽

= 𝜆.

Clearly, if a perfect Σ-characterization of 𝜆 exists, then it is

unique up to Σ-equivalence, and therefore in the following we

will always refer to the perfect Σ-characterization of 𝜆 in the query

language Q.

Example 1. Let Σ = ⟨𝐽 , 𝐷⟩ be as follows. 𝐽 = ⟨O,S,M⟩
is the OBDM specification such that O = {MathStudent ⊑
Student, ForeignStudent ⊑ Student}, S = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5}, and

M contains the GAV assertions:

{(𝑥) | 𝑠1 (𝑥)} → {(𝑥) | Student(𝑥)}
{(𝑥) | 𝑠2 (𝑥)} → {(𝑥) | Student(𝑥)}
{(𝑥1, 𝑥2) | 𝑠3 (𝑥1, 𝑥2)} → {(𝑥1, 𝑥2) | EnrolledIn(𝑥1, 𝑥2)}
{(𝑥) | ∃𝑦.𝑠3 (𝑥,𝑦) ∧ 𝑠4 (𝑦)} → {(𝑥) | MathStudent(𝑥)}
{(𝑥) | ∃𝑦.𝑠3 (𝑥,𝑦) ∧ 𝑠5 (𝑦)} → {(𝑥) | ForeignStudent(𝑥)}

And the S-database is 𝐷 = {𝑠1 (𝑐4), 𝑠2 (𝑐3), 𝑠4 (𝑏1), 𝑠5 (𝑑1),
𝑠3 (𝑐1, 𝑏1), 𝑠3 (𝑐2, 𝑑1), 𝑠3 (𝑐3, 𝑒1), 𝑠3 (𝑐4, 𝑒2), 𝑠3 (𝑐5, 𝑒3)}. For the 𝐷-

dataset 𝜆 = {(𝑐1), (𝑐2), (𝑐3)}, since 𝑞1O = {(𝑥) | Student(𝑥)}
and 𝑞2O = {(𝑥) | ∃𝑦.EnrolledIn(𝑥,𝑦)} are such that cert

𝐷

𝑞1O ,𝐽
=

{(𝑐1), (𝑐2), (𝑐3), (𝑐4)} and cert
𝐷

𝑞2O ,𝐽
= {(𝑐1), (𝑐2), (𝑐3), (𝑐4), (𝑐5)},

and since 𝑞3O = {(𝑥) | MathStudent(𝑥)} and 𝑞4O = {(𝑥) |
ForeignStudent(𝑥)} are such that cert

𝐷

𝑞3O ,𝐽
= {(𝑐1)} and

cert
𝐷

𝑞4O ,𝐽
= {(𝑐2)}, one can verify that no perfect Σ-characterization

of 𝜆 in UCQ exists.

Notice the difference with the notion of abstraction [13, 14], in-

troduced in [12] and studied under various scenarios [16, 17, 25].

In abstraction, we are given an OBDM specification 𝐽 = ⟨O,S,M⟩
and a query 𝑞S over S, and the aim is to find a query 𝑞O over

O, called the perfect 𝐽 -abstraction of 𝑞S , such that cert
𝐷
𝑞O ,𝐽

= 𝑞𝐷S
for each S-database 𝐷 for which ⟨𝐽 , 𝐷⟩ is consistent. Conversely,
here we are also given an S-database 𝐷 , and instead of a query 𝑞S
we have a set of tuples 𝜆 of constants taken from 𝐷 , and the aim

is to find a query 𝑞O over O such that cert
𝐷
𝑞O ,𝐽

= 𝜆. The follow-

ing proposition establishes the relationship between the notion of

characterization introduced here and the notion of abstraction.

Proposition 1. Let Σ = ⟨𝐽 , 𝐷⟩ be a consistent OBDM system, 𝜆

be a 𝐷-dataset, and 𝑞S be a query that defines 𝜆 inside 𝐷 . If a query

𝑞O ∈ Q is the perfect 𝐽 -abstraction of 𝑞S , then 𝑞O is the perfect

Σ-characterization of 𝜆 in Q.
The next example shows that the converse of the above proposi-

tion does not necessarily hold, thus stressing the fact that the two

problems are indeed different.

Example 2. Let Σ = ⟨𝐽 , 𝐷⟩ be as follows: (i) 𝐽 = ⟨O,S,M⟩ is
such that O = ∅, S = {𝑠1, 𝑠2}, andM = {𝑚1,𝑚2} with𝑚1 = {(𝑥) |
𝑠1 (𝑥)} → {(𝑥) | 𝐴(𝑥)} and𝑚2 = {(𝑥) | 𝑠2 (𝑥)} → {(𝑥) | 𝐴(𝑥)};
and (ii) 𝐷 = {𝑠1 (𝑐)}.

For the 𝐷-dataset 𝜆 = {(𝑐)}, one can verify that 𝑞S = {(𝑥) |
𝑠1 (𝑥)} is such that 𝑞𝐷S = 𝜆 and that 𝑞O = {(𝑥) | 𝐴(𝑥)} is such
that cert

𝐷
𝑞O ,𝐽

= 𝜆, i.e., 𝑞O is the perfect Σ-characterization of 𝜆 in

CQ. However, the query 𝑞O is not a perfect 𝐽 -abstraction of 𝑞S , since
for the S-database 𝐷 ′ = {𝑠2 (𝑐)} we have cert𝐷

′
𝑞O ,𝐽

= {(𝑐)} whereas
𝑞𝐷
′

S = ∅.
Clearly, the more expressive the query language Q, the more

likely we can express the implicit relationship between the tuples

in 𝜆 by means of the operators in Q, and therefore the more likely

the perfect characterization in Q exists. Unfortunately, the next

example shows that, even without any restriction on the query

language, perfect characterizations are not guaranteed to exist even

in trivial cases.

Example 3. Recall the OBDM specification 𝐽 of the previous exam-

ple, and let Σ = ⟨𝐽 , 𝐷⟩ be the OBDM systemwith𝐷 = {𝑠1 (𝑐1), 𝑠2 (𝑐2)}.
For the 𝐷-dataset 𝜆 = {(𝑐1)}, one can trivially verify that, what-

ever is the query language Q, there is no query 𝑞O ∈ Q for which

cert
𝐷
𝑞O ,𝐽

= 𝜆.

Note the importance of the role played by the mappingM in

order to reach this conclusion. Indeed, if we replace𝑚2 with {(𝑥) |
𝑠2 (𝑥)} → {(𝑥) | 𝐵(𝑥)}, then the perfect Σ-characterization of 𝜆

would be the CQ {(𝑥) | 𝐴(𝑥)}.
Borrowing the ideas from [16] to remedy situationswhere perfect

abstractions do not exist, we now introduce approximations of

perfect characterizations in terms of recall (complete) and precision

(sound).

Definition 2. 𝑞O ∈ Q is a complete (resp., sound) Σ-
characterization of 𝜆 in the query language Q, if 𝜆 ⊆ 𝑐𝑒𝑟𝑡𝐷

𝑞O ,𝐽
(resp.,

𝑐𝑒𝑟𝑡𝐷
𝑞O ,𝐽
⊆ 𝜆).

Example 4. Refer to Example 1. We have that 𝑞1O and 𝑞2O are

complete Σ-characterization of 𝜆, whereas 𝑞3O and 𝑞4O are sound Σ-

characterization of 𝜆.

As the above example manifests, there may be several complete

and sound characterizations relative to a query languageQ. In those
cases, the interest is unquestionably in those that best approximate

the perfect one.

Definition 3. 𝑞O is a Q-minimally complete (resp., Q-
maximally sound) Σ-characterization of 𝜆, if 𝑞O is a complete (resp.,

sound) Σ-characterization of 𝜆 in Q and there is no 𝑞′O ∈ Q such that

(i) 𝑞′O is a complete (resp., sound) Σ-characterization of 𝜆 and (ii)

𝑐𝑒𝑟𝑡𝐷
𝑞′O ,𝐽
⊂ 𝑐𝑒𝑟𝑡𝐷

𝑞O ,𝐽
(resp., 𝑐𝑒𝑟𝑡𝐷

𝑞O ,𝐽
⊂ 𝑐𝑒𝑟𝑡𝐷

𝑞′O ,𝐽
).

Example 5. Refer again to Example 1. The CQ 𝑞1O is a UCQ-

minimally complete Σ-characterization of 𝜆, whereas 𝑞2O is not. Both

𝑞3O and 𝑞4O are CQ-maximally sound Σ-characterizations of 𝜆, but
neither of them is a UCQ-maximally sound Σ-characterization of

𝜆. Indeed, a UCQ-maximally sound Σ-characterization of 𝜆 is 𝑞5O =

𝑞3O ∪ 𝑞
4

O .

Given this general framework, there are (at least) three computa-

tional problems to consider, with respect to an ontology language

LO , a mapping language LM , and a query language Q. Given
an OBDM system Σ = ⟨⟨O,S,M⟩, 𝐷⟩ and a 𝐷-dataset 𝜆, where

O ∈ LO andM ∈ LM :

• Verification: given 𝑞O ∈ Q, check whether 𝑞O is a perfect

(resp., complete, sound) Σ-characterization of 𝜆.

• Computation: compute the perfect in Q (resp., Q-minimally

complete, or Q-maximally sound) Σ-characterization of 𝜆,

provided it exists.

• Existence: check whether there exists a perfect in Q
(resp., Q-minimally complete, or Q-maximally sound) Σ-
characterization of 𝜆.

In what follows, if not otherwise stated, we refer to the following

scenario which considers by far the most popular languages for the

OBDM paradigm: (i) LO is DL-LiteR , (ii) LM is GLAV, and (iii) Q
is UCQ.

In this scenario, there are two interesting properties that are

worth mentioning. First, since the UCQ language allows for the

conjunction (resp., union) operator, if an UCQ-minimally complete

(resp., UCQ-maximally sound) Σ-characterization of 𝜆 exists, then

it is unique up to Σ-equivalence.

Proposition 2. If 𝑞1 and 𝑞2 are UCQ-minimally complete (resp.,

UCQ-maximally sound) Σ-characterizations of 𝜆, then they are equiv-
alent w.r.t. Σ.

Due to the above property, in what follows we simply refer

to the UCQ-minimally complete (resp., UCQ-maximally sound) Σ-
characterization of 𝜆.

Second, as expected, in this scenario perfect characterizations

are less likely to exist than in the plain relational database case.

Proposition 3. Let Σ = ⟨𝐽 , 𝐷⟩ be a consistent OBDM system, and

𝜆 be a 𝐷-dataset. If there exists a perfect Σ-characterization of 𝜆 in

UCQ, then 𝜆 is UCQ-definable inside 𝐷 .

In general, the converse of the above proposition does not hold.

Indeed, in Example 3, while there is no perfect Σ-characterization
of 𝜆 in any query language Q, the CQ 𝑞S = {(𝑥) | 𝑠1 (𝑥)} witnesses
that 𝜆 is CQ-definable inside 𝐷 .

4 VERIFICATION
We now define the verification problems for 𝑋 -query definability

(𝑋 -VQDEF), where 𝑋={Perfect, Complete, Sound}. These decision

problems are parametric with respect to the ontology language LO
to express O, the mapping language LM to expressM, and the

query language Q to express 𝑞O .

Problem: X-VQDEF(LO , LM , Q)
Input: An OBDM system Σ = ⟨⟨O,S,M⟩, 𝐷⟩, a 𝐷-

dataset 𝜆, and a query 𝑞O ∈ Q over O, where
O ∈ LO andM ∈ LM .

Question: Is 𝑞O a X Σ-characterization of 𝜆?

In what follows, given a syntactic object 𝑥 such as a query, an

ontology, or a mapping, we denote by 𝜎 (𝑥) its size.

Theorem 1. Complete-VQDEF(DL-LiteR , GLAV, UCQ) is in NP.

Proof. We now show how to check whether 𝑞O is a complete

Σ-characterization of 𝜆 (i.e., 𝜆 ⊆ cert
𝐷
𝑞O ,𝐽

) in NP, where Σ = ⟨𝐽 , 𝐷⟩
with 𝐽 = ⟨O,S,M⟩.

Let 𝑛 be the arity of the tuples in the 𝐷-dataset 𝜆. For each 𝑛-

tuple of constants ®𝑐 ∈ 𝜆, we first guess (i) a CQ 𝑞′O over O which is

either of arity 𝑛 and size at most 𝜎 (𝑞O), or a boolean one capturing

a disjointness assertion 𝑑 (e.g., {() | ∃𝑦.𝐴1 (𝑦) ∧𝐴2 (𝑦)} capturing
𝑑 = 𝐴1 ⊑ ¬𝐴2); (ii) a sequence 𝜌O of ontology assertions; (iii) a CQ

𝑞S over S of size at most 𝜎 (M) · 𝜎 (𝑞′O) which is either of arity

𝑛 and of the form {®𝑥 | ∃®𝑦.𝜙S (®𝑥, ®𝑦)}, or a boolean one of the form

{() | ∃®𝑦.𝜙S (®𝑦)}; (iv) a sequence 𝜌M of mapping assertions; and

(v) a function 𝑓 from the variables occurring in 𝑞S to dom(𝐷).
Then, we check in polynomial time whether (i) by means of

𝜌O , either we can rewrite a disjunct of 𝑞O into 𝑞′O through O (i.e.,

𝑞′O ∈ PerfectRef(O, 𝑞O)), or we can rewrite a disjunct of 𝑉O into

𝑞′O through O (i.e., 𝑞′O ∈ PerfectRef (O,𝑉O)); (ii) by means of 𝜌M
we can rewrite 𝑞′O into 𝑞S throughM (i.e., 𝑞S ∈ MapRef (M, 𝑞′O),
and thus either 𝑞′O ∈ rew𝑞O ,𝐽 or 𝑞′O ∈ rew𝑉O ,𝐽); and finally (iii)

𝑓 consists in a homomorphism witnessing either (set (𝜙S), ®𝑥) →
(𝐷, ®𝑐), i.e., ®𝑐 ∈ 𝑞𝐷S (and therefore ®𝑐 ∈ rew𝐷

𝑞O ,𝐽
, which means ®𝑐 ∈

cert
𝐷
𝑞O ,𝐽

), or (set (𝜙S), ()) → (𝐷, ()), i.e., 𝐷 |= 𝑞S (and therefore

rew𝐷
𝑉O ,𝐽

= {⟨⟩}, which means that Σ is inconsistent and thus ®𝑐 ∈
cert

𝐷
𝑞O ,𝐽

by definition). □

Theorem 2. Sound-VQDEF(DL-LiteR , GLAV, UCQ) is in coNP.

Proof. We now show how to check whether 𝑞O is not a sound

Σ-characterization of 𝜆 (i.e., cert
𝐷
𝑞O ,𝐽
⊈ 𝜆) in NP, where Σ = ⟨𝐽 , 𝐷⟩

with 𝐽 = ⟨O,S,M⟩.
We first guess (i) a tuple of constants ®𝑐 , and, exactly as in the

proof of Theorem 1, (ii) 𝑞′O , 𝜌O , 𝑞S , 𝜌M , and 𝑓 . Then, we check in

polynomial time whether (i) ®𝑐 contains only constants from dom(𝐷)
and ®𝑐 ∉ 𝜆 (i.e., ®𝑐 ∈ dom(𝐷)𝑛 \ 𝜆), and (ii) using 𝑞′O , 𝜌O , 𝑞S , 𝜌M ,

and 𝑓 , we follow exactly the same polynomial time procedure in

the proof of Theorem 1 to check whether ®𝑐 ∈ cert𝐷
𝑞O ,𝐽

. □

Recall that a decision problem is in DP if and only if it is the

conjunction of a decision problem in NP and a decision problem

in coNP [30]. Since 𝑞O is a perfect Σ-characterization of 𝜆 if and

only if it is both a sound, and a complete Σ-characterization of 𝜆,

we immediately derive the following upper bound.

Corollary 3. Perfect-VQDEF(DL-LiteR , GLAV, UCQ) is in DP.

We now provide matching lower bounds. We show that they

already hold for the same, very simple, fixed OBDM system Σ and

dataset 𝜆, and for single, unary CQs as queries.

Theorem 4. There is an OBDM system Σ = ⟨⟨O,S,M⟩, 𝐷⟩ such
that O = ∅ and M is a GAV∩LAV mapping, and a 𝐷-dataset 𝜆

containing only a unary tuple for which the problem Complete-

VQDEF(∅, GAV∩LAV, CQ) (resp., Sound-VQDEF(∅, GAV∩LAV, CQ),
Perfect-VQDEF(∅, GAV∩LAV, CQ)) is NP-hard (resp., coNP-hard, DP-
hard).

Proof (Sketch.) Let Σ = ⟨𝐽 , 𝐷⟩ be the fixed OBDM system such

that (i) 𝐽 = ⟨O,S,M⟩ is an OBDM specification in which O = ∅ is
an empty ontology whose alphabet contains two atomic roles 𝑃1
and 𝑃2, S = {𝑠1, 𝑠2}, andM contains the following two GAV∩LAV
assertions: {(𝑥1, 𝑥2) | 𝑠1 (𝑥1, 𝑥2)} → {(𝑥1, 𝑥2) | 𝑃1 (𝑥1, 𝑥2)}, and
{(𝑥1, 𝑥2) | 𝑠2 (𝑥1, 𝑥2)} → {(𝑥1, 𝑥2) | 𝑃2 (𝑥1, 𝑥2)}, which simply

mirrors source predicate 𝑠𝑖 to atomic role 𝑃𝑖 , for 𝑖 = [1, 2], and (ii)

𝐷 is the S-database composed of the following facts:

{𝑠1 (𝑥,𝑦) | 𝑥 = {𝑟 ′, 𝑔′, 𝑏 ′} and 𝑦 = {𝑟 ′, 𝑔′, 𝑏 ′} and 𝑥 ≠ 𝑦}∪
{𝑠1 (𝑥,𝑦) | 𝑥 = {𝑟, 𝑔, 𝑏,𝑦} and 𝑦 = {𝑟, 𝑔, 𝑏,𝑦} and 𝑥 ≠ 𝑦}∪
{𝑠2 (𝑥, 𝑐3) | 𝑥 = {𝑟 ′, 𝑔′, 𝑏 ′}} ∪ {𝑠2 (𝑥, 𝑐4) | 𝑥 = {𝑟, 𝑔, 𝑏,𝑦}}.

Let, moreover, 𝜆 be the fixed 𝐷-dataset 𝜆 = {(𝑐4)}.
Let 𝐺 = (𝑉 , 𝐸) be a finite and undirected graph without loops

or isolated nodes, where 𝑉 = {𝑦1, . . . , 𝑦𝑛}. We define a CQ 𝑞𝐺 =

{(𝑥) | ∃®𝑦.𝜙O (𝑥, ®𝑦)} over O as follows:

{(𝑥) | ∃𝑦1, . . . , 𝑦𝑛 .
∧

(𝑦𝑖 ,𝑦 𝑗) ∈𝐸
(𝑃1 (𝑦𝑖 , 𝑦 𝑗)) ∧

∧
𝑦𝑖 ∈𝑉
(𝑃2 (𝑦𝑖 , 𝑥))}

Notice that 𝑞𝐺 can be constructed in LogSpace from an input

graph 𝐺 . Furthermore, for both 𝑖 = 3 and 𝑖 = 4 and for any graph

𝐺 = (𝑉 , 𝐸) as above, it can be shown that 𝐺 is 𝑖-colourable if and

only if (𝑐𝑖) ∈ cert𝐷𝑞𝐺 ,𝐽
. With this property at hand, it is not hard to

prove the claimed lower bounds. Here, we only address the more

interesting perfect case.

The DP-hardness is by a LogSpace reduction from exact-4-

colourability, a well-known DP-complete problem [33]. In partic-

ular, a graph 𝐺 is exact-4-colourable (i.e., 4-colourable and not

3-colourable) if and only if cert
𝐷
𝑞𝐺 ,𝐽

= {(𝑐4)}. □

Corollary 5. Complete-VQDEF(DL-LiteR , GLAV, UCQ), Sound-
VQDEF(DL-LiteR , GLAV, UCQ), and Perfect-VQDEF(DL-LiteR , GLAV,
UCQ) are NP-complete, coNP-complete, and DP-complete, respectively.

Finally, the lower bound proof of Theorem 4 can be easily adapted

for the plain relational database case. Thus, given a schema S, an S-
database 𝐷 , a 𝐷-dataset 𝜆, and a UCQ 𝑞S over S, it is DP-complete

the problem of deciding whether 𝑞S defines 𝜆 inside 𝐷 (the DP

membership of this problem directly follows from Corollary 3).

5 COMPUTATION
In this section, we address the computation problem. We start by

considering the case when the OBDM system Σ at hand is incon-

sistent as a separate case. Given an inconsistent OBDM system

Σ = ⟨𝐽 , 𝐷⟩ and a 𝐷-dataset 𝜆 of arity 𝑛, we point out that any query

𝑞O over the ontology O of the OBDM specification 𝐽 is the UCQ-

minimally complete Σ-characterization of 𝜆 (recall that the certain

answers of any query 𝑞O of arity 𝑛 w.r.t. an inconsistent OBDM sys-

tem Σ is the set of all possible 𝑛-tuples of constants occurring in 𝐷).

Furthermore, if 𝜆 = dom(𝐷)𝑛 , then any query 𝑞O is also the UCQ-

maximally sound (and therefore the perfect) Σ-characterization of

𝜆; otherwise, i.e., 𝜆 ⊊ dom(𝐷)𝑛 , no sound (and therefore, no UCQ-

maximally sound and no perfect) Σ-characterization of 𝜆 exists.

Having thoroughly covered the case of inconsistent OBDM sys-

tems, in what follows in this section, unless otherwise stated, we

implicitly assume to deal only with consistent OBDM systems.

Specifically, given a consistent OBDM system Σ = ⟨𝐽 , 𝐷⟩ and
a 𝐷-dataset 𝜆, we provide exponential time algorithms for com-

puting UCQ-minimally complete and UCQ-maximally sound Σ-
characterizations of 𝜆, thus proving that, in this case, they always

exist. As already observed in Proposition 2, in our scenario all UCQ-

minimally complete (resp., UCQ-maximally sound) characteriza-

tions of 𝜆 are unique up to logical equivalence w.r.t. Σ, and therefore
we refer to the UCQ-minimally complete (resp., UCQ-maximally

sound) Σ-characterization of 𝜆.

Before illustrating the main techniques to compute such best

characterizations, we provide two crucial properties about the

canonical structure that we will use to establish the correctness of

our algorithms.

Proposition 4. Let Σ = ⟨⟨O,S,M⟩, 𝐷⟩ be an OBDM system, 𝑞O
be a UCQ over O, and ®𝑐 and ®𝑏 be two tuples of constants such that

(CM(𝐷)O , ®𝑐) → (CM(𝐷)O , ®𝑏). If ®𝑐 ∈ cert𝐷
𝑞O ,𝐽

, then
®𝑏 ∈ cert𝐷

𝑞O ,𝐽
.

Proof. If Σ is inconsistent, the claim is trivial. If Σ is con-

sistent, from Section 2 we know that ®𝑐 ∈ cert
𝐷
𝑞O ,𝐽

implies the

existence of a disjunct 𝑞 = {®𝑥 | ∃®𝑦.𝜙 (®𝑥, ®𝑦)} in 𝑞O for which

(set (𝜙), ®𝑥) → (CM(𝐷)O , ®𝑐). Let ℎ be the homomorphism witnessing

that (set (𝜙), ®𝑥) → (CM(𝐷)O , ®𝑐), and let ℎ′ be the homomorphism

witnessing that (CM(𝐷)O , ®𝑐) → (CM(𝐷)O , ®𝑏), which holds by the

premises of the proposition. The composition functionℎ′′ = ℎ′◦ℎ is

then a homomorphism witnessing that (set (𝜙), ®𝑥) → (CM(𝐷)O , ®𝑏).
It follows that

®𝑏 ∈ cert𝐷
𝑞O ,𝐽

, as required. □

Proposition 5. Let Σ = ⟨⟨O,S,M⟩, 𝐷⟩ be a consistent OBDM

system,
®𝑏 and ®𝑐 be two tuples of constants, and 𝑞®𝑐 be the CQ

𝑞®𝑐 = query(M(𝐷), ®𝑐). We have that
®𝑏 ∈ cert

𝐷
𝑞®𝑐 ,𝐽

if and only if

(CM(𝐷)O , ®𝑐) → (CM(𝐷)O , ®𝑏).

Proof. Suppose that (CM(𝐷)O , ®𝑐) → (CM(𝐷)O , ®𝑏), and let ℎ

be the homomorphism witnessing it. Consider the query 𝑞®𝑐 =

query(M(𝐷), ®𝑐) = {®𝑥 | ∃®𝑦.𝜙 (®𝑥, ®𝑦)}. Observe that set (𝜙) is ob-

tained fromM(𝐷) by appropriately replacing each occurrence of

each constant 𝑐 ∈ dom(M(𝐷)) either with a distinguished variable

𝑥𝑐 ∈ ®𝑥 or with an existential variable 𝑦𝑐 ∈ ®𝑦. This means that ℎ can

be immediately transformed into a homomorphism witnessing that

(set (𝜙), ®𝑥) → (CM(𝐷)O , ®𝑏), thus implying that
®𝑏 ∈ cert𝐷

𝑞®𝑐 ,𝐽
.

Suppose now that
®𝑏 ∈ cert𝐷

𝑞®𝑐 ,𝐽
. Since Σ is consistent, it follows

that there is a homomorphism ℎ witnessing that (set (𝜙), ®𝑥) →
(CM(𝐷)O , ®𝑏), where 𝑞®𝑐 = query(M(𝐷), ®𝑐) = {®𝑥 | ∃®𝑦.𝜙 (®𝑥, ®𝑦)}. By
considering again the relationship between set (𝜙) and CM(𝐷)O , the

homomorphism ℎ can be immediately transformed into a homo-

morphism ℎ′ that witnesses (M(𝐷), ®𝑐) → (CM(𝐷)O , ®𝑏). It is now
not hard to verify that ℎ′ can be extended into a homomorphism

ℎ′′ witnessing that (CM(𝐷)O , ®𝑐) → (CM(𝐷)O , ®𝑏). □

We are now ready to present our techniques. We start with the

complete case, and provide the algorithm MinCompCharacteriza-

tion for computing UCQ-minimally complete characterizations.

Algorithm MinCompCharacterization

Input:
OBDM system Σ = ⟨𝐽 , 𝐷⟩ with 𝐽 = ⟨O,S,M⟩;
𝐷-dataset 𝜆 = { ®𝑐1, . . . , ®𝑐𝑛}

Output:
UCQ 𝑞O over O

1: ComputeM(𝐷)
2: 𝑞O ← 𝑞𝑢𝑒𝑟𝑦 (M(𝐷), ®𝑐1) ∪ . . . ∪ 𝑞𝑢𝑒𝑟𝑦 (M(𝐷), ®𝑐𝑛)
3: return 𝑞O

Informally, for each ®𝑐𝑖 ∈ 𝜆, the algorithm obtains from the set

of atomsM(𝐷) the CQ query(M(𝐷), ®𝑐𝑖). Finally, the output is the
union of all such CQs.

Example 6. Let 𝐽 = ⟨O,S,M⟩ be the same OBDM

specification of Example 1. One can verify that for the S-
database 𝐷 = {𝑠1 (𝑐1), 𝑠3 (𝑐2, 𝑏), 𝑠3 (𝑐3, 𝑏)} and the 𝐷-dataset

𝜆 = {(𝑐1), (𝑐2)}, MinCompCharacterization(⟨𝐽 , 𝐷⟩, 𝜆) returns

the UCQ 𝑞O = query(M(𝐷), (𝑐1)) ∪ query(M(𝐷), (𝑐2)),

where query(M(𝐷), (𝑐1)) = {(𝑥𝑐1) | ∃𝑦𝑐2 , 𝑦𝑐3 , 𝑦𝑏 .Student(𝑥𝑐1) ∧
EnrolledIn(𝑦𝑐2 , 𝑦𝑏) ∧ EnrolledIn(𝑦𝑐3 , 𝑦𝑏)} and query(M(𝐷), (𝑐2))
= {(𝑥𝑐2) | ∃𝑦𝑐1 , 𝑦𝑐3 , 𝑦𝑏 .EnrolledIn(𝑥𝑐2 , 𝑦𝑏) ∧ EnrolledIn(𝑦𝑐3 , 𝑦𝑏) ∧
Student(𝑦𝑐1)}. Furthermore, one can see that 𝑞O is the UCQ-

minimally complete Σ-characterization of 𝜆, where Σ = ⟨𝐽 , 𝐷⟩.

The following theorem establishes termination and correctness

of the MinCompCharacterization algorithm.

Theorem 6. MinCompCharacterization(Σ, 𝜆) terminates and re-

turns the UCQ-minimally complete Σ-characterization of 𝜆.

Proof. Termination of the algorithm as well as completeness of

the UCQ 𝑞O returned are straightforward.

To prove that 𝑞O is also the UCQ-minimally complete Σ-
characterization of 𝜆, it is enough to show that any query 𝑞

over O that is a complete Σ-characterization of 𝜆 is such that

cert
𝐷
𝑞O ,𝐽

⊆ cert
𝐷
𝑞,𝐽

, where Σ = ⟨𝐽 , 𝐷⟩. We do this by contraposi-

tion. Let 𝑞 be a UCQ for which cert
𝐷
𝑞O ,𝐽

⊈ cert
𝐷
𝑞,𝐽

, i.e., for a tu-

ple of constants
®𝑏 we have

®𝑏 ∉ cert
𝐷
𝑞,𝐽

but
®𝑏 ∈ cert

𝐷
𝑞O ,𝐽

. This lat-

ter means that
®𝑏 ∈ cert

𝐷
𝑞®𝑐 ,𝐽

for some 𝑞®𝑐 = query(M(𝐷), ®𝑐) with
®𝑐 ∈ 𝜆. By Proposition 5, one can see that

®𝑏 ∈ cert
𝐷
𝑞®𝑐 ,𝐽

implies

(CM(𝐷)O , ®𝑐) → (CM(𝐷)O , ®𝑏). By Proposition 4, it follows that each

UCQ 𝑞′ over O containing tuple ®𝑐 in its set of certain answers w.r.t.

Σmust contain also tuple
®𝑏 in such a set. Thus, since

®𝑏 ∉ cert
𝐷
𝑞,𝐽

, we

derive that ®𝑐 ∉ cert
𝐷
𝑞,𝐽

as well. Since ®𝑐 ∈ 𝜆, this latter clearly implies

that 𝑞 is not a complete Σ-characterization of 𝜆, as required. □

We now turn to the sound case, and provide the algorithm Max-

SoundCharacterization for computing UCQ-maximally sound Σ-
characterizations.

Algorithm MaxSoundCharacterization

Input:
Consistent OBDM system Σ = ⟨𝐽 , 𝐷⟩ with 𝐽 = ⟨O,S,M⟩;
𝐷-dataset 𝜆 = { ®𝑐1, . . . , ®𝑐𝑚} of arity 𝑛

Output:
UCQ 𝑞O over O

1: 𝜆− ← dom(𝐷)𝑛 \ 𝜆
2: 𝑞O ← {®𝑥 | ⊥(®𝑥)}, where ®𝑥 = (𝑥1, . . . , 𝑥𝑛)
3: ComputeM(𝐷)
4: for each 𝑖 ← 1, . . . ,𝑚 do
5: 𝑞𝑖 ← 𝑞𝑢𝑒𝑟𝑦 (M(𝐷), ®𝑐𝑖)
6: if 𝑐𝑒𝑟𝑡𝐷

𝑞𝑖 ,𝐽
∩ 𝜆− = ∅ then

7: 𝑞O ← 𝑞O ∪ 𝑞𝑖
8: end if
9: end for
10: return 𝑞O

Intuitively, starting from the UCQ query(M(𝐷), ®𝑐1) ∪ . . . ∪
query(M(𝐷), ®𝑐𝑚), the algorithm simply discards all those disjuncts

whose set of certain answers w.r.t. Σ contain a tuple
®𝑏 ∉ 𝜆. We re-

call from Section 2 that the set of certain answers of a CQ 𝑞𝑖 w.r.t.

a consistent OBDM system Σ = ⟨𝐽 , 𝐷⟩ can be computed by first

obtaining its reformulation rew𝑞𝑖 ,𝐽 over the source schema S, and
then by evaluating this latter query directly over the S-database 𝐷 .

Example 7. Refer to Example 6. Since the certain an-

swers of query(M(𝐷), (𝑐2)) w.r.t. Σ = ⟨𝐽 , 𝐷⟩ include also

(𝑐3) ∉ 𝜆, MaxSoundCharacterization(Σ, 𝜆) returns the CQ

𝑞O = query(M(𝐷), (𝑐1)), which is the UCQ-maximally sound Σ-
characterization of 𝜆.

The following theorem establishes termination and correctness

of the MaxSoundCharacterization algorithm.

Theorem 7. MaxSoundCharacterization(Σ, 𝜆) terminates and re-

turns the UCQ-maximally sound Σ-characterization of 𝜆.

Proof. Termination of the algorithm as well as soundness of

the UCQ 𝑞O returned are straightforward.

To prove that 𝑞O is also the UCQ-maximally sound Σ-
characterization of 𝜆, it is enough to show that any query 𝑞 over O
that is a sound Σ-characterization of 𝜆 is such that cert𝐷

𝑞,𝐽
⊆ cert

𝐷
𝑞O ,𝐽

,

where Σ = ⟨𝐽 , 𝐷⟩. We do this by contraposition. Let 𝑞 be a UCQ

for which cert
𝐷
𝑞,𝐽
⊈ cert

𝐷
𝑞O ,𝐽

, i.e., for a tuple of constants
®𝑏 we have

®𝑏 ∈ cert
𝐷
𝑞,𝐽

but
®𝑏 ∉ cert

𝐷
𝑞O ,𝐽

. If
®𝑏 ∉ 𝜆, then we immediately get

that 𝑞 is not a sound Σ-characterization of 𝜆, and we are done. So,

assume that
®𝑏 ∈ 𝜆. Since ®𝑏 ∉ cert

𝐷
𝑞O ,𝐽

and
®𝑏 ∈ 𝜆, it is easy to see

that the algorithm discarded the disjunct 𝑞 ®𝑏 = query(M(𝐷), ®𝑏)
(otherwise, we would trivially derive that

®𝑏 ∈ cert
𝐷
𝑞 ®𝑏 ,𝐽

, and thus

®𝑏 ∈ cert𝐷
𝑞O ,𝐽

, which is a contradiction to the fact that
®𝑏 ∉ cert

𝐷
𝑞O ,𝐽

).

From the algorithm, one can see that the only reason 𝑞 ®𝑏 was dis-

carded is because ®𝑔 ∈ cert
𝐷
𝑞 ®𝑏 ,𝐽

for at least a tuple ®𝑔 ∉ 𝜆 (i.e.,

®𝑔 ∈ dom(𝐷)𝑛 \ 𝜆). By Proposition 5, one can see that ®𝑔 ∈ cert𝐷
𝑞 ®𝑏 ,𝐽

implies (CM(𝐷)O , ®𝑏) → (CM(𝐷)O , ®𝑔). By Proposition 4, it follows

that each UCQ 𝑞′ over O containing tuple
®𝑏 in its set of certain

answers w.r.t. Σ must contain also tuple ®𝑔 in such a set. Thus, since

®𝑏 ∈ cert
𝐷
𝑞,𝐽

, we derive that ®𝑔 ∈ cert
𝐷
𝑞,𝐽

as well. Since ®𝑔 ∉ 𝜆, this

latter clearly implies that 𝑞 is not a sound Σ-characterization of 𝜆,

as required. □

Notice that, in all the cases in which a perfect characterization

exists, it is clear that both the above algorithms return the same

query query(M(𝐷), ®𝑐1) ∪ . . . ∪ query(M(𝐷), ®𝑐𝑛). As a direct con-
sequence of both Theorem 6 and Theorem 7, we get the following

result.

Corollary 8. Either the UCQ 𝑞O = query(M(𝐷), ®𝑐1) ∪ . . . ∪
query(M(𝐷), ®𝑐𝑛) is a perfect Σ-characterization of 𝜆 = { ®𝑐1, . . . , ®𝑐𝑛},
or a perfect Σ-characterization of 𝜆 in UCQ does not exist.

Furthermore, the combination of Corollary 8 and Proposition 5

allow us to provide a semantic test for the existence of perfect

characterizations in UCQ in the OBDM case, which can be seen as

the analogous of the semantic tests given in [5] and [29] for the

plain relational database case and the ontology-mediated query

answering case, respectively. More specifically, given a consistent

OBDM system Σ = ⟨⟨O,S,M⟩, 𝐷⟩ and a 𝐷-dataset 𝜆 of arity 𝑛,

there exists a perfect Σ-characterization of 𝜆 in UCQ if and only

if it is the case that (CM(𝐷)O , ®𝑐) ↛ (CM(𝐷)O , ®𝑏) for each ®𝑐 ∈ 𝜆 and

each
®𝑏 ∈ dom(𝐷)𝑛 \ 𝜆.

In the next section, we study the computational complexity of

the problem of deciding, given Σ = ⟨⟨O,S,M⟩, 𝐷⟩ and 𝜆, whether
a perfect Σ-characterization of 𝜆 exists.

6 EXISTENCE
We now address the existence problem. For the scenario under

consideration in this paper, the existence problem for both UCQ-

minimally complete and UCQ-maximally sound characterizations

is trivial, since by Theorems 6 and 7 they always exist. So, we only

consider the perfect case, by defining a variant of the QDEF problem

as defined in [29], where also a mapping in some mapping language

is given as input.

Problem: QDEF(LO , LM , Q)
Input: An OBDM system Σ = ⟨⟨O,S,M⟩, 𝐷⟩ and a

𝐷-dataset 𝜆, where O ∈ LO andM ∈ LM .

Question: Is there a query 𝑞O ∈ Q over O such that 𝑞O
is the perfect Σ-characterization of 𝜆?

In what follows, we show that the computational complexity

of the above QDEF decision problem differs depending on the

mapping language LM adopted. A key difference between GLAV

and the special cases GAV and LAV is in the size of M(𝐷). In
GLAV mappings, M(𝐷) can be exponentially large due to the

simultaneous presence of joins in the left-hand side, and exis-

tential variables in the right-hand side, of assertions (e.g., take

𝐷 = {𝑠𝑖 (0), 𝑠𝑖 (1) | 1 ≤ 𝑖 ≤ 𝑛} andM containing the GLAV as-

sertion: {(𝑥1, . . . , 𝑥𝑛) | 𝑠1 (𝑥1) ∧ . . . ∧ 𝑠𝑛 (𝑥𝑛)} → {(𝑥1, . . . , 𝑥𝑛) |
∃𝑦.𝑃 (𝑥1, 𝑦) ∧ . . . ∧ 𝑃 (𝑥𝑛, 𝑦)}). Conversely, in both LAV and GAV

mappings,M(𝐷) is always polynomially bounded since the former

do not allow for joins in the left-hand side of assertions, whereas

the latter do not allow for existential variables in the right-hand

side of assertions and the arity of ontology predicates is fixed to at

most 2.

GAV and LAV mappings, however, differ for the effort in comput-

ingM(𝐷). While in LAVmappingsM(𝐷) can be always computed

in polynomial time, in GAVmappings there are CQs on the left-hand

side of assertions, and soM(𝐷) can not be computed in polynomial

time (unless P=NP).

We start by characterizing the computational complexity of the

simplest LAV case, then the GAV case, and finally the most general

GLAV case. Interestingly, all the provided matching lower bounds

hold even for fixed ontologies O = ∅, i.e., ontologies without as-
sertions, fixed 𝐷-dataset 𝜆 containing a single unary tuple, and for

both CQs and UCQs as query languages.

Importantly, for the scenario under consideration, due to Corol-

lary 8, the question in QDEF can be reformulated equivalently as

follows: “is 𝑞O = query(M(𝐷), ®𝑐1) ∪ . . . ∪ query(M(𝐷), ®𝑐𝑛) also a
sound (and so, a perfect) Σ-characterization of 𝜆 = { ®𝑐1, . . . , ®𝑐𝑛}?”.

Theorem 9. QDEF(DL-LiteR , LAV, UCQ) is coNP-complete.

Proof. As for the membership in coNP, we can first compute

M(𝐷) in polynomial time, and then, exactly as illustrated in

Theorem 2, we can check in coNP whether query(M(𝐷), ®𝑐1) ∪
. . . ∪ query(M(𝐷), ®𝑐𝑛) is also a sound (and so, a perfect) Σ-
characterization of 𝜆 = { ®𝑐1, . . . , ®𝑐𝑛}.

coNP-hardness directly follows from the plain relational database

case [2]. □

Recall that the complexity class Θ
𝑝

2
has many characterizations:

Θ
𝑝

2
= P

NP[O(log 𝑛)] = P with a constant number of rounds of parallel

queries to an NP oracle [8] (see also [38] for further characteriza-

tions).

Theorem 10. QDEF(DL-LiteR , GAV, UCQ) is Θ
𝑝

2
-complete.

Proof (Sketch.) As for the upper bound, for each pair of con-

stants (𝑐1, 𝑐2) ∈ dom(𝐷)2 (resp., constant 𝑐 ∈ dom(𝐷)) and for

each atomic role 𝑃 (resp., concept 𝐴) in the alphabet of O we

ask, all together with a single round of parallel queries to an NP

oracle, whether 𝑃 (𝑐1, 𝑐2) ∈ M(𝐷) (resp., 𝐴(𝑐) ∈ M(𝐷)). Then,
with a second and final round, due to Theorem 2, we can ask

with a single query to an NP oracle whether query(M(𝐷), ®𝑐1) ∪
. . . ∪ query(M(𝐷), ®𝑐𝑛) is also a sound (and so, a perfect) Σ-
characterization of 𝜆 = { ®𝑐1, . . . , ®𝑐𝑛}.

As for the lower bound, the proof of Θ
𝑝

2
-hardness is by a

LogSpace reduction from odd clique, which is Θ
𝑝

2
-complete [37].

Odd clique is the problem of deciding, given an undirected graph

𝐺 = (𝑉 , 𝐸) without loops, whether the maximum clique size of 𝐺

is an odd number. Without loss of generality, we may assume that

𝐸 contains at least an edge and that the cardinality of 𝑉 is an even

number (indeed, it is always possible to add fresh isolated nodes to

the graph 𝐺 without changing its maximum clique size).

Let𝑉 = {𝑣1, . . . , 𝑣𝑛}, we define an OBDM system Σ𝐺 = ⟨𝐽𝐺 , 𝐷𝐺 ⟩
as follows: 𝐽𝐺 = ⟨O,S𝐺 ,M𝐺 ⟩ is an OBDM specification such that

O = ∅, S𝐺 = {𝑒, 𝑠1, . . . , 𝑠𝑛}, andM𝐺 has the following GAV asser-

tions, for each odd 𝑖 ∈ [1, 𝑛]:
{(𝑥) | ∃𝑦1, . . . , 𝑦𝑖 .𝑠𝑖 (𝑥) ∧ cl𝑖 } → {(𝑥) | 𝐴𝑖 (𝑥)}
{(𝑥) | ∃𝑦1, . . . , 𝑦𝑖+1.𝑠𝑖+1 (𝑥) ∧ cl𝑖+1} → {(𝑥) | 𝐴𝑖 (𝑥)}

where 𝐴𝑖 is an atomic concept in the alphabet of O and, for each

𝑝 ∈ [1, 𝑛], cl𝑝 =
∧
{(𝑘,𝑗) |1≤𝑘< 𝑗≤𝑝 } 𝑒 (𝑦𝑘 , 𝑦 𝑗). Intuitively, cl𝑝 asks

whether 𝐺 contains a clique of size 𝑝 . Finally, 𝐷𝐺 = {𝑒 (𝑥1, 𝑥2) |
(𝑥1, 𝑥2) ∈ 𝐸} ∪ {𝑒 (𝑥2, 𝑥1) | (𝑥1, 𝑥2) ∈ 𝐸} ∪ {𝑠𝑖 (𝑐) | 1 ≤ 𝑖 ≤
𝑛 and 𝑖 is odd} ∪ {𝑠𝑖 (𝑐 ′) | 2 ≤ 𝑖 ≤ 𝑛 and 𝑖 is even}. Let, moreover,

𝜆 be the fixed 𝐷𝐺 -dataset 𝜆 = {(𝑐)}.
Notice that 𝜆 is fixed, whereas the OBDM system Σ𝐺 can be

constructed in LogSpace from an input graph 𝐺 .

It can be shown that, for any odd 𝑖 ∈ [1, 𝑛], 𝐴𝑖 (𝑐) ∈ CM𝐺 (𝐷𝐺)
O

(resp., 𝐴𝑖 (𝑐 ′) ∈ CM𝐺 (𝐷𝐺)
O) if and only if the graph 𝐺 contains a

clique of size 𝑖 (resp., a clique of size 𝑖 + 1).
With this property at hand, it is not hard to prove that the

maximum clique size of a graph 𝐺 is odd if and only if the CQ

𝑞O = query(M𝐺 (𝐷𝐺), 𝑐) is also a sound (and so, a perfect) Σ𝐺 -
characterization of 𝜆. □

Theorem 11. QDEF(DL-LiteR , GLAV, UCQ) is coNExpTime-

complete.

Proof (Sketch.) We start by discussing the upper bound. We

show how to check whether 𝑞O = query(M(𝐷), ®𝑐1) ∪ . . . ∪

query(M(𝐷), ®𝑐𝑚) is not a sound (and so, not a perfect) Σ-
characterization of 𝜆 = { ®𝑐1, . . . , ®𝑐𝑚} in NExpTime.

As a first step, we compute 𝑞O = query(M(𝐷), ®𝑐1) ∪ . . . ∪
query(M(𝐷), ®𝑐𝑚) in exponential time (note that M(𝐷) can be

exponentially large, and so also the UCQ 𝑞O). Then, we can pro-

ceed similarly as in the proof of Theorem 2. We guess (i) a tuple

of constants ®𝑐 , and (ii) 𝑞′O , 𝜌O , 𝑞S , 𝜌M , and 𝑓 (which now can be

objects of exponential size). Finally, we check in exponential time

whether (i) ®𝑐 ∈ dom(𝐷)𝑛 \ 𝜆, where 𝑛 is the arity of the tuples

in 𝜆, and (ii) the following condition holds: ®𝑐 ∈ cert
𝐷
𝑞O ,𝐽

or Σ is

inconsistent.

As for the lower bound, the proof of coNExpTime-hardness is

by a polynomial time reduction from the complement of the suc-

cinct clique problem. The succinct clique problem is known to be

NExpTime-complete [31]. Due to space limitations, we do not pro-

vide such proof here but refer the reader to [15] for details. □

7 CONCLUSIONS
We have addressed the problem of UCQ-definability in the OBDM

context. To semantically characterize datasets through ontologies

even in cases where perfect characterizations do not exist, we have

relaxed the notion of perfecteness in terms of recall and precision.

Finally, in a scenario that uses the languages commonly adopted in

OBDM, we have provided a thorough complexity analysis of three

natural, interesting problems associated with the framework.

There are many interesting avenues for future work. Some of

them are: (i) extending the framework for dealing also with the

query-by-example problem, in which two distinct 𝜆+ and 𝜆− datasets
are given, and one is interested in finding perfect (resp., complete

and sound, with their possible corresponding approximations) char-

acterizations queries over the ontology, so that the certain answers

of such queries capture all tuples in 𝜆+ and no tuple in 𝜆−; (ii)
investigating the existence and the computation problems when

we adopt CQ as a query language instead of UCQ; (iii) seeking

for techniques that allow to obtain, from end users’ perspectives,

more intelligible queries as characterizations; and (iv) evaluating

the techniques presented in this paper to real world settings.

ACKNOWLEDGEMENTS
This work has been partially supported by the ANR AI Chair IN-

TENDED (ANR-19-CHIA-0014), by MIUR under the PRIN 2017

project “HOPE” (prot. 2017MMJJRE), by the EU under the H2020-

EU.2.1.1 project TAILOR, grant id. 952215, and by European

Research Council under the European Union’s Horizon 2020

Programme through the ERC Advanced Grant WhiteMech (No.

834228).

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.

Addison Wesley Publ. Co.

[2] Timos Antonopoulos, Frank Neven, and Frédéric Servais. 2013. Definability

problems for graph query languages. In Proceedings of the Sixteenth International

Conference on Database Theory (ICDT 2013). 141–152.

[3] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Za-

kharyaschev. 2009. The DL-Lite Family and Relations. Journal of Artificial

Intelligence Research 36 (2009), 1–69.

[4] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider (Eds.). 2003. The Description Logic Handbook: Theory, Implemen-

tation and Applications. Cambridge University Press.

[5] Pablo Barceló and Miguel Romero. 2017. The Complexity of Reverse Engineering

Problems for Conjunctive Queries. In 20th International Conference on Database

Theory (ICDT 2017) (Leibniz International Proceedings in Informatics (LIPIcs)),

Michael Benedikt and Giorgio Orsi (Eds.), Vol. 68. Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, Dagstuhl, Germany, 7:1–7:17. https://doi.org/10.4230/

LIPIcs.ICDT.2017.7

[6] Angela Bonifati, Radu Ciucanu, and Slawek Staworko. 2016. Learning Join

Queries from User Examples. ACM Trans. Database Syst. 40, 4, Article 24 (Jan.

2016), 38 pages. https://doi.org/10.1145/2818637

[7] Lorenz Bühmann, Jens Lehmann, Patrick Westphal, and Simon Bin. 2018. DL-

Learner Structured Machine Learning on Semantic Web Data (WWW ’18). Inter-

national WorldWideWeb Conferences Steering Committee, Republic and Canton

of Geneva, Switzerland, 467–471. https://doi.org/10.1145/3184558.3186235

[8] Samuel R. Buss and Louise Hay. 1991. On Truth-Table Reducibility to SAT.

Information and Computation 91, 1 (1991), 86–102.

[9] Andrea Calì, Georg Gottlob, and Michael Kifer. 2013. Taming the Infinite Chase:

Query Answering under Expressive Relational Constraints. Journal of Artificial

Intelligence Research 48 (2013), 115–174.

[10] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,

and Riccardo Rosati. 2007. Tractable Reasoning and Efficient Query Answering

in Description Logics: The DL-Lite Family. Journal of Automated Reasoning 39, 3

(2007), 385–429.

[11] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y.

Vardi. 2012. Query Processing under GLAV Mappings for Relational and Graph

Databases. Proceedings of the Very Large Database Endowment 6, 2 (2012), 61–72.

[12] Gianluca Cima. 2017. Preliminary Results on Ontology-based Open Data Publish-

ing. In Proceedings of the Thirtieth International Workshop on Description Logics

(DL 2017) (CEUR Electronic Workshop Proceedings, http://ceur-ws.org/), Vol. 1879.

[13] Gianluca Cima. 2020. Abstraction in Ontology-based Data Management. Ph.D.

Dissertation. Sapienza University of Rome.

[14] Gianluca Cima, Marco Console, Maurizio Lenzerini, and Antonella Poggi. 2021.

Abstraction in Data Integration. In Proceedings of the Thirty-Sixth Annual

ACM/IEEE Symposium on Logic in Computer Science (LICS 2021). IEEE, 1–11.

[15] Gianluca Cima, Federico Croce, and Maurizio Lenzerini. 2021. QDEF and Its

Approximations in OBDM. CoRR. arXiv.org e-Print archive.

[16] Gianluca Cima, Maurizio Lenzerini, and Antonella Poggi. 2019. Semantic Char-

acterization of Data Services through Ontologies. In Proceedings of the Twenty-

Eighth International Joint Conference on Artificial Intelligence (IJCAI 2019). 1647–

1653.

[17] Gianluca Cima, Maurizio Lenzerini, and Antonella Poggi. 2020. Non-Monotonic

Ontology-based Abstractions of Data Services. In Proceedings of the Seventeenth

International Conference on Principles of Knowledge Representation and Reasoning

(KR 2020). 243–252.

[18] AnHai Doan, Alon Y. Halevy, and Zachary G. Ives. 2012. Principles of Data

Integration. Morgan Kaufmann.

[19] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. 2005. Data

Exchange: Semantics and Query Answering. Theoretical Computer Science 336, 1

(2005), 89–124.

[20] Nicola Fanizzi, Giuseppe Rizzo, Claudia d’Amato, and Francesca Esposito. 2018.

DLFoil: Class Expression Learning Revisited. In Proceedings of the Twenty-First

International Conference on Knowledge Engineering and Knowledge Management

(EKAW 2018).

[21] Marc Friedman, Alon Levy, and Todd Millstein. 1999. Navigational Plans for

Data Integration. In Proceedings of the Sixteenth National Conference on Artificial

Intelligence (AAAI 1999). AAAI Press, 67–73.

[22] Víctor Gutiérrez-Basulto, Jean Christoph Jung, and Leif Sabellek. 2018. Re-

verse Engineering Queries in Ontology-Enriched Systems: The Case of Ex-

pressive Horn Description Logic Ontologies. In Proceedings of the Twenty-

Seventh International Joint Conference on Artificial Intelligence, IJCAI-18. Inter-

national Joint Conferences on Artificial Intelligence Organization, 1847–1853.

https://doi.org/10.24963/ijcai.2018/255

[23] Maurizio Lenzerini. 2002. Data Integration: A Theoretical Perspective.. In Proceed-

ings of the Twentyfirst ACM SIGACT SIGMOD SIGART Symposium on Principles of

Database Systems (PODS 2002). 233–246.

[24] Maurizio Lenzerini. 2011. Ontology-based Data Management. In Proceedings of

the Twentieth International Conference on Information and Knowledge Management

(CIKM 2011). 5–6. https://doi.org/10.1145/2063576.2063582

[25] Carsten Lutz, Johannes Marti, and Leif Sabellek. 2018. Query Expressibility and

Verification in Ontology-based Data Access. In Principles of Knowledge Repre-

sentation and Reasoning: Proceedings of the Sixteenth International Conference

(KR 2018). 389–398.

[26] Denis Mayr Lima Martins. 2019. Reverse engineering database queries from

examples: State-of-the-art, challenges, and research opportunities. Information

Systems 83 (2019), 89–100. https://doi.org/10.1016/j.is.2019.03.002

[27] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and

Carsten Lutz. 2012. OWL 2 Web Ontology Language Profiles (Second Edition).

W3C Recommendation. World Wide Web Consortium. Available at http://www.

w3.org/TR/owl2-profiles/.

[28] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Palpanas. 2017.

New Trends on Exploratory Methods for Data Analytics. Proc. VLDB Endow. 10,

12 (Aug. 2017), 1977–1980.

[29] Magdalena Ortiz. 2019. Ontology-Mediated Queries from Examples: a Glimpse

at the DL-Lite Case. In Proceedings of the Fifth Global Conference on Artificial

Intelligence (EPiC Series in Computing), Vol. 65. 1–14.

[30] Christos H. Papadimitriou and Mihalis Yannakakis. 1984. The Complexity of

Facets (and Some Facets of Complexity). J. Comput. System Sci. 28, 2 (1984),

244–259.

[31] Christos H. Papadimitriou and Mihalis Yannakakis. 1986. A Note on Succinct

Representations of Graphs. Information and Computation 71, 3 (1986), 181–185.

[32] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo,

Maurizio Lenzerini, and Riccardo Rosati. 2008. Linking Data to Ontologies.

Journal on Data Semantics X (2008), 133–173. https://doi.org/10.1007/978-3-540-

77688-8_5

[33] Jörg Rothe. 2003. Exact complexity of Exact-Four-Colorability. Inform. Process.

Lett. 87, 1 (2003), 7–12.

[34] Umberto Straccia and Matteo Mucci. 2015. pFOIL-DL: Learning (Fuzzy) EL

Concept Descriptions from Crisp OWL Data Using a Probabilistic Ensemble

Estimation (SAC ’15). ACM, New York, NY, USA, 345–352. https://doi.org/10.

1145/2695664.2695707

[35] Balder ten Cate and Víctor Dalmau. 2015. The Product Homomorphism Problem

and Applications. In Proceedings of the Eigthteenth International Conference on

Database Theory (ICDT 2015) (LIPIcs), Vol. 31. 161–176.

[36] Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. 2014. Query

Reverse Engineering. The VLDB Journal 23, 5 (Oct. 2014), 721–746. https:

//doi.org/10.1007/s00778-013-0349-3

[37] KlausW.Wagner. 1987. More Complicated Questions About Maxima andMinima,

and Some Closures of NP. Theoretical Computer Science 51 (1987), 53–80.

[38] Klaus W. Wagner. 1990. Bounded Query Classes. SIAM J. Comput. 19, 5 (1990),

833–846.

[39] Moshé M. Zloof. 1975. Query-by-example: The Invocation and Definition of

Tables and Forms (VLDB ’75). ACM, New York, NY, USA, 1–24. https://doi.org/

10.1145/1282480.1282482

https://doi.org/10.4230/LIPIcs.ICDT.2017.7
https://doi.org/10.4230/LIPIcs.ICDT.2017.7
https://doi.org/10.1145/2818637
https://doi.org/10.1145/3184558.3186235
http://ceur-ws.org/
https://doi.org/10.24963/ijcai.2018/255
https://doi.org/10.1145/2063576.2063582
https://doi.org/10.1016/j.is.2019.03.002
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.1145/2695664.2695707
https://doi.org/10.1145/2695664.2695707
https://doi.org/10.1007/s00778-013-0349-3
https://doi.org/10.1007/s00778-013-0349-3
https://doi.org/10.1145/1282480.1282482
https://doi.org/10.1145/1282480.1282482

	Abstract
	1 Introduction
	2 Preliminaries
	3 Framework
	4 Verification
	5 Computation
	6 Existence
	7 Conclusions
	References

